ETC PI7C7100BNA

PI7C7100
3-Port
PCI Bridge
Pericom Semiconductor Corporation
The Complete Interface Solution
2380 Bering Drive, San Jose, California 95131
Telephone: 1-877-PERICOM, (1-877-737-4266)
Fax: (408) 435-1100, E-mail: [email protected]
Internet: http://www.pericom.com
© 2000 Pericom Semiconductor Corporation
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
LIFE SUPPORT POLICY
Pericom Semiconductor Corporation’s products are not authorized for use as critical components in life support devices or
systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an
officer of PSC.
1.Life support devices or systems are devices or systems which:
a) are intended for surgical implant into the body or
b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided
in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.Pericom Semiconductor
Corporation reserves the right to make changes to its products or specifications at any time, without notice, in order to improve
design or performance and to supply the best possible product. Pericom Semiconductor does not assume any responsibility
for use of any circuitry described other than the circuitry embodied in a Pericom Semiconductor product. The Company makes
no representations that circuitry described herein is free from patent infringement or other rights of third parties which may
result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Pericom
Semiconductor Corporation.
All other trademarks are of their respective companies.
ii
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
Table of Contents
1.
2.
3.
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
4.
4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.8
4.8.1
4.8.2
4.8.3
4.8.4
Introduction/Product Features ............................................................................................................................... 1
PI7C7100 Block Diagram ...................................................................................................................................... 3
Signal Definitions ................................................................................................................................................... 4
Signal Types ............................................................................................................................................................ 4
Signals ...................................................................................................................................................................... 4
Primary Bus Interface Signals .................................................................................................................................. 4
Secondary Bus Interface Signals ............................................................................................................................. 6
Clock Signals ............................................................................................................................................................ 8
Miscellaneous Signals ............................................................................................................................................. 8
JTAG Boundary Scan Signals .................................................................................................................................. 9
Power and Ground .................................................................................................................................................... 9
PCI Bus Operation ................................................................................................................................................ 10
Types of Transactions ........................................................................................................................................... 10
Single Address Phase ............................................................................................................................................ 11
Device Select (DEVSEL#) Generation .................................................................................................................... 11
Data Phase ............................................................................................................................................................. 11
Write Transactions ................................................................................................................................................ 11
Posted Write Transactions .................................................................................................................................... 11
Memory Write and Invalidate Transactions .......................................................................................................... 12
Delayed Write Transactions .................................................................................................................................. 12
Write Transaction Address Boundaries ................................................................................................................ 13
Buffering Multiple Write Transactions .................................................................................................................. 13
Fast Back-to-Back Write Transactions .................................................................................................................. 13
Read Transactions ................................................................................................................................................. 14
Prefetchable Read Transactions ............................................................................................................................ 14
Non-prefetchable Read Transactions .................................................................................................................... 14
Read Pre-fetch Address Boundaries ...................................................................................................................... 14
Delayed Read Requests ......................................................................................................................................... 15
Delayed Read Completion with Target .................................................................................................................. 15
Delayed Read Completion on Initiator Bus ........................................................................................................... 15
Configuration Transactions ................................................................................................................................... 16
Type 0 Access to PI7C7100 ................................................................................................................................... 16
Type 1 to Type 0 Conversion ................................................................................................................................ 17
Type 1 to Type 1 Forwarding ................................................................................................................................ 18
Special Cycles ........................................................................................................................................................ 19
Transaction Termination ........................................................................................................................................ 19
Master Termination Initiated by PI7C7100 ............................................................................................................ 20
Master Abort Received by PI7C7100 ..................................................................................................................... 20
Target Termination Received by PI7C7100 ............................................................................................................ 21
Target Termination Initiated by PI7C7100 ............................................................................................................. 23
iii
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
5.
5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
6.
6.1
6.2
6.3
6.4
7.
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.4
8.
8.1
8.2
8.3
9.
9.1
9.2
9.2.1
9.2.2
9.2.3
10.
10.1
10.2
11.
11.1
11.2
11.3
12.
12.1
12.2
13.
13.1
13.2
Address Decoding .................................................................................................................................................. 25
Address Ranges ..................................................................................................................................................... 25
I/O Address Decoding ........................................................................................................................................... 25
I/O Base and Limit Address Registers ................................................................................................................... 25
ISA Mode ............................................................................................................................................................... 26
Memory Address Decoding ................................................................................................................................... 26
Memory-Mapped I/O Base and Limit Address Registers ...................................................................................... 26
Prefetchable Memory Base and Limit Address Registers ...................................................................................... 27
VGA Support .......................................................................................................................................................... 28
VGA Mode ............................................................................................................................................................. 28
VGA Snoop Mode .................................................................................................................................................. 28
Transaction Ordering ........................................................................................................................................... 29
Transactions Governed by Ordering Rules ........................................................................................................... 29
General Ordering Guidelines .................................................................................................................................. 29
Ordering Rules ....................................................................................................................................................... 30
Data Synchronization ............................................................................................................................................. 31
Error Handling ...................................................................................................................................................... 32
Address Parity Errors ............................................................................................................................................. 32
Data Parity Errors ................................................................................................................................................... 32
Configuration Write Transactions to Configuration Space ................................................................................... 32
Read Transactions ................................................................................................................................................. 33
Delayed Write Transactions .................................................................................................................................. 33
Posted Write Transactions .................................................................................................................................... 35
Data Parity Error Reporting Summary .................................................................................................................... 36
System Error (SERR#) Reporting ........................................................................................................................... 42
Exclusive Access ................................................................................................................................................... 43
Concurrent Locks ................................................................................................................................................... 43
Acquiring Exclusive Access across PI7C7100 ....................................................................................................... 43
Ending Exclusive Access ....................................................................................................................................... 44
PCI Bus Arbitration .............................................................................................................................................. 45
Primary PCI Bus Arbitration ................................................................................................................................... 45
Secondary PCI Bus Arbitration ............................................................................................................................. 45
Secondary Bus Arbitration Using the Internal Arbiter .......................................................................................... 45
Secondary Bus Arbitration Using an External Arbiter ........................................................................................... 46
Bus Parking ............................................................................................................................................................ 46
Clocks .................................................................................................................................................................... 47
Primary Clock Inputs .............................................................................................................................................. 47
Secondary Clock Outputs ...................................................................................................................................... 47
Reset ...................................................................................................................................................................... 48
Primary Interface Reset .......................................................................................................................................... 48
Secondary Interface Reset ..................................................................................................................................... 48
Chip Reset .............................................................................................................................................................. 48
Supported Commands ............................................................................................................................................ 49
Primary Interface .................................................................................................................................................... 49
Secondary Interface ............................................................................................................................................... 51
Configuration Registers ....................................................................................................................................... 52
Config Register 1 .................................................................................................................................................... 52
Config Register 2 .................................................................................................................................................... 53
iv
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.2.12
13.2.13
13.2.14
13.2.15
13.2.16
13.2.17
13.2.18
13.2.19
13.2.20
13.2.21
13.2.22
13.2.23
13.2.24
13.2.25
13.2.26
13.2.27
13.2.28
13.2.29
13.2.30
13.2.31
13.2.32
13.2.33
13.2.34
13.2.35
13.2.36
13.2.37
13.2.38
13.2.39
13.2.40
13.2.41
13.2.42
13.2.43
13.2.44
13.2.45
13.2.46
13.2.47
13.2.48
13.2.49
13.2.50
Config Register 1 or 2:Vendor ID Register (read only, bit 15-0; offset 00h) .......................................................... 54
Config Register 1: Device ID Register (read only, bit 31-16; offset 00h) ............................................................... 54
Config Register 2: Device ID Register (read only, bit 31-16; offset 00h) ............................................................... 54
Config Register 1: Command Register (bit 15-0; offset 04h) .................................................................................. 54
Config Register 2: Command Register (bit 15-0; offset 04h) .................................................................................. 55
Config Register 1 or 2: Status Register (for primary bus, bit 31-16; offset 04h) ..................................................... 56
Config Register 1 or 2: Revision ID Register (read only, bit 7-0; offset 08h) ......................................................... 57
Config Register 1 or 2: Class Code Register (read only, bit 31-8; offset 08h) ........................................................ 57
Config Register 1 or 2: Cache Line Size Register (read/write, bit 7-0; offset 0Ch) ................................................. 57
Config Register 1: Primary Latency Timer Register (read/write, bit 15-8; offset 0Ch) ............................................ 57
Config Register 2: Primary Latency Timer Register (read/write, bit 15-8; offset 0Ch) ............................................ 57
Config Register 1: Header Type Register (read only, bit 23-16; offset 0Ch) .......................................................... 57
Config Register 2: Header Type Register (read only, bit 23-16; offset 0Ch) .......................................................... 57
Config Register 1: Primary Bus Number Register (read/write, bit 7-0; offset 18h) ................................................. 57
Config Register 2: Primary Bus Number Register (read/write, bit 7-0; offset 18h) ................................................. 57
Config Register 1 or 2: Secondary Bus Number Register (read/write, bit 15-8; offset 18h) ................................... 57
Config Register 1 or 2: Subordinate Bus Number Register (read/write, bit 23-16; offset 18h) ............................... 57
Config Register 1 or 2: Secondary Latency Timer (read/write, bit 31-24; offset 18h) ............................................ 57
Config Register 1 or 2: I/O Base Register (read/write, bit 7-0; offset 1Ch) ............................................................ 57
Config Register 1 or 2: I/O Limit Register (read/write, bit 15-8; offset 1Ch) ........................................................... 57
Config Register 1 or 2: Secondary Status Register (bit 31-16; offset 1Ch) ............................................................ 58
Config Register 1 or 2: Memory Base Register (read/write, bit 15-0; offset 20h) ................................................... 59
Config Register 1 or 2: Memory Limit Register (read/write, bit 31:16; offset 20h) ................................................. 59
Config Register 1 or 2: Prefetchable Memory Base Register (read/write, bit 15-0;offset 24h) ............................... 59
Config Register 1 or 2: Prefetchable Memory Limit Register (read/write, bit 31-16; offset 24h) ............................ 59
Config Register 1 or 2: I/O Base Address Upper 16 Bits Register (read/write, bit 15-0; offset 30h) ...................... 59
Config Register 1 or 2: I/O Limit Address Upper 16 Bits Register (read/write, bit 31-16; offset 30h) .................... 59
Config Register 1 or 2: Subsystem Vendor ID (read/write, bit 15-0; offset 34h) .................................................... 59
Config Register 1 or 2: Subsystem ID (read/write, bit 31-16; offset 34h) ............................................................... 59
Config Register 1 or 2: Interrupt Pin Register (read only, bit 15-8; offset 3Ch) ..................................................... 59
Config Register 1 or 2: Bridge Control Register (bit 31-16; offset 3Ch) ................................................................. 60
Config Register 1 or 2: Diagnostic/Chip Control Register (bit 15-0; offset 40h) .................................................... 61
Config Register 1 or 2: Arbiter Control Register (bit 31-16; offset 40h) ................................................................. 61
Config Register 1: Primary Prefetchable Memory Base Register (Read/Write, bit 15-0; offset 44h) ..................... 62
Config Register 2: Primary Prefetchable Memory Base Register (Read/Write, bit 15-0; offset 44h) ..................... 62
Config Register 1: Primary Prefetchable Memory Limit Register (Read/Write, bit 31-16; offset 44h) .................... 62
Config Register 2: Primary Prefetchable Memory Limit Register (Read/Write, bit 31-16; offset 44h) .................... 62
Config Register 1 or 2: P_SERR# Event Disable Register (bit 7-0; offset 64h) ...................................................... 62
Config Register 1: Secondary Clock Control Register (bit 15-0; offset 68h) .......................................................... 63
Config Register 2: Secondary Clock Control Register (bit 15-0; offset 68h) .......................................................... 63
Config Register 1 or 2: Non-Posted Memory Base Register (read/write, bit 15-0; offset 70h) .............................. 64
Config Register 1 or 2: Non-Posted Memory Limit Register (read/write, bit 31-16; offset 70h) ............................. 64
Config Register 1: Port Option Register (bit 15-0; offset 74h) ............................................................................... 64
Config Register 2: Port Option Register (bit 15-0; offset 74h) ............................................................................... 65
Config Register 1 or 2: Master Timeout Counter Register (read/write, bit 31-16; offset 74h) ................................ 66
Config Register 1 or 2: Retry Counter Register (read/write, bit 31-0; offset 78h) .................................................. 66
Config Register 1 or 2: Sampling Timer Register (read/write, bit 31-0; offset 7Ch) ................................................ 66
Config Register 1 or 2: Successful I/O Read Count Register (read/write, bit 31-0; offset 80h) ............................. 66
Config Register 1 or 2: Successful I/O Write Count Register (read/write, bit 31-0; offset 84h) ............................. 66
Config Register 1 or 2: Successful Memory Read Count Register (read/write, bit 31-0; offset 88h) ..................... 66
v
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
13.2.51
13.2.52
13.2.53
13.2.54
13.2.55
14.
14.1
14.2
14.3
14.3.1
14.3.2
14.3.3
14.3.4
15.
15.1
15.1.1
15.1.2
15.2
15.3
15.4
15.5
15.6
16.
16.1
16.2
16.3
16.4
17.
17.1
Config Register 1 or 2: Successful Memory Write Count Register (read/write, bit 31-0; offset 8Ch) .................... 66
Config Register 1: Primary Successful I/O Read Count Register (read/write, bit 31-0; offset 90h) ....................... 66
Config Register 1: Primary Successful I/O Write Count Register (read/write, bit 31-0; offset 94h) ....................... 66
Config Register 1: Primary Successful Memory Read Count Register (read/write, bit 31-0; offset 98h) ............... 66
Config Register 1: Primary Successful Memory Write Count Register (read/write, bit 31-0; offset 9Ch) .............. 66
Bridge Behavior .................................................................................................................................................... 67
Bridge Actions for Various Cycle Types ............................................................................................................... 67
Transaction Ordering ............................................................................................................................................. 67
Abnormal Termination (Initiated by Bridge Master) ............................................................................................. 68
Master Abort ......................................................................................................................................................... 68
Parity and Error Reporting ..................................................................................................................................... 68
Reporting Parity Errors ........................................................................................................................................... 68
Secondary IDSEL mapping .................................................................................................................................... 68
IEEE 1149.1 Compatible JTAG Controller ........................................................................................................... 69
Boundary Scan Architecture ................................................................................................................................. 69
TAP Pins ................................................................................................................................................................ 69
Instruction Register ............................................................................................................................................... 69
Boundary Scan Instruction Set .............................................................................................................................. 70
TAP Test Data Registers ....................................................................................................................................... 70
Bypass Register ..................................................................................................................................................... 71
Boundary-Scan Register ......................................................................................................................................... 71
TAP Controller ....................................................................................................................................................... 71
Electrical and Timing Specifications .................................................................................................................... 76
Maximum Ratings ................................................................................................................................................... 76
3.3V DC Specifications ........................................................................................................................................... 76
3.3V AC Specifications ........................................................................................................................................... 77
Primary and Secondary buses at 33 MHz clock timing .......................................................................................... 77
256-Pin PBGA Package ........................................................................................................................................... 78
Part Number Ordering Information ........................................................................................................................ 78
vi
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
List of Figures
1-1.
1-2.
1-3.
2-1.
9-1.
15-1.
17-1.
PI7C7100 on the System Board .................................................................................................................................... 2
PI7C7100 in Redundant Applications .......................................................................................................................... 2
PI7C7100 on Network Switching Hub .......................................................................................................................... 2
PI7C7100 Block Diagram .............................................................................................................................................. 3
Secondary Arbiter Example ....................................................................................................................................... 45
Test Access Port Block Diagram ............................................................................................................................... 69
256-Pin PBGA Package Drawing ................................................................................................................................ 74
List of Tables
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
6-1.
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
15-1.
15-2.
PCI Transaction ......................................................................................................................................................... 10
Write Transaction Forwarding .................................................................................................................................. 11
Write Transaction Disconnect Address Boundaries ................................................................................................ 13
Read Pre-fetch Address Boundaries ......................................................................................................................... 14
Read Transaction Pre-fetching .................................................................................................................................. 15
Device Number to IDSEL S1_AD or S2_AD Pin Mapping ....................................................................................... 18
Posted Write Target Termination Response ............................................................................................................. 21
Responses to Posted Write Target Termination ....................................................................................................... 22
Responses to Delayed Read Target Termination ...................................................................................................... 22
Summary of Tranaction Ordering .............................................................................................................................. 30
Setting the Primary Interface Detected Parity Error Bit ............................................................................................. 36
Setting the Secondary Interface Detected Parity Error Bit ........................................................................................ 37
Setting the Primary Interface Data Parity Detected Bit .............................................................................................. 37
Setting the Secondary InterfaceData Parity Detected Bit ......................................................................................... 38
Assertion of P_PERR# ............................................................................................................................................... 39
Assertion of S_PERR# ............................................................................................................................................... 40
Assertion of P_SERR# for Data Parity Errors ........................................................................................................... 41
TAP Pins .................................................................................................................................................................... 70
JTAG Boundary Register Order ................................................................................................................................ 72
vii
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Appendix A - Timing Diagrams
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Configuration Read Transaction ................................................................................................................................. A-3
Configuration Write Transaction ................................................................................................................................A-3
Type 1 to Type 0 Configuration Read Transaction (P → S) ......................................................................................A-3
Type 1 to Type 0 Configuration Write Transaction (P → S) .....................................................................................A-4
Upstream Type 1 to Special Cycle Transaction (S → P) ............................................................................................. A-4
Downstream Type 1 to Special Cycle Transaction (P → S) ........................................................................................ A-5
Downstream Type 1 to Type 1 Configuration Read Transaction (P → S) ..................................................................A-5
Downstream Type 1 to Type 1 Configuration Write Transaction (P → S) .................................................................A-6
Upstream Delayed Burst Memory Read Transaction (S → P) ...................................................................................A-6
Downstream Delayed Burst Memory Read Transaction (P → S) ..............................................................................A-7
Downstream Delayed Memory Read Transaction (P/33MHz → S/33MHz) ............................................................... A-7
Downstream Delayed Memory Read Transaction (S2/33MHz → S1/33MHz) ...........................................................A-8
Downstream Delayed Memory Read Transaction (S1/33MHz → S2/33MHz) ...........................................................A-8
Upstream Delayed Memory Read Transaction (S/33MHz → P/33MHz) ...................................................................A-9
Downstream Posted Memory Write Transaction (P/33MHz → S/33MHz) ................................................................ A-9
Downstream Posted Memory Write Transaction (S2/33MHz → S1/33MHz) ........................................................... A-10
Downstream Posted Memory Write Transaction (S1/33MHz → S2/33MHz) ........................................................... A-10
Upstream Posted Memory Write Transaction (S/33MHz → P/33MHz) ................................................................... A-11
Downstream Flow-Through Posted Memory Write Transaction (P/33MHz →S/33MHz) ........................................ A-11
Downstream Flow-Through Posted Memory Write Transaction (S2/33MHz →S1/33MHz) .................................... A-12
Downstream Flow-Through Posted Memory Write Transaction (S1/33MHz →S2/33MHz) .................................... A-12
Upstream Flow-Through Posted Memory Write Transaction (S/33MHz →P/33MHz) ............................................ A-13
Downstream Delayed I/O Read Transaction (P → S) ............................................................................................... A-13
Downstream Delayed I/O Read Transaction (S2/33MHz → S1/33MHz) .................................................................. A-14
Downstream Delayed I/O Read Transaction (S1/33MHz → S2/33MHz) .................................................................. A-14
Downstream Delayed I/O Read Transaction (S/33MHz → P/33MHz) ...................................................................... A-15
Downstream Delayed I/O Write Transaction (P → S) .............................................................................................. A-15
Downstream Delayed I/O Write Transaction (S2/33MHz → S1/33MHz) ................................................................. A-16
Downstream Delayed I/O Write Transaction (S1/33MHz → S2/33MHz) ................................................................. A-16
Upstream Delayed I/O Write Transaction (S → P) ................................................................................................... A-17
Appendix B - Evaluation Board User's Manual
General Information ........................................................................................................................................................... B-3
Frequently Asked Questions ............................................................................................................................................ B-5
Appendix C - Three-Port PCI Bridge Evaluation Board Schematics
PCI Chip ............................................................................................................................................................................. C-3
PCI Edge Connector .......................................................................................................................................................... C-4
Secondary 1 PCI Bus ......................................................................................................................................................... C-5
Secondary 2 PCI Bus ......................................................................................................................................................... C-6
Top View ............................................................................................................................................................................ C-7
viii
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
1. Introduction
Product Description
PI7C7100 is the first triple port PCI-to-PCI Bridge device designed to be fully compliant with the 32-bit,
33MHz implementation of the PCI Local Bus Specification, Revision 2.1. PI7C7100 supports only
synchronous bus transactions between devices on the primary 33 MHz bus and the secondary buses
operating at 33 MHz. The primary and the secondary buses can also operate in concurrent mode,
resulting in added increase in system performance. Concurrent bus operation off-loads and isolates
unnecessary traffic from the primary bus; thereby enabling a master and a target device on the same
secondary PCI bus to communicate even while the primary bus is busy.
Product Features
• 32-bit Primary & two Secondary Ports run up to 33 MHz
• All three ports compliant with the PCI Local Bus
Specification, Revision 2.1
• Compliant with PCI-to-PCI Bridge Architecture Specification, Revision 1.0.
- All I/O and memory commands
- Type 1 to Type 0 configuration conversion
- Type 1 to Type 1 configuration forwarding
- Type 1 configuration-write to special cycle conversion
• Concurrent primary to secondary bus operation and independent intra-secondary port
channel to reduce traffic on the primary port
• Provides internal arbitration for two sets of eight secondary bus masters
- Programmable 2-level priority arbiter
- Disable control for use of external arbiter
• Supports posted write buffers on all directions
• Three 128 byte FIFOs
• Enhanced address decoding
- 32-bit I/O address range
- 32-bit memory-mapped I/O address range
- VGA addressing and VGA palette snooping
- ISA-aware mode for legacy support in the first 64KB
of I/O address range
• Interrupt Handling
- PCI interrupts are routed through an external interrupt concentrator
• Supports system transaction ordering rules
• Hot-plug support on secondary buses
- 3-State control of output buffers
• IEEE 1149.1 JTAG interface support
• 3.3V core; 3.3V PCI I/O interface with 5V I/O Tolerant
• 256-pin plastic BGA package
1
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
CPU
System
Memory
S1 PCI Bus
NB
PI7C7100
Slot
Slot
PCI
Device
PCI
Device
S2 PCI Bus
Figure 1-1. PI7C7100 on the System Board
Master Controller
Redundant Controller
System Primary
PCI Bus
System Primary
PCI Bus
PI7C7100
PI7C7100
S2
S1
S1
S2
S1 PCI Bus
S2 PCI Bus
Figure 1-2. PI7C7100 in Redundant Application
Core
Logic
CPU
PCI Bus 32/33
Fast
Ethernet
Internal
Slot
L2
Cache
PCI Bus 32/33
PI7C7100
PI7C7100
PI7C7100
I/O Daughter
Board to
Isolate Traffic
Figure 1-3. PI7C7100 on Network Switching Hub
2
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
2. PI7C7100 Block Diagram
Configuration
Register #1
Transaction
Queue #1
Primary
PCI Bus
Primary
Interface
Arbiter
Secondary
Interface A
Secondary
PCI Bus A
Transaction
Queue #2
Transaction
Queue #3
Configuration
Register #2
Secondary
Interface B
Secondary
PCI Bus B
Arbiter
Figure 2-1. PI7C7100 Block Diagram
3
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
3. Signal Definitions
3.1 Signal Types
•
•
•
•
•
• PTS - PCI 3-state Output
• POD - PCI Output which either drives LOW
(active state) or 3-stated
• CI - CMOS Input
• CIU - CMOS Input with weak pull-up
• CID - CMOS Input with weak pull-down
• CTO – CMOS 3-state Output
Note: All I/Os can operate off at 3.3V
PI - PCI Input (3.3V, 5V tolerant)
PIU - PCI Input (3.3V, 5V tolerant) with weak pull-up
PB - PCI 3-state bidirectional (3.3V, 5V tolerant)
PO - PCI Output (3.3V)
PSTS - PCI Sustained 3-state bidirectional (Active LOW
signal which must be driven inactive for one cycle before
being 3-stated to ensure HIGH performance on a shared
signal line)
3.2 Signals (Note: Signal name that ends with character ‘#’ is active LOW.)
3.2.1 Primary Bus Interface Signals
N ame
Pin #
Ty pe
D escription
P_AD [31:0]
Y7, W7, Y8, W8, V8,
U8, Y9, W9, W10, V10,
Y11, V11, U11, Y12,
W12, V12, V16, W16,
Y16, W17, Y17, U18,
W18, Y18, U19, W19,
Y19, U20, V20, Y20,
T17, R17
PB
Primary Address/D ata. Multi plexed address and data bus. Address i s
i ndi cated by P_FRAME# asserti on. Wri te data i s stable and vali d
when P_IRD Y# i s asserted and read data i s stable and vali d when
P_TRD Y# i s asserted. D ata i s transferred on ri si ng clock edges when
both P_IRD Y# and P_TRD Y# are asserted. D uri ng bus i dle, PI7C 7100
dri ves P_AD to a vali d logi c level when P_GNT# i s asserted.
P_C BE[3:0]
V9, U12, U16, V19
PB
Primary C ommand/B y te Enables. Multi plexed command fi eld and
byte enable fi eld. D uri ng address phase, the i ni ti ator dri ves the
transacti on type on these pi ns. After that the i ni ti ator dri ves the byte
enables duri ng data phases. D uri ng bus i dle, PI7C 7100 dri ves
P_C BE[3:0] to a vali d logi c level when P_GNT# i s asserted.
P_PAR
U15
PB
Primary Parity. Pari ty i s even across P_AD [31:0], P_C BE[3:0], and
P_PAR (i .e. an even number of '1's). P_PAR i s an i nput and i s vali d
and stable one cycle after the address phase (i ndi cated by asserti on of
P_FRAME#) for address pari ty. For wri te data phases, P_PAR i s an
i nput and i s vali d one clock after P_IRD Y# i s asserted. For read data
phase, P_PAR i s an output and i s vali d one clock after P_TRD Y# i s
asserted. Si gnal P_PAR i s tri -stated one cycle after the PAD li nes are
3-stated. D uri ng bus i dle, PI7C 7100 dri ves PPAR to a vali d logi c level
when P_GNT# i s asserted.
P_FRAME#
W13
PSTS
Primary FR AME (Activ e LOW). D ri ven by the i ni ti ator of a transacti on
to i ndi cate the begi nni ng and durati on of an access. The de-asserti on
of P_FRAME# i ndi cates the fi nal data phase requested by the i ni ti ator.
Before bei ng 3-stated, i t i s dri ven to a de-asserted state for one cycle.
P_IRD Y#
V 13
PSTS
Primary IR D Y (Activ e LOW). D ri ven by the i ni ti ator of a transacti on to
i ndi cate i ts abi li ty to complete current data phase on the pri mary si de.
Once asserted i n a data phase, i t i s not de-asserted unti l end of data
phase. Before bei ng 3-stated, i t i s dri ven to a de-asserted state for
one cycle.
P_TRD Y#
U13
PSTS
Primary TR D Y (Activ e LOW). D ri ven by the target of a transacti on to
i ndi cate i ts abi li ty to complete current data phase on the pri mary si de.
Once asserted i n a data phase, i t i s not de-asserted unti l end of data
phase. Before bei ng 3-stated, i t i s dri ven to a de-asserted state for
one cycle.
4
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
3.2.1 Primary Bus Interface Signals (continued)
N ame
Pin #
Ty pe
D escription
P _D E V S E L#
Y14
PSTS
Primary D ev ice Select (Activ e LOW). Asserted by the target i ndi cati ng that the devi ce
i s accepti ng the transacti on. As a master, PI7C 7100 wai ts for the asserti on of thi s si gnal
wi thi n 5 cycles of P_FRAME# asserti on; otherwi se, termi nate wi th master abort. Before
bei ng 3-stated, i t i s dri ven to a de-asserted state for one cycle.
P_STOP#
W14
PSTS
Primary STOP (Activ e LOW). Asserted by the target i ndi cati ng that the target i s
requesti ng the i ni ti ator to stop the current transacti on. Before bei ng 3-stated, i t i s dri ven
to a de-asserted state for one cycle.
P_LOC K#
V 14
PSTS
Primary LOC K (Activ e LOW). Asserted by master for multi ple transacti ons to complete.
P_ID SEL
Y10
PI
Primary ID Select. Used as chi p select li ne for Type 0 confi gurati on access to
PI7C 7100 confi gurati on space.
P_PERR#
Y15
PSTS
Primary Parity Error (Activ e LOW). Asserted when a data pari ty error i s detected for
data recei ved on the pri mary i nterface. Before bei ng 3-stated, i t i s dri ven to a deasserted state for one cycle.
P_SERR#
W15
POD
Primary Sy stem Error (Activ e LOW). C an be dri ven LOW by any devi ce to i ndi cate a
system error condi ti on, PI7C 7100 dri ves thi s pi n on:
• Address pari ty error
• Posted wri te data pari ty error on target bus
• Secondary S1_SERR# or S2_SERR# asserted
• Master abort duri ng posted wri te transacti on
• Target abort duri ng posted wri te transacti on
• Posted wri te transacti on di scarded
• D elayed wri te request di scarded
• D elayed read request di scarded
• D elayed transacti on master ti meout
Thi s si gnal requi res an external pull-up resi stor for proper operati on.
P_REQ#
W6
PTS
Primary R equest (Activ e LOW). Thi s i s asserted by PI7C 7100 to i ndi cate that i t wants
to start a transacti on on the pri mary bus. PI7C 7100 de-asserts thi s pi n for at least 2 PC I
clock cycles before asserti ng i t agai n.
P_GNT#
U7
PI
Primary Grant (Activ e LOW). When asserted, PI7C 7100 can access the pri mary bus.
D uri ng i dle and P_GNT# asserted, PI7C 7100 wi ll dri ve P_AD , P_C BE and P_PAR to
vali d logi c levels.
P_RESET#
Y5
PI
Primary R ESET (Activ e LOW). When P_RESET# i s acti ve, all PC I si gnals should be
asynchronously 3-stated.
P_FLUSH#
W5
PI
Primary FIFO FLU SH (Activ e LOW). When P_FLUSH# i s acti ve, all the pri mary
FIFO(s) are cleared (i nvali date all pri mary transacti ons). Thi s si gnal should be pulled to a
stati c "hi gh."
P_M66EN
V 18
–
R eserv ed for Future U se. Must be ti ed to ground.
5
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
3.2.2 Secondary Bus Interface Signals
N ame
S1_AD [31:0],
S2_AD [31:0]
Pin #
B 20, B 19, C 20, C 19,
C 18, D 20, D 19, D 17,
E 19, E 18, E 17, F 20,
F19, F17, G20, G19,
L20, L19, L18, M20,
M19, M17, N20, N19,
N18, N17, P17, R20,
R19, R18, T20, T19
J4, H1, H2, H3, H4, G1,
G3, G4, F2, F3, F4, E1,
E 4, D 1, C 1, B 1, C 5, B 5,
D 6, C 6, B 6, A 6, C 7, B 7,
D 8, C 8, D 9, C 9, B 9, A 9,
D 10, C 10
Ty pe
PB
PB
D escription
Secondary Address/D ata. Multi plexed address and data bus.
Address i s i ndi cated by S1_FRAME# or S2_FRAME# asserti on.
Wri te data i s stable and vali d when S1_IRD Y# or S2_IRD Y# i s
asserted and read data i s stable and vali d when S1_TRD Y# or
S2_TRD Y# i s asserted. D ata i s transferred on ri si ng clock edges
when both S1_IRD Y# and S1_TRD Y# or S2_IRD Y# and
S2_TRD Y# are asserted. D uri ng bus i dle, PI7C 7100 dri ves
S1_AD or S2_AD to a vali d logi c level when the S1_GNT# or
S2_GNT# i s asserted respecti vely.
S1_C BE[3:0],
S2_C BE[3:0]
E20, G18, K17, P20
F 1, A 1, A 4, A 7
Secondary C ommand/B y te Enables. Multi plexed command
fi eld and byte enable fi eld. D uri ng the address phase, the i ni ti ator
dri ves the transacti on type on these pi ns. After that the i ni ti ator
dri ves the byte enables duri ng data phases. D uri ng bus i dle,
PI7C 7100 dri ves S1_C BE[3:0] or S2_C BE[3:0] to a vali d logi c
level when the i nternal grant i s asserted.
S1_PAR,
S2_PAR
K 18,
B4
PB
Secondary Parity. Pari ty i s even across S1_AD [31:0],
S1_C BE[3:0], and S1_PAR or S2_AD [31:0], S2_C BE[3:0], and
S2_PAR (i .e. an even number of '1's). S1_PAR or S2_PAR i s an
i nput and i s vali d and stable one cycle after the address phase
(i ndi cated by asserti on of S1_FRAME# or S2_FRAME#) for
address pari ty. For wri te data phases, S1_PAR or S2_PAR i s an
i nput and i s vali d one clock after S1_IRD Y# or S2_IRD Y# i s
asserted. For read data phase, S1_PAR or S2_PAR i s an output
and i s vali d one clock after S1_TRD Y# or S2_TRD Y# i s asserted.
Si gnal S1_PAR or S2_PAR i s 3-stated one cycle after the S1_AD
or S2_AD li nes are tri -stated. D uri ng bus i dle, PI7C 7100 dri ves
S1_PAR or S2_PAR to a vali d logi c level when the i nternal grant i s
asserted.
S1_FRAME#,
S2_FRAME#
H20,
D2
PSTS
Secondary FR AME (Activ e LOW). D ri ven by the i ni ti ator of a
transacti on to i ndi cate the begi nni ng and durati on of an access.
D e-asserti on of S1_FRAME# or S2_FRAME# i ndi cates the fi nal
data phase requested by i ni ti ator. Before bei ng 3-stated, i t i s
dri ven to a de-asserted state for one cycle.
S1_IRD Y#,
S2_IRD Y#
H19,
B2
PSTS
Secondary IR D Y (Activ e LOW). D ri ven by the i ni ti ator of a
transacti on to i ndi cate i ts abi li ty to complete the current data
phase on the pri mary si de. Once asserted i n a data phase, i t i s
not de-asserted unti l end of the data phase. Before bei ng 3-stated,
i t i s dri ven to a de-asserted state for one cycle.
S1_TRD Y#,
S2_TRD Y#
H18,
A2
PSTS
Secondary TR D Y (Activ e LOW). D ri ven by the target of a
transacti on to i ndi cate i ts abi li ty to complete the current data
phase on the pri mary si de. Once asserted i n a data phase, i t i s
not de-asserted unti l end of the data phase. Before bei ng 3-stated,
i t i s dri ven to a de-asserted state for one cycle.
S 1_D E V S E L#,
S 2_D E V S E L#
J2 0 ,
D3
PSTS
Secondary D ev ice Select (Activ e LOW). Asserted by the target
i ndi cati ng that the devi ce i s accepti ng the transacti on. As a
master, PI7C 7100 wai ts for the asserti on of thi s si gnal wi thi n 5
cycles of S1_FRAME# or S2_FRAME# asserti on; otherwi se,
termi nate wi th master abort. Before bei ng 3-stated, i t i s dri ven to a
de-asserted state for one cycle.
6
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
3.2.2 Secondary Bus Interface Signals (continued)
N ame
Pin #
Ty pe
D escription
S1_STOP#,
S2_STOP#
J1 9 ,
C3
PSTS
Secondary STOP (Activ e LOW). Asserted by the target i ndi cati ng that the
target i s requesti ng the i ni ti ator to stop the current transacti on. Before bei ng
3-stated, i t i s dri ven to a de-asserted state for one cycle.
S1_LOC K#,
S2_LOC K#
J1 8 ,
B3
PSTS
Secondary LOC K (Activ e LOW). Asserted by master for multi ple transacti ons
to complete.
S1_PERR#,
S2_PERR#
J1 7 ,
D4
PSTS
Secondary Parity Error (Activ e LOW). Asserted when a data pari ty error i s
detected for data recei ved on the secondary i nterface. Before bei ng 3-stated, i t
i s dri ven to a de-asserted state for one cycle.
S1_SERR#,
S2_SERR#
K 20,
C4
PI
Secondary Sy stem Error (Activ e LOW). C an be dri ven LOW by any devi ce to
i ndi cate a system error condi ti on.
S1_REQ#[7:0],
B11, A12,
D 13, C 13,
C 15, A 16,
C 17, B 17
T2, R3, P2,
P1, M2, M1,
K 1, K 3
PIU
Secondary R equest (Activ e LOW). Thi s i s asserted by an external devi ce to
i ndi cate that i t wants to start a transacti on on the Secondary bus. The i nput i s
externally pulled up through a resi stor to VD D .
C 11, B12,
B 13, A 14,
D 14, B 16,
D 16, B 18
U1, P4, R1,
N4, M3, L4,
L1, K 2
PO
Secondary Grant (Activ e LOW). PI7C 7100 asserts thi s pi n to access the
secondary bus. PI7C 7100 de-asserts thi s pi n for at least 2 PC I clock cycles
before asserti ng i t agai n. D uri ng i dle and S1_GNT# or S2_GNT# asserted,
PI7C 7100 wi ll dri ve S1_AD , S1_C BE and S1_PAR or S2_AD , S2_C BE and
S2_PAR to vali d logi c levels.
S1_RESET#,
S2_RESET#
B 10,
T4
PO
Secondary R ESET (Activ e LOW). Asserted when any of the followi ng
condi ti ons are met:
1. Si gnal P_RESET# i s asserted.
2. Secondary reset bi t i n bri dge control regi ster i n confi gurati on
space i s set.
When asserted, all control si gnals are 3-stated and zeros are dri ven
on S1_AD , S1_C BE, and S1_PAR or S2_AD , S2_C BE, and S2_PAR.
S1_EN,
S 2_E N
W3,
W4
PIU
Secondary Enable (Activ e H IGH ). When S1_EN or S2_EN i s i nacti ve,
secondary PC I S1 or S2 bus wi ll be asynchronously 3-stated.
S_M66EN
D7
–
R eserv ed for Future U se. Must be ti ed to ground.
S_C FN#
Y2
C IU
Secondary B us C entral Function C ontrol Pin. When ti ed LOW, i t enables
the i nternal arbi ter. When ti ed HIGH, an external arbi ter must be used.
S1_REQ0# or S2_REQ0# i s reconfi gured to be the secondary bus grant i nput,
and S1_GNT0# or S2_GNT0# i s reconfi gured to be the secondary bus request
output.
S2_REQ#[7:0]
S1_GNT#[7:0],
S2_GNT#[7:0]
7
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
3.2.3 Clock Signals
N ame
P _C LK
Pin #
V6
Ty pe
D escription
PI
Primary C lock Input. Provi des ti mi ng for all transacti on on pri mary i nterface.
S_C LKOUT T3, T1, P3,
PTS
[15:0]
N3,M4, L3, L2,
J1,A11, C 12,
A 13, B 14,
B 15, C 16,
A 18, A 19
Secondary C lock Output. Provi des secondary clocks phase synchronous wi th
the P_C LK.
3.2.4 Miscellaneous Signals
N ame
Pin #
Ty pe
D escription
BYPASS
Y4
–
R eserv ed for Future U se. Must be ti ed HIGH.
PLL_TM
Y3
–
R eserv ed for Future U se. Must be ti ed LOW.
S_C LKIN
V5
PI
Secondary Test C lock Input. It should be ti ed to LOW i n normal mode. It also
may be a secondary clock i nput for the secondary buses i f both SC AN_TM# and
SC AN_EN are connected to logi c "1".
SC AN_TM#
V4
CI
Full-scan Test Mode enable (Activ e LOW). When SC AN_TM# i s acti ve, the
twelve scan chai ns wi ll be enabled. The scan clock i s P_C LK. The scan i nputs and
outputs are as follows:
S1_REQ[7], S1_REQ[6], S1_REQ[5], S1_REQ[4], S1_REQ[3], S1_REQ[2],
S2_REQ[7], S2_REQ[6], S2_REQ[5], S2_REQ[4], S2_REQ[3], S2_REQ[2] and
S1_GNT[7], S1_GNT[6], S1_GNT[5], S1_GNT[4], S1_GNT[3], S1_GNT[2],
S2_GNT[7], S2_GNT[6], S2_GNT[5], S2_GNT[4], S2_GNT[3], S2_GNT[2]
respecti vely
SC AN_EN
U5
C IU
Full-scan Enable C ontrol. When SC AN_EN i s LOW, full-scan i s i n shi ft operati on
i f SC AN_TM# i s acti ve. When SC AN_EN i s HIGH, full-scan i s i n parallel operati on
i f SC AN_TM# i s acti ve. SC AN_EN should be ti ed LOW i n normal mode. If
SC AN_TM# and SC AN_EN are connected to logi c "1", S_C LKIN i s the clock
source for the i nternal secondary clock. If SC AN_TM# i s connected to logi c "1" and
SC AN_EN i s connected to logi c "0", P_C LK i s the clock source for the i nternal
secondary clock.
N ote: D uri ng power-up, SC AN_EN i s the reset si gnal for the on-chi p PLL.
C MPO1
U6
–
R eserv ed for Future U se.
Reserved
R4
R eserv ed
8
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
3.2.5 JTAG Boundary Scan Signals
N ame
Pin #
Ty pe
D escription
TC K
V2
C IU
Test C lock. Used to clock state i nformati on and data i nto and out of the
PI7C 7100 duri ng boundary scan.
TMS
W1
C IU
Test Mode Select. Used to control the state of the Test Access Port
controller.
TD O
V3
C TO
Test D ata Output. When SC ANEN i s HIGH i t i s used (i n conjuncti on wi th
TC K) to shi ft data out of the Test Access Port (TAP) i n a seri al bi t stream.
TD I
W2
C IU
Test D ata Input. When SC ANEN i s HIGH i t i s used (i n conjuncti on wi th
TC K) to shi ft data and i nstructi ons i nto the Test Access Port (TAP) a seri al
bi t stream.
TRST#
U3
C IU
Test R eset. Acti ve LOW si gnal to reset the Test Access Port (TAP)
controller i nto an i ni ti ali zed state.
3.2.6 Power and Ground
N ame
VD D
Pin #
Ty pe
D escription
B8, C 14, D 5, D 11, D 15,
E2, F18, J3, L17, N2,
P19, U10, V1, V7, V15,
W20
+3.3V D igital Power
VSS
A 3, A 5, A 8, A 10, A 15,
A 17, A 20, C 2, D 12, D 18,
E3, G2, G17, H17, J2,
K4, K19, M18, N1, P18,
R2, T18, U2, U9, U14,
U17 V17 W11 Y6 Y13
D igital Ground
AVC C
Y1
Analog 3.3V for PLL
AGND
U4
Analog Ground for PLL
9
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
4. PCI Bus Operation
This chapter offers information about PCI transactions, transaction forwarding across PI7C7100, and transaction
termination. The PI7C7100 has three 128-byte buffers for buffering of upstream and downstream transactions. These hold
addresses, data, commands, and byte enables and are used for both read and write transactions.
4.1 Types of Transactions
This section provides a summary of PCI transactions performed by PI7C7100. Table 4–1 lists the command code and
name of each PCI transaction. The Master and Target columns indicate support for each transaction when PI7C7100
initiates transactions as a master, on the primary (P) and secondary (S1, S2) buses, and when PI7C7100 responds to
transactions as a target, on the primary (P) and secondary (S1, S2) buses.
Table 4-1. PCI Transactions
Ty pe of Transactions
Initiates as Master
R esponds as Target
Primary
Secondary
Primary
Secondary
0000
Interrupt acknowledge
N
N
N
N
0001
Speci al cycle
Y
Y
N
N
0010
I/O read
Y
Y
Y
Y
0011
I/O wri te
Y
Y
Y
Y
0100
Reserved
N
N
N
N
0101
Reserved
N
N
N
N
0110
Memory read
Y
Y
Y
Y
0111
Memory wri te
Y
Y
Y
Y
1000
Reserved
N
N
N
N
1001
Reserved
N
N
N
N
1010
C onfi gurati on read
N
Y
Y
N
1011
C onfi gurati on wri te
Y (Type 1 only)
Y
Y
Y (Type 1 only)
1100
Memory read multi ple
Y
Y
Y
Y
1101
D ual address cycle
N
N
N
N
1110
Memory read li ne
Y
Y
Y
Y
1111
Memory wri te and i nvali date
N
N
Y
Y
As indicated in Table 4–1, the following PCI commands are not supported by PI7C7100:
•
PI7C7100 never initiates a PCI transaction with a reserved command code and, as a target, PI7C7100 ignores
reserved command codes.
•
PI7C7100 does not generate interrupt acknowledge transactions. PI7C7100 ignores interrupt acknowledge
transactions as a target.
•
PI7C7100 does not respond to special cycle transactions. PI7C7100 cannot guarantee delivery of a special cycle
transaction to downstream buses because of the broadcast nature of the special cycle command and the inability
to control the transaction as a target. To generate special cycle transactions on other PCI buses, either upstream
or downstream, Type 1 configuration write must be used.
•
PI7C7100 neither generates Type 0 configuration transactions on the primary PCI bus nor responds to Type 0
configuration transactions on the secondary PCI buses.
•
PI7C7100 does not support DAC (Dual Address Cycle) transactions.
10
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
4.2 Single Address Phase
A 32-bit address uses a single address phase. This address is driven on P_AD[31:0], and the bus command is driven on
P_CBE[3:0]. PI7C7100 supports the linear increment address mode only, which is indicated when the lowest two address bits
are equal to zero. If either of the lowest two address bits is nonzero, PI7C7100 automatically disconnects the transaction after
the first data transfer.
4.3 Device Select (DEVSEL#) Generation
PI7C7100 always performs positive address decoding (medium decode) when accepting transactions on either the primary or
secondary buses. PI7C7100 never does subtractive decode.
4.4 Data Phase
The address phase of a PCI transaction is followed by one or more data phases. A data phase is completed when IRDY# and
either TRDY# or STOP# are asserted. A transfer of data occurs only when both IRDY# and TRDY# are asserted during the same
PCI clock cycle. The last data phase of a transaction is indicated when FRAME# is de-asserted and both TRDY# and IRDY#
are asserted, or when IRDY# and STOP# are asserted. See Section 4.8 for further discussion of transaction termination.
Depending on the command type, PI7C7100 can support multiple data phase PCI transactions. For a detailed description of
how PI7C7100 imposes disconnect boundaries, see Section 4.5.4 for write address boundaries and Section 4.6.3 read address
boundaries.
4.5 Write Transactions
Write transactions are treated as either posted write or delayed write transactions.
Table 4–2 shows the method of forwarding used for each type of write operation.
Table 4-2. Write Transaction Forwarding
Ty pe of Transaction
Ty pe of Forwarding
Memory wri te
Posted
Memory wri te and i nvali date
Posted
I/O wri te
D elayed
Type 1 confi gurati on wri te
D elayed
For timing diagrams, see Figures 15-22 and 27-30 in Appendix A
4.5.1 Posted Write Transactions
Posted write forwarding is used for “Memory Write” and “Memory Write and Invalidate” transactions.
When PI7C7100 determines that a memory write transaction is to be forwarded across the bridge, PI7C7100 asserts
DEVSEL# with medium timing and TRDY# in the same cycle, provided that enough buffer space is available in the posted
memory write queue for the address and at least one DWORD of data. Under this condition, PI7C7100 accepts write data
without obtaining access to the target bus. The PI7C7100 can accept one DWORD of write data every PCI clock cycle.
That is, no target wait state is inserted. The write data is stored in an internal posted write buffers and is subsequently
delivered to the target.
The PI7C7100 continues to accept write data until one of the following events occurs:
• The initiator terminates the transaction by de-asserting FRAME# and IRDY#.
• An internal write address boundary is reached, such as a cache line boundary or an aligned 4KB boundary, depending
on the transaction type.
• The posted write data buffer fills up.
11
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
When one of the last two events occurs, the PI7C7100 returns a target disconnect to the requesting initiator on this data
phase to terminate the transaction.
Once the posted write data moves to the head of the posted data queue, PI7C7100 asserts its request on the target bus.
This can occur while PI7C7100 is still receiving data on the initiator bus. When the grant for the target bus is received and
the target bus is detected in the idle condition, PI7C7100 asserts FRAME# and drives the stored write address out on the
target bus. On the following cycle, PI7C7100 drives the first DWORD of write data and continues to transfer write data until
all write data corresponding to that transaction is delivered, or until a target termination is received. As long as write data
exists in the queue, PI7C7100 can drive one DWORD of write data each PCI clock cycle; that is, no master wait states
are inserted. If write data is flowing through PI7C7100 and the initiator stalls, PI7C7100 may have to insert wait states on
the target bus if the queue empties.
PI7C7100 ends the transaction on the target bus when one of the following conditions is met:
• All posted write data has been delivered to the target.
• The target returns a target disconnect or target retry (PI7C7100 starts another transaction to deliver the rest of write data).
• The target returns a target abort (PI7C7100 discards remaining write data).
• The master latency timer expires, and PI7C7100 no longer has the target bus grant (PI7C7100 starts another transaction
to deliver remaining write data).
Section 4.8.3.2 provides detailed information about how PI7C7100 responds to target termination during posted write
transactions.
4.5.2 Memory Write and Invalidate Transactions
Posted write forwarding is used for Memory Write and Invalidate transactions.
PI7C7100 always converts Memory Write and Invalidate transactions to Memory Write transactions.
The PI7C7100 disconnects Memory Write and Invalidate commands at aligned cache line boundaries. The cache line size
value in the cache line size register gives the number of DWORD in a cache line.
If the value in the cache line size register does meet the memory write and invalidate conditions, the PI7C7100 returns
a target disconnect to the initiator either on a cache line boundary or when the posted write buffer fills.
When the Memory Write and Invalidate transaction is disconnected before a cache line boundary is reached, typically
because the posted write buffer fills, the transaction is converted to Memory Write transaction.
4.5.3 Delayed Write Transactions
Delayed write forwarding is used for I/O write transactions and Type 1 configuration write transactions.
A delayed write transaction guarantees that the actual target response is returned back to the initiator without holding the
initiating bus in wait states. A delayed write transaction is limited to a single DWORD data transfer.
When a write transaction is first detected on the initiator bus, and PI7C7100 forwards it as a delayed transaction, PI7C7100
claims the access by asserting DEVSEL# and returns a target retry to the initiator. During the address phase, PI7C7100
samples the bus command, address, and address parity one cycle later. After IRDY# is asserted, PI7C7100 also samples
the first data DWORD, byte enable bits, and data parity. This information is placed into the delayed transaction queue.
The transaction is queued only if no other existing delayed transactions have the same address and command, and if the
delayed transaction queue is not full. When the delayed write transaction moves to the head of the delayed transaction
queue and all ordering constraints with posted data are satisfied. The PI7C7100 initiates the transaction on the target bus.
PI7C7100 transfers the write data to the target. If PI7C7100 receives a target retry in response to the write transaction on
the target bus, it continues to repeat the write transaction until the data transfer is completed, or until an error condition
is encountered.
If PI7C7100 is unable to deliver write data after 224(default) or 232(maximum) attempts, PI7C7100 ceases further write
attempts and returns a target abort to the initiator. The delayed transaction is removed from the delayed transaction queue.
PI7C7100 also asserts P_SERR# if the primary SERR# enable bit is set in the command register. See Section 7.4 for
information on the assertion of P_SERR#. When the initiator repeats the same write transaction (same command,
address, byte enable bits, and data), and the completed delayed transaction is at the head of the queue, the PI7C7100
12
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
claims the access by asserting DEVSEL# and returns TRDY# to the initiator, to indicate that the write data was transferred.
If the initiator requests multiple DWORD, PI7C7100 also asserts STOP# in conjunction with TRDY# to signal a target
disconnect. Note that only those bytes of write data with valid byte enable bits are compared. If any of the byte enable
bits are turned off (driven HIGH), the corresponding byte of write data is not compared.
If the initiator repeats the write transaction before the data has been transferred to the target, PI7C7100 returns a target
retry to the initiator. PI7C7100 continues to return a target retry to the initiator until write data is delivered to the target,
or until an error condition is encountered. When the write transaction is repeated, PI7C7100 does not make a new entry
into the delayed transaction queue. Section 4.8.3.1 provides detailed information about how PI7C7100 responds to target
termination during delayed write transactions.
PI7C7100 implements a discard timer that starts counting when the delayed write completion is at the head of the delayed
transaction queue. The initial value of this timer can be set to one of two values, selectable through both the primary and
secondary master timeout bits in the bridge control register. If the initiator does not repeat the delayed write transaction
before the discard timer expires, PI7C7100 discards the delayed write transaction from the delayed transaction queue.
PI7C7100 also conditionally asserts P_SERR# (see Section 7.4).
4.5.4 Write Transaction Address Boundaries
PI7C7100 imposes internal address boundaries when accepting write data. The aligned address boundaries are used to
prevent PI7C7100 from continuing a transaction over a device address boundary and to provide an upper limit on maximum
latency. PI7C7100 returns a target disconnect to the initiator when it reaches the aligned address boundaries under conditions
shown in Table 4–3.
Table 4-3. Write Transaction Disconnect Address Boundaries
Ty pe of Transaction
C ondition
Aligned Address B oundary
D elayed wri te
All
D i sconnects after one data transfer
Posted memory wri te
Memory wri te di sconnect control bi t = 0
Posted memory wri te
Memory wri te di sconnect control bi t = 1 (1)
D i sconnects at cache li ne boundary
Posted memory wri te and
i nvali date
C ache li ne si ze not equal to 1, 2, 4, 8, 16
4KB ali gned address boundary
Posted memory wri te and
i nvali date
C ache li ne si ze = 1, 2, 4, 8
nth cache li ne boundary, where a cache li ne
boundary i s reached and less than ei ght free
D WORD of posted wri te buffer space
remai ns
Posted memory wri te and
i nvali date
C ache li ne si ze = 16
16-D WORD ali gned address boundary
(1)
4KB ali gned address boundary
Note 1. Memory-write-disconnect-control bit is bit 1 of the chip control register at offset 40h in configuration space.
4.5.5 Buffering Multiple Write Transactions
PI7C7100 continues to accept posted memory write transactions as long as space for at least one DWORD of data in
the posted write data buffer remains. If the posted write data buffer fills before the initiator terminates the write transaction,
PI7C7100 returns a target disconnect to the initiator.
Delayed write transactions are posted as long as at least one open entry in the delayed transaction queue exists.
Therefore, several posted and delayed write transactions can exist in data buffers at the same time. See Chapter 6 for
information about how multiple posted and delayed write transactions are ordered.
4.5.6 Fast Back-to-Back Write Transactions
PI7C7100 can recognize and post fast back-to-back write transactions. When PI7C7100 cannot accept the second
transaction because of buffer space limitations, it returns a target retry to the initiator.
13
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
4.6 Read Transactions
Delayed read forwarding is used for all read transactions crossing PI7C7100. Delayed read transactions are treated as
either prefetchable or non-prefetchable. Table 4-4 shows the read behavior, prefetchable or non-prefetchable, for each
type of read operation. For Timing diagrams, see Figures 11-14 and 23-26 in Appendix A
4.6.1 Prefetchable Read Transactions
A prefetchable read transaction is a read transaction where PI7C7100 performs speculative DWORD reads, transferring
data from the target before it is requested from the initiator. This behavior allows a prefetchable read transaction to consist
of multiple data transfers. However, byte enable bits cannot be forwarded for all data phases as is done for the single data
phase of the non-prefetchable read transaction. For prefetchable read transactions, PI7C7100 forces all byte enable bits
to be turned on for all data phases.
Prefetchable behavior is used for memory read line and memory read multiple transactions, as well as for memory read
transactions that fall into prefetchable memory space.
The amount of data that is pre-fetched depends on the type of transaction. The amount of pre-fetching may also be affected
by the amount of free buffer space available in PI7C7100, and by any read address boundaries encountered.
Pre-fetching should not be used for those read transactions that have side effects in the target device, that is, control and
status registers, FIFOs, and so on. The target device’s base address register or registers indicate if a memory address region
is prefetchable.
4.6.2 Non-prefetchable Read Transactions
A non-prefetchable read transaction is a read transaction where PI7C7100 requests one and only one DWORD from the
target and disconnects the initiator after delivery of the first DWORD of read data. Unlike prefetchable read transactions,
PI7C7100 forwards the read byte enable information for the data phase.
Non-prefetchable behavior is used for I/O and configuration read transactions, as well as for memory read transactions
that fall into non-prefetchable memory space.
If extra read transactions could have side effects, for example, when accessing a FIFO, use non-prefetchable read
transactions to those locations. Accordingly, if it is important to retain the value of the byte enable bits during the data phase,
use non-prefetchable read transactions. If these locations are mapped in memory space, use the memory read command and
map the target into non-prefetchable (memory-mapped I/O) memory space to use non-prefetching behavior.
4.6.3 Read Pre-fetch Address Boundaries
PI7C7100 imposes internal read address boundaries on read pre-fetched data. When a read transaction reaches one of
these aligned address boundaries, the PI7C7100 stops pre-fetched data, unless the target signals a target disconnect
before the read pre-fetched boundary is reached. When PI7C7100 finishes transferring this read data to the initiator, it
returns a target disconnect with the last data transfer, unless the initiator completes the transaction before all pre-fetched
read data is delivered. Any leftover pre-fetched data is discarded.
Prefetchable read transactions in flow-through mode pre-fetch to the nearest aligned 4KB address boundary, or until the
initiator de-asserts FRAME#. Section 4.6.6 describes flow-through mode during read operations.
Table 4-5 shows the read pre-fetch address boundaries for read transactions during non-flow-through mode.
Table 4-4. Read Pre-fetch Address Boundaries
Ty pe of Transaction
Address Space
C ache Line Siz e (C LS)
Pre-fetch Aligned Address B oundary
C onfi g read
-
-
One D WORD (no pre-fetch)
I/O read
-
-
One D WORD (no pre-fetch)
Memory read
Non-prefetchable
-
One D WORD (no pre-fetch)
Memory read
Prefetchable
C LS not equal to 1, 2, 4, 8
16-D WORD ali gned address boundary
Memory read
Prefetchable
C LS = 1, 2, 4, 8
C ache li ne address boundary
Memory read li ne
-
C LS not equal to 1, 2, 4, 8
16-D WORD ali gned address boundary
Memory read li ne
-
C LS = 1, 2, 4, 8
C ache li ne boundary
Memory read multi ple
-
C LS not equal to 1, 2, 4, 8
32-D WORD ali gned address boundary
Memory read multi ple
-
C LS = 1, 2, 4, 8
2 ti mes of cache li ne boundary
14
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
Table 4-5. Read Transaction Pre-Fetching
Ty pe of Transaction
R ead B ehav ior
I/O read
Pre-fetchi ng never done
C onfi gurati on read
Pre-fetchi ng never done
Memory read
D ownstream: pre-fetchi ng used i f address i n prefetchable space
Upstream: pre-fetchi ng used i f pre-fetch di sable i s off (default)
Memory read li ne
Pre-fetchi ng always used
Memory read multi ple
Pre-fetchi ng always used
See Section 5.3 for detailed information about prefetchable and non-prefetchable address spaces.
4.6.4 Delayed Read Requests
PI7C7100 treats all read transactions as delayed read transactions, which means that the read request from the initiator
is posted into a delayed transaction queue. Read data from the target is placed in the read data queue directed toward
the initiator bus interface and is transferred to the initiator when the initiator repeats the read transaction.
When PI7C7100 accepts a delayed read request, it first samples the read address, read bus command, and address parity.
When IRDY# is asserted, PI7C7100 then samples the byte enable bits for the first data phase. This information is entered
into the delayed transaction queue. PI7C7100 terminates the transaction by signaling a target retry to the initiator. Upon
reception of the target retry, the initiator is required to continue to repeat the same read transaction until at least one data
transfer is completed, or until a target response (target abort or master abort) other than a target retry is received.
4.6.5 Delayed Read Completion with Target
When delayed read request reaches the head of the delayed transaction queue, PI7C7100 arbitrates for the target bus
and initiates the read transaction only if all previously queued posted write transactions have been delivered. PI7C7100
uses the exact read address and read command captured from the initiator during the initial delayed read request to initiate
the read transaction. If the read transaction is a non-prefetchable read, PI7C7100 drives the captured byte enable bits
during the next cycle. If the transaction is a prefetchable read transaction, it drives all byte enable bits to zero for all data
phases. If PI7C7100 receives a target retry in response to the read transaction on the target bus, it continues to repeat
the read transaction until at least one data transfer is completed, or until an error condition is encountered. If the transaction
is terminated via normal master termination or target disconnect after at least one data transfer has been completed,
PI7C7100 does not initiate any further attempts to read more data.
If PI7C7100 is unable to obtain read data from the target after 224(default) or 232(maximum) attempts, PI7C7100 ceases
further read attempts and returns a target abort to the initiator. The delayed transaction is removed from the delayed
transaction queue. The number of attempts is programmable. PI7C7100 also asserts P_SERR# if the primary SERR#
enable bit is set in the command register. See Section 7.4 for information on the assertion of P_SERR#.
Once PI7C7100 receives DEVSEL# and TRDY# from the target, it transfers the data read to the opposite direction read
data queue, pointing toward the opposite interface, before terminating the transaction. For example, read data in response
to a downstream read transaction initiated on the primary bus is placed in the upstream read data queue. The PI7C7100
can accept one DWORD of read data each PCI clock cycle; that is, no master wait states are inserted. The number of
DWORD transferred during a delayed read transaction depends on the conditions given in Table 4–5 (assuming no
disconnect is received from the target).
4.6.6 Delayed Read Completion on Initiator Bus
When the transaction has been completed on the target bus, and the delayed read data is at the head of the read data
queue, and all ordering constraints with posted write transactions have been satisfied, the PI7C7100 transfers the data
to the initiator when the initiator repeats the transaction. For memory read transactions, PI7C7100 aliases the memory
read, memory read line, and memory read multiple bus commands when matching the bus command of the transaction
to the bus command in the delayed transaction queue. PI7C7100 returns a target disconnect along with the transfer of
the last DWORD of read data to the initiator. If PI7C7100 initiator terminates the transaction before all read data has been
transferred, the remaining read data left in data buffers is discarded.
15
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
When the master repeats the transaction and starts transferring prefetchable read data from data buffers while the read
transaction on the target bus is still in progress and before a read boundary is reached on the target bus, the read
transaction starts operating in flow-through mode. Because data is flowing through the data buffers from the target to the
initiator, long read bursts can then be sustained. In this case, the read transaction is allowed to continue until the initiator
terminates the transaction, or until an aligned 4KB address boundary is reached, or until the buffer fills, whichever comes
first. When the buffer empties, PI7C7100 reflects the stalled condition to the initiator by de-asserting TRDY# until more
read data is available; otherwise, PI7C7100 does not insert any target wait states. When the initiator terminates the
transaction, PI7C7100 de-assertion of FRAME# on the initiator bus is forwarded to the target bus. Any remaining read data
is discarded.
PI7C7100 implements a discard timer that starts counting when the delayed read completion is at the head of the delayed
transaction queue, and the read data is at the head of the read data queue. The initial value of this timer is programmable
through configuration register. If the initiator does not repeat the read transaction and before the discard timer expires,
PI7C7100 discards the read transaction and read data from its queues. PI7C7100 also conditionally asserts P_SERR#
(see Section 7.4).
PI7C7100 has the capability to post multiple delayed read requests, up to a maximum of four in each direction. If an initiator
starts a read transaction that matches the address and read command of a read transaction that is already queued, the
current read command is not posted as it is already contained in the delayed transaction queue.
See Section 6 for a discussion of how delayed read transactions are ordered when crossing PI7C7100.
4.7 Configuration Transactions
Configuration transactions are used to initialize a PCI system. Every PCI device has a configuration space that is accessed
by configuration commands. All registers are accessible in configuration space only.
In addition to accepting configuration transactions for initialization of its own configuration space, the PI7C7100 also
forwards configuration transactions for device initialization in hierarchical PCI systems, as well as for special cycle
generation.
To support hierarchical PCI bus systems, two types of configuration transactions are specified: Type 0 and Type 1.
Type 0 configuration transactions are issued when the intended target resides on the same PCI bus as the initiator. A Type
0 configuration transaction is identified by the configuration command and the lowest two bits of the address set to 00b.
Type 1 configuration transactions are issued when the intended target resides on another PCI bus, or when a special cycle
is to be generated on another PCI bus. A Type 1 configuration command is identified by the configuration command and
the lowest two address bits set to 01b.
The register number is found in both Type 0 and Type 1 formats and gives the DWORD address of the configuration register
to be accessed. The function number is also included in both Type 0 and Type 1 formats and indicates which function of
a multifunction device is to be accessed. For single-function devices, this value is not decoded. The addresses of Type
1 configuration transaction include a 5-bit field designating the device number that identifies the device on the target PCI
bus that is to be accessed. In addition, the bus number in Type 1 transactions specifies the PCI bus to which the transaction
is targeted. For timing diagrams, see Figures 1-8 in Appendix A.
4.7.1 Type 0 Access to PI7C7100
The configuration space is accessed by a Type 0 configuration transaction on the primary interface. The configuration
space cannot be accessed from the secondary bus. The PI7C7100 responds to a Type 0 configuration transaction by
asserting P_DEVSEL# when the following conditions are met during the address phase:
• The bus command is a configuration read or configuration write transaction.
• Lowest two address bits P_AD[1:0] must be 00b.
• Signal P_IDSEL must be asserted.
Function code is either 0 for configuration space of S1, or 1 for configuration space of S2 as PI7C7100 is a multi-function
device.
PI7C7100 limits all configuration access to a single DWORD data transfer and returns target-disconnect with the first data
transfer if additional data phases are requested. Because read transactions to configuration space do not have side effects,
all bytes in the requested DWORD are returned, regardless of the value of the byte enable bits.
16
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
Type 0 configuration write and read transactions do not use data buffers; that is, these transactions are completed
immediately, regardless of the state of the data buffers. The PI7C7100 ignores all Type 0 transactions initiated on the
secondary interface.
4.7.2 Type 1 to Type 0 Conversion
Type 1 configuration transactions are used specifically for device configuration in a hierarchical PCI bus system. A PCIto-PCI bridge is the only type of device that should respond to a Type 1 configuration command. Type 1 configuration
commands are used when the configuration access is intended for a PCI device that resides on a PCI bus other than
the one where the Type 1 transaction is generated.
PI7C7100 performs a Type 1 to Type 0 translation when the Type 1 transaction is generated on the primary bus and
is intended for a device attached directly to the secondary bus. PI7C7100 must convert the configuration command to
a Type 0 format so that the secondary bus device can respond to it. Type 1 to Type 0 translations are performed only
in the downstream direction; that is, PI7C7100 generates a Type 0 transaction only on the secondary bus, and never
on the primary bus.
PI7C7100 responds to a Type 1 configuration transaction and translates it into a Type 0 transaction on the secondary
bus when the following conditions are met during the address phase:
•
•
The lowest two address bits on P_AD[1:0] are 01b.
The bus number in address field P_AD[23:16] is equal to the value in the secondary bus number register in
configuration space.
• The bus command on P_CBE[3:0] is a configuration read or configuration write transaction.
• When PI7C7100 translates the Type 1 transaction to a Type 0 transaction on the secondary interface, it
performs the following translations to the address:
• Sets the lowest two address bits on S1_AD[1:0] or S2_AD[1:0] to 00b.
• Decodes the device number and drives the bit pattern specified in Table 4–6 on S1_AD[31:16] or S2_AD[31:16]
for the purpose of asserting the device’s IDSEL signal.
• Sets S1_AD[15:11] or S2_AD[15:11] to 0.
• Leaves unchanged the function number and register number fields.
PI7C7100 asserts a unique address line based on the device number. These address lines may be used as secondary
bus IDSEL signals. The mapping of the address lines depends on the device number in the Type 1 address bits
P_AD[15:11]. Table 4–6 presents the mapping that PI7C7100 uses
17
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Table 4–6. Device Number to IDSEL S1_AD or S2_AD Pin Mapping
D ev ice N umber
P_AD <15: 11>
Secondary ID SEL S1_AD [31: 16]
or S2_AD [31: 16]
S1_AD or S2_AD B it
0h
00000
0000 0000 0000 0001
16
1h
00001
0000 0000 0000 0010
17
2h
00010
0000 0000 0000 0100
18
3h
00011
0000 0000 0000 1000
19
4h
00100
0000 0000 0001 0000
20
5h
00101
0000 0000 0010 0000
21
6h
0110
0000 0000 0100 0000
22
7h
00111
0000 0000 1000 0000
23
8h
01000
0000 0001 0000 0000
24
9h
01001
0000 0010 0000 0000
25
Ah
01010
0000 0100 0000 0000
26
Bh
01011
0000 1000 0000 0000
27
Ch
01100
0001 0000 0000 0000
28
Dh
01101
0010 0000 0000 0000
29
Eh
01110
0100 0000 0000 0000
30
Fh
01111
1000 0000 0000 0000
31
10h-1Eh
10000-11110
0000 0000 0000 0000
-
1F h
11111
Generate speci al cycle (P_AD [7:2] = 00h)
0000 0000 0000 0000 (P_AD [7:2] = 00h)
-
PI7C7100 can assert up to 16 unique address lines to be used as IDSEL signals for up to 16 devices on the secondary
bus, for device numbers ranging from 0 through 15. Because of elec3cal loading constraints of the PCI bus, more than
16 IDSEL signals should not be necessary. However, if device numbers greater than 15 are desired, some external method
of generating IDSEL lines must be used, and no upper address bits are then asserted. The configuration transaction is
still translated and passed from the primary bus to the secondary bus. If no IDSEL pin is asserted to a secondary device,
the transaction ends in a master abort.
PI7C7100 forwards Type 1 to Type 0 configuration read or write transactions as delayed transactions. Type 1 to Type 0
configuration read or write transactions are limited to a single 32-bit data transfer.
4.7.3 Type 1 to Type 1 Forwarding
Type 1 to Type 1 transaction forwarding provides a hierarchical configuration mechanism when two or more levels of PCIto-PCI bridges are used.
When PI7C7100 detects a Type 1 configuration transaction intended for a PCI bus downstream from the secondary bus,
PI7C7100 forwards the transaction unchanged to the secondary bus. Ultimately, this transaction is translated to a Type
0 configuration command or to a special cycle transaction by a downstream PCI-to-PCI bridge. Downstream Type 1 to
Type 1 forwarding occurs when the following conditions are met during the address phase:
•
The lowest two address bits are equal to 01b.
•
The bus number falls in the range defined by the lower limit (exclusive) in the secondary bus number register and the
upper limit (inclusive) in the subordinate bus number register.
• The bus command is a configuration read or write transaction.
18
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
PI7C7100 also supports Type 1 to Type 1 forwarding of configuration write transactions upstream to support upstream
special cycle generation. A Type 1 configuration command is forwarded upstream when the following conditions are met:
• The lowest two address bits are equal to 01b.
• The bus number falls outside the range defined by the lower limit (inclusive) in the secondary bus number register and
the upper limit (inclusive) in the subordinate bus number register.
• The device number in address bits AD[15:11] is equal to 11111b.
• The function number in address bits AD[10:8] is equal to 111b.
• The bus command is a configuration write transaction.
The PI7C7100 forwards Type 1 to Type 1 configuration write transactions as delayed transactions. Type 1 to Type 1
configuration write transactions are limited to a single data transfer.
4.7.4 Special Cycles
The Type 1 configuration mechanism is used to generate special cycle transactions in hierarchical PCI systems. Special
cycle transactions are ignored by acting as a target and are not forwarded across the bridge. Special cycle transactions
can be generated from Type 1 configuration write transactions in either the upstream or the downstream direction.
PI7C7100 initiates a special cycle on the target bus when a Type 1 configuration write transaction is being detected on
the initiating bus and the following conditions are met during the address phase:
• The lowest two address bits on AD[1:0] are equal to 01b.
• The device number in address bits AD[15:11] is equal to 11111b.
• The function number in address bits AD[10:8] is equal to 111b.
• The register number in address bits AD[7:2] is equal to 000000b.
• The bus number is equal to the value in the secondary bus number register in configuration space for downstream
forwarding or equal to the value in the primary bus number register in configuration space for upstream forwarding.
• The bus command on CBE# is a configuration write command.
When PI7C7100 initiates the transaction on the target interface, the bus command is changed from configuration write
to special cycle. The address and data are forwarded unchanged. Devices that use special cycles ignore the address and
decode only the bus command. The data phase contains the special cycle message. The transaction is forwarded as a
delayed transaction, but in this case the target response is not forwarded back (because special cycles result in a master
abort). Once the transaction is completed on the target bus, through detection of the master abort condition, PI7C7100
responds with TRDY# to the next attempt of the configuration transaction from the initiator. If more than one data transfer
is requested, PI7C7100 responds with a target disconnect operation during the first data phase.
4.8 Transaction Termination
This section describes how PI7C7100 returns transaction termination conditions back to the initiator.
The initiator can terminate transactions with one of the following types of termination:
• Normal termination
Normal termination occurs when the initiator de-asserts FRAME# at the beginning of the last data phase, and deasserts IRDY# at the end of the last data phase in conjunction with either TRDY# or STOP# assertion from the
target.
• Master abort
A master abort occurs when no target response is detected. When the initiator does not detect a DEVSEL# from
the target within five clock cycles after asserting FRAME#, the initiator terminates the transaction with a master
abort. If FRAME# is still asserted, the initiator de-asserts FRAME# on the next cycle, and then de-asserts IRDY#
on the following cycle. IRDY# must be asserted in the same cycle in which FRAME# de-asserts. If FRAME# is
already de-asserted, IRDY# can be de-asserted on the next clock cycle following detection of the master abort
condition.
19
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
The target can terminate transactions with one of the following types of termination:
• Normal termination—TRDY# and DEVSEL# asserted in conjunction with FRAME# de-asserted and IRDY# asserted.
• Target retry—STOP# and DEVSEL# asserted with TRDY# de-asserted during the first data phase. No data transfers
occur during the transaction. This transaction must be repeated.
• Target disconnect with data transfer—STOP#, DEVSEL# and TRDY# asserted. It signals that this is the last data
transfer of the transaction.
• Target disconnect without data transfer—STOP# and DEVSEL# asserted with TRDY# de-asserted after previous
data transfers have been made. Indicates that no more data transfers will be made during this transaction.
• Target abort—STOP# asserted with DEVSEL# and TRDY# de-asserted.
Indicates that target will never be able to complete this transaction. DEVSEL# must be asserted for at least one cycle
during the transaction before the target abort is signaled.
4.8.1 Master Termination Initiated by PI7C7100
PI7C7100, as an initiator, uses normal termination if DEVSEL# is returned by target within five clock cycles of PI7C7100’s
assertion of FRAME# on the target bus. As an initiator, PI7C7100 terminates a transaction when the following conditions are
met:
• During a delayed write transaction, a single DWORD is delivered.
• During a non-prefetchable read transaction, a single DWORD is transferred from the target.
• During a prefetchable read transaction, a pre-fetch boundary is reached.
• For a posted write transaction, all write data for the transaction is transferred from data buffers to the target.
• For burst transfer, with the exception of “Memory Write and Invalidate” transactions, the master latency timer
expires and the PI7C7100’s bus grant is de-asserted.
• The target terminates the transaction with a retry, disconnect, or target abort.
If PI7C7100 is delivering posted write data when it terminates the transaction because the master latency timer
expires, it initiates another transaction to deliver the remaining write data. The address of the transaction is updated
to reflect the address of the current DWORD to be delivered.
If PI7C7100 is pre-fetching read data when it terminates the transaction because the master latency timer expires, it
does not repeat the transaction to obtain more data.
4.8.2 Master Abort Received by PI7C7100
If the initiator initiates a transaction on the target bus and does not detect DEVSEL# returned by the target within five clock
cycles of the assertion of FRAME#, PI7C7100 terminates the transaction with a master abort. This sets the receivedmaster-abort bit in the status register corresponding to the target bus.
For delayed read and write transactions, PI7C7100 is able to reflect the master abort condition back to the initiator. When
PI7C7100 detects a master abort in response to a delayed transaction, and when the initiator repeats the transaction,
PI7C7100 does not respond to the transaction with DEVSEL# which induces the master abort condition back to the
initiator. The transaction is then removed from the delayed transaction queue. When a master abort is received in
response to a posted write transaction, PI7C7100 discards the posted write data and makes no more attempt to deliver
the data. PI7C7100 sets the received-master-abort bit in the status register when the master abort is received on the
primary bus, or it sets the received master abort bit in the secondary status register when the master abort is received
on the secondary interface. When master abort is detected in posted write transaction with both master-abort-mode bit
(bit 5 of bridge control register) and the SERR# enable bit (bit 8 of command register for secondary bus S1 or S2) are
set, PI7C7100 asserts P_SERR# if the master-abort-on-posted-write is not set. The master-abort-on-posted-write bit
is bit 4 of the P_SERR# event disable register (offset 64h).
Note: When PI7C7100 performs a Type 1 to special cycle conversion, a master abort is the expected termination for the
special cycle on the target bus. In this case, the master abort received bit is not set, and the Type 1 configuration
transaction is disconnected after the first data phase.
20
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
4.8.3 Target Termination Received by PI7C7100
When PI7C7100 initiates a transaction on the target bus and the target responds with DEVSEL#, the target can end the
transaction with one of the following types of termination:
• Normal termination (upon de-assertion of FRAME#)
• Target retry
• Target disconnect
• Target abort
PI7C7100 handles these terminations in different ways, depending on the type of transaction being performed.
4.8.3.1 Delayed Write Target Termination Response
When PI7C7100 initiates a delayed write transaction, the type of target termination received from the target can be passed
back to the initiator. Table 4–7 shows the response to each type of target termination that occurs during a delayed write
transaction.
PI7C7100 repeats a delayed write transaction until one of the following conditions is met:
• PI7C7100 completes at least one data transfer.
• PI7C7100 receives a master abort.
• PI7C7100 receives a target abort.
PI7C7100 makes 224(default) or 232(maximum) write attempts resulting in a response of target retry.
Table 4-7. Posted Write Target Termination Response
Target Termination
R esp o n se
Normal
Returni ng di sconnect to i ni ti ator wi th fi rst data transfer only i f multi ple data phases
requested.
Target retry
Returni ng target retry to i ni ti ator. C onti nue wri te attempts to target.
Target di sconnect
Returni ng di sconnect to i ni ti ator wi th fi rst data transfer only i f multi ple data phases
requested.
Target abort
Returni ng target abort to i ni ti ator.Set recei ved target abort bi t i n target i nterface
status regi ster.Set si gnaled target abort bi t i n i ni ti ator i nterface status regi ster.
After the PI7C7100 makes 224(default) attempts of the same delayed write transaction on the target bus, PI7C7100 asserts
P_SERR# if the SERR# enable bit (bit 8 of command register for secondary bus S1 or S2) is set and the delayed-writenon-delivery bit is not set. The delayed-write-non-delivery bit is bit 5 of P_SERR# event disable register (offset 64h).
PI7C7100 stops initiating transaction in response to that delayed write transaction. The delayed write request is discarded.
Upon a subsequent write transaction attempt by the initiator, PI7C7100 returns a target abort. See Section 7.4 for a
description of system error conditions.
4.8.3.2 Posted Write Target Termination Response
When PI7C7100 initiates a posted write transaction, the target termination cannot be passed back to the initiator. Table
4–8 shows the response to each type of target termination that occurs during a posted write transaction.
21
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Table 4-8. Responses to Posted Write Target Termination
Target Termination
R esp o n se
Normal
No addi ti onal acti on.
Target retry
Repeati ng wri te transacti on to target.
Target di sconnect
Ini ti ate wri te transacti on for deli veri ng remai ni ng posted wri te data.
Target abort
Set recei ved-target-abort bi t i n the target i nterface status regi ster. Assert
P_SERR# i f enabled, and set the si gnaled-system-error bi t i n pri mary status
regi ster.
Note that when a target retry or target disconnect is returned and posted write data associated with that transaction
remains in the write buffers, PI7C7100 initiates another write transaction to attempt to deliver the rest of the write data.
If there is a target retry, the exact same address will be driven as for the initial write transaction attempt. If a target
disconnect is received, the address that is driven on a subsequent write transaction attempt will be updated to reflect
the address of the current DWORD. If the initial write transaction is Memory-Write-and-Invalidate transaction, and a
partial delivery of write data to the target is performed before a target disconnect is received, PI7C7100 will use the
memory write command to deliver the rest of the write data. It is because an incomplete cache line will be transferred
in the subsequent write transaction attempt.
After the PI7C7100 makes 224(default) write transaction attempts and fails to deliver all posted write data associated with
that transaction, PI7C7100 asserts P_SERR# if the primary SERR# enable bit is set (bit 8 of command register for
secondary bus S1 or S2) and posted-write-non-delivery bit is not set. The posted-write-non-delivery bit is the bit 2 of
P_SERR# event disable register (offset 64h). The write data is discarded. See Section 7.4 for a discussion of system
error conditions.
4.8.3.3 Delayed Read Target Termination Response
When PI7C7100 initiates a delayed read transaction, the abnormal target responses can be passed back to the initiator.
Other target responses depend on how much data the initiator requests. Table 4–9 shows the response to each type
of target termination that occurs during a delayed read transaction.
PI7C7100 repeats a delayed read transaction until one of the following conditions is met:
•
•
•
•
PI7C7100 completes at least one data transfer.
PI7C7100 receives a master abort.
PI7C7100 receives a target abort.
PI7C7100 makes 224(default) read attempts resulting in a response of target retry.
Table 4-9. Responses to Delayed Read Target Termination
Target Termination
R esp o n se
Normal
If prefetchable, target di sconnect only i f i ni ti ator requests more data than read
from target. If non-prefetchable, target di sconnect on fi rst data phase.
Target retry
Rei ni ti ate read transacti on to target.
Target di sconnect
If i ni ti ator requests more data than read from target, return target di sconnect to
i ni ti ator.
Target abort
Return target abort to i ni ti ator. Set recei ved target abort bi t i n the target i nterface
status regi ster. Set si gnaled target abort bi t i n the i ni ti ator i nterface status
regi ster.
22
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
After PI7C7100 makes 224(default) attempts of the same delayed read transaction on the target bus, PI7C7100 asserts
P_SERR# if the primary SERR# enable bit is set (bit 8 of command register for secondary bus S1 or S2) and the delayedwrite-non-delivery bit is not set. The delayed-write-non-delivery bit is bit 5 of P_SERR# event disable register (offset 64h).
PI7C7100 stops initiating transactions in response to that delayed read transaction. The delayed read request is
discarded. Upon a subsequent read transaction attempt by the initiator, PI7C7100 returns a target abort. See Section 7.4
for a description of system error conditions.
4.8.4 Target Termination Initiated by PI7C7100
PI7C7100 can return a target retry, target disconnect, or target abort to an initiator for reasons other than detection of that
condition at the target interface.
4.8.4.1 Target Retry
PI7C7100 returns a target retry to the initiator when it cannot accept write data or return read data as a result of internal
conditions. PI7C7100 returns a target retry to an initiator when any of the following conditions is met:
For delayed write transactions:
• The transaction is being entered into the delayed transaction queue.
• Transaction has already been entered into delayed transaction queue, but target response has not yet been
received.
• Target response has been received but has not progressed to the head of the return queue.
• The delayed transaction queue is full, and the transaction cannot be queued.
• A transaction with the same address and command has been queued.
• A locked sequence is being propagated across PI7C7100, and the write transaction is not a locked transaction.
• The target bus is locked and the write transaction is a locked transaction.
• Use more than 16 clocks to accept this transaction.
For delayed read transactions:
• The transaction is being entered into the delayed transaction queue.
• The read request has already been queued, but read data is not yet available.
• Data has been read from target, but it is not yet at head of the read data queue, or a posted write transaction
precedes it.
• The delayed transaction queue is full, and the transaction cannot be queued.
• A delayed read request with the same address and bus command has already been queued.
• A locked sequence is being propagated across PI7C7100, and the read transaction is not a locked transaction.
• PI7C7100 is currently discarding previously pre-fetched read data.
• The target bus is locked and the write transaction is a locked transaction.
• Use more than 16 clocks to accept this transaction.
For posted write transactions:
• The posted write data buffer does not have enough space for address and at least one DWORD of write data.
• A locked sequence is being propagated across PI7C7100, and the write transaction is not a locked transaction.
When a target retry is returned to the initiator of a delayed transaction, the initiator must repeat the transaction with the
same address and bus command as well as the data if it is a write transaction, within the time frame specified by the master
timeout value. Otherwise, the transaction is discarded from the buffers.
23
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
4.8.4.2 Target Disconnect
PI7C7100 returns a target disconnect to an initiator when one of the following conditions is met:
• PI7C7100 hits an internal address boundary.
• PI7C7100 cannot accept any more write data.
• PI7C7100 has no more read data to deliver.
See Section 4.5.4 for a description of write address boundaries, and Section 4.6.3 for a description of
read address boundaries.
4.8.4.3 Target Abort
PI7C7100 returns a target abort to an initiator when one of the following conditions is met:
• PI7C7100 is returning a target abort from the intended target.
• PI7C7100 is unable to obtain delayed read data from the target or to deliver delayed write data to
the target after 224 (default) attempts.
When PI7C7100 returns a target abort to the initiator, it sets the signaled target abort bit in the status register
corresponding to the initiator interface.
24
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
5. Address Decoding
PI7C7100 uses three address ranges that control I/O and memory transaction forwarding. These address ranges are
defined by base and limit address registers in the configuration space. This chapter describes these address ranges,
as well as ISA-mode and VGA-addressing support.
5.1 Address Ranges
PI7C7100 uses the following address ranges that determine which I/O and memory transactions are forwarded from
the primary PCI bus to the secondary PCI bus, and from the secondary bus to the primary bus:
• Two 32-bit I/O address ranges
• Two 32-bit memory-mapped I/O (non-prefetchable memory) ranges
• Two 32-bit prefetchable memory address ranges
Transactions falling within these ranges are forwarded downstream from the primary PCI bus to the two secondary PCI
buses. Transactions falling outside these ranges are forwarded upstream from the two secondary PCI buses to the
primary PCI bus.
No address translation is required in PI7C7100. The addresses that are not marked for downstream are always
forwarded upstream. However, if an address of a transaction initiated from S1 bus is located in the marked address
range for downstream in S2 bus and not in the marked address range for downstream in S1 bus, the transaction will
be forwarded to S2 bus instead of primary bus. By the same token, if an address of a transaction initiated from S2 bus
is located in the marked address range for downstream in S1 bus and not in the marked address range for downstream
in S2 bus, the transaction will be forwarded to S1 bus instead of primary bus.
5.2 I/O Address Decoding
PI7C7100 uses the following mechanisms that are defined in the configuration space to specify the I/O address space
for downstream and upstream forwarding:
• I/O base and limit address registers
• The ISA enable bit
• The VGA mode bit
• The VGA snoop bit
This section provides information on the I/O address registers and ISA mode.
Section 5.4 provides information on the VGA modes.
To enable downstream forwarding of I/O transactions, the I/O enable bit must be set in the command register in
configuration space. All I/O transactions initiated on the primary bus will be ignored if the I/O enable bit is not set. To
enable upstream forwarding of I/O transactions, the master enable bit must be set in the command register. If the masterenable bit is not set, PI7C7100 ignores all I/O and memory transactions initiated on the secondary bus. The masterenable bit also allows upstream forwarding of memory transactions if it is set.
CAUTION
If any configuration state affecting I/O transaction forwarding is changed by a configuration write
operation on the primary bus at the same time that I/O transactions are ongoing on the secondary bus,
PI7C7100 response to the secondary bus I/O transactions is not predictable. Configure the I/O base and
limit address registers, ISA enable bit, VGA mode bit, and VGA snoop bit before setting I/O enable and master
enable bits, and change them subsequently only when the primary and secondary PCI buses are idle.
5.2.1 I/O Base and Limit Address Registers
PI7C7100 implements one set of I/O base and limit address registers in configuration space that define an I/O address
range per port downstream forwarding. PI7C7100 supports 32-bit I/O addressing, which allows I/O addresses
downstream of PI7C7100 to be mapped anywhere in a 4GB I/O address space.
25
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
I/O transactions with addresses that fall inside the range defined by the I/O base and limit registers are forwarded
downstream from the primary PCI bus to the secondary PCI bus. I/O transactions with addresses that fall outside this
range are forwarded upstream from the secondary PCI bus to the primary PCI bus.
The I/O range can be turned off by setting the I/O base address to a value greater than that of the I/O limit address. When
the I/O range is turned off, all I/O transactions are forwarded upstream, and no I/O transactions are forwarded
downstream. The I/O range has a minimum granularity of 4KB and is aligned on a 4KB boundary. The maximum I/O
range is 4GB in size. The I/O base register consists of an 8-bit field at configuration address 1Ch, and a 16-bit field at
address 30h. The top 4 bits of the 8-bit field define bits [15:12] of the I/O base address. The bottom 4 bits read only as
1h to indicate that PI7C7100 supports 32-bit I/O addressing. Bits [11:0] of the base address are assumed to be 0, which
naturally aligns the base address to a 4KB boundary. The 16 bits contained in the I/O base upper 16 bits register at
configuration offset 30h define AD[31:16] of the I/O base address. All 16 bits are read/write. After primary bus reset or
chip reset, the value of the I/O base address is initialized to 0000 0000h.
The I/O limit register consists of an 8-bit field at configuration offset 1Dh and a 16-bit field at offset 32h. The top 4 bits
of the 8-bit field define bits [15:12] of the I/O limit address. The bottom 4 bits read only as 1h to indicate that 32-bit I/O
addressing is supported. Bits [11:0] of the limit address are assumed to be FFFh, which naturally aligns the limit address
to the top of a 4KB I/O address block. The 16 bits contained in the I/O limit upper 16 bits register at configuration offset
32h define AD[31:16] of the I/O limit address. All 16 bits are read/write. After primary bus reset or chip reset, the value
of the I/O limit address is reset to 0000 0FFFh.
Note: The initial states of the I/O base and I/O limit address registers define an I/O range of 0000 0000h to 0000 0FFFh,
which is the bottom 4KB of I/O space. Write these registers with their appropriate values before setting either the I/O enable
bit or the master enable bit in the command register in configuration space.
5.2.2 ISA Mode
PI7C7100 supports ISA mode by providing an ISA enable bit in the bridge control register in configuration space. ISA mode
modifies the response of PI7C7100 inside the I/O address range in order to support mapping of I/O space in the presence
of an ISA bus in the system. This bit only affects the response of PI7C7100 when the transaction falls inside the address
range defined by the I/O base and limit address registers, and only when this address also falls inside the first 64KB of
I/O space (address bits [31:16] are 0000h).
When the ISA enable bit is set, PI7C7100 does not forward downstream any I/O transactions addressing the top 768 bytes
of each aligned 1KB block. Only those transactions addressing the bottom 256 bytes of an aligned 1KB block inside the
base and limit I/O address range are forwarded downstream. Transactions above the 64KB I/O address boundary are
forwarded as defined by the address range defined by the I/O base and limit registers.
Accordingly, if the ISA enable bit is set, PI7C7100 forwards upstream those I/O transactions addressing the top 768 bytes
of each aligned 1KB block within the first 64KB of I/O space. The master enable bit in the command configuration register
must also be set to enable upstream forwarding. All other I/O transactions initiated on the secondary bus are forwarded
upstream only if they fall outside the I/O address range.
When the ISA enable bit is set, devices downstream of PI7C7100 can have I/O space mapped into the first 256 bytes of
each 1KB chunk below the 64KB boundary, or anywhere in I/O space above the 64KB boundary.
5.3 Memory Address Decoding
PI7C7100 has three mechanisms for defining memory address ranges for forwarding of memory transactions:
• Memory-mapped I/O base and limit address registers
• Prefetchable memory base and limit address registers
• VGA mode
This section describes the first two mechanisms. Section 5.4.1 describes VGA mode.
To enable downstream forwarding of memory transactions, the memory enable bit must be set in the command register
in configuration space. To enable upstream forwarding of memory transactions, the master-enable bit must be set in
the command register. The master-enable bit also allows upstream forwarding of I/O transactions if it is set.
26
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
CAUTION
If any configuration state affecting memory transaction forwarding is changed by a configuration write
operation on the primary bus at the same time that memory transactions are ongoing on the secondary bus,
response to the secondary bus memory transactions is not predictable. Configure the memory-mapped I/
O base and limit address registers, prefetchable memory base and limit address registers, and VGA mode
bit before setting the memory enable and master enable bits, and change them subsequently only when
the primary and secondary PCI buses are idle.
5.3.1 Memory-Mapped I/O Base and Limit Address Registers
Memory-mapped I/O is also referred to as non-prefetchable memory. Memory addresses that cannot automatically be prefetched but that can be conditionally pre-fetched based on command type should be mapped into this space. Read
transactions to non-prefetchable space may exhibit side effects; this space may have non-memory-like behavior.
PI7C7100 pre-fetches in this space only if the memory read line or memory read multiple commands are used;
transactions using the memory read command are limited to a single data transfer.
The memory-mapped I/O base address and memory-mapped I/O limit address registers define an address range that
PI7C7100 uses to determine when to forward memory commands. PI7C7100 forwards a memory transaction from the
primary to the secondary interface if the transaction address falls within the memory-mapped I/O address range. PI7C7100
ignores memory transactions initiated on the secondary interface that fall into this address range. Any transactions that
fall outside this address range are ignored on the primary interface and are forwarded upstream from the secondary
interface (provided that they do not fall into the prefetchable memory range or are not forwarded downstream by the VGA
mechanism).
The memory-mapped I/O range supports 32-bit addressing only. The PCI-to-PCI Bridge Architecture Specification does
not provide for 64-bit addressing in the memory-mapped I/O space. The memory-mapped I/O address range has a
granularity and alignment of 1MB. The maximum memory-mapped I/O address range is 4GB.
The memory-mapped I/O address range is defined by a 16-bit memory-mapped I/O base address register at configuration
offset 20h and by a 16-bit memory-mapped I/O limit address register at offset 22h. The top 12 bits of each of these registers
correspond to bits [31:20] of the memory address. The low 4 bits are hardwired to 0. The lowest 20 bits of the memorymapped I/O base address are assumed to be 0 0000h, which results in a natural alignment to a 1MB boundary. The lowest
20 bits of the memory-mapped I/O limit address are assumed to be F FFFFh, which results in an alignment to the top of
a 1MB block.
Note: The initial state of the memory-mapped I/O base address register is 0000 0000h. The initial state of the memorymapped I/O limit address register is 000F FFFFh. Note that the initial states of these registers define a memory-mapped
I/O range at the bottom 1MB block of memory. Write these registers with their appropriate values before setting either the
memory enable bit or the master enable bit in the command register in configuration space.
To turn off the memory-mapped I/O address range, write the memory-mapped I/O base address register with a value greater
than that of the memory-mapped I/O limit address register.
5.3.2 Prefetchable Memory Base and Limit Address Registers
Locations accessed in the prefetchable memory address range must have true memory-like behavior and must not exhibit
side effects when read. This means that extra reads to a prefetchable memory location must have no side effects.
PI7C7100 pre-fetches for all types of memory read commands in this address space.
The prefetchable memory base address and prefetchable memory limit address registers define an address range that
PI7C7100 uses to determine when to forward memory commands. PI7C7100 forwards a memory transaction from the
primary to the secondary interface if the transaction address falls within the prefetchable memory address range.
PI7C7100 ignores memory transactions initiated on the secondary interface that fall into this address range. PI7C7100
does not respond to any transactions that fall outside this address range on the primary interface and forwards those
transactions upstream from the secondary interface (provided that they do not fall into the memory-mapped I/O range or
are not forwarded by the VGA mechanism).
The prefetchable memory range supports 64-bit addressing and provides additional registers to define the upper 32 bits
of the memory address range, the prefetchable memory base address upper 32 bits register, and the prefetchable memory
limit address upper 32 bits register. For address comparison, a single address cycle (32-bit address) prefetchable memory
transaction is treated like a 64-bit address transaction where the upper 32 bits of the address are equal to 0. This upper
27
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
32-bit value of 0 is compared to the prefetchable memory base address upper 32 bits register and the prefetchable memory
limit address upper 32 bits register. The prefetchable memory base address upper 32 bits register must be 0 to pass any single
address cycle transactions downstream.
Prefetchable memory address range has a granularity and alignment of 1MB. Maximum memory address range is 4GB when
32-bit addressing is being used.
Prefetchable memory address range is defined by a 16-bit prefetchable memory base address register at configuration
offset 24h and by a 16-bit prefetchable memory limit address register at offset 26h. The top 12 bits of each of these registers
correspond to bits [31:20] of the memory address. The lowest 4 bits are hardwired to 1h. The lowest 20 bits of the
prefetchable memory base address are assumed to be 0 0000h, which results in a natural alignment to a 1MB boundary.
The lowest 20 bits of the prefetchable memory limit address are assumed to be FFFFFh, which results in an alignment to
the top of a 1MB block.
Note: The initial state of the prefetchable memory base address register is 0000 0000h. The initial state of the prefetchable
memory limit address register is 000F FFFFh. Note that the initial states of these registers define a prefetchable memory
range at the bottom 1MB block of memory. Write these registers with their appropriate values before setting either the
memory enable bit or the master enable bit in the command register in configuration space.
To turn off the prefetchable memory address range, write the prefetchable memory base address register with a value
greater than that of the prefetchable memory limit address register. The entire base value must be greater than the entire
limit value, meaning that the upper 32 bits must be considered. Therefore, to disable the address range, the upper 32
bits registers can both be set to the same value, while the lower base register is set greater than the lower limit register.
Otherwise, the upper 32-bit base must be greater than the upper 32-bit limit.
5.4 VGA Support
PI7C7100 provides two modes for VGA support:
• VGA mode, supporting VGA-compatible addressing
• VGA snoop mode, supporting VGA palette forwarding
5.4.1 VGA Mode
When a VGA-compatible device exists downstream from PI7C7100, set the VGA mode bit in the bridge control register
in configuration space to enable VGA mode. When PI7C7100 is operating in VGA mode, it forwards downstream those
transactions addressing the VGA frame buffer memory and VGA I/O registers, regardless of the values of the base and
limit address registers. PI7C7100 ignores transactions initiated on the secondary interface addressing these locations.
The VGA frame buffer consists of the following memory address range:
000A 0000h–000B FFFFh
Read transactions to frame buffer memory are treated as non-prefetchable. PI7C7100 requests only a single data transfer
from the target, and read byte enable bits are forwarded to the target bus.
The VGA I/O addresses are in the range of 3B0h–3BBh and 3C0h–3DFh I/O. These I/O addresses are aliases every 1KB
throughout the first 64KB of I/O space. This means that address bits <15:10> are not decoded and can be any value, while
address bits [31:16] must be all 0s. VGA BIOS addresses starting at C0000h are not decoded in VGA mode.
5.4.2 VGA Snoop Mode
PI7C7100 provides VGA snoop mode, allowing for VGA palette write transactions to be forwarded downstream. This mode
is used when a graphics device downstream from PI7C7100 needs to snoop or respond to VGA palette write transactions.
To enable the mode, set the VGA snoop bit in the command register in configuration space. Note that PI7C7100 claims
VGA palette write transactions by asserting DEVSEL# in VGA snoop mode.
When VGA snoop bit is set, PI7C7100 forwards downstream transactions within the 3C6h, 3C8h and 3C9h I/O addresses
space. Note that these addresses are also forwarded as part of the VGA compatibility mode previously described. Again,
address bits <15:10> are not decoded, while address bits <31:16> must be equal to 0, which means that these addresses
are aliases every 1KB throughout the first 64KB of I/O space.
Note: If both the VGA mode bit and the VGA snoop bit are set, PI7C7100 behaves in the same way as if only the VGA
mode bit were set.
28
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
6. Transaction Ordering
To maintain data coherency and consistency, PI7C7100 complies with the ordering rules set forth in the PCI Local Bus
Specification, Revision 2.1, for transactions crossing the bridge. This chapter describes the ordering rules that control
transaction forwarding across PI7C7100.
6.1 Transactions Governed by Ordering Rules
Ordering relationships are established for the following classes of transactions crossing PI7C7100:
• Posted write transactions, comprised of memory write and memory write and invalidate transactions.
Posted write transactions complete at the source before they complete at the destination; that is, data is written
into intermediate data buffers before it reaches the target.
• Delayed write request transactions, comprised of I/O write and configuration write transactions.
Delayed write requests are terminated by target retry on the initiator bus and are queued in the delayed transaction
queue. A delayed write transaction must complete on the target bus before it completes on the initiator bus.
• Delayed write completion transactions, comprised of I/O write and configuration write transactions.
Delayed write completion transactions complete on the target bus, and the target response is queued in the
buffers. A delayed write completion transaction proceeds in the direction opposite that of the original delayed write
request; that is, a delayed write completion transaction proceeds from the target bus to the initiator bus.
• Delayed read request transactions, comprised of all memory read, I/O read, and configuration read
transactions.
Delayed read requests are terminated by target retry on the initiator bus and are queued in the delayed transaction
queue.
• Delayed read completion transactions, comprised of all memory read, I/O read, & configuration read
transactions.
Delayed read completion transactions complete on the target bus, and the read data is queued in the read data
buffers. A delayed read completion transaction proceeds in the direction opposite that of the original delayed read
request; that is, a delayed read completion transaction proceeds from the target bus to the initiator bus.
PI7C7100 does not combine or merge write transactions:
• PI7C7100 does not combine separate write transactions into a single write transaction—this optimization is best
implemented in the originating master.
• PI7C7100 does not merge bytes on separate masked write transactions to the same DWORD address—this
optimization is also best implemented in the originating master.
• PI7C7100 does not collapse sequential write transactions to the same address into a single write transaction—the
PCI Local Bus Specification does not permit this combining of transactions.
6.2 General Ordering Guidelines
Independent transactions on primary and secondary buses have a relationship only when those transactions cross
PI7C7100.
The following general ordering guidelines govern transactions crossing PI7C7100:
• The ordering relationship of a transaction with respect to other transactions is determined when the transaction
completes, that is, when a transaction ends with a termination other than target retry.
• Requests terminated with target retry can be accepted and completed in any order with respect to other transactions that have been terminated with target retry. If the order of completion of delayed requests is important, the
initiator should not start a second delayed transaction until the first one has been completed. If more than one
delayed transaction is initiated, the initiator should repeat all delayed transaction requests, using some fairness
algorithm. Repeating a delayed transaction cannot be contingent on completion of another delayed transaction.
Otherwise, a deadlock can occur.
29
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
• Write transactions flowing in one direction have no ordering requirements with respect to write transactions flowing
in the other direction. PI7C7100 can accept posted write transactions on both interfaces at the same time, as well
as initiate posted write transactions on both interfaces at the same time.
• The acceptance of a posted memory write transaction as a target can never be contingent on the completion of a
non-locked, non-posted transaction as a master. This is true for PI7C7100 and must also be true for other bus
agents. Otherwise, a deadlock can occur.
• PI7C7100 accepts posted write transactions, regardless of the state of completion of any delayed transactions
being forwarded across PI7C7100.
6.3 Ordering Rules
Table 6–1 shows the ordering relationships of all the transactions and refers by number to the ordering rules that follow.
Table 6-1. Summary of Transaction Ordering
Posted Write
D elay ed R ead
R eq u est
D elay ed Write
R eq u est
D elay ed R ead
C ompletion
D elay ed Write
C ompletion
Posted wri te
N1
Y5
Y5
Y5
Y5
D elayed read request
N2
N
N
Y
Y
D elayed wri te request
N4
N
N
Y
Y
D elayed read completi on
N3
Y
Y
N
N
D elayed wri te completi on
Y
Y
Y
N
N
P ass
Note: The superscript accompanying some of the table entries refers to any applicable ordering rule listed in this section.
Many entries are not governed by these ordering rules; therefore, the implementation can choose whether or not the
transactions pass each other.
The entries without superscripts reflect the PI7C7100’s implementation choices.
The following ordering rules describe the transaction relationships. Each ordering rule is followed by an explanation, and
the ordering rules are referred to by number in Table 6–1. These ordering rules apply to posted write transactions,
delayed write and read requests, and delayed write and read completion transactions crossing PI7C7100 in the same
direction. Note that delayed completion transactions cross PI7C7100 in the direction opposite that of the corresponding
delayed requests.
1. Posted write transactions must complete on the target bus in the order in which they were received on the initiator
bus. The subsequent posted write transaction can be setting a flag that covers the data in the first posted write
transaction; if the second transaction were to complete before the first transaction, a device checking the flag could
subsequently consume stale data.
2. A delayed read request traveling in the same direction as a previously queued posted write transaction must push
the posted write data ahead of it. The posted write transaction must complete on the target bus before the delayed read
request can be attempted on the target bus. The read transaction can be to the same location as the write data, so if
the read transaction were to pass the write transaction, it would return stale data.
3. A delayed read completion must ‘‘pull’’ ahead of previously queued posted write data traveling in the same direction.
In this case, the read data is traveling in the same direction as the write data, and the initiator of the read transaction
is on the same side of PI7C7100 as the target of the write transaction. The posted write transaction must complete to
the target before the read data is returned to the initiator. The read transaction can be a reading to a status register of
the initiator of the posted write data and therefore should not complete until the write transaction is complete.
4. Delayed write requests cannot pass previously queued posted write data. For posted memory write transactions, the
delayed write transaction can set a flag that covers the data in the posted write transaction. If the delayed write request
were to complete before the earlier posted write transaction, a device checking the flag could subsequently consume
stale data.
30
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
5. Posted write transactions must be given opportunities to pass delayed read and write requests and completions.
Otherwise, deadlocks may occur when some bridges which support delayed transactions and other bridges which do
not support delayed transactions are being used in the same system. A fairness algorithm is used to arbitrate between
the posted write queue and the delayed transaction queue.
6.4 Data Synchronization
Data synchronization refers to the relationship between interrupt signaling and data delivery. The PCI Local Bus
Specification, Revision 2.1, provides the following alternative methods for synchronizing data and interrupts:
• The device signaling the interrupt performs a read of the data just written (software).
• The device driver performs a read operation to any register in the interrupting device before accessing data
written by the device (software).
• System hardware guarantees that write buffers are flushed before interrupts are forwarded.
PI7C7100 does not have a hardware mechanism to guarantee data synchronization for posted write transactions.
Therefore, all posted write transactions must be followed by a read operation, either from the device to the location just
written (or some other location along the same path), or from the device driver to one of the device registers.
31
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
7. Error Handling
PI7C7100 checks, forwards, and generates parity on both the primary and secondary interfaces. To maintain
transparency, PI7C7100 always 3es to forward the existing parity condition on one bus to the other bus, along with address
and data. PI7C100 always attempts to be transparent when reporting errors, but this is not always possible, given the
presence of posted data and delayed transactions.
To support error reporting on the PCI bus, PI7C7100 implements the following:
• PERR# and SERR# signals on both the primary and secondary interfaces
• Primary status and secondary status registers
• The device-specific P_SERR# event disable register
This chapter provides detailed information about how PI7C7100 handles errors. It also describes error status reporting
and error operation disabling.
7.1 Address Parity Errors
PI7C7100 checks address parity for all transactions on both buses, for all address and all bus commands. When
PI7C7100 detects an address parity error on the primary interface, the following events occur:
• If the parity error response bit is set in the command register, PI7C7100 does not claim the transaction with
P_DEVSEL#; this may allow the transaction to terminate in a master abort.
If parity error response bit is not set, PI7C7100 proceeds normally and accepts the transaction if it is directed to or
across PI7C7100.
• PI7C7100 sets the detected parity error bit in the status register.
• PI7C7100 asserts P_SERR# and sets signaled system error bit in the status register, if both the following conditions
are met:
- The SERR# enable bit is set in the command register.
- The parity error response bit is set in the command register.
When PI7C7100 detects an address parity error on the secondary interface, the following events occur:
• If the parity error response bit is set in the bridge control register, PI7C7100 does not claim the transaction with
S1_DEVSEL# or S2_DEVSEL#; this may allow the transaction to terminate in a master abort. If parity error
response bit is not set, PI7C7100 proceeds normally and accepts transaction if it is directed to or across PI7C7100.
• PI7C7100 sets the detected parity error bit in the secondary status register.
• PI7C7100 asserts P_SERR# and sets signaled system error bit in status register, if both of the following
conditions are met:
- The SERR# enable bit is set in the command register.
- The parity error response bit is set in the bridge control register.
7.2 Data Parity Errors
When forwarding transactions, PI7C7100 attempts to pass the data parity condition from one interface to the other
unchanged, whenever possible, to allow the master and target devices to handle the error condition.
The following sections describe, for each type of transaction, the sequence of events that occurs when a parity error is
detected and the way in which the parity condition is forwarded across PI7C7100.
7.2.1 Configuration Write Transactions to Configuration Space
When PI7C7100 detects a data parity error during a Type 0 configuration write transaction to PI7C7100 configuration
space, the following events occur:
• If the parity error response bit is set in the command register, PI7C7100 asserts P_TRDY# and writes the data to
the configuration register. PI7C7100 also asserts P_PERR#. If the parity error response bit is not set, PI7C7100
does not assert P_PERR#.
• PI7C7100 sets the detected parity error bit in the status register, regardless of the state of the parity error response bit.
32
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
7.2.2 Read Transactions
When PI7C7100 detects a parity error during a read transaction, the target drives data and data parity, and the initiator
checks parity and conditionally asserts PERR#.
For downstream transactions, when PI7C7100 detects a read data parity error on the secondary bus, the following events
occur:
•
PI7C7100 asserts S_PERR# two cycles following the data transfer, if the secondary interface parity error response bit is set in the bridge control register.
•
PI7C7100 sets the detected parity error bit in the secondary status register.
•
PI7C7100 sets the data parity detected bit in the secondary status register, if the secondary interface parity error
response bit is set in the bridge control register.
•
PI7C7100 forwards the bad parity with the data back to the initiator on the primary bus.
If the data with the bad parity is pre-fetched and is not read by the initiator on the primary bus, the data is
discarded and the data with bad parity is not returned to the initiator.
•
PI7C7100 completes the transaction normally.
For upstream transactions, when PI7C7100 detects a read data parity error on the primary bus, the following events occur:
•
PI7C7100 asserts P_PERR# two cycles following the data transfer, if the primary interface parity error
response bit is set in the command register.
•
PI7C7100 sets the detected parity error bit in the primary status register.
•
PI7C7100 sets the data parity detected bit in the primary status register, if the primary interface parity-errorresponse bit is set in the command register.
•
PI7C7100 forwards the bad parity with the data back to the initiator on the secondary bus.
If the data with the bad parity is pre-fetched and is not read by the initiator on the secondary bus, the data is
discarded and the data with bad parity is not returned to the initiator.
•
PI7C7100 completes the transaction normally.
PI7C7100 returns to the initiator the data and parity that was received from the target. When the initiator detects
a parity error on this read data and is enabled to report it, the initiator asserts PERR# two cycles after the data
transfer occurs. It is assumed that the initiator takes responsibility for handling a parity error condition; therefore,
when PI7C7100 detects PERR# asserted while returning read data to the initiator, PI7C7100 does not take any
further action and completes the transaction normally.
7.2.3 Delayed Write Transactions
When PI7C7100 detects a data parity error during a delayed write transaction, the initiator drives data and data parity,
and the target checks parity and conditionally asserts PERR#.
For delayed write transactions, a parity error can occur at the following times:
•
During the original delayed write request transaction
•
When the initiator repeats the delayed write request transaction
•
When PI7C7100 completes the delayed write transaction to the target
When a delayed write transaction is normally queued, the address, command, address parity, data, byte enable bits,
and data parity are all captured and a target retry is returned to the initiator. When PI7C7100 detects a parity error on
the write data for the initial delayed write request transaction, the following events occur:
•
If the parity-error-response bit corresponding to the initiator bus is set, PI7C7100 asserts TRDY# to the initiator
and the transaction is not queued. If multiple data phases are requested, STOP# is also asserted to cause a
target disconnect. Two cycles after the data transfer, PI7C7100 also asserts PERR#.
If the parity-error-response bit is not set, PI7C7100 returns a target retry. It queues the transaction as usual.
PI7C7100 does not assert PERR#. In this case, the initiator repeats the transaction.
•
PI7C7100 sets the detected-parity-error bit in the status register corresponding to the initiator bus, regardless
of the state of the parity-error-response bit.
33
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Note: If parity checking is turned off and data parity errors have occurred for queued or subsequent delayed write
transactions on the initiator bus, it is possible that the initiator’s re-attempts of the write transaction may not match the
original queued delayed write information contained in the delayed transaction queue. In this case, a master timeout
condition may occur, possibly resulting in a system error (P_SERR# assertion).
For downstream transactions, when PI7C7100 is delivering data to the target on the secondary bus and S_PERR# is
asserted by the target, the following events occur:
•
PI7C7100 sets the secondary interface data parity detected bit in the secondary status register, if the
secondary parity error response bit is set in the bridge control register.
•
PI7C7100 captures the parity error condition to forward it back to the initiator on the primary bus.
Similarly, for upstream transactions, when PI7C7100 is delivering data to the target on the primary bus and P_PERR#
is asserted by the target, the following events occur:
•
PI7C7100 sets the primary interface data-parity-detected bit in the status register, if the primary parity-errorresponse bit is set in the command register.
•
PI7C7100 captures the parity error condition to forward it back to the initiator on the secondary bus.
A delayed write transaction is completed on the initiator bus when the initiator repeats the write transaction with the same
address, command, data, and byte enable bits as the delayed write command that is at the head of the posted data
queue. Note that the parity bit is not compared when determining whether the transaction matches those in the delayed
transaction queues.
Two cases must be considered:
•
When parity error is detected on the initiator bus on a subsequent re-attempt of the transaction and was not
detected on the target bus
•
When parity error is forwarded back from the target bus
For downstream delayed write transactions, when the parity error is detected on the initiator bus and PI7C7100 has write
status to return, the following events occur:
•
PI7C7100 first asserts P_TRDY# and then asserts P_PERR# two cycles later, if the primary interface parityerror-response bit is set in the command register.
•
PI7C7100 sets the primary interface parity-error-detected bit in the status register.
•
Because there was not an exact data and parity match, the write status is not returned and the transaction
remains in the queue.
Similarly, for upstream delayed write transactions, when the parity error is detected on the initiator bus and PI7C7100 has
write status to return, the following events occur:
•
PI7C7100 first asserts S1_TRDY# or S2_TRDY# and then asserts S_PERR# two cycles later, if the secondary
interface parity-error-response bit is set in the bridge control register (offset 3Ch).
•
PI7C7100 sets the secondary interface parity-error-detected bit in the secondary status register.
•
Because there was not an exact data and parity match, the write status is not returned and the transaction
remains in the queue.
For downstream transactions, where the parity error is being passed back from the target bus and the parity error
condition was not originally detected on the initiator bus, the following events occur:
•
PI7C7100 asserts P_PERR# two cycles after the data transfer, if the following are both true:
- The parity-error-response bit is set in the command register of the primary interface.
- The parity-error-response bit is set in the bridge control register of the secondary interface.
•
PI7C7100 completes the transaction normally.
34
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
For upstream transactions, when the parity error is being passed back from the target bus and the parity error condition
was not originally detected on the initiator bus, the following events occur:
•
PI7C7100 asserts S_PERR# two cycles after the data transfer, if the following are both true:
- The parity error response bit is set in the command register of the primary interface.
- The parity error response bit is set in the bridge control register of the secondary interface.
•
PI7C7100 completes the transaction normally.
7.2.4 Posted Write Transactions
During downstream posted write transactions, when PI7C7100 responds as a target, it detects a data parity error on the
initiator (primary) bus, the following events occur:
•
PI7C7100 asserts P_PERR# two cycles after the data transfer, if the parity error response bit is set in the
command register of primary interface.
•
PI7C7100 sets the parity error detected bit in the status register of the primary interface.
•
PI7C7100 captures and forwards the bad parity condition to the secondary bus.
•
PI7C7100 completes the transaction normally.
Similarly, during upstream posted write transactions, when PI7C7100 responds as a target, it detects a data parity error
on the initiator (secondary) bus, the following events occur:
•
PI7C7100 asserts S_PERR# two cycles after the data transfer, if the parity error response bit is set in the bridge
control register of the secondary interface.
•
PI7C7100 sets the parity error detected bit in the status register of the secondary interface.
•
PI7C7100 captures and forwards the bad parity condition to the primary bus.
•
PI7C7100 completes the transaction normally.
During downstream write transactions, when a data parity error is reported on the target (secondary) bus by the target’s
assertion of S_PERR#, the following events occur:
•
PI7C7100 sets the data parity detected bit in the status register of secondary interface, if the parity error
response bit is set in the bridge control register of the secondary interface.
•
PI7C7100 asserts P_SERR# and sets the signaled system error bit in the status register, if all the following
conditions are met:
- The SERR# enable bit is set in the command register.
- The posted write parity error bit of P_SERR# event disable register is not set.
- The parity error response bit is set in the bridge control register of the secondary interface.
- The parity error response bit is set in the command register of the primary interface.
- PI7C7100 has not detected the parity error on the primary (initiator) bus which the parity error is not forwarded
from the primary bus to the secondary bus.
During upstream write transactions, when a data parity error is reported on the target (primary) bus by the target’s assertion
of P_PERR#, the following events occur:
•
PI7C7100 sets the data parity detected bit in the status register, if the parity error response bit is set in the
command register of the primary interface.
•
PI7C7100 asserts P_SERR# and sets the signaled system error bit in the status register, if all the following
conditions are met:
- The SERR# enable bit is set in the command register.
- The parity error response bit is set in the bridge control register of the secondary interface.
- The parity error response bit is set in the command register of the primary interface.
- PI7C7100 has not detected the parity error on the secondary (initiator) bus which the parity error is not
forwarded from the secondary bus to the primary bus.
Assertion of P_SERR# is used to signal the parity error condition when the initiator does not know that the error occurred.
35
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Because the data has already been delivered with no errors, there is no other way to signal this information back to the
initiator.
If the parity error has forwarded from the initiating bus to the target bus, P_SERR# will not be asserted.
7.3 Data Parity Error Reporting Summary
In the previous sections, the responses of PI7C7100 to data parity errors are presented according to the type of transaction
in progress. This section organizes the responses of PI7C7100 to data parity errors according to the status bits that
PI7C7100 sets and the signals that it asserts.
Table 7–1 shows setting the detected parity error bit in the status register, corresponding to the primary interface. This
bit is set when PI7C7100 detects a parity error on the primary interface.
Table 7–1 Setting the Primary Interface Detected Parity Error Bit
Primary detected
parity error bit
1
Transaction
Ty pe
B us where error
was detected
D irection
0
Read
D ownstream
Pri mary
x/x1
0
Read
D ownstream
Secondary
x/x
1
Read
Upstream
Pri mary
x/x
0
Read
Upstream
Secondary
x/x
1
Posted wri te
D ownstream
Pri mary
x/x
0
Posted wri te
D ownstream
Secondary
x/x
0
Posted wri te
Upstream
Pri mary
x/x
0
Posted wri te
Upstream
Secondary
x/x
1
D elayed wri te
D ownstream
Pri mary
x/x
0
D elayed wri te
D ownstream
Secondary
x/x
0
D elayed wri te
Upstream
Pri mary
x/x
0
D elayed wri te
Upstream
Secondary
x/x
x =don’t care
36
1
Primary /Secondary
parity error response bits
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
Table 7–2 shows setting the detected parity error bit in the secondary status register, corresponding to the secondary
interface. This bit is set when PI7C7100 detects a parity error on the secondary interface.
Table 7–2. Setting Secondary Interface Detected Parity Error Bit
Secondary detected
parity error bit
Transaction
Ty pe
B us where error
was detected
D irection
Primary /Secondary
parity error response bits
0
Read
D ownstream
Pri mary
x/x1
1
Read
D ownstream
Secondary
x/x
0
Read
Upstream
Pri mary
x/x
0
Read
Upstream
Secondary
x/x
0
Posted wri te
D ownstream
Pri mary
x/x
0
Posted wri te
D ownstream
Secondary
x/x
0
Posted wri te
Upstream
Pri mary
x/x
1
Posted wri te
Upstream
Secondary
x/x
0
D elayed wri te
D ownstream
Pri mary
x/x
0
D elayed wri te
D ownstream
Secondary
x/x
0
D elayed wri te
Upstream
Pri mary
x/x
1
D elayed wri te
Upstream
Secondary
x/x
Table 7–3 shows setting data parity detected bit in the primary interface’s status register. This bit is set under the following
conditions:
• PI7C7100 must be a master on the primary bus.
• The parity error response bit in the command register, corresponding to the primary interface, must be set.
• The P_PERR# signal is detected asserted or a parity error is detected on the primary bus.
Table 7–3. Setting Primary Interface Data Parity Detected Bit
Primary data
parity bit
Transaction
Ty pe
B us where error was
detected
D irection
Primary /Secondary
parity error response bits
0
Read
D ownstream
Pri mary
x/x1
0
Read
D ownstream
Secondary
x/x
1
Read
Upstream
Pri mary
1/x
0
Read
Upstream
Secondary
x/x
0
Posted wri te
D ownstream
Pri mary
x/x
0
Posted wri te
D ownstream
Secondary
x/x
1
Posted wri te
Upstream
Pri mary
1/x
0
Posted wri te
Upstream
Secondary
x/x
0
D elayed wri te
D ownstream
Pri mary
x/x
0
D elayed wri te
D ownstream
Secondary
x/x
1
D elayed wri te
Upstream
Pri mary
1/x
0
D elayed wri te
Secondary
x/x
Upstream
x =don’t care
1
37
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Table 7–4 shows setting the data parity detected bit in the status register of secondary interface. This bit is set under the
following conditions:
• The PI7C7100 must be a master on the secondary bus.
• The parity error response bit must be set in the bridge control register of secondary interface.
• The S_PERR# signal is detected asserted or a parity error is detected on the secondary bus.
Table 7–4. Setting Secondary Interface Data Parity Detected Bit
Secondary data
parity detected bit
1
Transaction
Ty pe
B us where error was
detected
D irection
Primary /Secondary
parity error response bits
0
Read
D ownstream
Pri mary
x/x1
1
Read
D ownstream
Secondary
x/1
0
Read
Upstream
Pri mary
x/x
0
Read
Upstream
Secondary
x/x
0
Posted wri te
D ownstream
Pri mary
x/x
1
Posted wri te
D ownstream
Secondary
x/1
0
Posted wri te
Upstream
Pri mary
x/x
0
Posted wri te
Upstream
Secondary
x/x
0
D elayed wri te
D ownstream
Pri mary
x/x
1
D elayed wri te
D ownstream
Secondary
x/1
0
D elayed wri te
Upstream
Pri mary
x/x
0
D elayed wri te
Upstream
Secondary
x/x
x =don’t care
38
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
Table 7–5 shows assertion of P_PERR#. This signal is set under the following conditions:
• PI7C7100 is either the target of a write transaction or the initiator of a read transaction on the primary bus.
• The parity-error-response bit must be set in the command register of primary interface.
• PI7C7100 detects a data parity error on the primary bus or detects S_PERR# asserted during the completion
phase of a downstream delayed write transaction on the target (secondary) bus.
Table 7–5. Assertion of P_PERR#
P _P E R R #
Transaction
Ty pe
B us where error was
detected
D irection
Primary /Secondary
parity error response bits
1 (de-asserted)
Read
D ownstream
Pri mary
x/x1
1
Read
D ownstream
Secondary
x/x
0 (asserted)
Read
Upstream
Pri mary
1/x
1
Read
Upstream
Secondary
x/x
0
Posted wri te
D ownstream
Pri mary
1/x
1
Posted wri te
D ownstream
Secondary
x/x
1
Posted wri te
Upstream
Pri mary
x/x
1
Posted wri te
Upstream
Secondary
x/x
0
D elayed wri te
D ownstream
Pri mary
1/x
02
D elayed wri te
D ownstream
Secondary
1/1
1
D elayed wri te
Upstream
Pri mary
x/x
1
D elayed wri te
Upstream
Secondary
x/x
x =don’t care
The parity error was detected on the target (secondary) bus but not on the initiator (primary) bus.
1
2
39
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Table 7–6 shows assertion of S_PERR# that is set under the following conditions:
• PI7C7100 is either the target of a write transaction or the initiator of a read transaction on the secondary bus.
• The parity error response bit must be set in the bridge control register of secondary interface.
• PI7C7100 detects a data parity error on the secondary bus or detects P_PERR# asserted during the completion phase
of an upstream delayed write transaction on the target (primary) bus.
Table 7–6. Assertion of S_PERR#
S _P E R R #
1
2
Transaction
Ty pe
B us where error
was detected
D irection
Primary /Secondary
parity error response bits
1 (de-asserted)
Read
D ownstream
Pri mary
x/x1
0 (asserted)
Read
D ownstream
Secondary
x/1
1
Read
Upstream
Pri mary
x/x
1
Read
Upstream
Secondary
x/x
1
Posted wri te
D ownstream
Pri mary
x/x
1
Posted wri te
D ownstream
Secondary
x/x
1
Posted wri te
Upstream
Pri mary
x/x
0
Posted wri te
Upstream
Secondary
x/1
1
D elayed wri te
D ownstream
Pri mary
x/x
1
D elayed wri te
D ownstream
Secondary
x/x
02
D elayed wri te
Upstream
Pri mary
1/1
0
D elayed wri te
Upstream
Secondary
x/1
x =don’t care
The parity error was detected on the target (secondary) bus but not on the initiator (primary) bus.
40
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
Table 7–7 shows assertion of P_SERR#. This signal is set under the following conditions:
• PI7C7100 has detected P_PERR# asserted on an upstream posted write transaction or S_PERR# asserted
on a downstream posted write transaction.
• PI7C7100 did not detect the parity error as a target of the posted write transaction.
• The parity error response bit on the command register and the parity error response bit on the bridge control
register must both be set.
• The SERR# enable bit must be set in the command register.
Table 7–7. Assertion of P_SERR# for Data Parity Errors
P _S E R R #
Transaction
Ty pe
B us where error was
detected
D irection
Primary /Secondary
parity error response bits
1 (de-asserted)
Read
D ownstream
Pri mary
x/x1
1
Read
D ownstream
Secondary
x/x
1
Read
Upstream
Pri mary
x/x
1
Read
Upstream
Secondary
x/x
1
Posted wri te
D ownstream
Pri mary
x/x
Posted wri te
D ownstream
Secondary
1/1
03
Posted wri te
Upstream
Pri mary
1/1
1
Posted wri te
Upstream
Secondary
x/x
1
D elayed wri te
D ownstream
Pri mary
x/x
1
D elayed wri te
D ownstream
Secondary
x/x
1
D elayed wri te
Upstream
Pri mary
x/x
1
D elayed wri te
Upstream
Secondary
x/x
02
(asserted)
x =don’t care
The parity error was detected on the target (secondary) bus but not on the initiator (primary) bus.
3
The parity error was detected on the target (primary) bus but not on the initiator (secondary) bus.
1
2
41
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
7.4 System Error (SERR#) Reporting
PI7C7100 uses the P_SERR# signal to report conditionally a number of system error conditions in addition to the special
case parity error conditions described in Section 7.2.3.
Whenever assertion of P_SERR# is discussed in this document, it is assumed that the following conditions apply:
• For PI7C7100 to assert P_SERR# for any reason, the SERR# enable bit must be set in the command register.
• Whenever PI7C7100 asserts P_SERR#, PI7C7100 must also set the signaled system error bit in the status register.
In compliance with the PCI-to-PCI Bridge Architecture Specification, PI7C7100 asserts P_SERR# when it detects the
secondary SERR# input, S_SERR#, asserted and the SERR# forward enable bit is set in the bridge control register. In
addition, PI7C7100 also sets the received system error bit in the secondary status register.
PI7C7100 also conditionally asserts P_SERR# for any of the following reasons:
• Target abort detected during posted write transaction
• Master abort detected during posted write transaction
• Posted write data discarded after 224(default) attempts to deliver (224 target re3es received)
• Parity error reported on target bus during posted write transaction (see previous section)
• Delayed write data discarded after 224(default) attempts to deliver (224 target re3es received)
• Delayed read data cannot be transferred from target after 224(default) attempts (224 target re3es received)
• Master timeout on delayed transaction
The device-specific P_SERR# status register reports the reason for the assertion of P_SERR#.
Most of these events have additional device-specific disable bits in the P_SERR# event disable register that make it
possible to mask out P_SERR# assertion for specific events. The master timeout condition has a SERR# enable bit for
that event in the bridge control register and therefore does not have a device-specific disable bit.
42
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
8. Exclusive Access
This chapter describes the use of the LOCK# signal to implement exclusive access to a target for transactions that cross
PI7C7100.
8.1 Concurrent Locks
The primary and secondary bus lock mechanisms operate concurrently except when a locked transaction crosses
PI7C7100. A primary master can lock a primary target without affecting the status of the lock on the secondary bus, and
vice versa. This means that a primary master can lock a primary target at the same time that a secondary master locks
a secondary target.
8.2 Acquiring Exclusive Access across PI7C7100
For any PCI bus, before acquiring access to the LOCK# signal and starting a series of locked transactions, the initiator
must first check that both of the following conditions are met:
• The PCI bus must be idle.
• The LOCK# signal must be de-asserted.
The initiator leaves the LOCK# signal de-asserted during the address phase and asserts LOCK# one clock cycle later.
Once a data transfer is completed from the target, the target lock has been achieved.
Locked transactions can cross PI7C7100 in the downstream and upstream directions, from the primary bus to the
secondary bus and vice versa.
When the target resides on another PCI bus, the master must acquire not only the lock on its own PCI bus but also the
lock on every bus between its bus and the target’s bus. When PI7C7100 detects on the primary bus, an initial locked
transaction intended for a target on the secondary bus, PI7C7100 samples the address, transaction type, byte enable bits,
and parity, as described in Section 4.6.4. It also samples the lock signal. If there is a lock established between 2 ports
or the target bus is already locked by another master, then the current lock cycle is re3ed without forward. Because a
target retry is signaled to the initiator, the initiator must relinquish the lock on the primary bus, and therefore the lock is
not yet established.
The first locked transaction must be a read transaction. Subsequent locked transactions can be read or write transactions.
Posted memory write transactions that are a part of the locked transaction sequence are still posted. Memory read
transactions that are a part of the locked transaction sequence are not pre-fetched.
When the locked delayed read request is queued, PI7C7100 does not queue any more transactions until the locked
sequence is finished. PI7C7100 signals a target retry to all transactions initiated subsequent to the locked read transaction
that are intended for targets on the other side of PI7C7100. PI7C7100 allows any transactions queued before the locked
transaction to complete before initiating the locked transaction.
When the locked delayed read request transaction moves to the head of the delayed transaction queue, PI7C7100 initiates
the transaction as a locked read transaction by de-asserting LOCK# on the target bus during the first address phase, and
by asserting LOCK# one cycle later. If LOCK# is already asserted (used by another initiator), PI7C7100 waits to request
access to the secondary bus until LOCK# is de-asserted when the target bus is idle. Note that the existing lock on the
target bus could not have crossed PI7C7100. Otherwise, the pending queued locked transaction would not have been
queued. When PI7C7100 is able to complete a data transfer with the locked read transaction, the lock is established on
the secondary bus.
When the initiator repeats the locked read transaction on the primary bus with the same address, transaction type, and
byte enable bits, PI7C7100 transfers the read data back to the initiator, and the lock is then also established on the primary
bus.
For PI7C7100 to recognize and respond to the initiator, the initiator’s subsequent attempts of the read transaction must
use the locked transaction sequence (de-assert LOCK# during address phase, and assert LOCK# one cycle later). If the
LOCK# sequence is not used in subsequent attempts, a master timeout condition may result. When a master timeout
condition occurs, SERR# is conditionally asserted (see Section 7.4), the read data and queued read transaction are
discarded, and the LOCK# signal is de-asserted on the target bus.
43
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Once the intended target has been locked, any subsequent locked transactions initiated on the initiator bus that are
forwarded by PI7C7100 are driven as locked transactions on the target bus.
When PI7C7100 receives a target abort or a master abort in response to the delayed locked read transaction, this status
is passed back to the initiator, and no locks are established on either the target or the initiator bus. PI7C7100 resumes
forwarding unlocked transactions in both directions.
8.3 Ending Exclusive Access
After the lock has been acquired on both initiator and target buses, PI7C7100 must maintain the lock on the target bus
for any subsequent locked transactions until the initiator relinquishes the lock.
The only time a target-retry causes the lock to be relinquished is on the first transaction of a locked sequence. On
subsequent transactions in the sequence, the target retry has no effect on the status of the lock signal.
An established target lock is maintained until the initiator relinquishes the lock. PI7C7100 does not know whether the
current transaction is the last one in a sequence of locked transactions until the initiator de-asserts the LOCK# signal
at end of the transaction.
When the last locked transaction is a delayed transaction, PI7C7100 has already completed the transaction on the
secondary bus. In this example, as soon as PI7C7100 detects that the initiator has relinquished the LOCK# signal by
sampling it in the de-asserted state while FRAME# is de-asserted, PI7C7100 de-asserts the LOCK# signal on the target
bus as soon as possible. Because of this behavior, LOCK# may not be de-asserted until several cycles after the last locked
transaction has been completed on the target bus. As soon as PI7C7100 has de-asserted LOCK# to indicate the end of
a sequence of locked transactions, it resumes forwarding unlocked transactions.
When the last locked transaction is a posted write transaction, PI7C7100 de-asserts LOCK# on the target bus at the end
of the transaction because the lock was relinquished at the end of the write transaction on the initiator bus.
When PI7C7100 receives a target abort or a master abort in response to a locked delayed transaction, PI7C7100 returns
a target abort or a master abort when the initiator repeats the locked transaction. The initiator must then de-assert LOCK#
at the end of the transaction. PI7C7100 sets the appropriate status bits, flagging the abnormal target termination condition
(see Section 4.8). Normal forwarding of unlocked posted and delayed transactions is resumed.
When PI7C7100 receives a target abort or a master abort in response to a locked posted write transaction, PI7C7100
cannot pass back that status to the initiator. PI7C7100 asserts SERR# on the initiator bus when a target abort or a master
abort is received during a locked posted write transaction, if the SERR# enable bit is set in the command register. Signal
SERR# is asserted for the master abort condition if the master abort mode bit is set in the bridge control register (see
Section 7.4).
44
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
9. PCI Bus Arbitration
PI7C7100 must arbitrate for use of the primary bus when forwarding upstream transactions. Also, it must arbitrate for use
of the secondary bus when forwarding downstream transactions. The arbiter for the primary bus resides external to
PI7C7100, typically on the motherboard. For the secondary PCI bus, PI7C7100 implements an internal arbiter. This arbiter
can be disabled, and an external arbiter can be used instead. This chapter describes primary and secondary bus
arbitration.
9.1 Primary PCI Bus Arbitration
PI7C7100 implements a request output pin, P_REQ#, and a grant input pin, P_GNT#, for primary PCI bus arbitration.
PI7C7100 asserts P_REQ# when forwarding transactions upstream; that is, it acts as initiator on the primary PCI bus.
As long as at least one pending transaction resides in the queues in the upstream direction, either posted write data or
delayed transaction requests, PI7C7100 keeps P_REQ# asserted. However, if a target retry, target disconnect, or a target
abort is received in response to a transaction initiated by PI7C7100 on the primary PCI bus, PI7C7100 de-asserts P_REQ#
for two PCI clock cycles.
For all cycles through the bridge, P_REQ# is not asserted until the transaction request has been completely queued.
When P_GNT# is asserted LOW by the primary bus arbiter after PI7C7100 has asserted P_REQ#, PI7C7100 initiates a
transaction on the primary bus during the next PCI clock cycle. When P_GNT# is asserted to PI7C7100 when P_REQ#
is not asserted, PI7C7100 parks P_AD, P_CBE, and P_PAR by driving them to valid logic levels. When the primary bus
is parked at PI7C7100 and PI7C7100 has a transaction to initiate on the primary bus, PI7C7100 starts the transaction if
P_GNT# was asserted during the previous cycle.
9.2 Secondary PCI Bus Arbitration
PI7C7100 implements an internal secondary PCI bus arbiter. This arbiter supports two sets of eight external masters in
addition to PI7C7100. The internal arbiter can be disabled, and an external arbiter can be used instead for secondary bus
arbitration.
9.2.1 Secondary Bus Arbitration Using the Internal Arbiter
To use the internal arbiter, the secondary bus arbiter enable pin, S_CFN#, must be tied LOW. PI7C7100 has two sets
of eight secondary bus request input pins, S1_REQ#[7:0], S2_REQ#[7:0], and two sets of eight secondary bus output
grant pins, S1_GNT#[7:0], S2_GNT#[7:0], to support external secondary bus masters. The secondary bus request and
grant signals are connected internally to the arbiter and are not brought out to external pins when S_CFN# is HIGH.
The secondary arbiter supports a 2-sets programmable 2-level rotating algorithm with each set taking care of 8 requests/
grants. Each set of masters can be assigned to a high priority group and a low priority group. The low priority group as
a whole represents one entry in the high priority group; that is, if the high priority group consists of n masters, then in at
least every n+1 transactions the highest priority is assigned to the low priority group. Priority rotates evenly among the
low priority group. Therefore, members of the high priority group can be serviced n transactions out of n+1, while one
member of the low priority group is serviced once every n+1 transactions. Figure 9–1 shows an example of an internal arbiter
where four masters, including PI7C7100, are in the high priority group, and five masters are in the low priority group. Using
this example, if all requests are always asserted, the highest priority rotates among the masters in the following fashion
(high priority members are given in italics, low priority members, in boldface type):
B, m0, m1, m2, m3, B, m0, m1, m2, m4, B, m0, m1, m2, m5, B, m0, m1, m2, m6, B, m0, m1, m2, m7 and so on.
m2
m1
lpg
m4
m3
m0
B
m5
m7
m6
Figure 9-1. Secondary Arbiter Example
45
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Each bus master, including PI7C7100, can be configured to be in either the low priority group or the high priority group
by setting the corresponding priority bit in the arbiter-control register. The arbiter-control register is located at offset 40h.
Each master has a corresponding bit. If the bit is set to 1, the master is assigned to the high priority group. If the bit is
set to 0, the master is assigned to the low priority group. If all the masters are assigned to one group, the algorithm defaults
to a straight rotating priority among all the masters. After reset, all external masters are assigned to the low priority group,
and PI7C7100 is assigned to the high priority group. PI7C7100 receives highest priority on the target bus every other
transaction, and priority rotates evenly among the other masters.
Priorities are re-evaluated every time S1_FRAME# or S2_FRAME# is asserted at the start of each new transaction on
the secondary PCI bus. From this point until the time that the next transaction starts, the arbiter asserts the grant signal
corresponding to the highest priority request that is asserted. If a grant for a particular request is asserted, and a higher
priority request subsequently asserts, the arbiter de-asserts the asserted grant signal and asserts the grant corresponding
to the new higher priority request on the next PCI clock cycle. When priorities are re-evaluated, the highest priority is
assigned to the next highest priority master relative to the master that initiated the previous transaction. The master that
initiated the last transaction now has the lowest priority in its group.
If PI7C7100 detects that an initiator has failed to assert S1_FRAME# or S2_FRAME# after 16 cycles of both grant assertion
and a secondary idle bus condition, the arbiter de-asserts the grant. That master does not receive any more grants until
it de-asserts its request for at least one PCI clock cycle.
To prevent bus contention, if the secondary PCI bus is idle, the arbiter never asserts one grant signal in the same PCI cycle
in which it de-asserts another. It de-asserts one grant and asserts the next grant, no earlier than one PCI clock cycle later.
If the secondary PCI bus is busy, that is, either S1_FRAME# (S2_FRAME#) or S1_IRDY# (S2_IRDY#) is asserted, the
arbiter can de-assert one grant and assert another grant during the same PCI clock cycle.
9.2.2 Secondary Bus Arbitration Using an External Arbiter
The internal arbiter is disabled when the secondary bus central function control pin, S_CFN#, is tied high. An external
arbiter must then be used.
When S_CFN# is tied high, PI7C7100 reconfigures four pins (two per port) to be external request and grant pins. The
S1_GNT#[0] and S2_GNT#[0] pins are reconfigured to be the external request pins because they are output. The
S1_REQ#[0] and S2_REQ#[0] pins are reconfigured to be the external grant pins because they are input. When an
external arbiter is used, PI7C7100 uses the S1_GNT#[0] or S2_GNT#[0] pin to request the secondary bus. When the
reconfigured S1_REQ#[0] or S2_REQ#[0] pin is asserted low after PI7C7100 has asserted S1_GNT#[0] or S2_GNT#[0].
PI7C7100 initiates a transaction on the secondary bus one cycle later. If grant is asserted and PI7C7100 has not asserted
the request, PI7C7100 parks AD, CBE and PAR pins by driving them to valid logic levels.
The unused secondary bus grant outputs, S1_GNT#[7:1] and S2_GNT#[7:1] are driven high. The unused secondary bus
request inputs, S1_REQ#[7:1] and S2_REQ#[7:1], should be pulled high.
9.2.3 Bus Parking
Bus parking refers to driving the AD[31:0], CBE[3:0]#, and PAR lines to a known value while the bus is idle. In general,
the device implementing the bus arbiter is responsible for parking the bus or assigning another device to park the bus.
A device parks the bus when the bus is idle, its bus grant is asserted, and the device’s request is not asserted. The AD
and CBE signals should be driven first, with the PAR signal driven one cycle later.
PI7C7100 parks the primary bus only when P_GNT# is asserted, P_REQ# is de-asserted, and the primary PCI bus is idle.
When P_GNT# is de-asserted, PI7C7100 3-states the P_AD, P_CBE, and P_PAR signals on the next PCI clock cycle.
If PI7C7100 is parking the primary PCI bus and wants to initiate a transaction on that bus, then PI7C7100 can start the
transaction on the next PCI clock cycle by asserting P_FRAME# if P_GNT# is still asserted.
If the internal secondary bus arbiter is enabled, the secondary bus is always parked at the last master that used the PCI
bus. That is, PI7C7100 keeps the secondary bus grant asserted to a particular master until a new secondary bus request
comes along. After reset, PI7C7100 parks the secondary bus at itself until transactions start occurring on the secondary
bus. If the internal arbiter is disabled, PI7C7100 parks the secondary bus only when the reconfigured grant signal,
S_REQ#<0>, is asserted and the secondary bus is idle.
46
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
10. Clocks
This chapter provides information about the clocks.
10.1 Primary Clock Inputs
PI7C7100 implements a primary clock input for the PCI interface. The primary interface is synchronized to the primary clock
input, P_CLK, and the secondary interface is synchronized to the secondary clock. The secondary clock is derived internally
from the primary clock, P_CLK, through an internal PLL.
PI7C7100 operates at a maximum frequency of 33 MHz.
10.2 Secondary Clock Outputs
PI7C7100 has 16 secondary clock outputs, S_CLKOUT[15:0] that can be used as clock inputs for up to sixteen external
secondary bus devices. The S_CLKOUT[15:0] outputs are derived from P_CLK. The secondary clock edges are delayed
from P_CLK edges by a minimum of 0ns.
This is the rule for using secondary clocks:
• Each secondary clock output is limited to no more than one load.
47
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
11. Reset
This chapter describes the primary interface, secondary interface, and chip reset mechanisms.
11.1 Primary Interface Reset
PI7C7100 has a reset input, P_RESET#. When P_RESET# is asserted, the following events occur:
• PI7C7100 immediately 3-states all primary and secondary PCI interface signals.
• PI7C7100 performs a chip reset.
• Registers that have default values are reset.
P_RESET# asserting and de-asserting edges can be asynchronous to P_CLK and S_CLK.
11.2 Secondary Interface Reset
PI7C7100 is responsible for driving the secondary bus reset signals, S1_RESET# and S2_RESET#.
PI7C7100 asserts S1_RESET# or S2_RESET# when any of the following conditions is met:
• Signal P_RESET# is asserted.
Signal S1_RESET# or S2_RESET# remains asserted as long
as P_RESET# is asserted and does not de-assert until P_RESET# is de-asserted.
• The secondary reset bit in the bridge control register is set.
Signal S1_RESET# or S2_RESET# remains asserted until a configuration write operation clears the
secondary reset bit.
• S1_RESET# or S2_RESET# pin is asserted.
When S1_RESET# or S2_RESET# is asserted, the following events occur:
PI7C7100 immediately 3-states all the secondary PCI interface signals associated with the Secondary
S1 or S2 port.
The S1_RESET# or S2_RESET# in asserting and de-asserting edges can be asynchronous to P_CLK.
• The chip reset bit in the diagnostic control register is set.
Signal S1_RESET# or S2_RESET# remains asserted until a configuration write operation clears the
secondary reset bit and the secondary clock serial mask has been shifted in.
When S1_RESET# or S2_RESET# is asserted, all secondary PCI interface control signals, including the secondary grant
outputs, are immediately 3-stated. Signals S1_AD, S1_CBE[3:0]#, S1_PAR (S2_AD, S2_CBE[3:0]#, S2_PAR) are driven
low for the duration of S1_RESET# (S2_RESET#) assertion. All posted write and delayed transaction data buffers are
reset. Therefore, any transactions residing inside the buffers at the time of secondary reset are discarded.
When S1_RESET# or S2_RESET# is asserted by means of the secondary reset bit, PI7C7100 remains accessible during
secondary interface reset and continues to respond to accesses to its configuration space from the primary interface.
11.3 Chip Reset
The chip reset bit in the diagnostic control register can be used to reset PI7C7100 and the secondary buses. All registers,
and chip state machines are reset and all signals are 3-stated when the chip reset is set. In addition, S1_RESET# or
S2_RESET# is asserted, and the secondary reset bit is automatically set. Signal S1_RESET# or S2_RESET# remains
asserted until a configuration write operation clears the secondary reset bit.
As soon as chip reset completes, within 20 PCI clock cycles after completion of the configuration write operation that sets
the chip reset bit, the chip reset bit automatically clears and the chip is ready for configuration.
During chip reset, PI7C7100 is inaccessible.
48
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
12. Supported Commands
The PCI command set is given below for the primary and secondary interfaces.
12.1 Primary Interface
P_C B E[3: 0]#
C ommand
Action
0000
Interrupt Acknowledge
Ignore.
0001
Speci al C ycle
D o not clai m. Ignore.
0010
I/O Read
1. If address i s wi thi n pass through I/O range: clai m and pass
through.
2. If address poi nts to I/O mapped bri dge i nternal regi ster: clai m and
permi t access to regi ster, do not pass through.
3. Otherwi se, do not pass through and do not clai m for i nternal access.
0011
I/O Wri te
Same as I/O read.
0100
Reserved
-----
0101
Reserved
-----
0110
Memory Read
1. If address i s wi thi n pass through memory range: clai m and pass
through.
2. If address i s wi thi n pass through memory mapped I/O range: clai m
and pass through.
3. If address poi nts to memory mapped bri dge i nternal regi ster: clai m
and permi t access to regi ster, do not pass through.
4. Otherwi se, do not pass through and do not clai m for i nternal access.
0111
Memory Wri te
Same as Memory Read
1000
Reserved
-----
1001
Reserved
-----
1010
C onfi gurati on
Read
I. Ty pe 0 configuration read:
If the bri dge's ID SEL li ne i s asserted, perform functi on decode and
clai m i f target functi on i s i mplemented, otherwi se, i gnore. If clai med,
permi t access to target functi on's confi gurati on regi sters. D o not pass
through under any ci rcumstances.
II. Ty pe 1 configuration read:
1. If the target bus i s the bri dge's secondary bus: clai m and
pass through as a type 0 confi gurati on read.
2. If the target bus i s a subordi nate bus that exi sts behi nd the
bri dge (but not equal to the secondary bus): clai m and
pass through as a type 1 confi gurati on read.
3. Otherwi se, i gnore.
49
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12.1 Primary Interface
P_C B E[3: 0]#
C ommand
Action
1011
C onfi gurati on
Wri te
I. Ty pe 0 configuration write: same as configuration read.
II. Ty pe 1 configuration write(not special cy cle request):
1. If the target bus i s the bri dge's secondary bus: clai m and pass
through as a type 0 confi gurati on wri te
2. If the target bus i s a subordi nate bus that exi sts behi nd the bri dge
(but not equal to the secondary bus): clai m and pass through
unchanged as a type 1 confi gurati on wri te.
3. Otherwi se, i gnore.
III. C onfiguration write as special cy cle request
(dev ice = 1Fh, function = 7h):
1. If the target bus i s the bri dge's secondary bus: clai m and pass
through as a speci al cycle
2. If the target bus i s a subordi nate bus that exi sts behi nd the bri dge
(but not equal to the secondary bus): clai m and pass through
unchanged as a type 1 confi gurati on wri te.
3. Otherwi se, i gnore
1100
Memory Read
Multi ple
Same as Memory Read
1101
D ual Address
C ycle
Not Supported
1110
Memory Read
Li ne
Same as Memory Read
1111
Memory Wri te
& Invali date
Same as Memory Read
50
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
12.2 Secondary Interface
S1_C B E[3: 0]#
S2_C B E[3: 0]#
C ommand
Action
0000
Interrupt
Acknowledge
Ignore.
0001
Speci al C ycle
D o not clai m. Ignore.
0010
I/O Read
Same as pri mary i nterface.
0011
I/O Wri te
Same as I/O read.
0100
Reserved
-----
0101
Reserved
-----
0110
Memory Read
Same as pri mary i nterface.
0111
Memory Wri te
Same as Memory Read.
1000
Reserved
-----
1001
Reserved
-----
1010
C onfi gurati on
Read
Ignore.
1011
C onfi gurati on
Wri te
I. Ty pe 0 configuration write: Ignore.
II. Ty pe 1 configuration write (not special cy cle request): Ignore.
III. C onfiguration write as special cy cle request
(dev ice = 1Fh, function = 7h):
1. If the target bus i s the bri dge's pri mary bus: clai m and pass through
as a speci al cycle.
2. If the target bus i s nei ther the pri mary bus nor i s i t i n range of buses
defi ned by the bri dge's secondary and subordi nate bus regi sters: clai m
and pass through unchanged as a type 1 confi gurati on wri te.
3. If the target bus i s not the bri dge's pri mary bus: but i s i n range of buses
defi ned by the bri dge's secondary and subordi nate bus regi sters: Ignore.
1100
Memory Read
Multi ple
Same as Memory Read
1101
D ual Address
C ycle
Not Supported
1110
Memory Read
Li ne
Same as Memory Read
1111
Memory Wri te
& Invali date
Same as Memory Read
51
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
13. Configuration Registers
As PI7C7100 supports two secondary interfaces, it has two sets of configuration registers which are almost identical
and accessed through different function numbers. The description below is for one set only.
PCI configuration defines a 64-byte space (configuration header) to define various at3butes of the PCI-to-PCI Bridge
as shown below. All of the registers in bold type are required by the PCI specification and are implemented in this
bridge. The others are available for use as control registers for the device. There are two configuration registers:
Configuration Register 1 and Configuration Register 2 corresponding to Secondary bus 1 and Secondary bus 2
interfaces respectively. Also, the configuration for the primary interface is implemented through the Configuration
Register 1.
13.1 Configuration Register 1
31-24
23-16
15-8
7-0
D ev ice ID
Vendor ID
Status
00h
C ommand
04h
C lass C ode
Reserved
H eader Ty pe
Secondary Latency
Timer
Subordinate B us
N umber
Address
R ev ision ID
08h
C ache Line Siz e
0C h
Secondary B us
N umber
Primary B us
N umber
18h
I/O Limit
I/O B ase
1C h
Primary Latency Timer
Reserved
10h-14h
Secondary Status
Memory Limit
Memory B ase
20h
Prefetchable Memory Li mi t
Prefetchable Memory Base
24h
I/O Li mi t Upper 16 Bi ts
I/O Base Upper 16 Bi ts
30h
Subsystem ID
Subsystem Vendor ID
34h
Reserved
28h-2C h
Reserved
38h
B ridge C ontrol
Interrupt Pi n
Reserved
3C h
Arbi ter C ontrol
D i agnosti c C ontrol
C hi p C ontrol
40h
Pri mary Prefetchable Memory Li mi t
Pri mary Prefetchable Memory Base
Reserved
48h-60h
Reserved
Reserved
44h
P_SERR# Event
D i sable
Reserved
64h
Secondary C lock C ontrol
68h
Non-Posted Memory Base
70h
Port Opti on
74h
Reserved
6C h
Non-Posted Memory Li mi t
Master Ti meout C ounter
Retry C ounter
78h
Sampli ng Ti mer
7C h
Secondary Successful I/O read count
80h
Secondary Successful I/O wri te count
84h
Secondary Successful memory read count
88h
Secondary Successful memory wri te count
8C h
Pri mary Successful I/O read count
90h
Pri mary Successful I/O wri te count
94h
Pri mary Successful memory read count
98h
Pri mary Successful memory wri te count
9C h
Reserved
A0h-FFh
52
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
13.2 Configuration Register 2
31-24
23-16
15-8
7-0
Address
D ev ice ID
Vendor ID
00h
Status
C ommand
04h
C lass C ode
H eader Ty pe
Reserved
Primary Latency Timer
R ev ision ID
08h
C ache Line Siz e
0C h
Reserved
Secondary Latency
Timer
Subordinate B us
N umber
10h-14h
Secondary B us
N umber
Primary B us
N umber
18h
I/O Limit
I/O B ase
1C h
Secondary Status
Memory Limit
Memory B ase
20h
Prefetchable Memory Li mi t
Prefetchable Memory Base
24h
Reserved
28h-2C h
I/O Li mi t Upper 16 Bi ts
I/O Base Upper 16 Bi ts
30h
Subsystem ID
Subsystem Vendor ID
34h
Reserved
38h
B ridge C ontrol
Interrupt Pi n
Reserved
3C h
Arbi ter C ontrol
D i agnosti c C ontrol
C hi p C ontrol
40h
Pri mary Prefetchable Memory Li mi t
Reserved
Pri mary Prefetchable Memory Base
44h
Reserved
48h-60h
Reserved
64h
Reserved
Secondary C lock C ontrol
Reserved
68h
6C h
Non-Posted Memory Li mi t
Non-Posted Memory Base
70h
Reserved
Reserved
74h
Reserved
78h
Sampli ng Ti mer
7C h
Secondary Successful I/O read count
80h
Secondary Successful I/O wri te count
84h
Secondary Successful memory read count
88h
Secondary Successful memory wri te count
8C h
Reserved
90h
Reserved
94h
Reserved
98h
Reserved
9C h
Reserved
A0h-FFh
53
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
13.2.1 Config Register 1 or 2: Vendor ID Register (read only, bit 15-0; offset 00h)
Pericom ID is 12D8h.
13.2.2 Config Register 1: Device ID Register (read only, bit 31-16; offset 00h)
Hardwired to 1B59h (S1)
13.2.3 Config Register 2: Device ID Register (read only, bit 31-16; offset 00h)
Hardwired to 1B5Ah (S2)
13.2.4 Configuration Register 1: Command Register (bit 15-0; offset 04h)
B it
15-10
9
Function
Ty pe
Reserved
R/O
Reset to '000000'
Fast Back to
Back Enable
R/W
C ontrols bri dge's abi li ty to generate fast back-to-back transacti ons
to di fferent devi ces on the pri mary i nterface.
0 = no fast back to back transaction
1 = enable fast back to back transacti on
R eset to 0
SERR# Enable
R/W
C ontrols the enable for the P_SERR# pi n.
0=disable the P_SER R # driv er
1 = enable the P_SERR# dri ver
R eset to 0
Wai t C ycle C ontrol
R/O
No data steppi ng supported.
R eset to 0
Pari ty Error Enable
R/W
C ontrols bri dge's response to pari ty errors.
0 = ignore any parity errors
1 = normal pari ty checki ng performed
R eset to 0
VGA Palette Snoop Enable
R/W
C ontrols bri dge's response to VGA compati ble palette accesses.
0 = ignore VGA palette accesses on the primary interface
1 = enable response to VGA palette wri tes on the pri mary i nterface
(I/O address AD [9:0] = 3C 6h, 3C 8h and 3C 9h)
R eset to 0
Memory Wri te and
Invali date Enable
R/O
Memory Wri te and Invali date not supported
R eset to 0
Speci al C ycle Enable
R/O
No speci al cycle i mplementati on
R eset to 0
Bus Master Enable
R/W
C ontrols bri dge's abi li ty to operate as a master on the pri mary
i nterface.
0 = do not initiate transaction on the primary interface and
disable response to memory or I/O transactions on secondary
interface
1 = enable the bri dge to operate as a master on the pri mary
i nterface
R eset to 0
Memory Space Enable
R/W
C ontrols bri dge's response to memory accesses on the pri mary
i nterface.
0 = ignore all memory transaction
1 = enable response to memory transacti on
R eset to 0
I/O Space Enable
R/W
C ontrols bri dge's response to I/O accesses on the pri mary i nterface.
0 = ignore I/O transaction
1 = enable response to I/O transacti on
R eset to 0
8
7
6
5
4
3
2
1
0
D escription
Note: R/W - Read/Write, R/O - Read Only, R/WC - Read/ Write 1 to clear
54
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
13.2.5 Configuration Register 2: Command Register (bit 15-0; offset 04h)
B it
Function
Ty pe
D escription
15-10
Reserved
R/O
R eset to '000000'
9
Reserved
R/W
R eset to 0
8
Reserved
R/W
R eset to 0
Wai t C ycle C ontrol
R/O
No data steppi ng supported.
R eset to 0
Reserved
R/W
R eset to 0
VGA Palette
Snoop Enable
R/W
C ontrols bri dge's response to VGA compati ble palette accesses.
0 = ignore VGA palette accesses on the primary interface
1 = enable response to VGA palette wri tes on the pri mary i nterface
(I/O address AD [9:0] = 3C 6h, 3C 8h and 3C 9h)
R eset to 0
4
Memory Wri te and
Invali date Enable
R/O
Memory Wri te and Invali date not supported.
R eset to 0
3
Speci al C ycle
Enable
R/O
No speci al cycle i mplementati on.
R eset to 0
Bus Master
Enable
R/W
C ontrols bri dge's abi li ty to operate as a master on the pri mary i nterface.
0 = do not initiate transaction on the primary interface and disable
response to memory or I/O transactions on secondary interface
1 = enable the bri dge to operate as a master on the pri mary i nterface
R eset to 0
7
6
5
2
Memory Space Enable R/W
C ontrols bri dge's response to memory accesses on the pri mary
i nterface.
0 = ignore all memory transaction
1 = enable response to memory transacti on
R eset to 0
I/O Space Enable
C ontrols bri dge's response to I/O accesses on the pri mary i nterface.
0 = ignore I/O transaction
1 = enable response to I/O transacti on
R eset to 0
1
0
R/W
Note: R/W - Read/Write, R/O - Read Only, R/WC - Read/ Write 1 to clear
55
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
13.2.6 Configuration Register 1 or 2: Status Register (for primary bus, bits 31-16; offset 04h)
B it
Function
Ty pe
D escription
31
D etected Pari ty Error
R/WC Should be set whenever a pari ty error i s detected regardless of the
state of bi t 6 of the command regi ster.
R eset to 0
30
Si gnaled System Error
R/WC Should be set whenever P_SERR# i s asserted.
R eset to 0
29
Recei ved Master Abort
R/WC Set to '1' (by a master) when transacti ons are termi nated
wi th Master Abort.
R eset to 0
28
Recei ved Target Abort
R/WC Set to '1' (by a master devi ce) when transacti ons are termi nated
wi th Target Abort.
R eset to 0
27
Si gnaled Target Abort
R/WC Should be set (by a target devi ce) whenever a Target Abort
cycle occurs.
R eset to 0
D EVSEL Ti mi ng
R/O
24
D ata Pari ty Error D etected
R/WC It i s set when the followi ng condi ti ons are met:
1. P_PERR# i s asserted
2. Bi t 6 of C ommand Regi ster i s set
R eset to 0
23
Fast Back to Back C apable
R/O
Fast back-to-back wri te capable on pri mary si de.
R eset to 1
22
Reserved
R/O
R eset to 0
21
Reserved
R/O
R eset to 1
20
C apabi li ti es Li st
R/O
C apabi li ti es Li st i s not supported.
R eset to 0
Reserved
R/O
R eset to 0
26-25
19-16
Medi um D EVSEL# ti mi ng.
R eset to '01'
Note: R/W - Read/Write; R/O - Read Only; R/WC - Read/Write1 to clear.
56
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
13.2.7 Config Register 1 or 2: Revision ID Register (read only, bit 7-0; offset 08h)
Hardwired to 01h
13.2.8 Config Register 1 or 2: Class Code Register (read only, bit 31-8; offset 08h)
Hardwired to 060400h
13.2.9 Config Register 1 or 2: Cache Line Size Register (read/write, bit 7-0; offset 0Ch)
This register is used when terminating memory write and invalidate transactions and when pre-fetching.
Only cache line sizes (in units of 4-byte) which are power of two are valid (only one bit can be set in this register;
only 00h, 01h, 02h, 04h, 08h, 10h are valid values). Reset to 00h
13.2.10 Config Register 1: Primary Latency Timer Register (read/write, bit 15-8; offset 0Ch)
This register sets the value for Master Latency Timer which starts counting when master asserts FRAME#. Reset to 00h
13.2.11 Config Register 2: Primary Latency Timer Register (read/write, bit 15-8; offset 0Ch)
This register is implemented but not being used internally. Reset to 00h
13.2.12 Config Register 1: Header Type Register (read only, bit 23-16; offset 0Ch)
Hardwired to 81h for function 0 (multiple function PCI-to-PCI bridge, for secondary bus S1)
13.2.13 Config Register 2: Header Type Register (read only, bit 23-16; offset 0Ch)
Hardwired to 01h for function 1 (single function PCI-to-PCI bridge, for secondary bus S2)
13.2.14 Config Register 1: Primary Bus Number Register (read/write, bit 7-0; offset 18h)
Programmed with the number of the PCI bus to which the primary bridge interface is connected.
This value is set by software during configuration. Reset to 00h
13.2.15 Config Register 2: Primary Bus Number Register (read/write, bit 7-0; offset 18h)
This register is implemented but not being used internally. Reset to 00h
13.2.16 Config Register 1 or 2: Secondary Bus Number Register (read/write, bit 15-8; offset 18h)
Programmed with the number of the PCI bridge secondary bus interface. This value is set by software during configuration. Reset to 00h
13.2.17 Config Register 1 or 2: Subordinate Bus Number Register (read/write, bit 23-16; offset 18h)
Programmed with the number of the PCI bus with the highest number that is subordinate to the bridge.
This value is set by software during configuration. Reset to 00h
13.2.18 Config Register 1 or 2: Secondary Latency Timer (read/write, bit 31-24; offset 18h)
This register is programmed in units of PCI bus clocks.The latency timer checks for master accesses on the
secondary bus interfaces that remain unclaimed by any target. Reset to 00h
13.2.19 Config Register 1 or 2: I/O Base Register (read/write, bit 7-0; offset 1Ch)
This register defines the bottom address of the I/O address range for the bridge. The upper four bits define the bottom
address range used by the chip to determine when to forward I/O transactions from one interface to the other. These
4 bits correspond to address bits [15:12] and are write-able. The upper 16 bits corresponding to address bits [31:16]
are defined in the I/O base upper 16 bits address register. The address bits [11:0] are assumed to be 000h. The lower
four bits (3:0) of this register set to ‘0001’ (read-only) to indicate 32-bit I/O addressing. Reset to 00h
13.2.20 Config Register 1 or 2: I/O Limit Register (read/write, bit 15-8; offset 1Ch)
This register defines the top address of the I/O address range for the bridge. The upper four bits define the top
address range used by the chip to determine when to forward I/O transactions from one interface to the other. These
4 bits correspond to address bits [15:12] and are write-able. The upper 16 bits corresponding to address bits [31:16]
are defined in the I/O limit upper 16 bits address register. The address bits [11:0] are assumed to be FFFh. The lower
four bits (3:0) of this register set to ‘0001’ (read-only) to indicate 32-bit I/O addressing. Reset to 00h.
57
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
13.2.21 Configuration Register 1 or 2: Secondary Status Register (bits 31-16; offset 1Ch)
B it
Function
Ty pe
D escription
31
D etected Pari ty Error
R/WC
Should be set whenever a pari ty error i s detected regardless of the
state of bi t 6 of the command regi ster.
R eset to 0
30
Si gnaled System Error
R/WC
Should be set whenever S1_SERR# or S2_SERR# i s detected.
Should be a '0' after reset.
R eset to 0
29
Recei ved Master Abort
R/WC
Set to '1' (by a master) when transacti ons are termi nated wi th
Master Abort.
R eset to 0
28
Recei ved Target Abort
R/WC
Set to '1' (by a master devi ce) when transacti ons are termi nated wi th
Target Abort.
R eset to 0
27
Si gnaled Target Abort
R/WC
Should be set (by a target devi ce) whenever a Target Abort cycle occurs.
Should be '0' after reset.
R eset to 0
R/O
Medi um D EVSEL# ti mi ng.
R eset to '01'
26-25 D EVSEL ti mi ng
24
D ata Pari ty Error D etected
R/WC
It i s set when the followi ng condi ti ons are met:
1. S1_PERR# or S2_PERR# i s asserted
2. Bi t 6 of C ommand Regi ster i s set
R eset to 0
23
Fast Back-to-Back C apable
R/O
Fast back-to-back wri te capable on secondary buses.
R eset to 1
22
Reserved
R/O
R eset to 0
21
Reserved
R/O
R eset to 0
20-16 Reserved
R/O
R eset to '00000'
Note: R/W - Read/Write, R/O - Read Only, R/WC - Read/ Write 1 to clear
58
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
13.2.22 Config Register 1 or 2: Memory Base Register (read/write, bit 15-0; offset 20h)
This register defines the base address of the memory-mapped address range for forwarding the cycle through the
bridge. The upper twelve bits corresponding to address bits [31:20] are read/write. The twelve bits are reset to 000h.
The lower 20 address bits (19:0) are assumed to be 00000h.
13.2.23 Config Register 1 or 2: Memory Limit Register (read/write, bit 31:16; offset 20h)
This register defines the upper limit address of the memory-mapped address range for forwarding the cycle through
the bridge. Upper twelve bits corresponding to address bit [31:20] are read/write. Upper twelve bits are reset to 0000h.
Lower 20 address bits (19:0) are assumed to be FFFFFh.
13.2.24 Config Register 1 or 2: Prefetchable Memory Base Register (read/write, bit 15-0;offset 24h)
This register defines the base address of the prefetchable memory-mapped address range for forwarding the cycle
through the bridge. The upper twelve bits corresponding to address bits [31:20] are read/write. The upper twelve
bits are reset to 000h. The lower four bits are read only and are set to 0. The lower 20 address bits (19:0) are assumed to be 00000h.
13.2.25 Config Register 1 or 2: Prefetchable Memory Limit Register (read/write, bit 31-16; offset 24h)
This register defines the upper limit address of the memory-mapped address range for forwarding the cycle through
the bridge. The upper twelve bits correspond to address bit [31:20] are read/write. The upper twelve bits are reset to 000h.
The lower four bits are read only and are set to 0. The lower 20 address bits (19:0) are assumed to be FFFFFh.
13.2.26 Config Register 1 or 2: I/O Base Address Upper 16 Bits Register
(read/write, bit 15-0; offset 30h)
This register defines the upper 16 bits of a 32-bit base I/O address range used for forwarding the cycle through
the bridge.
Reset to 0000h.
13.2.27 Config Register 1 or 2: I/O Limit Address Upper 16 Bits Register
(read/write, bit 31-16; offset 30h)
This register defines the upper 16 bits of a 32-bit limit I/O address range used for forwarding the cycle through
the bridge.
Reset to 0000h.
13.2.28 Config Register 1 or 2: Subsystem Vendor ID (read/write, bit 15-0; offset 34h)
A 16-bit register for add-on cards to distinguish from one another. Reset to 0000h.
13.2.29 Config Register 1 or 2: Subsystem ID (read/write, bit 31-16; offset 34h)
A 16-bit register for add-on cards to distinguish from one another. Reset to 0000h.
13.2.30 Config Register 1 or 2: Interrupt Pin Register (read only, bit 15-8; offset 3Ch)
The register reads as 00h to indicate that PI7C7100 does not use any interrupt pins.
59
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
13.2.31 Configuration Register 1 or 2: Bridge Control Register (bits 31-16; offset 3Ch)
B it
Function
31-28 Reserved
Ty pe
D escription
R/O
R eset to '0000'
27
Reserved
R/W
R eset to 0
26
Master Ti meout
Status
R/WC
Set to '1' when ei ther pri mary master or secondary master ti meout.
R eset to 0
25
Reserved
R/W
R eset to 0
24
Reserved
R/W
R eset to 0
23
Fast Back-to-Back
Enable
R/W
C ontrols bri dge's abi li ty to generate fast back-to-back transacti ons to different
devi ces on the secondary i nterface.
0 = no fast back-to-back transaction
1 = enable fast back-to-back transacton
R eset to 0
22
Secondary Interface
Reset
R/W
Forces the asserti on of S1_RESET# or S2_RESET# si gnal pi n on the secondary
i nterface.
0 = do not force the assertion of S1_R ESET# or S2_R ESET# pin
1 = force the asserti on of S1_RESET# or S2_RESET# pi n
R eset to 0
21
Master Abort Mode
R/W
C ontrols bri dge's behavi or respondi ng to master aborts on secondary i nterface.
0 = do not report master aborts (return FFFF_FFFFh on read and
discard data on write)
1 = report master aborts by si gnali ng target abort i f possi ble by the asserti on of
P_SERR# i f enabled
R eset to 0
20
Reserved
R/O
R eset to 0
19
VGA Enable
R/W
C ontrols the bri dge's response to VGA compati ble addresses.
0 = do not forward VGA compatible memory and I/O addresses
from primary to secondary
1 = forward VGA compati ble memory and I/O address from pri mary to secondary
regardless of other setti ngs
R eset to 0
18
ISA Enable
R/W
C ontrols bri dge's response to ISA I/O address whi ch i s li mi ted to the fi rst 64K.
0 = forward all I/O addresses in the range defined by the I/O B ase and I/O
Limit registers,
1 = block forwardi ng of ISA I/O addresses i n the range defi ned by the
I/O Base and I/O Li mi t regi sters that are i n the fi rst 64K of I/O space that address
the last 768 bytes i n each 1 Kbytes block. Secondary I/O transacti ons are
forwarded upstream i f the address falls wi thi n the
last 768 bytes i n each 1 Kbyte block
R eset to 0
17
S1_SERR# or
S2_SERR#
Enable
C ontrols the forwardi ng of S1_SERR# or S2_SERR# to the pri mary i nterface.
0 = disable the forwarding S1_SER R # or S2_SER R # to primary
1 = enable the forwardi ng of S1_SERR# or S2_SERR# to pri mary i nterface.
R eset to 0
16
Pari ty Error
Response
Enable
C ontrols the bri dge's response to pari ty errors on the secondary i nterface.
0 = ignore address and data parity errors on the secondary interface.
1 = enable pari ty error reporti ng and detecti on on the secondary i nterface.
R eset to 0
Note: R/W - Read/Write, R/O - Read Only, R/WC - Read/ Write 1 to clear.
60
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
13.2.32 Configuration Register 1 or 2: Diagnostic/Chip Control Register (bit 15-0, offset 40h)
B it
Function
Ty pe
D escription
15-11
Reserved
R/O
R eset to '00000'
10-9
Test Mode
R/W
C ontrols testabi li ty of chi p's i nternal counters. When 00, all bi ts of counter are
exerci sed. When 01, byte 1 of counter i s exerci sed. When 10, byte 2 of
counter i s exerci sed. When 11, byte 3 of counter i s exerci sed.
R eset to 0
8-5
Reserved
R/O
R eset to '0000'
4
Reserved
R/W
R eset to 0
3-2
Reserved
R/O
R eset to '00'
1
Reserved
R/W
R eset to 0
0
Reserved
R/O
R eset to 0
13.2.33 Configuration Register 1 or 2: Arbiter Control Register (bit 31-16, offset 40h)
B it
31:28
Function
Ty pe
D escription
Reserved
R/O
R eset to '0000'
27
Hybri d
R/W
Mi xed arbi trati on for masters from secondary bus 1 and 2.
0 = separate arbi trati on for S1_REQ[7:0]# and S2_REQ[7:0]#
1 = S1_REQ[3:0]# are mi xed wi th S2_REQ[3:0]# for arbi trati on.
Only one arbi ter i s used.
R eset to 0
26
Reserved
R/W
R eset to 0
25
Pri ori ty of
Secondary
Port
R/W
D efi nes whether the secondary port of PI7C 7100 i s i n hi gh pri ori ty
group or the low pri ori ty group.
0 = low pri ori ty group
1 = high priority group
R eset to 1
24
Reserved
R/O
R eset to 0
Arbi ter
C ontrol
R/W
Each bi t controls whether a secondary-bus master i s assi gned to the hi gh pri ori ty
group or the low pri ori ty group. Bi t [7:0] correspond to request i nputs
S1_REQ[7:0]# or S2_REQ[7:0]#.
R eset to '00000000'
23-16
Note: R/W - Read/Write, R/O - Read Only, R/WC - Read/ Write 1 to clear.
61
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
13.2.34 Config Register 1: Primary Prefetchable Memory Base Register (Read/Write, bit 15-0; offset 44h)
This register defines the base address of the primary prefetchable memory-mapped address range for forwarding the
cycle through the bridge. The upper twelve bits corresponding to address bits [31:20] are read/write. The upper twelve
bits are reset to 0000h. The lower four bits are read only and are set to 0h. The lower 20 address bits (19:0) are
assumed to be 00000h.
13.2.35 Config Register 2: Primary Prefetchable Memory Base Register (Read/Write, bit 15-0; offset 44h)
This register is implemented but not being used internally. The upper twelve bits corresponding to address bits [31:20]
are read/write. The upper twelve bits are reset to 0000h. The lower four bits are read only and are set to 0h.
13.2.36 Config Register 1: Primary Prefetchable Memory Limit Register (Read/Write, bit 31-16; offset 44h)
This register defines the upper limit address of the primary prefetchable memory-mapped address range for forwarding
the cycle through the bridge. The upper twelve bits corresponding to address bits [31:20] are read/write. The upper twelve
bits are reset to 0000h. The lower four bits are read only and are set to 0h. The lower 20 address bits (19:0) are assumed
to be FFFFFh.
13.2.37 Config Register 2: Primary Prefetchable Memory Limit Register (Read/Write, bit 31-16; offset 44h)
This register is implemented but not being used internally. The upper twelve bits corresponding to address bits [31:20]
are read/write. The upper twelve bits are reset to 0000h. The lower four bits are read only and are set to 0h.
13.2.38 Config Register 1 or 2: P_SERR# Event Disable Register (bit 7-0; offset 64h)
B it
Function
Ty pe
D escription
7
Reserved
R/O
R eset to 0
6
D elayed read no data from
target
R/W
C ontrols abi li ty of PI7C 7100 to assert P_SERR# when i t i s unable to transfer any
read data from the target after 224 attempts. P_SERR# i s asserted i f thi s event
occurs when thi s bi t i s 0 and SERR# enable bi t i n the command regi ster i s set.
R eset to 0
5
D elayed wri te
nondeli ver
R/W
C ontrols abi li ty of PI7C 7100 to assert P_SERR# when i t i s unable to transfer
delayed wri te data after 224 attempts. P_SERR# i s asserted i f thi s event occurs
when thi s bi t i s 0 and SERR# enable bi t i n the command regi ster i s set.
R eset to 0
4
Master abort
on posted
wri te
R/W
C ontrols abi li ty of PI7C 7100 to assert P_SERR# when i t recei ves a master abort
when attempti ng to deli ver posted wri te data. P_SERR# i s asserted i f thi s event
occurs when thi s bi t i s 0 and SERR# enable bi t i n the command regi ster i s set.
R eset to 0
3
Target abort
duri ng posted
wri te
R/W
C ontrols abi li ty of PI7C 7100 to assert P_SERR# when i t recei ves a target abort
when attempti ng to deli ver posted wri te data. P_SERR# i s asserted i f thi s event
occurs when thi s bi t i s 0 and SERR# enable bi t i n the command regi ster i s set.
R eset to 0
2
Posted wri te
non-deli very
R/W
C ontrols abi li ty of PI7C 7100 to assert P_SERR# when i t i s unable to deli ver posted
wri te data after 224 attempts. P_SERR# i s asserted i f thi s event occurs when thi s bi t
i s 0 and SERR# enable bi t i n the command regi ster i s set.
R eset to 0
1
Posted wri te
pari ty error
R/W
C ontrols abi li ty of PI7C 7100 to assert P_SERR# when a pari ty error i s detected on
the target bus duri ng a posted wri te transacti on. P_SERR# i s asserted i f thi s event
occurs when thi s bi t i s 0 and SERR# enable bi t i n the command regi ster i s set.
R eset to 0
0
Reserved
R/O
R eset to 0
Note: R/W - Read/Write, R/O - Read Only, R/WC - Read/ Write 1 to clear.
62
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
13.2.39 Configuration Register 1: Secondary Clock Control Register (bit 15-0; offset 68h)
B it
15-14
13-12
11-10
9-8
7-6
5-4
3-2
1-0
Function
Ty pe
D escription
C lock 7 D i sable
If ei ther bi t i s 0, S_C LKOUT[7] i s enabled
When both bi ts are 1, S_C LKOUT[7] i s di sabled
C lock 6 D i sable
If ei ther bi t i s 0, S_C LKOUT[6] i s enabled
When both bi ts are 1, S_C LKOUT[6] i s di sabled
C lock 5 D i sable
If ei ther bi t i s 0, S_C LKOUT[5] i s enabled
When both bi ts are 1, S_C LKOUT[5] i s di sabled
C lock 4 D i sable
If ei ther bi t i s 0, S_C LKOUT[4] i s enabled
When both bi ts are 1, S_C LKOUT[4] i s di sabled
R/W
C lock 3 D i sable
If ei ther bi t i s 0, S_C LKOUT[3] i s enabled
When both bi ts are 1, S_C LKOUT[3] i s di sabled
C lock 2 D i sable
If ei ther bi t i s 0, S_C LKOUT[2] i s enabled
When both bi ts are 1, S_C LKOUT[2] i s di sabled
C lock 1 D i sable
If ei ther bi t i s 0, S_C LKOUT[1] i s enabled
When both bi ts are 1, S_C LKOUT[1] i s di sabled
C lock 0 D i sable
If ei ther bi t i s 0, S_C LKOUT[0] i s enabled
When both bi ts are 1, S_C LKOUT[0] i s di sabled
13.2.40 Configuration Register 2: Secondary Clock Control Register (bit 15-0; offset 68h)
B it
15-14
13-12
11-10
9-8
7-6
5-4
3-2
1-0
Function
Ty pe
D escription
C lock 7 D i sable
If ei ther bi t i s 0, S_C LKOUT[15] i s enabled
When both bi ts are 1, S_C LKOUT[15] i s di sabled
C lock 6 D i sable
If ei ther bi t i s 0, S_C LKOUT[14] i s enabled
When both bi ts are 1, S_C LKOUT[14] i s di sabled
C lock 5 D i sable
If ei ther bi t i s 0, S_C LKOUT[13] i s enabled
When both bi ts are 1, S_C LKOUT[13] i s di sabled
C lock 4 D i sable
If ei ther bi t i s 0, S_C LKOUT[12] i s enabled
When both bi ts are 1, S_C LKOUT[12] i s di sabled
R/W
C lock 3 D i sable
If ei ther bi t i s 0, S_C LKOUT[11] i s enabled
When both bi ts are 1, S_C LKOUT[11] i s di sabled
C lock 2 D i sable
If ei ther bi t i s 0, S_C LKOUT[10] i s enabled
When both bi ts are 1, S_C LKOUT[10] i s di sabled
C lock 1 D i sable
If ei ther bi t i s 0, S_C LKOUT[9] i s enabled
When both bi ts are 1, S_C LKOUT[9] i s di sabled
C lock 0 D i sable
If ei ther bi t i s 0, S_C LKOUT[8] i s enabled
When both bi ts are 1, S_C LKOUT[8] i s di sabled
Note: R/W - Read/Write.
63
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
13.2.41 Config Register 1 or 2: Non-Posted Memory Base Register (read/write, bit 15-0; offset 70h)
This register defines the base address of the non-posted memory-mapped address range for forwarding the cycle through
the bridge. Upper twelve bits corresponding to address bits [31:20] are read/write. Lower 20 bits (19:0) are assumed to
be 00000h.
13.2.42 Config Register 1 or 2: Non-Posted Memory Limit Register (read/write, bit 31-16; offset 70h)
This register defines the upper limit address of the non-posted memory-mapped address range for forwarding the cycle
through the bridge. Upper twelve bits corresponding to address bits [31:20] are read/write. Lower 20 bits (19:0) are assumed
to be FFFFFh.
13.2.43 Configuration Register 1: Port Option Register (bit 15-0; offset74h)
B it
Function
Ty pe
D escription
R/O
R eset to '000'
R/W
Enable 1 more read for MEMR command on pri mary
1 = Enable
0 = N o ch an g e
R/O
R eset to '00'
R/W
Enable Long request for lock cycle
0 = N o ch an g e
1 = Enable
R/W
Reset Secondary D elayed Transacti on Queue
0 = N o ch an g e
1 = R eset
Reserved
R/O
Reset to '00'
5
ID Wri te Enable
R/W
Allow wri te to Vendor ID , D evi ce ID , Subsystem Vendor ID
and Subsystem ID i n the confi gurati on space.
0 = Write protect
1 = Wri te enable
R eset to 0
4
Secondary MEMW
C ommand Ali as Enable
R/W
C ontrols the bri dge's detecti on mechani sm for matchi ng non-posted
memory wri te retry cycle from i ni ti ator on secondary i nterface.
0 = C ommand has to be exact
1 = MEMW i s equi valent to MEMWI
R eset to 0
3
Secondary MEMR
C ommand Ali as Enable
R/W
C ontrols the bri dge's detecti on mechani sm for matchi ng memory read
retry cycle from i ni ti ator on secondary i nterface.
0=C ommand has to be exact
1=MEMR i s equi valent to MEMRL or MEMRM
R eset to 0
2
Pri mary MEMW
C ommand Ali as Enable
R/W
C ontrols the bri dge's detecti on mechani sm for matchi ng non-posted
memory wri te retry cycle from i ni ti ator on pri mary i nterface.
0 = C ommand has to be exact
1 = MEMW i s equi valent to MEMWI
R eset to 0
1
Pri mary MEMR
C ommand Ali as Enable
R/W
C ontrols the bri dge's detecti on mechani sm for matchi ng memory read
retry cycle from i ni ti ator on pri mary i nterface.
0 = C ommand has to be exact
1 = MEMR i s equi valent to MEMRL or MEMRM
R eset to 0
0
Secondary
Pre Read
R/W
Enable 1 more read for MEMR command on secondary.
0 = disable
1 = enable
R eset to 0
15-13
12
11-10
9
8
7-6
Reserved
Pri mary Pre Read
Reserved
Enable Long Request
Reset D TQUEUE
64
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
13.2.44 Configuration Register 2: Port Option Register (bit 15-0; offset74h)
B it
Function
Ty pe
D escription
15-13
Reserved
R/O
R eset to '000'
12
Reserved
R/W
R eset to 0
11-10
Reserved
R/O
R eset to '00'
9-8
Reserved
R/W
R eset to '00'
7-6
Reserved
R/O
R eset to '00'
5
ID Wri te Enable
R/W
Allow wri te to Vendor ID , D evi ce ID , Subsystem Vendor ID ,
and Subsystem ID i n the confi gurati on space.
0 = Write protect
1 = Wri te enable
R eset to 0
4
Secondary MEMW
C ommand
Ali as Enable
R/W
C ontrols the bri dge's detecti on mechani sm for matchi ng non-posted
memory wri te retry cycle from i ni ti ator on secondary i nterface.
0 = C ommand has to be exact
1 = MEMW i s equi valent to MEMWI
R eset to 0
3
Secondary MEMR
C ommand
Ali as Enable
R/W
C ontrols the bri dge's detecti on mechani sm for matchi ng memory
read retry cycle from i ni ti ator on secondary i nterface.
0=C ommand has to be exact
1=MEMR i s equi valent to MEMRL or MEMRM
R eset to 0
2
Reserved
R/W
R eset to 0
1
Reserved
R/W
R eset to 0
0
Secondary
Pre Read
R/W
Enable 1 more read for MEMR command on secondary.
0 = disable
1 = enable
R eset to 0
65
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
13.2.45 Config Register 1 or 2: Master Timeout Counter Register (read/write, bit 31-16; offset 74h)
This register holds the maximum number of PCI clocks that PI7C7100 will wait for initiator to retry the same cycle
before reporting timeout. Default is 8000h.
13.2.46 Config Register 1 or 2: Retry Counter Register (read/write, bit 31-0; offset 78h)
This register holds the maximum number of attempts that PI7C7100 will try before reporting retry timeout.
Default is 0100_0000h.
13.2.47 Config Register 1 or 2: Sampling Timer Register (read/write, bit 31-0; offset 7Ch)
This register set the duration (in PCI clocks) during which PI7C7100 will record the number of successful transactions
for performance evaluation. The recording will start right after this register is programmed and will be cleared after the
timer expires. The maximum period is 128 seconds. Reset to 0000_0000h.
13.2.48 Config Register 1 or 2: Successful I/O Read Count Register (read/write, bit 31-0; offset 80h)
This register stores the successful I/O read count on the secondary interface which will be updated when the sampling timer is active. Reset to 0000_0000h.
13.2.49 Config Register 1 or 2: Successful I/O Write Count Register (read/write, bit 31-0; offset 84h)
This register stores the successful I/O write count on the secondary interface which will be updated when the sampling timer is active. Reset to 0000_0000h.
13.2.50 Config Register 1 or 2: Successful Memory Read Count Register (read/write, bit 31-0; offset 88h)
This register stores the successful memory read count on the secondary interface which will be updated when the
sampling timer is active. Reset to 0000_0000h.
13.2.51 Config Register 1 or 2: Successful Memory Write Count Register (read/write, bit 31-0; offset 8Ch)
This register stores the successful memory write count on the secondary interface which will be updated when the
sampling timer is active. Reset to 0000_0000h.
13.2.52 Config Register 1: Primary Successful I/O Read Count Register
(read/write, bit 31-0; offset 90h)
This register stores the successful I/O read count on the primary interface which will be updated when the sampling
timer is active. Reset to 0000_0000h.
13.2.53 Config Register 1: Primary Successful I/O Write Count Register
(read/write, bit 31-0; offset 94h)
This register stores the successful I/O write count on the primary interface which will be updated when the sampling
timer is active. Reset to 0000_0000h.
13.2.54 Config Register 1: Primary Successful Memory Read Count Register
(read/write, bit 31-0; offset 98h)
This register stores the successful memory read count on the primary interface which will be updated when the
sampling timer is active. Reset to 0000_0000h.
13.2.55 Config Register 1: Primary Successful Memory Write Count Register
(read/write, bit 31-0; offset 9Ch)
This register stores the successful memory write count on the primary interface which will be updated when the
sampling timer is active. Reset to 0000_0000h.
66
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
14. Bridge Behavior
A PCI cycle is initiated by asserting the FRAME# signal. In a bridge, there are a number of possibilities.
Those possibilities are summarized in the table below:
14.1 Bridge Actions for Various Cycle Types
Initiator
Target
R esp o n se
Master on pri mary
Target on Pri mary
PI7C 7100 does not respond. It detects thi s si tuati on by decodi ng
the address as well as moni tori ng the P_D EVSEL# for other fast
and medi um devi ces on the pri mary port.
Master on pri mary
Target on secondary
PI7C 7100 asserts P_D EVSEL#, termi nates the cycle normally i f i t
i s able to be posted, otherwi se returns wi th a retry. It then passes
the cycle to the appropri ate port. When the cycle i s complete on the
target port, i t wi ll wai t for the i ni ti ator to repeat the same cycle and
end wi th normal termi nati on.
Master on pri mary
Target not on pri mary
nor secondary port
PI7C 7100 does not respond and the cycle wi ll termi nate as master
abort.
Master on secondary
Target on the same
secondary port
PI7C 7100 does not respond.
Master on secondary
Target on pri mary or
the other secondary port
PI7C 7100 asserts S1_D EVSEL# or S2_D EVSEL#, termi nates the
cycle normally i f i t i s able to be posted, otherwi se returns wi th a
retry. It then passes the cycle to the appropri ate port. When cycle i s
complete on the target port, i t wi ll wai t for the i ni ti ator to repeat the
same cycle and end wi th normal termi nati on.
Master on secondary
Target not on pri mary
nor the other secondary
PI7C 7100 does not respond.
A target then has up to three cycles to respond before subtractive decoding is initiated. If the target detects an address
hit, it should assert its DEVSEL# signal in the cycle corresponding to the values of bits 9 and 10 in the Configuration Status
Register.
Termination of a PCI cycle can occur in a number of ways. Normal termination begins by the initiator (master)
de-asserting FRAME# with IRDY# being asserted (or remaining asserted) on the same cycle. The cycle
completes when TRDY# and IRDY# are both asserted simultaneously. The target should de-assert TRDY# for
one cycle following final assertion (sustained 3-state signal).
14.2 Transaction Ordering
To maintain data coherency and consistency, PI7C7100 complies with the ordering rules put forth in the PCI Local Bus
Specification, Rev 2.1. The following table summarizes the ordering relationship of all the transactions through the bridge.
PMW - Posted write (either memory write or memory write & invalidate)
DRR - Delayed read request (all memory read, I/O read & configuration read)
DWR - Delayed write request (I/O write & configuration write)
DRC - Delayed read completion (all memory read, I/O read & configuration read)
DWC - Delayed write completion (I/O write & configuration write )
67
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Cycle type shown on each row is the subsequent cycle after the previous shown on the column.
C an R ow pass C olumn?
PMW
C olumn 1
DRR
C olumn 2
D WR
C olumn 3
DRC
C olumn 4
D WC
C olumn 5
PMW (Row 1)
No
Yes
Yes
Yes
Yes
D RR (Row 2)
No
No
No
Yes
Yes
D WR (Row 3)
No
No
No
Yes
Yes
D RC (Row 4)
No
Yes
Yes
No
No
D WC (Row 5)
Yes
Yes
Yes
No
No
In Row 1 Column 1, PMW cannot pass the previous PMW and that means they must complete on the target bus in the
order in which they were received in the initiator bus.
In Row 2 Column 1, DRR cannot pass the previous PMW and that means the previous PMW heading to the same direction
must be completed before the DRR can be attempted on the target bus.
In Row 1 Column 2, PMW can pass the previous DRR as long as the DRR reaches the head of the delayed transaction
queue.
14.3 Abnormal Termination (Initiated by Bridge Master)
14.3.1 Master Abort
Master abort indicates that when PI7C7100 acts as a master and receives no response (i.e., no target asserts
P_DEVSEL# or S1_DEVSEL# or S2_DEVSEL#) from a target, the bridge de-asserts FRAME# and then de-asserts
IRDY#.
14.3.2 Parity and Error Reporting
Parity must be checked for all addresses and write data. Parity is defined on the P_PAR, S1_PAR, and S2_PAR signals.
Parity should be even (i.e. an even number of ‘1’s) across AD, CBE, and PAR. Parity information on PAR is valid the cycle
after AD and CBE are valid. For reads, even parity must be generated using the initiators CBE signals combined with the
read data. Again, the PAR signal corresponds to read data from the previous data phase cycle.
14.3.3 Reporting Parity Errors
For all address phases, if a parity error is detected, the error should be reported on the P_SERR# signal by asserting
P_SERR# for one cycle and then 3-stating two cycles after the bad address. P_SERR# can only be asserted if bit 6 and
8 in the Command Register are both set to 1. For write data phases, a parity error should be reported by asserting the
P_PERR# signal two cycles after the data phase and should remain asserted for one cycle when bit 8 in the Command
register is set to a 1. The target reports any type of data parity errors during write cycles, while the master reports data
parity errors during read cycles.
Detection of an address parity error will cause the PCI-to-PCI Bridge target to not claim the bus (P_DEVSEL# remains
inactive) and the cycle will then terminate with a Master Abort. When the bridge is acting as master, a data parity error
during a read cycle results in the bridge master initiating a Master Abort.
14.3.4 Secondary IDSEL mapping
When PI7C7100 detects a Type 1 configuration transaction for a device connected to the secondary, it translates the Type
1 transaction to Type 0 transaction on the downstream interface. Type 1 configuration format uses a 5-bit field at
P_AD[15:11] as a device number. This is translated to S1_AD[31:16] or S2_AD[31:16] by PI7C7100.
68
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
15. IEEE 1149.1 Compatible JTAG Controller
An IEEE 1149.1 compatible Test Access Port (TAP) controller and associated TAP pins are provided to support boundary
scan in PI7C7100 for board-level continuity test and diagnostics. The TAP pins assigned are TCK, TDI, TDO, TMS and
TRST#. All digital input, output, input/output pins are tested except TAP pins and clock pin.
The IEEE 1149.1 Test Logic consists of a TAP controller, an instruction register, and a group of test data registers including
Bypass, Device Identification and Boundary Scan registers. The TAP controller is a synchronous 16 state machine driven
by the Test Clock (TCK) and the Test Mode Select (TMS) pins. An independent power on reset circuit is provided to ensure
the machine is in TEST_LOGIC_RESET state at power-up. The JTAG signal lines are not active when the PCI resource
is operating PCI bus cycles.
PI7C7100 implements 3 basic instructions: BYPASS, SAMPLE/PRELOAD, EXTEST.
15.1 Boundary Scan Architecture
Boundary-scan test logic consists of a boundary-scan register and support logic. These are accessed through a Test
Access Port (TAP). The TAP provides a simple serial interface that allows all processor signal pins to be driven and/or
sampled, thereby providing direct control and monitoring of processor pins at the system level.
This mode of operation is valuable for design debugging and fault diagnosis since it permits examination of connections
not normally accessible to the test system. The following subsections describe the boundary-scan test logic elements:
TAP pins, instruction register, test data registers and TAP controller. Figure 15-1 illustrates how these pieces fit together
to form the JTAG unit.
TAP Pins
PI7C7100 System Pins
TDI
Instruction
Register
Boundary-Scan Register
TDO
Bypass Register
TMS
TCK
TAP
Controller
Control and Clock Signals
TRST#
15.1.1 TAP Pins
Figure 15-1. Test Access Port Block Diagram
The PI7C7100’s TAP pins form a serial port composed of four input connections (TMS, TCK, TRST# and TDI) and one output
connection (TDO). These pins are described in Table 15-1. The TAP pins provide access to the instruction register and
the test data registers.
15.1.2 Instruction Register
The Instruction Register (IR) holds instruction codes. These codes are shifted in through the Test Data Input (TDI) pin. The
instruction codes are used to select the specific test operation to be performed and the test data register to be accessed.
The instruction register is a parallel-loadable, master/slave-configured 2-bit wide, serial-shift register with latched outputs.
Data is shifted into and out of the IR serially through the TDI pin clocked by the rising edge of TCK. The shifted-in instruction
becomes active upon latching from the master stage to the slave stage. At that time the IR outputs along with the TAP
finite state machine outputs are decoded to select and control the test data register selected by that instruction. Upon
latching, all actions caused by any previous instructions terminate.
69
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
The instruction determines the test to be performed, the test data register to be accessed, or both. The IR is two bits wide.
When the IR is selected, the most significant bit is connected to TDI, and the least significant bit is connected to TDO.
The value presented on the TDI pin is shifted into the IR on each rising edge of TCK. The TAP controller captures fixed
parallel data (01 binary ). When a new instruction is shifted in through TDI, the value 01 (binary) is always shifted out through
TDO, least significant bit first. This helps identify instructions in a long chain of serial data from several devices.
Upon activation of the TRST# reset pin, the latched instruction asynchronously changes to the idcode instruction. When
the TAP controller moves into the test state other than by reset activation, the opcode changes as TDI shifts, and becomes
active on the falling edge of TCK.
15.2 Boundary-Scan Instruction Set
The PI7C7100 supports three mandatory boundary-scan instructions (bypass, sample/preload and extest). The table
shown below lists the PI7C7100’s boundary-scan instruction codes. The “reserved” code should not be used.
Instruction C ode
(binary )
Instruction N ame
Instruction C ode
(binary )
Instruction N ame
00
extest
10
reserved
01
sample/preload
11
bypass
Table 15-1. TAP Pins
Instruction /
R equisite
Opcode
(binary )
D escription
extest
IEEE 1149.1
Requi red
00
Extest i ni ti ates testi ng of external ci rcui try, typi cally board-level i nterconnects and off
chi p ci rcui try. extest connects the boundary-scan regi ster between TD I and TD O.
When Extest i s selected, all output si gnal pi n values are dri ven by values shi fted i nto
the boundary-scan regi ster and may change only on the falli ng edge of TC K. Also,
when extest i s selected, all system i nput pi n states must be loaded i nto the
boundary-scan regi ster on the ri si ng-edge of TC K.
sample/
preload
IEEE 1149.1
Requi red
01
Sample/preload performs two functi ons:
A snapshot of the sample i nstructi on i s captured on the ri si ng edge of TC K wi thout
i nterferi ng wi th normal operati on. The i nstructi on causes boundary-scan regi ster
cells associ ated wi th outputs to sample the value bei ng dri ven.
• On the falli ng edge of TC K the data held i n the boundary-scan cells i s transferred
to the slave regi ster cells. Typi cally the slave latched data i s appli ed to the system
outputs vi a the extest i nstructi on.
i d co d e
IEEE 1149.1
Opti onal
10
Reserved
bypass
IEEE 1149.1
Requi red
11
Bypass i nstructi on selects the one-bi t bypass regi ster between TD I and TD O pi ns. 0
(bi nary) i s the only i nstructi on that accesses the bypass regi ster. Whi le thi s
i nstructi on i s i n effect, all other test data regi sters have no effect on system
operati on. Test data regi sters wi th both test and system functi onali ty perform thei r
system functi ons when thi s i nstructi on i s selected.
70
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
15.3 TAP Test Data Registers
The PI7C7100 contains two test data registers (bypass and boundary-scan). Each test data register selected by the TAP
controller is connected serially between TDI and TDO. TDI is connected to the test data register’s most significant bit.
TDO is connected to the least significant bit. Data is shifted one bit position within the register towards TDO on each rising
edge of TCK. While any register is selected, data is transferred from TDI to TDO without inversion. The following sections
describe each of the test data registers.
15.4 Bypass Register
The required bypass register, a one-bit shift register, provides the shortest path between TDI and TDO when a bypass
instruction is in effect. This allows rapid movement of test data to and from other components on the board. This path can
be selected when no test operation is being performed on the PI7C7100.
15.5 Boundary-Scan Register
The boundary-scan register contains a cell for each pin as well as control cells for I/O and the high-impedance pin.
Table 15-2 shows the bit order of the PI7C7100 boundary-scan register. All table cells that contain “Control” select the
direction of bidirectional pins or high-impedance output pins. When a “0” is loaded into the control cell, the associated
pin(s) are high-impedance or selected as input.
The boundary-scan register is a required set of serial-shiftable register cells, configured in master/slave stages and
connected between each of the PI7C7100’s pins and on-chip system logic. The VDD, GND, PLL, AGND, AVDD and JTAG
pins are NOT in the boundary-scan chain.
The boundary-scan register cells are dedicated logic and do not have any system function. Data may be loaded into the
boundary-scan register master cells from the device input pins and output pin-drivers in parallel by the mandatory sample/
preload and extest instructions. Parallel loading takes place on the rising edge of TCK.
Data may be scanned into the boundary-scan register serially via the TDI serial input pin, clocked by the rising edge of
TCK. When the required data has been loaded into the master-cell stages, it can be driven into the system logic at input
pins or onto the output pins on the falling edge of TCK state. Data may also be shifted out of the boundary-scan register
by means of the TDO serial output pin at the falling edge of TCK.
15.6 TAP Controller
The TAP (Test Access Port) controller is a 4-state synchronous finite state machine that controls the sequence of test
logic operations. The TAP can be controlled via a bus master. The bus master can be either automatic test equipment
or a component (i.e., PLD) that interfaces to the TAP. The TAP controller changes state only in response to a rising edge
of TCK. The value of the test mode state (TMS) input signal at a rising edge of TCK controls the sequence of state changes.
The TAP controller is initialized after power-up by applying a low to the TRST# pin. In addition, the TAP controller can be
initialized by applying a high signal level on the TMS input for a minimum of five TCK periods.
For greater detail on the behavior of the TAP controller, test logic in each controller state and the state machine and public
instructions, refer to the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture document (available
from the IEEE).
71
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Table 15-2. JTAG Boundary Register Order
Order
Pin Names
Type
Order
Pin Names
Type
Order
Pin Names
Type
1
S2_AD[20-31]
co ntro l e nab le
36
S2_AD[26]
inp ut
71
BYPASS
inp ut
2
S2_AD[21]
o utp ut
37
S2_AD[28]
o utp ut
72
FLUSH#
inp ut
3
S2_AD[21]
inp ut
38
S2_AD[28]
inp ut
73
P_RESET#
inp ut
4
S2_PERR#
co ntro l e nab le
39
S2_AD[27]
o utp ut
74
P_GNT#
inp ut
5
S2_PERR#
o utp ut
40
S2_AD[27]
inp ut
75
P_REQ#
co ntro l e nab le
6
S2_PERR#
inp ut
41
S2_AD[29]
o utp ut
76
P_REQ#
o utp ut
7
S2_AD[8-19]
co ntro l e nab le
42
S2_AD[29]
inp ut
77
P_AD[20-31]
co ntro l e nab le
8
S2_AD[16]
o utp ut
43
S2_AD[30]
o utp ut
78
P_AD[30]
o utp ut
9
S2_AD[16]
inp ut
44
S2_AD[30]
inp ut
79
P_AD[30]
inp ut
10
S2_FRAME#
co ntro l e nab le
45
S2_AD[31]
o utp ut
80
P_AD[31]
o utp ut
11
S2_FRAME#
o utp ut
46
S2_AD[31]
inp ut
81
P_AD[31]
inp ut
12
S2_FRAME#
inp ut
47
S2_GNT[0]#
co ntro l e nab le
82
P_AD[27]
o utp ut
13
S2_DEVSEL# /S2_TRDY#
co ntro l e nab le
48
S2_GNT[0]#
o utp ut
83
P_AD[27]
inp ut
14
S2_DEVSEL#
o utp ut
49
S2_REQ[0]#
inp ut
84
P_AD[26]
o utp ut
15
S2_DEVSEL#
inp ut
50
S2_REQ[1]#
inp ut
85
P_AD[26]
inp ut
16
S2_AD[19]
o utp ut
51
S2_GNT[1]#
o utp ut
86
P_AD[28]
o utp ut
17
S2_AD[19]
inp ut
52
S2_GNT[2]#
o utp ut
87
P_AD[28]
inp ut
18
S2_AD[17]
o utp ut
53
S2_REQ[2]#
inp ut
88
P_AD[29]
o utp ut
19
S2_AD[17]
inp ut
54
S2_REQ[3]#
inp ut
89
P_AD[29]
inp ut
20
S2_AD[18]
o utp ut
55
S2_GNT[3]#
o utp ut
90
P_CBE[0-3]
co ntro l e nab le
21
S2_AD[18]
inp ut
56
S2_GNT[4]#
o utp ut
91
P_CBE[3]
o utp ut
22
S2_AD[20]
o utp ut
57
S2_REQ[4]#
inp ut
92
P_CBE[3]
inp ut
23
S2_AD[20]
inp ut
58
S2_REQ[5]#
inp ut
93
P_AD[24]
o utp ut
24
S2_AD[22]
o utp ut
59
S2_GNT[5]#
o utp ut
94
P_AD[24]
inp ut
25
S2_AD[22]
inp ut
60
S2_GNT[6]#
o utp ut
95
P_AD[25]
o utp ut
26
S2_AD[24]
o utp ut
61
S2_REQ[6]#
inp ut
96
P_AD[25]
inp ut
27
S2_AD[24]
inp ut
62
S2_REQ[7]#
inp ut
97
P_AD[23]
o utp ut
28
S2_AD[23]
o utp ut
63
S2_GNT[7]#
o utp ut
98
P_AD[23]
inp ut
29
S2_AD[23]
inp ut
64
S2_RESET#
o utp ut
99
P_AD[22]
o utp ut
30
S2_CBE[0-3]
co ntro l e nab le
65
S_CFN#
inp ut
100
P_AD[22]
inp ut
31
S2_CBE[3]
o utp ut
66
S1_EN#
inp ut
101
P_IDSEL
inp ut
32
S2_CBE[3]
inp ut
67
S2_EN#
inp ut
102
P_AD[21]
o utp ut
33
S2_AD[25]
o utp ut
68
SCAN_TM#
inp ut
103
P_AD[21]
inp ut
34
S2_AD[25]
inp ut
69
SCAN_EN
inp ut
104
P_AD[20]
o utp ut
35
S2_AD[26]
o utp ut
70
PLL_TM
inp ut
105
P_AD[20]
inp ut
72
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
Table 15-2. JTAG Boundary Register Order
Order
Pin Names
Type
Order
Pin Names
Type
(continued)
Order
Pin Names
Type
106
P_AD[8-19]
co ntro l e nab le
141
P_AD[14]
o utp ut
176
P_AD[3]
o utp ut
107
P_AD[19]
o utp ut
142
P_AD[14]
inp ut
177
P_AD[3]
inp ut
108
P_AD[19]
inp ut
143
P_AD[11]
o utp ut
178
P_AD[4]
o utp ut
109
P_AD[18]
o utp ut
144
P_AD[11]
inp ut
179
P_AD[4]
inp ut
110
P_AD[18]
inp ut
145
P_AD[15]
o utp ut
180
S1_AD[0-7]
co ntro l e nab le
111
P_AD[17]
o utp ut
146
P_AD[15]
inp ut
181
S1_AD[0]
o utp ut
112
P_AD[17]
inp ut
147
P_AD[12]
o utp ut
182
S1_AD[0]
inp ut
113
P_AD[16]
o utp ut
148
P_AD[12]
inp ut
183
S1_AD[1]
o utp ut
114
P_AD[16]
inp ut
149
P_AD[8]
o utp ut
184
S1_AD[1]
inp ut
115
P_CBE[2]
o utp ut
150
P_AD[8]
inp ut
185
S1_AD[2]
o utp ut
116
P_CBE[2]
inp ut
151
P_CBE[1]
o utp ut
186
S1_AD[2]
inp ut
117
P_FRAME#
co ntro l e nab le
152
P_CBE[1]
inp ut
187
S1_AD[5]
o utp ut
118
P_FRAME#
o utp ut
153
P_AD[9]
o utp ut
188
S1_AD[5]
inp ut
119
P_FRAME#
inp ut
154
P_AD[9]
inp ut
189
S1_AD[3]
o utp ut
120
P_IRDY#
co ntro l e nab le
155
P_AD[0-7]
co ntro l e nab le
190
S1_AD[3]
inp ut
121
P_IRDY#
o utp ut
156
P_AD[5]
o utp ut
191
S1_AD[4]
o utp ut
122
P_IRDY#
inp ut
157
P_AD[5]
inp ut
192
S1_AD[4]
inp ut
123
P_DEVSEL/P_TRDY#
co ntro l e nab le
158
P_M66EN
inp ut
193
S1_CBE[0-3]
co ntro l e nab le
124
P_TRDY#
o utp ut
159
P_AD[6]
o utp ut
194
S1_CBE[0]
o utp ut
125
P_TRDY#
inp ut
160
P_AD[6]
inp ut
195
S1_CBE[0]
inp ut
126
P_DEVSEL#
o utp ut
161
P_AD[2]
o utp ut
196
S1_AD[7]
o utp ut
127
P_DEVSEL#
inp ut
162
P_AD[2]
inp ut
197
S1_AD[7]
inp ut
128
P_STOP#
co ntro l e nab le
163
P_PAR
co ntro l e nab le
198
S1_AD[6]
o utp ut
129
P_STOP#
o utp ut
164
P_PAR
o utp ut
199
S1_AD[6]
inp ut
130
P_STOP#
inp ut
165
P_PAR
inp ut
200
S1_AD[8-19]
co ntro l e nab le
131
P_PERR#
co ntro l e nab le
166
P_AD[0]
o utp ut
201
S1_AD[8]
o utp ut
132
P_PERR#
o utp ut
167
P_AD[0]
inp ut
202
S1_AD[8]
inp ut
133
P_PERR#
inp ut
168
P_CBE[0]
o utp ut
203
S1_AD[9]
o utp ut
134
P_LOCK#
co ntro l e nab le
169
P_CBE[0]
inp ut
204
S1_AD[9]
inp ut
135
P_LOCK#
o utp ut
170
P_AD[7]
o utp ut
205
S1_AD[10]
o utp ut
136
P_LOCK#
inp ut
171
P_AD[7]
inp ut
206
S1_AD[10]
inp ut
137
P_SERR#
co ntro l e nab le
172
P_AD[10]
o utp ut
207
S1_AD[11]
o utp ut
138
P_SERR#
o utp ut
173
P_AD[10]
inp ut
208
S1_AD[11]
inp ut
139
P_AD[13]
o utp ut
174
P_AD[1]
o utp ut
209
S1_AD[12]
o utp ut
140
P_AD[13]
inp ut
175
P_AD[1]
inp ut
210
S1_AD[12]
inp ut
73
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
Table 15-2. JTAG Boundary Register Order
Order
Pin Names
Type
Order
Pin Names
Type
(continued)
Order
Pin Names
Type
211
S1_AD[14]
o utp ut
246
S1_AD[16]#
inp ut
281
S1_GNT[0]#
o utp ut
212
S1_AD[14]
inp ut
247
S1_AD[20-31]
co ntro l e nab le
282
S1_REQ[0]#
inp ut
213
S1_AD[13]
o utp ut
248
S1_AD[20]
o utp ut
283
S1_REQ[1]#
inp ut
214
S1_AD[13]
inp ut
249
S1_AD[20]
inp ut
284
S1_GNT[1]#
o utp ut
215
S1_AD[15]
o utp ut
250
S1_CBE[2]
o utp ut
285
S1_GNT[2]#
o utp ut
216
S1_AD[15]
inp ut
251
S1_CBE[2]
inp ut
286
S1_REQ[2]#
inp ut
217
S1_SERR#
inp ut
252
S1_AD[19]
o utp ut
287
S1_REQ[3]#
inp ut
218
S1_PAR
co ntro l e nab le
253
S1_AD[19]
inp ut
288
S1_GNT[3]#
o utp ut
219
S1_PAR
o utp ut
254
S1_CBE[3]
o utp ut
289
S1_GNT[4]#
o utp ut
220
S1_PAR
inp ut
255
S1_CBE[3]
inp ut
290
S1_REQ[4]#
inp ut
221
S1_CBE[1]
o utp ut
256
S1_AD[23]
o utp ut
291
S1_REQ[5]#
inp ut
222
S1_CBE[1]
inp ut
257
S1_AD[23]
inp ut
292
S1_GNT[5]#
o utp ut
223
S1_DEVSEL# /S1_TRDY#
co ntro l e nab le
258
S1_AD[26]
o utp ut
293
S1_GNT[6]#
o utp ut
224
S1_DEVSEL#
o utp ut
259
S1_AD[26]
inp ut
294
S1_REQ[6]#
inp ut
225
S1_DEVSEL#
inp ut
260
S1_AD[22]
o utp ut
295
S1_REQ[7]#
inp ut
226
S1_STOP#
co ntro l e nab le
261
S1_AD[22]
inp ut
296
S1_GNT[7]#
o utp ut
227
S1_STOP#
o utp ut
262
S1_AD[25]
o utp ut
297
S1_RESET#
o utp ut
228
S1_STOP#
inp ut
263
S1_AD[25]
inp ut
298
S2_AD[0-7]
co ntro l e nab le
229
S1_LOCK#
co ntro l e nab le
264
S1_AD[29]
o utp ut
299
S2_AD[0]
o utp ut
230
S1_LOCK#
o utp ut
265
S1_AD[29]
inp ut
300
S2_AD[0]
inp ut
231
S1_LOCK#
inp ut
266
S1_AD[21]
o utp ut
301
S2_AD[1]
o utp ut
232
S1_PERR#
co ntro l e nab le
267
S1_AD[21]
inp ut
302
S2_AD[1]
inp ut
233
S1_PERR#
o utp ut
268
S1_AD[28]
o utp ut
303
S2_AD[2]
o utp ut
234
S1_PERR#
inp ut
269
S1_AD[28]
inp ut
304
S2_AD[2]
inp ut
235
S1_FRAME#
co ntro l e nab le
270
S1_AD[30]
o utp ut
305
S2_AD[3]
o utp ut
236
S1_FRAME#
o utp ut
271
S1_AD[30]
inp ut
306
S2_AD[3]
inp ut
237
S1_FRAME#
inp ut
272
S1_AD[31]
o utp ut
307
S2_AD[4]
o utp ut
238
S1_IRDY#
co ntro l e nab le
273
S1_AD[31]
inp ut
308
S2_AD[4]
inp ut
239
S1_IRDY#
o utp ut
274
S1_AD[27]
o utp ut
309
S2_AD[5]
o utp ut
240
S1_IRDY#
inp ut
275
S1_AD[27]
inp ut
310
S2_AD[5]
inp ut
241
S1_TRDY#
o utp ut
276
S1_AD[24]
o utp ut
311
S2_AD[6]
o utp ut
242
S1_TRDY#
inp ut
277
S1_AD[24]
inp ut
312
S2_AD[6]
inp ut
243
S1_AD[17]#
o utp ut
278
S1_AD[18]
o utp ut
313
S2_AD[7]
o utp ut
244
S1_AD[17]#
inp ut
279
S1_AD[18]
inp ut
314
S2_AD[7]
inp ut
245
S1_AD[16]#
o utp ut
280
S1_GNT[0]#
co ntro l e nab le
315
S2_CBE[0]
o utp ut
74
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
Table 15-2. JTAG Boundary Register Order
Order
Pin Names
Type
Order
Pin Names
Type
316
S2_CBE[0]
inp ut
335
S2_PAR
o utp ut
317
S2_AD[8]
o utp ut
336
S2_PAR
inp ut
318
S2_AD[8]
inp ut
337
S2_SERR#
inp ut
319
S2_AD[10]
o utp ut
338
S2_LOCK#
co ntro l e nab le
320
S2_AD[10]
inp ut
339
S2_LOCK#
o utp ut
321
S2_AD[9]
o utp ut
340
S2_LOCK#
inp ut
322
S2_AD[9]
inp ut
341
S2_TRDY#
o utp ut
323
S2_AD[11]
o utp ut
342
S2_TRDY#
inp ut
324
S2_AD[11]
inp ut
343
S2_STOP#
co ntro l e nab le
325
S_M66EN
inp ut
344
S2_STOP#
o utp ut
326
S2_AD[12]
o utp ut
345
S2_STOP#
inp ut
327
S2_AD[12]
inp ut
346
S2_IRDY#
co ntro l e nab le
328
S2_AD[14]
o utp ut
347
S2_IRDY#
o utp ut
329
S2_AD[14]
inp ut
348
S2_IRDY#
inp ut
330
S2_CBE[1]
o utp ut
349
S2_CBE[2]
o utp ut
331
S2_CBE[1]
inp ut
350
S2_CBE[2]
inp ut
332
S2_AD[15]
o utp ut
351
S2_AD[13]
o utp ut
333
S2_AD[15]
inp ut
352
S2_AD[13]
inp ut
334
S2_PAR
co ntro l e nab le
75
(continued)
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
16. Electrical and Timing Specifications
16.1 Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested).
Storage Temperature
–65°C to +150°C
Ambi ent Temperature wi th Power appli ed
0°C to +70°C
Supply Voltage to Ground Potenti als (Inputs & AVC C , VD D only)
–0.3V to +3.6V
D C Input Voltage
–0.5V to +3.6V
Note:
Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at these or any conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time
may affect reliability.
16.2 3.3V DC Specifications
Sy mbol
VDD, AVCC
Parameter
C ondition
Min.
Max.
3
3.6
Supply Voltage
V ih
Input HIGH Voltage
0.5 VDD
VDD + 0.5
V il
Input LOW Voltage
-0.5
0.3 V DD
V ih
C MOS Input HIGH Voltage
0.7 V DD
VDD + 0.5
V il
C MOS Input LOW Voltage
–0.5
0.3 VDD
Vipu
Input Pull-up Voltage
0 < Vin < VDD
Voh
Output HIGH Voltage
Iout = –500µA
Vol
Output LOW Voltage
Iout = 1500µA
Voh
C MOS Output HIGH Voltage
Iout = –500µA
Vol
C MOS Output LOW Voltage
Iout = 1500µA
C in
Input Pi n C apaci tance
C clk
C LK Pi n C apaci tance
C IDSEL
Lpin
V
N otes
3
1
0.7 VDD
Input Leakage C urrent
Iil
U nits
±10
µA
0.9 VDD
0.1 VDD
VDD-0.5
3
V
2
0.5
10
5
12
ID SEL Pi n C apaci tance
8
Pi n Inductance
20
pF
3
nH
Notes:
1. CMOS Input pins: S_CFN#, TCK, TMS, TDI, TRST#, SCAN_EN, SCAN_TM#
2. CMOS Output pin: TDO
3. PCI pins: P_AD[31:0], P_CBE[3:0], P_PAR, P_FRAME#, P_IRDY#, P_TRDY#, P_DEVSEL#, P_STOP#, P_LOCK#, PIDSEL#,
P_PERR#, P_SERR#, P_REQ#, P_GNT#, P_RESET#, S1_AD[31:0], S2_AD[31:0], S1_CBE[3:0], S2_CBE[3:0], S1_PAR,
S2_PAR, S1_FRAME#, S2_FRAME#, S1_IRDY#, S2_IRDY#, S1_TRDY#, S2_TRDY#, S1_DEVSEL#, S2_DEVSEL#,
S1_STOP#, S2_STOP#, S1_LOCK#, S2_LOCK#, S1_PERR#, S2_PERR#, S1_SERR#, S2_SERR#, S1_REQ[7:0]#,
S2_REQ[7:0]#, S1_GNT[7:0]#, S2_GNT[7:0], S1_RESET#, S2_RESET#, S1_EN, S2_EN, P_FLUSH#.
76
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port PCI Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
16.3 3.3V AC Specifications
(For P_AD[31:0], P_CBE[3:0], P_PAR, P_FRAME#, P_IRDY#, P_TRDY#, P_DEVSEL#, P_STOP#, P_LOCK#,
PIDSEL#, P_PERR#, P_SERR#, P_REQ#, P_GNT#, P_RESET#, S1_AD[31:0], S2_AD[31:0], S1_CBE[3:0], S2_CBE[3:0],
S1_PAR, S2_PAR, S1_FRAME#, S2_FRAME#, S1_IRDY#, S2_IRDY#, S1_TRDY#, S2_TRDY#, S1_DEVSEL#,
S2_DEVSEL#, S1_STOP#, S2_STOP#, S1_LOCK#, S2_LOCK#, S1_PERR#, S2_PERR#, S1_SERR#, S2_SERR#,
S1_REQ[7:0]#, S2_REQ[7:0]#, S1_GNT[7:0]#, S2_GNT[7:0]#, S1_RESET#, S2_RESET#, S1_EN, S2_EN, P_FLUSH#)
Sy mbol
Ioh(AC )
Parameter
C ondition
Swi tchi ng
0V < Vout < 0.3 VD D
C urrent HIGH
0.3 V D D <Vout < 0.9 VD D
Min.
Iol(AC )
V out = 0.7 VD D
Swi tchi ng
VD D > Vout > 0.6 VD D
C urrent LOW
0.6 V D D > Vout > 0.1 VD D
U nits
3
mA
0.5 VD D
mA
0.7 V D D < Vout < VD D
(Test Poi nt)
Max.
-0.5
Eqt'n C
0.7 VD D
–32 V D D
mA
-0.5
mA
0.7 VD D
mA
0.18 V D D > Vout >0V
N otes
Eqt'n D
(Test Poi nt)
Vout = 0.18 VD D
Icl
LOW C lamp C urrent
–3V < V i n < –1V
Ich
HIGH C lamp C urrent
VDD + 4 > Vin > VDD + 1
Slewr
Output Ri se Slew Rate
0.2 VD D to 0.6 VD D load
4
V/ns
Slewf
Output Fall Slew Rate
0.6 VD D to 0.2VD D load
4
V/ns
0.9 VD D
38 V D D
mA
mA
VD D -0.5
mA
Notes:
Equation C: Ioh = (98/VDD)*(Vout-VDD)*(Vout+0.4VDD) for VDD>Vout>0.7VDD
Equation D: Iol = (256/VDD)*Vout*(VDD-Vout) for 0V<Vout<0.18VDD
16.4 Primary and Secondary Buses at 33 MHz Clock Timing
Sy mbol
Parameter
C ondition
Min.
Max.
0
1.0
0
10
TSKEW
SKEW among S_C LKOUT[15:0]
TD ELAY
D ELAY between PC LK and S_C LKOUT[15:0]
TC YC LE
PC LK, S_C LKOUT[15:0] cycle ti me
30
THIGH
PC LK, S_C LKOUT[15:0] HIGH ti me
11
TLOW
PC LK, S_C LKOUT[15:0] LOW ti me
11
77
20pF load
U nits
N otes
ns
05/08/00
ADVANCE INFORMATION
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
SEATING PLANE
0.15 C
17. 256-Pin PBGA Package
27.00 ± 0.15
A
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
30
±2
°
PIN #1
CORNER
ø1.0
(3X)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
C
1.27
BSC
24.00 ± 0.1
27.00 ± 0.15
0.60 ± 0.1
4 x 45° CHAMFER
(4X)
1.44
8.00
B
0.56 ± 0.05
1.17 ± 0.1
256 x ø0.75 ± 0.15
0.30 S C A S B S
0.10 S C
2.33 Min. / 3.50Max.
BOTTOM
TOP
Figure 17-1. 256-Pin PBGA Package
17.1 Part Number Ordering Information
Part
Pin - Package
Temperature
PI7C 7100BNA
256 - PBGA
0°C to +70°C
78
05/08/00
PI7C7100
3-Port
PCI Bridge
Appendix A
Timing
Diagrams
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
A-2
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
Figure 1. Configuration Read Transaction
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_IDSEL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
17
18
19
20
21
22
Data
Byte Enables
Addr
A
Figure 2. Configuration Write Transaction
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_IDSEL
1
Addr
B
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Data
Byte Enables
Figure 3. Type 1 to Type 0 Configuration Read Transaction ( P --> S )
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_IDSEL
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
1
Addr
A
2
3
4
5
6
7
8
9
10
11
12
Byte Enables
13
14
15
16
Addr
A
Data
Byte Enables
13
14
17
18
19
20
21
22
17
18
19
20
21
22
Addr
Data
A Byte Enables
0
1
2
3
4
5
6
7
8
9
10
A-3
11
12
15
16
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
Figure 4. Type 1 to Type 0 Configuration Write Transaction ( P --> S )
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_IDSEL
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
1
2
3
4
5
6
7
8
9
10
11
12
Data
Byte Enables
Addr
B
13
14
15
16
Addr
B
Data
Byte Enables
13
14
17
18
19
20
21
22
17
18
19
20
21
22
21
22
23
Addr
Data
B Byte Enables
0
1
2
3
4
5
6
7
8
9
10
11
12
15
16
Figure 5. Upstream Type 1 to Special Cycle Transaction ( S --> P )
0
1
2
3
4
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Data
Addr
1 Byte Enables
B
Data
Byte Enables
5
6
Addr
0
1
2
3
4
7
8
Addr
Data
B Byte Enables
9
10
A-4
11
12
13
14
15
16
17
18
19
20
21
22
23
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
Figure 6. Downstream Type 1 to Special Cycle Transaction ( P --> S )
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
1
Addr
B
2
3
4
5
6
7
8
9
10
11
12
Data
Byte Enables
13
14
15
16
Addr
B
Data
Byte Enables
13
14
17
18
19
20
21
22
17
18
19
20
21
22
Addr
Data
1 Byte Enables
0
1
2
3
4
5
6
7
8
9
10
11
12
15
16
Figure 7. Downstream Type1 to Type1 Configuration Read Transaction ( P --> S )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
P_CLK
P_AD [31:0] Addr
P_CBE [3:0] B BytesEnables
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_IDSEL
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
Addr
B Byte Enables
Addr
B Byte Enables
Addr
B Byte Enables
Addr
B Byte Enables
Addr
B Byte Enables
Addr
Data
B Byte Enables
Addr
Data
B Byte Enables
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
A-5
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
Figure 8. Downstream Type1 to Type1 Configuration Write Transaction ( P --> S )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_IDSEL
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
Addr Data
B Byte Enables
Addr Data
B Byte Enables
Addr Data
B Byte Enables
Addr Data
B Byte Enables
Addr Data
B Byte Enables
Addr Data
B Byte Enables
Addr Data
B Byte Enables
Addr Data
B Byte Enables
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Figure 9. Upstream Delayed Burst Memory Read Transaction ( S --> P )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
Addr
6
Addr
6 Byte Enables
Data Data Data Data Data Data Data Data
Byte Enables
Addr
6 Byte Enables
Addr
6 Byte Enables
Addr
6
Data Data Data Data Data Data Data Data
Byte Enables
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
A-6
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
Figure 10. Downstream Delayed Burst Memory Read Transaction ( P --> S )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
Addr
6 Byte Enables
Addr
6 Byte Enables
Addr
Addr
6 Byte Enables
Addr
Data Data Data Data Data Data Data Data
Byte Enables
6
Data Data Data Data Data Data Data Data
Byte Enables
6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Figure 11. Downstream Delayed Memory Read Transaction (P/33MHz-->S/33MHz)
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
1
Addr
6
2
3
4
5
6
7
8
9
10
11
12
Byte Enables
13
14
15
16
Addr
6
Data
Byte Enables
13
14
17
18
19
20
21
22
17
18
19
20
21
22
Addr
Data
6 Byte Enables
0
1
2
3
4
5
6
7
8
9
10
A-7
11
12
15
16
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
Figure 12. Downstream Delayed Memory Read Transaction (S2/33MHz-->S1/33MHz)
0
1
2
3
4
S_CLKOUT[0]
S1_AD [31:0]
S1_CBE [3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
S_CLKOUT[0]
S2_AD[31:0]
S2_CBE[3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Addr
Data
6 Byte Enables
Data
Addr
6 Byte Enables
Addr
0
1
2
3
4
6
Byte Enables
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
22
Figure 13. Downstream Delayed Memory Read Transaction (S1/33MHz-->S2/33MHz)
0
1
2
3
4
S_CLKOUT[0]
S2_AD [31:0]
S2_CBE [3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
S_CLKOUT[0]
S1_AD[31:0]
S1_CBE[3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Addr
Data
6 Byte Enables
Data
Addr
6 Byte Enables
Addr
0
1
2
3
4
6
Byte Enables
5
6
7
8
9
10
A-8
11
12
13
14
15
16
17
18
19
20
21
22
23
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
Figure 14. Upstream Delayed Memory Read Transaction (S/33MHz-->P/33MHz)
0
1
2
3
4
5
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Addr
Data
6 Byte Enables
Addr
Data
6 Byte Enables
Addr
0
1
2
3
4
6
Byte Enables
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Figure 15. Downstream Posted Memory Write Transaction (P/33MHz-->S/33MHz)
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
12
13
14
15
16
17
18
19
20
21
22
Data
Addr
7 Byte Enables
Data
Addr
7 Byte Enables
0
1
2
3
4
5
6
7
8
9
10
A-9
11
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
Figure 16. Downstream Posted Memory Write Transaction (S2/33MHz-->S1/33MHz)
0
S_CLKOUT[0]
S1_AD [31:0]
S1_CBE [3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
S_CLKOUT[0]
S2_AD[31:0]
S2_CBE[3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
16
17
18
19
20
21
22
Addr
Data
7 Byte Enables
Addr
Data
7 Byte Enables
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Figure 17. Downstream Posted Memory Write Transaction (S1/33MHz-->S2/33MHz)
0
S_CLKOUT[0]
S2_AD [31:0]
S2_CBE [3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
S_CLKOUT[0]
S1_AD[31:0]
S1_CBE[3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
16
17
18
19
20
21
22
Addr
Data
7 Byte Enables
Addr
Data
7 Byte Enables
0
1
2
3
4
5
6
7
8
9
10
A-10
11
12
13
14
15
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
Figure 18. Upstream Posted Memory Write Transaction (S/33MHz-->P/33MHz)
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
18
19
20
21
22
Addr
Data
7 Byte Enables
Addr
Data
7 Byte Enables
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Figure 19. Downstream Flow-Through Posted Memory Write Transaction (P/33MHz-->S/33MHz)
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
1
2
3
4
6
7
8
9
1
2
3
11
12
13
14
15
16
17
18
19
20
21
22
4
5
6
7
8
21
22
Data Data Data Data Data Data Data Data Data
Byte Enables
Data
Addr
7
0
10
Data Data Data Data Data Data Data Data Data
Byte Enables
Data
Addr
7
5
9
10
A-11
11
12
13
14
15
16
17
18
19
20
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
Figure 20. Downstream Flow-Through Posted Memory Write Transaction (S2/33MHz-->S1/33MHz)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
S_CLKOUT[0]
S1_AD [31:0]
Addr
S1_CBE [3:0]
7
Data Data Data Data Data Data Data Data Data
Data
Byte Enables
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
S_CLKOUT[0]
S2_AD[31:0]
Addr
S2_CBE[3:0]
7
Data Data Data Data Data Data Data Data Data
Data
Byte Enables
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Figure 21. Downstream Flow-Through Posted Memory Write Transaction (S1/33MHz-->S2/33MHz)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
S_CLKOUT[0]
S2_AD [31:0]
Addr
S2_CBE [3:0]
7
Data Data Data Data Data Data Data Data Data
Data
Byte Enables
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
S_CLKOUT[0]
S1_AD[31:0]
Addr
S1_CBE[3:0]
7
Data Data Data Data Data Data Data Data Data
Data
Byte Enables
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
0
1
2
3
4
5
6
7
8
9
10
11
A-12
12
13
14
15
16
17
18
19
20
21
22
23
24
25
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
Figure 22. Upstream Flow-Through Posted Memory Write Transaction (S/33MHz-->P/33MHz)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
27
28
P_CLK
P_AD [31:0]
Addr
P_CBE [3:0]
7
Data Data Data Data Data Data Data Data Data
Data
Byte Enables
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
Addr
S_CBE[3:0]
7
Data Data Data Data Data Data Data Data Data
Data
Byte Enables
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
22
24
25
26
Figure 23. Downstream Delayed I/O Read Transaction ( P --> S )
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
1
Addr
2
2
3
4
5
6
7
8
9
10
11
12
Byte Enables
13
14
15
16
Addr
2
Data
Byte Enables
13
14
17
18
19
20
21
22
23
24
25
26
17
18
19
20
21
22
23
24
25
26
Addr
Data
2 Byte Enables
0
1
2
3
4
5
6
7
8
9
10
11
12
A-13
15
16
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
Figure 24. Downstream Delayed I/O Read Transaction (S2/33MHz-->S1/33MHz)
0
1
2
3
4
S_CLKOUT[0]
S1_AD [31:0]
S1_CBE [3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
S_CLKOUT[0]
S2_AD[31:0]
S2_CBE[3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Addr
Data
2 Byte Enables
Data
Addr
2 Byte Enables
Addr
0
1
2
3
4
2
Byte Enables
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
22
23
Figure 25. Downstream Delayed I/O Read Transaction (S1/33MHz-->S2/33MHz)
0
1
2
3
4
S_CLKOUT[0]
S2_AD [31:0]
S2_CBE [3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
S_CLKOUT[0]
S1_AD[31:0]
S1_CBE[3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Addr
Data
2 Byte Enables
Data
Addr
2 Byte Enables
Addr
0
1
2
3
4
2
Byte Enables
5
6
7
8
9
10
A-14
11
12
13
14
15
16
17
18
19
20
21
22
23
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
Figure 26. Upstream Delayed I/O Read Transaction (S/33MHz-->P/33MHz)
0
1
2
3
4
5
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Addr
Data
2 Byte Enables
Addr
Data
2 Byte Enables
Addr
0
1
2
3
4
2
Byte Enables
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Figure 27. Downstream Delayed I/O Write Transaction ( P --> S )
0
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
1
Addr
3
2
3
4
5
6
7
8
9
10
11
12
Data
Byte Enables
13
14
15
16
Addr
3
Data
Byte Enables
13
14
17
18
19
20
21
22
17
18
19
20
21
22
Addr
Data
3 Byte Enables
0
1
2
3
4
5
6
7
8
9
10
A-15
11
12
15
16
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
Figure 28. Downstream Delayed I/O Write Transaction (S2/33MHz-->S1/33MHz)
0
1
2
3
4
S_CLKOUT[0]
S1_AD [31:0]
S1_CBE [3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
S_CLKOUT[0]
S2_AD[31:0]
S2_CBE[3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Data
Addr
3 Byte Enables
3
Data
Byte Enables
5
6
Addr
0
1
2
3
4
7
8
Addr
Data
3 Byte Enables
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
22
23
Figure 29. Downstream Delayed I/O Write Transaction (S1/33MHz-->S2/33MHz)
0
1
2
3
4
S_CLKOUT[0]
S2_AD [31:0]
S2_CBE [3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_STOP_L
S2_DEVSEL_L
S2_GNT_L
S2_REQ_L
S_CLKOUT[0]
S1_AD[31:0]
S1_CBE[3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_STOP_L
S1_DEVSEL_L
S1_GNT_L
S1_REQ_L
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Data
Addr
3 Byte Enables
3
Data
Byte Enables
5
6
Addr
0
1
2
3
4
7
8
Addr
Data
Byte
Enables
3
9
10
A-16
11
12
13
14
15
16
17
18
19
20
21
22
23
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123
Figure 30. Upstream Delayed I/O Write Transaction ( S --> P )
0
1
2
3
4
P_CLK
P_AD [31:0]
P_CBE [3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_STOP_L
P_DEVSEL_L
P_GNT_L
P_REQ_L
S_CLKOUT[0]
S_AD[31:0]
S_CBE[3:0]
S_FRAME_L
S_IRDY_L
S_TRDY_L
S_STOP_L
S_DEVSEL_L
S_GNT_L
S_REQ_L
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Data
Addr
3 Byte Enables
3
Data
Byte Enables
5
6
Addr
0
1
2
3
4
7
8
Addr
Data
3 Byte Enables
9
10
A-17
11
12
13
14
15
16
17
18
19
20
21
22
23
04/18/00
ADVANCE INFORMATION
Appendix A
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234
A-18
04/18/00
PI7C7100
3-Port
PCI Bridge
Appendix B
Evaluation
Board
User’s Manual
ADVANCE INFORMATION
Appendix B
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
B-2
04/18/00
ADVANCE INFORMATION
Appendix B
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
PI7C7100 Evaluation Board User’s Manual
General Information
1. Please make sure you have included with your PI7C7100 evaluation board, the five-page schematic and the
preliminary specification for the PI7C7100.
2. Check all jumpers for proper settings:
Pin N ame
Jumper
Function
Position
S_C FN#
JP 4
Internal arbi ter enable
1-2 ( 0 )
S 1_E N
JP 5
S1 bus enable
2-3 ( 1 )
S 2_E N
JP 6
S2 bus enable
2-3 ( 1 )
SC AN_EN
JP 7
SC AN control
1-2 ( 0 )
SC AN_EN
JP 7
SC LK_IN as clock i nput
2-3 ( 1 )
PLL_TM
JP 8
PLL test mode di sable
1-2 ( 0 )
BYPASS
JP 9
PLL enable
1-2 ( 0 )
P_FLUSH#
JP 1 0
Pri mary FIFO flush di sable
2-3 ( 1 )
3. Check and make sure there are no shorts between power (3.3V, 5V, 12V, and –12V) and ground.
4. Plug evaluation board in any PCI slot on your system. Make sure your system is powered off before doing so.
5. Connect any PCI devices on the secondary slots of the evaluation board. Be careful that the orientation of the
card is correct (see Diagram A).
PCI Add-In Card
Pericom
Semiconductor
Three-Port
PCI Bridge
Board
Diagram A
B-3
04/18/00
ADVANCE INFORMATION
Appendix B
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
General Information (continued)
6. Turn on the power for the system. Your OS should already have drivers for the PI7C7100 evaluation board.
In Win9X, Plug and Play should detect the device as a PCI-to-PCI bridge. The system may prompt you for the
Win9X CD for the drivers. The OS will detect two PCI-to-PCI bridges as the PI7C7100 has two secondary PCI
buses. In Win NT, you should not have to install drivers.
7. Install drivers for any PCI devices you have attached to the evaluation board.
8. If any of the steps are unclear or were unsuccessful, please contact your Pericom support person
at 408-435-0800.
9. Thank you for evaluating Pericom Semiconductor Corporation’s products.
B-4
04/18/00
ADVANCE INFORMATION
Appendix B
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
Frequently Asked Questions
1. What is the function of SCAN_EN?
SCAN_EN is for a full scan test or S_CLKIN select. During SCAN mode, SCAN_EN will be driven to logic “0”
or “logic “1” depending on functionality. During normal mode, if SCAN_EN is connected to logic “0” (JP7 in
the 1-2 position), S_CLKIN will be used for PLL test only when PL_TM is active. If SCAN_EN is connected to
logic “1” (JP7 in the 2-3 position), S_CLKIN will be the clock input for the secondary buses. All secondary
clock outputs, S_CLKOUT [15:0], are still derived from P_CLK with 0-10ns delay. The S_CLKOUT [15:0]
should be disabled by programming the bits [15:0] in both configuration registers 1 and 2 at offset 68h.
2. What is the function of SCAN_TM#?
SCAN_TM# is for full scan test and power on reset for the PLL. SCAN_TM# should be connected to logic “1” or
to an RC path (R1 and C13) during normal operation.
3. How do you use the external arbiter?
a) Disable the on chip arbiter by connecting S_CFN to logic “1” (JP4 in the 2-3 position).
b) Use S1_REQ0# as GRANT and S1_GNT0# as REQUEST on the S1 bus.
c) Use S2_REQ0# as GRANT and S2_GNT0# as REQUEST on the S2 bus.
4. What is the purpose of having JP1, JP2, and JP3?
JP1, JP2, and JP3 are designed for easy access to the primary bus signals. You may connect any of these pins
to an oscilloscope or a logic analyzer for observation. No connection is required for normal operation. The
following table indicates which bus signals correspond to which pins.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
JP 2
REQ
A D 29
A D 26
C BE3
A D 21
A D 18
C BE2
IRD Y
LOC K
PAR
A D 14
AD 11
C BE0
AD6
AD 5
AD 0
JP 3
A D 31
A D 28
A D 25
A D 23
A D 20
A D 17
FRAME
D VSEL
PERR
C BE1
A D 13
A D 10
AD 8
AD 4
AD 2
GND
JP 1
GNT
A D 30
A D 27
A D 24
A D 22
A D 19
A D 16
IRD Y
STOP
SERR
A D 15
A D 12
AD 9
AD 7
AD 3
AD 1
5. What is the purpose for having U17, U19, and U20?
U17, U19, and U20 are designed for easy access to the digital ground planes for observation.
6. How is the evaluation board constructed?
The evaluation board is a six-layer PCB. The top and bottom layers (1 and 6) are for signals, power, and ground
routing. Layer 2 and layer 5 are ground planes. Layer 3 is a digital 3.3V power plane. Layer 4 is a digital 5V
power plane with an island of analog 3.3V power.
7. What is the function of S_CLKIN?
The S_CLKIN pin is a test pin for the on chip PLL when PLL_TM is set to logic “1”. During normal operation, if
PLL_TM is set to logic “0”, SCAN_TM# is set to logic “1”, and SCAN_EN is set to logic “1”, then S_CLKIN will
be the clock input for both the secondary buses. However, the S_CLKOUT [15:0] are still derived by programming bits [15:0] in both configuration registers 1 and 2 at offset 68h.
8. What clock frequency combinations does the PI7C7100 support?
Primary Bus
Secondary (1 and 2) Buses
33MHz
33MHz
9. How are the JTAG signals being connected?
The JTAG signals consist of TRST#, TCK, TMS, TDI, and TDO. All the mentioned signals have weak internal
pull-up connections. Therefore, no connection is needed if you want the JTAG circuit to be disabled. If you want
to activate the JTAG circuit, you need to connect all five signals according to the JTAG specification (IEEE
1149).
B-5
04/18/00
ADVANCE INFORMATION
Appendix B
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
B-6
04/18/00
PI7C7100
3-Port
PCI Bridge
Appendix C
Schematics
ADVANCE INFORMATION
Appendix C
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
C-2
04/18/00
C-3
1
2
3
4
3
2
1
C16
0.1uF
C43
0.001uF
C24
0.01uF
+
+5V
C7
10uF
C44
0.01uF
R16
5.1k
R15
5.1K
F3A
A
C26
0.01uF
150
R18
226
R25
C45
0.1uF
C25
0.01uF
+3.3V
+3.3V
0
R17
2
JP10
Table1
JP9
ByPass_L
P_Flush_L
1
JP7
SCAN_EN
HEADER 3
JP10
JP6
S2_EN
JP8
JP5
S1_EN
PLL_TM
JP4
1
3
C27
0.01uF
JP Select
S_CFNn
Name
t1
A
3
2
1
VO
C28
0.01uF
121
R5
LT1117
GNDTAB
VI
U0
C46
0.01uF
AVCC
C55
0.001uF
HEADER 3
JP9
4
2
C20
0.001uF
C354
100uF
C48
0.001uF
C57
0.1uF
3
2
1
C21
0.001uF
C360
0.01uF
C17
0.1uF
C9
10uF
C361
0.001uF
+
C50
0.01uF
C22
0.01uF
+3.3V
C38
0.001uF
+3.3V
C49
0.001uF
C19
0.001uF
HEADER 3
JP8
AVCC
2-3
1-2
1-2
1-2
2-3
2-3
1-2
Position
+3.3V
R14
5.1K
R13
5.1k
+3.3V
C29
0.01uF
C47
0.1uF
C56
0.01uF
+3.3V
S2_Enable
SCAN
Disable
PLL_TM
Disable
PLL
Enable
P_Flush
Disable
S1_Enable
Function
Internal
Arbiter
1
C362
0.1uF
C10
10uF
+
F3A
B
C8
10uF
2
C40
0.01uF
AVCC
+3.3V
C11
0.01uF
C32
0.1uF
C364
0.001uF
C33
0.1uF
C365
0.1uF
C12
0.1uF
C41
0.1uF
+3.3V
C13
0.1uF
R1
3.3k
HEADER 3
3
2
1
+3.3V
JP7
AVCC
C31
0.001uF
C363
0.01uF
C30
0.001uF
C51
0.1uF
C23
0.1uF
C39
0.001uF
+
+3.3V
R12
5.1K
R10
5.1k
B
3
2
1
C34
0.1uF
C366
0.01uF
C35
0.1uF
C59
0.1uF
+3.3V
3
2
1
R7
5.1k
+3.3V
C
C372
0.001uF
C60
0.001uF
P_AD[31:0]
C373
0.01uF
P_RESETN
P_GNTN
P_IDSEL
P_REQN
P_FRAMEN
P_IRDYN
P_TRDYN
P_DEVSELN
P_STOPN
P_LOCKN
P_PERRN
P_SERRN
P_PAR
P_M66EN
PLL_SCLK
S_M66EN
PLL_CAP1
PLL_CAP2
ByPass
TRST_L
TCK
TMS
TDO
TDI
P_CBE[3:0]
R8
5.1K
R4
5.1k
PLL_PCLK
HEADER 3
JP4
R3
5.1K
C37
0.1uF
C368
0.1uF
C371
0.1uF
C36
0.1uF
C367
0.001uF
C370
0.01uF
3
2
1
HEADER 3
JP5
C58
0.01uF
R6
5.1k
R2
5.1K
+3.3V
C42
0.001uF
C353
0.001uF
R11
5.1K
R9
5.1k
HEADER 3
JP6
+3.3V
C
+
AVCC
C374
10uF
+3.3V
P_AD[31:0]
P_LOCKN
P_PERRN
P_SERRN
S_M66EN
P_M66EN
P_AD0
P_AD1
P_AD2
P_AD3
P_AD4
P_AD5
P_AD6
P_AD7
P_AD8
P_AD9
P_AD10
P_AD11
P_AD12
P_AD13
P_AD14
P_AD15
P_AD16
P_AD17
P_AD18
P_AD19
P_AD20
P_AD21
P_AD22
P_AD23
P_AD24
P_AD25
P_AD26
P_AD27
P_AD28
P_AD29
P_AD30
P_AD31
P_CBE0
P_CBE1
P_CBE2
P_CBE3
Y6
U9
W11
Y13
U14
V17
U17
T18
P18
M18
K19
H17
G17
D18
A20
A17
A15
D12
A10
A8
A5
A3
C2
E3
G2
J2
K4
N1
R2
U2
Y1
U4
E2
J3
N2
V1
V7
U10
V15
W20
P19
L17
F18
D15
C14
D11
B8
D5
W5
Y5
U7
Y10
W6
W13
V13
U13
Y14
W14
V14
Y15
W15
U15
V4
U5
Y3
U6
R4
Y4
V18
V5
D7
V6
W3
W4
U3
V2
W1
V3
W2
Y2
R17
T17
Y20
V20
U20
Y19
W19
U19
Y18
W18
U18
Y17
W17
Y16
W16
V16
V12
W12
Y12
U11
V11
Y11
V10
W10
W9
Y9
U8
V8
W8
Y8
W7
Y7
V19
U16
U12
V9
PI7C7100
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
DGND
AVCC
AGND
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
+D3.3V
P_FLUSH_L
P_RESET_L
P_GNT
P_IDSEL
P_REQ
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_DEVSEL_L
P_STOP_ L
P_LOCK_L
P_PERR_L
P_SERR_L
P_PAR
SCAN_TM_L
SCAN_EN_H
PLL_TM_H
CMPO1
RESERVED
ByPass
P_M66EN
PLL_SCLK
S_M66EN
PLL_PCLK
S1_EN
S2_EN
TRST_L
JTAG_TCK
JTAG_TMS
JTAG_TD0
JTAG_TDI
S_CFN_L
P_AD[0]
P_AD[1]
P_AD[2]
P_AD[3]
P_AD[4]
P_AD[5]
P_AD[6]
P_AD[7]
P_AD[8]
P_AD[9]
P_AD[10]
P_AD[11]
P_AD[12]
P_AD[13]
P_AD[14]
P_AD[15]
P_AD[16]
P_AD[17]
P_AD[18]
P_AD[19]
P_AD[20]
P_AD[21]
P_AD[22]
P_AD[23]
P_AD[24]
P_AD[25]
P_AD[26]
P_AD[27]
P_AD[28]
P_AD[29]
P_AD[30]
P_AD[31]
P_CBE[0]
P_CBE[1]
P_CBE[2]
P_CBE[3]
U1
S1_AD[0]
S1_AD[1]
S1_AD[2]
S1_AD[3]
S1_AD[4]
S1_AD[5]
S1_AD[6]
S1_AD[7]
S1_AD[8]
S1_AD[9]
S1_AD[10]
S1_AD[11]
S1_AD[12]
S1_AD[13]
S1_AD[14]
S1_AD[15]
S1_AD[16]
S1_AD[17]
S1_AD[18]
S1_AD[19]
S1_AD[20]
S1_AD[21]
S1_AD[22]
S1_AD[23]
S1_AD[24]
S1_AD[25]
S1_AD[26]
S1_AD[27]
S1_AD[28]
S1_AD[29]
S1_AD[30]
S1_AD[31]
S1_CBE[0]
S1_CBE[1]
S1_CBE[2]
S1_CBE[3]
D
SCLKOUT[15]
SCLKOUT[14]
SCLKOUT[13]
SCLKOUT[12]
SCLKOUT[11]
SCLKOUT[10]
SCLKOUT[9]
SCLKOUT[8]
SCLKOUT[7]
SCLKOUT[6]
SCLKOUT[5]
SCLKOUT[4]
SCLKOUT[3]
SCLKOUT[2]
SCLKOUT[1]
SCLKOUT[0]
S2_DEVSEL_L
S2_FRAME_L
S2_GNTN[0]
S2_GNTN[1]
S2_GNTN[2]
S2_GNTN[3]
S2_GNTN[4]
S2_GNTN[5]
S2_GNTN[6]
S2_GNTN[7]
S2_IRDY_L
S2_LOCK_L
S2_PAR_L
S2_PERR_L
S2_REQ[0]
S2_REQ[1]
S2_REQ[2]
S2_REQ[3]
S2_REQ[4]
S2_REQ[5]
S2_REQ[6]
S2_REQ[7]
S2_RESET_L
S2_SERR_L
S2_STOP_L
S2_TRDY_L
S1_DEVSEL_L
S1_FRAME_L
S1_GNTN[0]
S1_GNTN[1]
S1_GNTN[2]
S1_GNTN[3]
S1_GNTN[4]
S1_GNTN[5]
S1_GNTN[6]
S1_GNTN[7]
S1_IRDY_L
S1_LOCK_L
S1_PAR_L
S1_PERR_L
S1_REQ[0]
S1_REQ[1]
S1_REQ[2]
S1_REQ[3]
S1_REQ[4]
S1_REQ[5]
S1_REQ[6]
S1_REQ[7]
S1_RESET_L
S1_SERR_L
S1_STOP_L
S1_TRDY_L
S2_AD[0]
S2_AD[1]
S2_AD[2]
S2_AD[3]
S2_AD[4]
S2_AD[5]
S2_AD[6]
S2_AD[7]
S2_AD[8]
S2_AD[9]
S2_AD[10]
S2_AD[11]
S2_AD[12]
S2_AD[13]
S2_AD[14]
S2_AD[15]
S2_AD[16]
S2_AD[17]
S2_AD[18]
S2_AD[19]
S2_AD[20]
S2_AD[21]
S2_AD[22]
S2_AD[23]
S2_AD[24]
S2_AD[25]
S2_AD[26]
S2_AD[27]
S2_AD[28]
S2_AD[29]
S2_AD[30]
S2_AD[31]
S2_CBE[0]
S2_CBE[1]
S2_CBE[2]
S2_CBE[3]
D
T3
T1
P3
N3
M4
L3
L2
J1
A11
C12
A13
B14
B15
C16
A18
A19
D3
D2
K2
L1
L4
M3
N4
R1
P4
U1
B2
B3
B4
D4
K3
K1
M1
M2
P1
P2
R3
T2
T4
C4
C3
A2
J20
H20
B18
D16
B16
D14
A14
B13
B12
C11
H19
J18
K18
J17
B17
C17
A16
C15
C13
D13
A12
B11
B10
K20
J19
H18
C10
D10
A9
B9
C9
D9
C8
D8
B7
C7
A6
B6
C6
D6
B5
C5
B1
C1
D1
E4
E1
F4
F3
F2
G4
G3
G1
H4
H3
H2
H1
J4
A7
A4
A1
F1
T19
T20
R18
R19
R20
P17
N17
N18
N19
N20
M17
M19
M20
L18
L19
L20
G19
G20
F17
F19
F20
E17
E18
E19
D17
D19
D20
C18
C19
C20
B19
B20
P20
K17
G18
E20
SCLKOUT15
SCLKOUT14
SCLKOUT13
SCLKOUT12
SCLKOUT11
SCLKOUT10
SCLKOUT9
SCLKOUT8
SCLKOUT7
SCLKOUT6
SCLKOUT5
SCLKOUT4
SCLKOUT3
SCLKOUT2
SCLKOUT1
SCLKOUT0
S2_REQN0
S2_REQN1
S2_REQN2
S2_REQN3
S2_REQN4
S2_REQN5
S2_REQN6
S2_REQN7
S2_GNTN0
S2_GNTN1
S2_GNTN2
S2_GNTN3
S2_GNTN4
S2_GNTN5
S2_GNTN6
S2_GNTN7
S2_AD0
S2_AD1
S2_AD2
S2_AD3
S2_AD4
S2_AD5
S2_AD6
S2_AD7
S2_AD8
S2_AD9
S2_AD10
S2_AD11
S2_AD12
S2_AD13
S2_AD14
S2_AD15
S2_AD16
S2_AD17
S2_AD18
S2_AD19
S2_AD20
S2_AD21
S2_AD22
S2_AD23
S2_AD24
S2_AD25
S2_AD26
S2_AD27
S2_AD28
S2_AD29
S2_AD30
S2_AD31
S2_CBE0
S2_CBE1
S2_CBE2
S2_CBE3
S1_REQN0
S1_REQN1
S1_REQN2
S1_REQN3
S1_REQN4
S1_REQN5
S1_REQN6
S1_REQN7
S1_DEVSELN
S1_FRAMEN
S1_GNTN0
S1_GNTN1
S1_GNTN2
S1_GNTN3
S1_GNTN4
S1_GNTN5
S1_GNTN6
S1_GNTN7
S1_IRDYN
S1_LOCKN
S1_PAR
S1_AD0
S1_AD1
S1_AD2
S1_AD3
S1_AD4
S1_AD5
S1_AD6
S1_AD7
S1_AD8
S1_AD9
S1_AD10
S1_AD11
S1_AD12
S1_AD13
S1_AD14
S1_AD15
S1_AD16
S1_AD17
S1_AD18
S1_AD19
S1_AD20
S1_AD21
S1_AD22
S1_AD23
S1_AD24
S1_AD25
S1_AD26
S1_AD27
S1_AD28
S1_AD29
S1_AD30
S1_AD31
S1_CBE0
S1_CBE1
S1_CBE2
S1_CBE3
S2_RESETN
S2_SERRN
S2_STOPN
S2_TRDYN
S2_IRDYN
S2_LOCKN
S2_PAR
S2_PERRN
S2_DEVSELN
S2_FRAMEN
S1_RESETN
S1_SERRN
S1_STOPN
S1_TRDYN
S1_IRDYN
S1_LOCKN
S1_PAR
S1_PERRN
S1_DEVSELN
S1_FRAMEN
S1_AD[31:0]
Date:
Size
C
Title
S2_AD[31:0]
E
Friday, March 17, 2000
PCI Chip
Document Number PI7C7100
E
Sheet
1
of
5
Rev
1.3
2380 Bering Dr., San Jose, CA
Three Port PCI Bridge Evaluation Board
SCLKOUT[15:0]
S2_REQN[7:0]
S2_GNTN[7:0]
S2_CBE[3:0]
S2_AD[31:0]
S1_REQN[7:0]
S1_GNTN[7:0]
S1_CBE[3:0]
S1_AD[31:0]
1
2
3
4
ADVANCE INFORMATION
Appendix C
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
04/18/00
C-4
1
2
3
A
1header
U38 1
T
C121
0.001uF
TDO
C2
0.01uF
R29 0
C106
0.1uF
TCK
1header
U43
+
+3.3V
C97
10uF
B
C119
0.001uF
+
C108
0.01uF
C101
10uF
+
+5V
C5
0.1uF
C102
10uF
+12V
-12V
C103
0.01uF
PCIEDGE
-12V
TCK
GND
TDO
+5V
+5V
INTB#
INTD#
PRSNT1#
NC
PRSNT2#
NC
NC
NC
GND
CLK
GND
REQ#
+5VIO1
AD31
AD29
GND
AD27
AD25
+3.3V
C/BE3#
AD23
GND
AD21
AD19
+3.3V
AD17
C/BE2#
GND
IRDY#
+3.3V
DEVSEL#
GND
LOCK#
PERR#
+3.3V
SERR#
+3.3V
C/BE1#
AD14
GND
AD12
AD10
M66EN
NC
NC
AD08
AD07
+3.3V
AD05
AD03
GND
AD01
+5VIO2
ACK64#
+5V
+5V
U5
C104
0.01uF
TRST#
+12V
TMS
TDI
+5V
INTA#
INTC#
+5V
NC
+5VIO1
NC
NC
NC
NC
RST#
+5VIO1
GNT#
GND
NC
AD30
+3.3V
AD28
AD26
GND
AD24
IDSEL
+3.3V
AD22
AD20
GND
AD18
AD16
+3.3V
FRAME#
GND
TRDY#
GND
STOP#
+3.3V
SDONE
SBO#
GND
PAR
AD15
+3.3V
AD13
AD11
GND
AD09
NC
NC
C/BE0#
+3.3V
AD06
AD04
GND
AD02
AD00
+5VIO2
REQ64#
+5V
+5V
1header
U44
T
C
C105
0.01uF
C3
0.1uF
+
C
C113
0.1uF
+5V
C120
0.001uF
+3.3V
C114
0.1uF
C109
10uF
R26 0
A1
A2
A3
A4
A5
A6
INTA
INTA_L
A7
INTC
INTC_L
A8
A9
A10
A11
A12
A13
A14
A15
P_RESET_L
A16
A17
P_GNT_L
GNT_L
A18
A19
A20
AD30
A21
AD28
A22
A23
AD26
A24
A25
AD24
A26
P_IDSEL_L
IDSEL_L
A27
A28
AD22
A29
AD20
A30
A31
AD18
A32
AD16
A33
A34 P_FRAME_L
FRAME_L
A35
A36 P_TRDY_L
TRDY_L
A37
A38
P_STOP_ L
STOP_ L
A39
A40
A41
A42
A43
P_PAR
PAR
A44
AD15
A45
AD13
A46
A47
AD11
A48
A49
AD9
A50
A51
A52
C/BE0
A53
A54
AD6
A55
AD4
A56
A57
AD2
A58
AD0
A59
A60
A61
A62
1
B
C115
0.01uF
C107
0.01uF
C1
0.1uF
R32 5.1k
R31 5.1k
TRST_L
1header
U42
T
1header
U40
1
T
1
B1
R27 0
B2
B3
B4
B5
B6
B7
INTB
INTB_L
B8
INTD
INTD_L
U41
B9
B10
1header
B11
B12
B13
B14
B15
B16
P_CLK
CLK
B17
B18
P_REQ_L
REQ_L
B19
AD31
B20
AD29
B21
B22
AD27
B23
B24
AD25
B25
C/BE3
B26
B27
AD23
B28
B29
AD21
B30
AD19
B31
B32
AD17
B33
C/BE2
B34
B35
P_IRDY_L
IRDY_L
B36
B37
P_DVSEL_L
DVSEL_L
B38
B39
P_LOCK_L
LOCK_L
P_PERR_L B40
PERR_L
B41
B42
P_SERR_L
SERR_L
B43
B44
C/BE1
AD14
B45
B46
B47
AD12
B48
AD10
B49
M66EN
B50
B51
B52
AD8
B53
AD7
B54
B55
AD5
B56
AD3
B57
B58
AD1
B59
B60
B61
B62
1
T
1
T
1
RESET_L
R28 0
R30 0
TMS
TDI
D
1
1header
U48
T
1header
U47
T
1header
U46
T
1header
U45
T
T2
P_GNT_L
AD30
AD27
AD24
AD22
AD19
AD16
P_IRDY_L
P_STOP_ L
P_SERR_L
AD15
AD12
AD9
AD7
AD3
AD1
INTD
1
1
INTB
INTC
1
INTA
HEADER 16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
JP1
P_REQ_L
AD29
AD26
C/BE3
AD21
AD18
C/BE2
P_TRDY_L
P_LOCK_L
P_PAR
AD14
AD11
C/BE0
AD6
AD5
AD0
HEADER 16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
JP2
C/BE[3:0]
AD[31:0]
E
C116
0.01uF
C4
0.1uF
C110
0.01uF
+5VIO2
C6
0.001uF
C118
0.001uF
C111
0.1uF
+5VIO1
C14
0.001uF
C112
0.01uF
C15
0.001uF
C18
0.001uF
D
C117
0.01uF
Table2
M66EN
Date:
Size
C
Title
15
AD3
AD5
AD2
PCI Edge Connector
Friday, March 17, 2000
E
Sheet
Three Port PCI Bridge Evaluation Board
Document Number PI7C7100
16
AD1
AD0
GND
HEADER 16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
JP3
2
of
5
Rev
1.3
2380 Bering Dr., San Jose, CA
14
AD7
AD6
AD4
AD31
AD28
AD25
AD23
AD20
AD17
P_FRAME_L
P_DVSEL_L
P_PERR_L
C/BE1
AD13
AD10
AD8
AD4
AD2
C/BE[3:0]
AD[31:0]
1
2
3
4
5
6
7
8
9
10
11
12
13
JP1 GNT AD30 AD27 AD24 AD22 AD19 AD16 IRDY STOP SERR AD15 AD12 AD9
JP2 REQ AD29 AD26 CBE3 AD21 AD18 CBE2 TRDY LOCK PAR AD14 AD11 CBE0
JP3 AD31 AD28 AD25 AD23 AD20 AD17 Frame DVSEL PERR CBE1 AD13 AD10 AD8
+3.3V
1header
U39
T
4
A
1
2
3
4
ADVANCE INFORMATION
Appendix C
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
04/18/00
C-5
1
2
3
4
IRDY_L
REQ0_L
CLK0
INTB_L
INTD_L
5.1K
R37
+
+3.3V
C204
10uF
2
M66EN
C153
0.01uF
SERR_L
LOCK_L
PERR_L
DEVSEL_L
1
+12V
C130
0.01uF
A
M66EN
TCK0
A
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
C147
B11
0.01uF
B12
C150 B13
0.01uFB14
B15
B16
B17
B18
B19
B20
AD31
B21
AD29
B22
B23
AD27
B24
AD25
B25
B26
C/BE3
B27
AD23
B28
B29
AD21
B30
AD19
B31
B32
AD17
B33
C/BE2
B34
B35
B36
B37
B38
B39
B40
B41
B42
SERR_L
B43
B44
C/BE1
B45
AD14
B46
B47
AD12
B48
AD10
B49
M66EN
B50
B51
B52
AD8
B53
AD7
B54
B55
AD5
B56
AD3
B57
B58
AD1
B59
B60
ACK64#0
B61
B62
C129
0.01uF
-12V
+
+5V
+
+3.3V
C206
10uF
C156
10uF
PCISLOT
-12V
TCK
GND
TDO
+5V
+5V
INTB#
INTD#
PRSNT1#
NC
PRSNT2#
GND
GND
NC
GND
CLK
GND
REQ#
+5V
AD31
AD29
GND
AD27
AD25
+3.3V
C/BE3#
AD23
GND
AD21
AD19
+3.3V
AD17
C/BE2#
GND
IRDY#
+3.3V
DEVSEL#
GND
LOCK#
PERR#
+3.3V
SERR#
+3.3V
C/BE1#
AD14
GND
AD12
AD10
M66EN
NC
NC
AD08
AD07
+3.3V
AD05
AD03
GND
AD01
+5V
ACK64#
+5V
+5V
U9
+12V
+12V
+
C209
0.01uF
C210
0.01uF
C185
0.01uF
C186
0.1uF
C211
0.01uF
C212
0.01uF
+3.3V
C187
0.1uF
+3.3V
REQ64#3
5.1K
C213
0.01uF
C188
0.1uF
+12V
1
R70
2
R69
5.1K
5.1K
5.1K
1
R64
REQ64#2
5.1K
2
R63
-12V
C184
0.01uF
R51
5.1K
1
1
R58
REQ64#1
REQ64#0
AD[31:0]
C154
0.01uF
SERR_L
LOCK_L
PERR_L
-12V
2
2
2
2
2
C214
0.01uF
C189
0.1uF
C161
0.01uF
DEVSEL_L
IRDY_L
REQ1_L
CLK1
INTC_L
INTA_L
5.1K
R38
R57
2
+3.3V
PAR
STOP_ L
TRDY_L
FRAME_L
IDSEL0_L
GNT0_L
RESET_L
1
5.1K
2
+3.3V
INTA_L
INTC_L
2
2
2
5.1K
R50
AD[31:0]
R34
A1
1
TRST0_L
5.1K
A2
R40
A3
TMS0 1 R43
1 5.1K
A4 TDI0
5.1K
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
AD30
A21
A22
AD28
A23
AD26
A24
A25
AD24
A26
A27
A28
AD22
A29
AD20
A30
A31
AD18
A32
AD16
A33
A34
A35
A36
A37
A38
A39
A40
SDONE0
A41
SBO0_ L
A42
A43
A44
AD15
A45
A46
AD13
A47
AD11
A48
A49
AD9
A50
A51
A52
C/BE0
A53
A54
AD6
A55
AD4
A56
A57
AD2
A58
AD0
A59
A60
REQ64#0
A61
A62
-12V
1
ACK64#3
C158
10uF
1
ACK64#2
+5V
1
1
ACK64#1
ACK64#0
TRST#
+12V
TMS
TDI
+5V
INTA#
INTC#
+5V
NC
+5V
NC
GND
GND
NC
RST#
+5V
GNT#
GND
NC
AD30
+3.3V
AD28
AD26
GND
AD24
IDSEL
+3.3V
AD22
AD20
GND
AD18
AD16
+3.3V
FRAME#
GND
TRDY#
GND
STOP#
+3.3V
SDONE
SBO#
GND
PAR
AD15
+3.3V
AD13
AD11
GND
AD09
NC
NC
C/BE0#
+3.3V
AD06
AD04
GND
AD02
AD00
+5V
REQ64#
+5V
+5V
TCK1
B
C215
0.01uF
C190
0.1uF
C162
0.01uF
+3.3V
C226
0.01uF
+5V
C194
0.1uF
C163
0.01uF
SDONE3
SDONE2
SDONE1
C217
0.01uF
C195
0.1uF
C218
0.01uF
C134
0.1uF
C219
0.01uF
C191
0.1uF
+5V
C220
0.01uF
C192
0.1uF
C167
0.01uF
SBO3_ L
SBO2_ L
SBO1_ L
SBO0_ L
C/BE[3:0]
1
1
1
1
2
2
2
5.1K
R72
5.1K
R66
5.1K
R60
5.1K
R53
C135
0.1uF
R35
A1
1
TRST1_L
5.1K
A2
R41
A3
TMS1 1 R44
1 5.1K
A4 TDI1
5.1K
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
AD30
A21
A22
AD28
A23
AD26
A24
A25
AD24
A26
A27
A28
AD22
A29
AD20
A30
A31
AD18
A32
AD16
A33
A34
A35
A36
A37
A38
A39
A40
SDONE1
A41
SBO1_ L
A42
A43
A44
AD15
A45
AD13
A46
A47
AD11
A48
A49
AD9
A50
A51
A52
C/BE0
A53
A54
AD6
A55
AD4
A56
A57
AD2
A58
AD0
A59
A60
REQ64#1
A61
A62
C166
0.01uF
+3.3V
C74
0.1uF
C165
0.01uF
2
2
2
2
C133
0.1uF
TRST#
+12V
TMS
TDI
+5V
INTA#
INTC#
+5V
NC
+5V
NC
GND
GND
NC
RST#
+5V
GNT#
GND
NC
AD30
+3.3V
AD28
AD26
GND
AD24
IDSEL
+3.3V
AD22
AD20
GND
AD18
AD16
+3.3V
FRAME#
GND
TRDY#
GND
STOP#
+3.3V
SDONE
SBO#
GND
PAR
AD15
+3.3V
AD13
AD11
GND
AD09
NC
NC
C/BE0#
+3.3V
AD06
AD04
GND
AD02
AD00
+5V
REQ64#
+5V
+5V
+3.3V
C132
0.1uF
+3.3V
5.1K
R71
5.1K
R65
5.1K
R59
5.1K
R52
C164
0.01uF
1
1
1
1
PCISLOT
-12V
TCK
GND
TDO
+5V
+5V
INTB#
INTD#
PRSNT1#
NC
PRSNT2#
GND
GND
NC
GND
CLK
GND
REQ#
+5V
AD31
AD29
GND
AD27
AD25
+3.3V
C/BE3#
AD23
GND
AD21
AD19
+3.3V
AD17
C/BE2#
GND
IRDY#
+3.3V
DEVSEL#
GND
LOCK#
PERR#
+3.3V
SERR#
+3.3V
C/BE1#
AD14
GND
AD12
AD10
M66EN
NC
NC
AD08
AD07
+3.3V
AD05
AD03
GND
AD01
+5V
ACK64#
+5V
+5V
U10
C131
0.1uF
SDONE0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
C148
B11
0.01uF
B12
C151 B13
0.01uFB14
B15
B16
B17
B18
B19
B20
AD31
B21
AD29
B22
B23
AD27
B24
AD25
B25
B26
C/BE3
B27
AD23
B28
B29
AD21
B30
AD19
B31
B32
AD17
B33
C/BE2
B34
B35
B36
B37
B38
B39
B40
B41
B42
SERR_L
B43
B44
C/BE1
B45
AD14
B46
B47
AD12
B48
AD10
B49
M66EN
B50
B51
B52
AD8
B53
AD7
B54
B55
AD5
AD3
B56
B57
AD1
B58
B59
B60
ACK64#1
B61
B62
B
2
2
2
2
PAR
STOP_ L
TRDY_L
REQ2_L
CLK2
INTD_L
INTB_L
5.1K
R39
C155
0.01uF
SERR_L
LOCK_L
PERR_L
DEVSEL_L
IRDY_L
1
+3.3V
C
C/BE[3:0]
FRAME_L
IDSEL1_L
GNT1_L
RESET_L
INTB_L
INTD_L
+3.3V
C
2
C138
0.1uF
C140
0.1uF
STOP_ L
SERR_L
PERR_L
LOCK_L
5.1K
R73
5.1K
R67
5.1K
R61
5.1K
R54
C170
0.01uF
1
1
1
1
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
C149
B11
0.01uF
B12
C152 B13
0.01uFB14
B15
B16
B17
B18
B19
B20
AD31
B21
AD29
B22
B23
AD27
B24
AD25
B25
B26
C/BE3
B27
AD23
B28
B29
AD21
B30
AD19
B31
B32
AD17
B33
C/BE2
B34
B35
B36
B37
B38
B39
B40
B41
B42
SERR_L
B43
B44
C/BE1
B45
AD14
B46
B47
AD12
B48
AD10
B49
M66EN
B50
B51
B52
AD8
B53
AD7
B54
B55
AD5
B56
AD3
B57
B58
AD1
B59
B60
ACK64#2
B61
B62
TCK2
C139
0.1uF
+5V
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31
A32
A33
A34
A35
A36
A37
A38
A39
A40
A41
A42
A43
A44
A45
A46
A47
A48
A49
A50
A51
A52
A53
A54
A55
A56
A57
A58
A59
A60
A61
A62
C72
0.01uF
TRST#
+12V
TMS
TDI
+5V
INTA#
INTC#
+5V
NC
+5V
NC
GND
GND
NC
RST#
+5V
GNT#
GND
NC
AD30
+3.3V
AD28
AD26
GND
AD24
IDSEL
+3.3V
AD22
AD20
GND
AD18
AD16
+3.3V
FRAME#
GND
TRDY#
GND
STOP#
+3.3V
SDONE
SBO#
GND
PAR
AD15
+3.3V
AD13
AD11
GND
AD09
NC
NC
C/BE0#
+3.3V
AD06
AD04
GND
AD02
AD00
+5V
REQ64#
+5V
+5V
C70
0.1uF
C172
0.01uF
+3.3V
+5V
C171
0.01uF
2
2
2
2
PCISLOT
-12V
TCK
GND
TDO
+5V
+5V
INTB#
INTD#
PRSNT1#
NC
PRSNT2#
GND
GND
NC
GND
CLK
GND
REQ#
+5V
AD31
AD29
GND
AD27
AD25
+3.3V
C/BE3#
AD23
GND
AD21
AD19
+3.3V
AD17
C/BE2#
GND
IRDY#
+3.3V
DEVSEL#
GND
LOCK#
PERR#
+3.3V
SERR#
+3.3V
C/BE1#
AD14
GND
AD12
AD10
M66EN
NC
NC
AD08
AD07
+3.3V
AD05
AD03
GND
AD01
+5V
ACK64#
+5V
+5V
U11
C69
0.1uF
R36
1
1
C73
0.01uF
DEVSEL_L 1
IRDY_L
TRDY_L
FRAME_L 1
REQ64#2
AD2
AD0
AD6
AD4
C/BE0
AD9
AD13
AD11
AD15
SDONE2
SBO2_ L
AD18
AD16
AD22
AD20
AD24
AD28
AD26
AD30
5.1K
R74
5.1K
R68
5.1K
R62
5.1K
R55
5.1K
R42
TMS2 1 R45
TDI2 1 5.1K
5.1K
1
TRST2_L
D
D
+3.3V
2
2
2
2
PAR
+3.3V
STOP_L
TRDY_L
FRAME_L
IDSEL2_L
GNT2_L
RESET_L
INTC_L
INTA_L
2
2
2
C216
0.01uF
SERR_L
LOCK_L
PERR_L
DEVSEL_L
IRDY_L
REQ3_L
CLK3
INTA_L
INTC_L
1 R33
5.1K
2
Date:
Size
C
Title
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
C339
B11
0.01uF
B12
C340 B13
0.01uFB14
B15
B16
B17
B18
B19
B20
AD31
B21
AD29
B22
B23
AD27
B24
AD25
B25
B26
C/BE3
B27
AD23
B28
B29
AD21
B30
AD19
B31
B32
AD17
B33
C/BE2
B34
B35
B36
B37
B38
B39
B40
B41
B42
SERR_L
B43
B44
C/BE1
B45
AD14
B46
B47
AD12
B48
AD10
B49
M66EN
B50
B51
B52
AD8
B53
AD7
B54
B55
AD5
B56
AD3
B57
B58
AD1
B59
B60
ACK64#3
B61
B62
TCK3
TRST#
+12V
TMS
TDI
+5V
INTA#
INTC#
+5V
NC
+5V
NC
GND
GND
NC
RST#
+5V
GNT#
GND
NC
AD30
+3.3V
AD28
AD26
GND
AD24
IDSEL
+3.3V
AD22
AD20
GND
AD18
AD16
+3.3V
FRAME#
GND
TRDY#
GND
STOP#
+3.3V
SDONE
SBO#
GND
PAR
AD15
+3.3V
AD13
AD11
GND
AD09
NC
NC
C/BE0#
+3.3V
AD06
AD04
GND
AD02
AD00
+5V
REQ64#
+5V
+5V
Friday, March 17, 2000
E
Secondary 1 PCI Bus
Document Number PI7C7100
2
2
2
PAR
STOP_ L
TRDY_L
FRAME_L
IDSEL3_L
GNT3_L
RESET_L
INTD_L
INTB_L
+3.3V
Sheet
3
of
5
Rev
1.3
2380 Bering Dr., San Jose, CA
R46
A1 TRST3_L 1
5.1K
A2
R47
A3
TMS3 1 R48
A4
TDI3 1 5.1K
5.1K
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
AD30
A21
A22
AD28
A23
AD26
A24
A25
AD24
A26
A27
A28
AD22
A29
AD20
A30
A31
AD18
A32
AD16
A33
A34
A35
A36
A37
A38
A39
A40
SDONE3
A41
SBO3_ L
A42
A43
A44
AD15
A45
A46
AD13
A47
AD11
A48
A49
AD9
A50
A51
A52
C/BE0
A53
A54
AD6
A55
AD4
A56
A57
AD2
A58
AD0
A59
A60
REQ64#3
A61
A62
Three Port PCI Bridge Evaluation Board
PCISLOT
-12V
TCK
GND
TDO
+5V
+5V
INTB#
INTD#
PRSNT1#
NC
PRSNT2#
GND
GND
NC
GND
CLK
GND
REQ#
+5V
AD31
AD29
GND
AD27
AD25
+3.3V
C/BE3#
AD23
GND
AD21
AD19
+3.3V
AD17
C/BE2#
GND
IRDY#
+3.3V
DEVSEL#
GND
LOCK#
PERR#
+3.3V
SERR#
+3.3V
C/BE1#
AD14
GND
AD12
AD10
M66EN
NC
NC
AD08
AD07
+3.3V
AD05
AD03
GND
AD01
+5V
ACK64#
+5V
+5V
U8
E
1
2
3
4
ADVANCE INFORMATION
Appendix C
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
04/18/00
C-6
1
2
3
4
IRDY_L
REQ0_L
CLK0
INTB_L
INTD_L
5.1K
R79
2
M66EN
C258
0.01uF
SERR_L
LOCK_L
PERR_L
DEVSEL_L
1
+
+3.3V
M66EN
TCK0
A
+
+5V
+
+5V
+
+3.3V
C311
10uF
C287
10uF
C229
10uF
PCISLOT
-12V
TCK
GND
TDO
+5V
+5V
INTB#
INTD#
PRSNT1#
NC
PRSNT2#
GND
GND
NC
GND
CLK
GND
REQ#
+5V
AD31
AD29
GND
AD27
AD25
+3.3V
C/BE3#
AD23
GND
AD21
AD19
+3.3V
AD17
C/BE2#
GND
IRDY#
+3.3V
DEVSEL#
GND
LOCK#
PERR#
+3.3V
SERR#
+3.3V
C/BE1#
AD14
GND
AD12
AD10
M66EN
NC
NC
AD08
AD07
+3.3V
AD05
AD03
GND
AD01
+5V
ACK64#
+5V
+5V
U13
C284
10uF
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
C252
B11
0.01uF
B12
C255 B13
0.01uFB14
B15
B16
B17
B18
B19
B20
AD31
B21
AD29
B22
B23
AD27
B24
AD25
B25
B26
C/BE3
B27
AD23
B28
B29
AD21
B30
AD19
B31
B32
AD17
B33
C/BE2
B34
B35
B36
B37
B38
B39
B40
B41
B42
SERR_L
B43
B44
C/BE1
B45
AD14
B46
B47
AD12
B48
AD10
B49
M66EN
B50
B51
B52
AD8
B53
AD7
B54
B55
AD5
B56
AD3
B57
B58
AD1
B59
B60
ACK64#0
B61
B62
A
+12V
+12V
+
C314
0.01uF
C315
0.01uF
C290
0.01uF
C291
0.1uF
C316
0.01uF
C317
0.01uF
+3.3V
C292
0.1uF
+3.3V
REQ64#3
5.1K
C318
0.01uF
C293
0.1uF
+12V
1
-12V
2
2
2
2
2
+12V
C319
0.01uF
C294
0.1uF
C266
0.01uF
R112
2
R111
5.1K
5.1K
5.1K
1
R106
REQ64#2
5.1K
2
R105
-12V
C289
0.01uF
R93
5.1K
1
1
R100
REQ64#1
REQ64#0
AD[31:0]
C259
0.01uF
SERR_L
LOCK_L
PERR_L
DEVSEL_L
IRDY_L
REQ1_L
CLK1
INTC_L
INTA_L
5.1K
R80
R99
2
+3.3V
PAR
STOP_ L
TRDY_L
FRAME_L
IDSEL0_L
GNT0_L
RESET_L
1
5.1K
2
+3.3V
INTA_L
INTC_L
2
2
2
C232
10uF
5.1K
R92
AD[31:0]
R76
A1
1
TRST0_L
5.1K
A2
R82
A3
TMS0 1 R85
1 5.1K
A4 TDI0
5.1K
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
AD30
A21
A22
AD28
A23
AD26
A24
A25
AD24
A26
A27
A28
AD22
A29
AD20
A30
A31
AD18
A32
AD16
A33
A34
A35
A36
A37
A38
A39
A40
SDONE0
A41
SBO0_ L
A42
A43
A44
AD15
A45
A46
AD13
A47
AD11
A48
A49
AD9
A50
A51
A52
C/BE0
A53
A54
AD6
A55
AD4
A56
A57
AD2
A58
AD0
A59
A60
REQ64#0
A61
A62
-12V
1
ACK64#3
C263
10uF
1
ACK64#2
+5V
1
1
ACK64#1
ACK64#0
TRST#
+12V
TMS
TDI
+5V
INTA#
INTC#
+5V
NC
+5V
NC
GND
GND
NC
RST#
+5V
GNT#
GND
NC
AD30
+3.3V
AD28
AD26
GND
AD24
IDSEL
+3.3V
AD22
AD20
GND
AD18
AD16
+3.3V
FRAME#
GND
TRDY#
GND
STOP#
+3.3V
SDONE
SBO#
GND
PAR
AD15
+3.3V
AD13
AD11
GND
AD09
NC
NC
C/BE0#
+3.3V
AD06
AD04
GND
AD02
AD00
+5V
REQ64#
+5V
+5V
+
+5V
-12V
C235
0.01uF
B
C320
0.01uF
C295
0.1uF
C267
0.01uF
+3.3V
C268
0.01uF
SDONE3
SDONE2
SDONE1
+3.3V
5.1K
R113
5.1K
R107
5.1K
C323
0.01uF
C239
0.1uF
C324
0.01uF
+5V
C299
0.1uF
+5V
C325
0.01uF
C300
0.1uF
C272
0.01uF
SBO3_ L
SBO2_ L
SBO1_ L
SBO0_ L
C/BE[3:0]
1
1
1
1
2
2
2
+3.3V
2
2
2
2
PAR
REQ2_L
CLK2
INTD_L
INTB_L
5.1K
R81
C260
0.01uF
SERR_L
LOCK_L
PERR_L
DEVSEL_L
IRDY_L
1
C
+3.3V
C85
0.01uF
C
C275
0.01uF
C/BE[3:0]
C83
0.1uF
STOP_ L
TRDY_L
FRAME_L
IDSEL1_L
GNT1_L
RESET_L
INTB_L
INTD_L
C84
0.01uF
C82
0.1uF
5.1K
R114
5.1K
R108
5.1K
R102
5.1K
R95
C240
0.1uF
R77
A1
1
TRST1_L
5.1K
A2
R83
A3
TMS1 1 R86
1 5.1K
A4 TDI1
5.1K
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
AD30
A21
A22
AD28
A23
AD26
A24
A25
AD24
A26
A27
A28
AD22
A29
AD20
A30
A31
AD18
A32
AD16
A33
A34
A35
A36
A37
A38
A39
A40
SDONE1
A41
SBO1_ L
A42
A43
A44
AD15
A45
AD13
A46
A47
AD11
A48
A49
AD9
A50
A51
A52
C/BE0
A53
A54
AD6
A55
AD4
A56
A57
AD2
A58
AD0
A59
A60
REQ64#1
A61
A62
C271
0.01uF
+3.3V
C298
0.1uF
C270
0.01uF
2
2
2
2
C238
0.1uF
TRST#
+12V
TMS
TDI
+5V
INTA#
INTC#
+5V
NC
+5V
NC
GND
GND
NC
RST#
+5V
GNT#
GND
NC
AD30
+3.3V
AD28
AD26
GND
AD24
IDSEL
+3.3V
AD22
AD20
GND
AD18
AD16
+3.3V
FRAME#
GND
TRDY#
GND
STOP#
+3.3V
SDONE
SBO#
GND
PAR
AD15
+3.3V
AD13
AD11
GND
AD09
NC
NC
C/BE0#
+3.3V
AD06
AD04
GND
AD02
AD00
+5V
REQ64#
+5V
+5V
+3.3V
C237
0.1uF
R101
5.1K
R94
C269
0.01uF
1
1
1
1
PCISLOT
-12V
TCK
GND
TDO
+5V
+5V
INTB#
INTD#
PRSNT1#
NC
PRSNT2#
GND
GND
NC
GND
CLK
GND
REQ#
+5V
AD31
AD29
GND
AD27
AD25
+3.3V
C/BE3#
AD23
GND
AD21
AD19
+3.3V
AD17
C/BE2#
GND
IRDY#
+3.3V
DEVSEL#
GND
LOCK#
PERR#
+3.3V
SERR#
+3.3V
C/BE1#
AD14
GND
AD12
AD10
M66EN
NC
NC
AD08
AD07
+3.3V
AD05
AD03
GND
AD01
+5V
ACK64#
+5V
+5V
U14
C236
0.1uF
SDONE0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
C253
B11
0.01uF
B12
C256 B13
0.01uFB14
B15
B16
B17
B18
B19
B20
AD31
B21
AD29
B22
B23
AD27
B24
AD25
B25
B26
C/BE3
B27
AD23
B28
B29
AD21
B30
AD19
B31
B32
AD17
B33
C/BE2
B34
B35
B36
B37
B38
B39
B40
B41
B42
SERR_L
B43
B44
C/BE1
B45
AD14
B46
B47
AD12
B48
AD10
B49
M66EN
B50
B51
B52
AD8
B53
AD7
B54
B55
AD5
AD3
B56
B57
AD1
B58
B59
B60
ACK64#1
B61
B62
TCK1
C234
0.01uF
B
+5V
C277
0.01uF
STOP_ L
SERR_L
PERR_L
LOCK_L
TCK2
C244
0.1uF
C245
0.1uF
1
1
1
1
C78
0.1uF
2
2
2
2
C81
0.01uF
+3.3V
PCISLOT
-12V
TCK
GND
TDO
+5V
+5V
INTB#
INTD#
PRSNT1#
NC
PRSNT2#
GND
GND
NC
GND
CLK
GND
REQ#
+5V
AD31
AD29
GND
AD27
AD25
+3.3V
C/BE3#
AD23
GND
AD21
AD19
+3.3V
AD17
C/BE2#
GND
IRDY#
+3.3V
DEVSEL#
GND
LOCK#
PERR#
+3.3V
SERR#
+3.3V
C/BE1#
AD14
GND
AD12
AD10
M66EN
NC
NC
AD08
AD07
+3.3V
AD05
AD03
GND
AD01
+5V
ACK64#
+5V
+5V
U15
C80
0.01uF
5.1K
R115
5.1K
R109
5.1K
R103
5.1K
R96
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
C254
B11
0.01uF
B12
C257 B13
0.01uFB14
B15
B16
B17
B18
B19
B20
AD31
B21
AD29
B22
B23
AD27
B24
AD25
B25
B26
C/BE3
B27
AD23
B28
B29
AD21
B30
AD19
B31
B32
AD17
B33
C/BE2
B34
B35
B36
B37
B38
B39
B40
B41
B42
SERR_L
B43
B44
C/BE1
B45
AD14
B46
B47
AD12
B48
AD10
B49
M66EN
B50
B51
B52
AD8
B53
AD7
B54
B55
AD5
B56
AD3
B57
B58
AD1
B59
B60
ACK64#2
B61
B62
C276
0.01uF
2
C243
0.1uF
+5V
TRST#
+12V
TMS
TDI
+5V
INTA#
INTC#
+5V
NC
+5V
NC
GND
GND
NC
RST#
+5V
GNT#
GND
NC
AD30
+3.3V
AD28
AD26
GND
AD24
IDSEL
+3.3V
AD22
AD20
GND
AD18
AD16
+3.3V
FRAME#
GND
TRDY#
GND
STOP#
+3.3V
SDONE
SBO#
GND
PAR
AD15
+3.3V
AD13
AD11
GND
AD09
NC
NC
C/BE0#
+3.3V
AD06
AD04
GND
AD02
AD00
+5V
REQ64#
+5V
+5V
C79
0.1uF
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31
A32
A33
A34
A35
A36
A37
A38
A39
A40
A41
A42
A43
A44
A45
A46
A47
A48
A49
A50
A51
A52
A53
A54
A55
A56
A57
A58
A59
A60
A61
A62
R78
1
1
DEVSEL_L 1
IRDY_L
TRDY_L
FRAME_L 1
REQ64#2
AD2
AD0
AD6
AD4
C/BE0
AD9
AD13
AD11
AD15
SDONE2
SBO2_ L
AD18
AD16
AD22
AD20
AD24
AD28
AD26
AD30
5.1K
D
R116
5.1K
R110
5.1K
R104
5.1K
R97
5.1K
R84
TMS2 1 R87
TDI2 1 5.1K
5.1K
1
TRST2_L
D
+3.3V
2
2
2
2
PAR
+3.3V
STOP_L
TRDY_L
FRAME_L
IDSEL2_L
GNT2_L
RESET_L
INTC_L
INTA_L
2
2
2
REQ3_L
CLK3
INTA_L
INTC_L
5.1K
R75
C321
0.01uF
SERR_L
LOCK_L
PERR_L
DEVSEL_L
IRDY_L
1
2
Date:
Size
C
Title
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
C330
B11
0.01uF
B12
C331 B13
0.01uFB14
B15
B16
B17
B18
B19
B20
AD31
B21
AD29
B22
B23
AD27
B24
AD25
B25
B26
C/BE3
B27
AD23
B28
B29
AD21
B30
AD19
B31
B32
AD17
B33
C/BE2
B34
B35
B36
B37
B38
B39
B40
B41
B42
SERR_L
B43
B44
C/BE1
B45
AD14
B46
B47
AD12
B48
AD10
B49
M66EN
B50
B51
B52
AD8
B53
AD7
B54
B55
AD5
B56
AD3
B57
B58
AD1
B59
B60
ACK64#3
B61
B62
TCK3
TRST#
+12V
TMS
TDI
+5V
INTA#
INTC#
+5V
NC
+5V
NC
GND
GND
NC
RST#
+5V
GNT#
GND
NC
AD30
+3.3V
AD28
AD26
GND
AD24
IDSEL
+3.3V
AD22
AD20
GND
AD18
AD16
+3.3V
FRAME#
GND
TRDY#
GND
STOP#
+3.3V
SDONE
SBO#
GND
PAR
AD15
+3.3V
AD13
AD11
GND
AD09
NC
NC
C/BE0#
+3.3V
AD06
AD04
GND
AD02
AD00
+5V
REQ64#
+5V
+5V
Friday, March 17, 2000
E
Secondary 2 PCI Bus
Document Number PI7C7100
+3.3V
PAR
STOP_ L
TRDY_L
FRAME_L
IDSEL3_L
GNT3_L
RESET_L
INTD_L
INTB_L
2
2
2
Sheet
4
of
5
Rev
1.3
2380 Bering Dr., San Jose, CA
R89
A1 TRST3_L 1
5.1K
A2
R90
A3
TMS3 1 R88
A4
TDI3 1 5.1K
5.1K
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
AD30
A21
A22
AD28
A23
AD26
A24
A25
AD24
A26
A27
A28
AD22
A29
AD20
A30
A31
AD18
A32
AD16
A33
A34
A35
A36
A37
A38
A39
A40
SDONE3
A41
SBO3_ L
A42
A43
A44
AD15
A45
A46
AD13
A47
AD11
A48
A49
AD9
A50
A51
A52
C/BE0
A53
A54
AD6
A55
AD4
A56
A57
AD2
A58
AD0
A59
A60
REQ64#3
A61
A62
Three Port PCI Bridge Evaluation Board
PCISLOT
-12V
TCK
GND
TDO
+5V
+5V
INTB#
INTD#
PRSNT1#
NC
PRSNT2#
GND
GND
NC
GND
CLK
GND
REQ#
+5V
AD31
AD29
GND
AD27
AD25
+3.3V
C/BE3#
AD23
GND
AD21
AD19
+3.3V
AD17
C/BE2#
GND
IRDY#
+3.3V
DEVSEL#
GND
LOCK#
PERR#
+3.3V
SERR#
+3.3V
C/BE1#
AD14
GND
AD12
AD10
M66EN
NC
NC
AD08
AD07
+3.3V
AD05
AD03
GND
AD01
+5V
ACK64#
+5V
+5V
U12
E
1
2
3
4
ADVANCE INFORMATION
Appendix C
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
04/18/00
C-7
1
2
3
C350
100p
PLL_CAP2
C351
100p
R150
4.7k
C352
47p
PCICHIP
PLL_CAP2
PLL_CAP1
P_M66EN
TRST_L
TDO
TDI
TMS
TCK
P_RESETN
P_PAR
P_PERRN
P_SERRN
P_GNTN
P_REQN
P_AD[31:0]
P_CBE[3:0]
P_FRAMEN
P_IRDYN
P_TRDYN
P_DEVSELN
P_STOPN
P_LOCKN
P_IDSEL
CHIP
PCIEDGE
IDSEL_L
LOCK_L
STOP_ L
DVSEL_L
TRDY_L
IRDY_L
FRAME_L
C/BE[3:0]
AD[31:0]
REQ_L
GNT_L
SERR_L
PERR_L
PAR
RESET_L
TCK
TMS
TDI
TDO
TRST_L
M66EN
S2_GNTN[7:0]
S2_REQN[7:0]
S2_RESETN
S2_PAR
S2_PERRN
S2_SERRN
U19
Test Point
T
A
S1_GNTN[7:0]
R161
S1_GNTN0 1
S1_GNTN2 1
S1_GNTN4 1
S1_GNTN1 1
S1_GNTN3 1
2
0
0
R180
0
R178
2
2
S1_REQN4 1
S1_REQN0 1
S1_REQN2 1
B
0
0
R184
0
R182
R166
S1_GNTN0/4
S1_REQN1 1
0
R183
0
R181
R162
R165
2
S1_REQN5 1
0
2
2
S1_GNTN1/5
S1_REQN6
S1_REQN7
2
2
2
2
2
2
S2_GNTN[7:0]
S2_REQN[7:0]
5.1K
R199
S1_REQN0/4
S1_REQN1/5
S1_REQN2/6
S1_REQN3/7
S2_RESET_L
S2_PAR_L
S2_PERR_L
S2_SERR_L
S2_AD[31:0]
S2_C/BE[3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_DEVSEL_ L
S2_STOP _L
S2_LOCK_L
S_M66EN
0
0
R179
0
R177
S1_GNTN2/6
S1_GNTN6
S1_GNTN5 1
S1_GNTN3/7
S1_GNTN7
S1_REQN[7:0]
S1_RESET_ L
S1_PAR_L
S1_PERR_L
S1_SERR_L
S1_AD[31:0]
S1_C/BE[3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_DEVSEL_ L
S1_STOP _L
S1_LOCK_L
S_CLK
SCLKOUT[15:0]
B
S1_GNTN[7:0]
S1_REQN[7:0]
INTD_L
INTC_L
INTB_L
INTA_L
P_CLK
S1_REQN3 1
S2_AD[31:0]
S2_CBE[3:0]
S2_FRAMEN
S2_IRDYN
S2_TRDYN
S2_DEVSELN
S2_STOPN
S2_LOCKN
S_M66EN
S1_GNTN[7:0]
S1_REQN[7:0]
S1_RESETN
S1_PAR
S1_PERRN
S1_SERRN
S1_AD[31:0]
S1_CBE[3:0]
S1_FRAMEN
S1_IRDYN
S1_TRDYN
S1_DEVSELN
S1_STOPN
S1_LOCKN
PLL_SCLK
SCLKOUT[15:0]
PLL_PCLK
INTD_L
INTC_L
INTB_L
INTA_L
CLK
Note: Those AGNDs are only connected to a
small GND plane on the top signal layer
C349
47p
R148
4.7k
PLL_CAP1
P_M66EN
TRST_L
TDO
TDI
TMS
TCK
P_RESET_L
P_PAR_L
P_PERR_L
P_SERR_L
P_GNT_L
P_REQ_L
P_AD[31:0]
P_C/BE[3:0]
P_FRAME_L
P_IRDY_L
P_TRDY_L
P_DEVSEL_L
P_STOP_ L
P_LOCK_L
P_IDSEL_L
P_IDSEL_L
P_LOCK_L
P_STOP_ L
P_DEVSEL_L
P_TRDY_L
P_IRDY_L
P_FRAME_L
P_C/BE[3:0]
P_AD[31:0]
P_REQ_L
P_GNT_L
P_SERR_L
P_PERR_L
P_PAR_L
P_RESET_L
TCK
TMS
TDI
TDO
TRST_L
P_M66EN
Edge
2
1
4
A
S2_GNTN[7:0]
5.1K
R49
S2_GNTN0 1
S2_GNTN2 1
S2_GNTN4 1
S2_GNTN1 1
S2_GNTN3 1
S2_GNTN5 1
S2_GNTN6
S2_GNTN7
1
0
0
R188
0
R186
R167
0
0
R187
0
R185
R163
2
2
2
2
2
2
2
INTA_L
INTB_L
INTC_L
INTD_L
C
S2_GNTN0/4
S2_GNTN1/5
S2_GNTN2/6
PCIBUS2
INTA_L
INTB_L
INTC_L
INTD_L
REQ0_L
REQ1_L
REQ2_L
REQ3_L
GNT0_L
GNT1_L
GNT2_L
GNT3_L
S2_REQN5 1
S2_REQN6
S2_REQN7
CLK0
CLK1
CLK2
CLK3
CLK0
CLK1
CLK2
CLK3
S2_REQN0 1
S2_REQN2 1
S2_REQN4 1
S2_REQN1 1
S2_REQN3 1
RESET_L
PAR
PERR_L
SERR_L
AD[31:0]
IDSEL0_L
IDSEL1_L
IDSEL2_L
IDSEL3_L
C/BE[3:0]
FRAME_L
IRDY_L
TRDY_L
DEVSEL_L
STOP_ L
LOCK_L
M66EN
S2_INTERFACE
PCIBUS
M66EN
INTA_L
INTB_L
INTC_L
INTD_L
REQ0_L
REQ1_L
REQ2_L
REQ3_L
GNT0_L
GNT1_L
GNT2_L
GNT3_L
RESET_L
PAR
PERR_L
SERR_L
AD[31:0]
IDSEL0_L
IDSEL1_L
IDSEL2_L
IDSEL3_L
C/BE[3:0]
FRAME_L
IRDY_L
TRDY_L
DEVSEL_L
STOP_ L
LOCK_L
S1_INTERFACE
S2_REQN[7:0]
S2_REQN0/4
S2_REQN1/5
S2_REQN2/6
S2_REQN3/7
S2_GNTN0/4
S2_GNTN1/5
S2_GNTN2/6
S2_GNTN3/7
S2_RESET_L
S2_PAR_L
S2_PERR_L
S2_SERR_L
S2_IDSEL0_L
S2_IDSEL1_L
S2_IDSEL2_L
S2_IDSEL3_L
S2_C/BE[3:0]
S2_FRAME_L
S2_IRDY_L
S2_TRDY_L
S2_DEVSEL_L
S2_STOP _L
S2_LOCK_L
S2_GNTN3/7
+3.3V
INTA_L
INTB_L
INTC_L
INTD_L
S1_REQN0/4
S1_REQN1/5
S1_REQN2/6
S1_REQN3/7
S1_GNTN0/4
S1_GNTN1/5
S1_GNTN2/6
S1_GNTN3/7
S1_RESET_ L
S1_PAR_L
S1_PERR_L
S1_SERR_L
S1_IDSEL0_L
S1_IDSEL1_L
S1_IDSEL2_L
S1_IDSEL3_L
S1_C/BE[3:0]
S1_FRAME_L
S1_IRDY_L
S1_TRDY_L
S1_DEVSEL_ L
S1_STOP _L
S1_LOCK_L
C
0
0
R192
0
R190
R168
0
0
R191
0
R189
R164
2
2
2
2
2
2
S1_IDSEL2_L
S1_AD22
1
1
S2_REQN0/4
22
22
R170
22
R169
22
R146
22
R145
22
R144
R143
1
1
1
1
1
1
1
1
22
R176
22
R175
22
22
R174
22
R152
R149
22
22
R173
22
R151
R147
22
R172
22
R171
1
1
1
1
1
1
D
2 SCLKOUT15
2 SCLKOUT14
2 SCLKOUT13
2 SCLKOUT11
2 SCLKOUT9
2 SCLKOUT12
2 SCLKOUT10
2 SCLKOUT8
2 SCLKOUT7
2 SCLKOUT6
2 SCLKOUT5
2 SCLKOUT4
2 SCLKOUT3
2 SCLKOUT2
2 SCLKOUT1
2 SCLKOUT0
S1_IDSEL3_L
S1_IDSEL1_L
S1_AD21
S1_AD23
S1_IDSEL0_L
D
S1_AD20
S2_REQN1/5
S2_REQN2/6
S2_REQN3/7
SCLKOUT8/12
SCLKOUT9/13
SCLKOUT10/14
SCLKOUT11/15
SCLKOUT0/4
SCLKOUT1/5
SCLKOUT2/6
SCLKOUT3/7
S1_AD[31:0]
S1_REQN0/4
S1_REQN1/5
S1_REQN2/6
S1_REQN3/7
S1_GNTN0/4
S1_GNTN1/5
S1_GNTN2/6
S1_GNTN3/7
1
1
1
1
1
1
1
1
T
T
T
T
T
T
T
T
U26
1header
U27
1header
U28
1header
U29
1header
U22
1header
U23
1header
U24
1header
U25
1header
S2_AD[31:0]
Date:
Size
C
Title
1
1
1
1
1
1
1
1
T
T
T
T
T
T
T
T
U34
1header
U35
1header
U36
1header
U37
1header
U30
1header
U31
1header
U32
1header
U33
1header
Test Point
T
U20
HEADER 6
1
2
3
4
5
6
P1
Friday, March 17, 2000
Top View
Document Number PI7C7100
E
U17
Test Point
T
Sheet
5
of
5
Rev
1.3
2380 Bering Dr., San Jose, CA
Three Port PCI Bridge Evaluation Board
S2_REQN0/4
S2_REQN1/5
S2_REQN2/6
S2_REQN3/7
S2_GNTN0/4
S2_GNTN1/5
S2_GNTN2/6
S2_GNTN3/7
+3.3V +5V
S2_IDSEL3_L
S2_IDSEL2_L
S2_AD22
S2_AD23
S2_IDSEL1_L
S2_IDSEL0_L
S2_AD21
S2_AD20
E
1
2
3
4
ADVANCE INFORMATION
Appendix C
PI7C7100
3-Port
PCI
Bridge
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567
04/18/00
ADVANCE INFORMATION
Appendix C
PI7C7100
3-Port
PCI
Bridge
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456
C-8
04/18/00