ETC EL5197A

EL5197, EL5197A
®
Data Sheet
November 15, 2002
Single 200MHz Fixed Gain Amplifier with
Enable
The EL5197 and EL5197A are fixed
gain amplifiers with a bandwidth of
200MHz, making these amplifiers ideal
for today’s high speed video and monitor applications. These
amplifiers feature internal gain setting resistors and can be
configured in a gain of +1, -1 or +2. The same bandwidth is
seen in both gain-of-1 and gain-of-2 applications.
With a supply current of just 4mA and the ability to run from
a single supply voltage from 5V to 10V, these amplifiers are
also ideal for hand held, portable or battery powered
equipment.
The EL5197A also incorporates an enable and disable
function to reduce the supply current to 100µA typical per
amplifier. Allowing the CE pin to float or applying a low logic
level will enable the amplifier.
The EL5197 is offered in the 5-pin SOT-23 package and the
EL5197A is available in the 6-pin SOT-23 as well as the
industry-standard 8-pin SO packages. Both operate over the
industrial temperature range of -40°C to +85°C.
FN7184
Features
• Gain selectable (+1, -1, +2)
• 200MHz -3dB BW (AV = 1, 2)
• 4mA supply current
• Fast enable/disable (EL5197A only)
• Single and dual supply operation, from 5V to 10V or ±2.5V
to ±5V
• Available in SOT-23 packages
• Triple (EL5397) available
• 400MHz, 9mA products available (EL5197 & EL5396)
Applications
• Battery powered equipment
• Hand held, portable devices
• Video amplifiers
• Cable drivers
• RGB amplifiers
• Test equipment
Pinouts
• Instrumentation
EL5197A
(8-PIN SO)
TOP VIEW
NC 1
• Current to voltage converters
IN- 2
+
VS- 2
TAPE &
REEL
PKG. NO.
EL5197CW-T7
5-Pin SOT-23*
7”
MDP0038
EL5197ACW-T7
6-Pin SOT-23*
7”
MDP0038
EL5197ACS
8-Pin SO
-
MDP0027
EL5197ACS-T7
8-Pin SO
7”
MDP0027
EL5197ACS-T13
8-Pin SO
13”
MDP0027
PART NUMBER
IN+ 3
6 OUT
VS- 4
5 NC
EL5197
(5-PIN SOT-23)
TOP VIEW
6 VS+
OUT 1
5 CE
VS- 2
4 IN-
IN+ 3
+ IN+ 3
PACKAGE
7 VS+
EL5197A
(6-PIN SOT-23)
TOP VIEW
OUT 1
Ordering Information
8 CE
5 VS+
*EL5197CW & EL5197ACW symbol is .Sxxx where xxx represents
date code
+ -
1
4 IN-
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2003. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.
All other trademarks mentioned are the property of their respective owners.
EL5197, EL5197A
Absolute Maximum Ratings (TA = 25°C)
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . VS- -0.5V to VS+ +0.5V
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C
Operating Ambient Temperature . . . . . . . . . . . . . . . .-40°C to +85°C
Supply Voltage between VS+ and VS- . . . . . . . . . . . . . . . . . . . . .11V
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 125°C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests
are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
Electrical Specifications
PARAMETER
VS+ = +5V, VS- = -5V, RL = 150Ω, TA = 25°C unless otherwise specified.
DESCRIPTION
CONDITIONS
MIN
TYP
MAX
UNIT
AC PERFORMANCE
BW
-3dB Bandwidth
AV = +1
200
MHz
AV = -1
200
MHz
AV = +2
200
MHz
20
MHz
2200
V/µs
12
ns
BW1
0.1dB Bandwidth
SR
Slew Rate
VO = -2.5V to +2.5V, AV = +2
tS
0.1% Settling Time
VOUT = -2.5V to +2.5V, AV = -1
eN
Input Voltage Noise
4.4
nV/√Hz
iN-
IN- Input Current Noise
17
pA/√Hz
iN+
IN+ Input Current Noise
50
pA/√Hz
dG
Differential Gain Error (Note 1)
AV = +2
0.03
%
dP
Differential Phase Error (Note 1) AV = +2
0.04
°
1800
DC PERFORMANCE
VOS
Offset Voltage
TCVOS
Input Offset Voltage
Temperature Coefficient
Measured from TMIN to TMAX
AE
Gain Error
VO = -3V to +3V
RF, RG
Internal RF and RG
-10
1
10
5
mV
µV/°C
-2
1.3
2
%
320
400
480
Ω
INPUT CHARACTERISTICS
CMIR
Common Mode Input Range
±3V
±3.3V
+IIN
+ Input Current
-60
1
60
µA
-IIN
- Input Current
-30
1
30
µA
RIN
Input Resistance
CIN
Input Capacitance
at IN+
V
45
kΩ
0.5
pF
OUTPUT CHARACTERISTICS
VO
RL = 150Ω to GND
±3.4V
±3.7V
V
RL = 1kΩ to GND
±3.8V
±4.0V
V
Output Current
RL = 10Ω to GND
95
120
mA
ISON
Supply Current - Enabled
No load, VIN = 0V
3
4
5
mA
ISOFF
Supply Current - Disabled
No load, VIN = 0V
100
150
µA
PSRR
Power Supply Rejection Ratio
DC, VS = ±4.75V to ±5.25V
IOUT
Output Voltage Swing
SUPPLY
2
55
75
dB
EL5197, EL5197A
Electrical Specifications
PARAMETER
-IPSR
VS+ = +5V, VS- = -5V, RL = 150Ω, TA = 25°C unless otherwise specified. (Continued)
DESCRIPTION
- Input Current Power Supply
Rejection
CONDITIONS
DC, VS = ±4.75V to ±5.25V
MIN
TYP
-2
MAX
UNIT
2
µA/V
ENABLE (EL5197A ONLY)
tEN
Enable Time
40
ns
tDIS
Disable Time (Note 2)
600
ns
IIHCE
CE Pin Input High Current
CE = VS+
0.8
6
µA
IILCE
CE Pin Input Low Current
CE = VS-
0
-0.1
µA
VIHCE
CE Input High Voltage for
Disable
VILCE
CE Input Low Voltage for Enable
VS+ -1
NOTES:
1. Standard NTSC test, AC signal amplitude = 286mVP-P, f = 3.58MHz
2. Measured from the application of CE logic until the output voltage is at the 50% point between initial and final values
3
V
VS+ -3
V
EL5197, EL5197A
Typical Performance Curves
Frequency Response (Gain)
Frequency Response (Phase), All Gains
90
AV = -1
AV = 2
0
2
-2
Phase (°)
AV = 1
-6
-90
-180
-270
-10
-14
1M
RL = 150Ω
10M
100M
-360
1M
1G
RL = 150Ω
10M
Frequency (Hz)
Frequency Response for Various CL
3.5
AV = 2
RL = 150Ω
AV = 2
3
10
22pF added
2.5
Delay (ns)
Normalized Magnitude (dB)
1G
Group Delay vs Frequency
14
6
10pF added
2
2
1.5
AV = 1
1
0pF added
-2
0.5
-6
1M
10M
100M
0
1M
1G
RL = 150Ω
10M
Frequency (Hz)
Frequency Response for Various Common-Mode
Input Voltages
1G
Transimpedance (ROL) vs Frequency
10M
3V
0
Phase
-3V
1M
2
Magnitude (Ω)
0V
-2
-6
-10
-14
1M
100M
Frequency (Hz)
6
Normalized Magnitude (dB)
100M
Frequency (Hz)
-90
100k
-180
10k
-270
ROL
1k
AV = 2
RL = 150Ω
-360
10M
100M
Frequency (Hz)
4
1G
100
1k
10k
100k
1M
10M
Frequency (Hz)
100M
1G
Phase (°)
Normalized Magnitude (dB)
6
EL5197, EL5197A
Typical Performance Curves
(Continued)
PSRR and CMRR vs Frequency
-3dB Bandwidth vs Supply Voltage
20
250
RL = 150Ω
PSRR/CMRR (dB)
0
-20
-3dB Bandwidth (MHz)
PSRR+
PSRR-
-40
CMRR
-60
-80
10k
200
AV = 2
150
AV = 1
AV = -1
100
100k
1M
10M
100M
1G
5
6
Peaking vs Supply Voltage
10
-3dB Bandwidth vs Temperature
300
250
-3dB Bandwidth (MHz)
AV = -1
4
Peaking (dB)
9
Total Supply Voltage (V)
5
AV = 1
3
AV = 2
2
1
200
150
100
50
RL = 150Ω
0
5
6
7
8
9
0
-40
10
RL = 150Ω
10
Total Supply Voltage (V)
Peaking vs Temperature
110
160
Voltage and Current Noise vs Frequency
1k
Voltage Noise (nV/√Hz)
Current Noise (pA/√Hz)
0.8
0.6
0.4
0.2
0
-40
60
Ambient Temperature (°C)
1
Peaking (dB)
8
7
Frequency (Hz)
RL = 150Ω
10
60
110
Ambient Temperature (°C)
5
160
100
iN+
iN-
10
1
100
eN
1k
10k
100k
Frequency (Hz)
1M
10M
EL5197, EL5197A
Typical Performance Curves
(Continued)
Supply Current vs Supply Voltage
10
10
8
Supply Current (mA)
Output Impedance (Ω)
Closed Loop Output Impedance vs Frequency
100
1
0.1
0.01
0.001
100
6
4
2
0
10k
1k
1M
10M
100k
Frequency (Hz)
100M
1G
0
2nd and 3rd Harmonic Distortion vs Frequency
10
12
25
AV = +2
VOUT = 2VP-P
RL = 100Ω
-30
Input Power Intercept (dBm)
Harmonic Distortion (dBc)
4
6
8
Supply Voltage (V)
Two-Tone 3rd Order
Input Referred Intermodulation Intercept (IIP3)
-20
-40
2nd Order
Distortion
-50
-60
3rd Order
Distortion
-70
-80
-90
1
10
Frequency (MHz)
15
10
5
0
-5
100
100
Differential Gain/Phase vs DC Input
Voltage at 3.58MHz
0.04
AV = 2
RL = 150Ω
dP
0.03
AV = 1
RL = 500Ω
dP
0.02
0
dG (%) or dP (°)
0.01
dG
-0.01
-0.02
0.01
-0.01
-0.02
-0.04
-0.03
-0.5
0
DC Input Voltage (V)
6
0.5
1
dG
0
-0.03
-0.05
-1
AV = +2
RL = 100Ω
Frequency (MHz)
Differential Gain/Phase vs DC Input
Voltage at 3.58MHz
0.02
AV = +2
RL = 150Ω
20
-10
10
0.03
dG (%) or dP (°)
2
-0.04
-1
-0.5
0
DC Input Voltage (V)
0.5
1
EL5197, EL5197A
Typical Performance Curves
(Continued)
Output Voltage Swing vs Frequency
THD < 1%
Output Voltage Swing vs Frequency
THD < 0.1%
10
RL = 500Ω
Output Voltage Swing (VPP)
Output Voltage Swing (VPP)
10
8
RL = 150Ω
6
4
2
8
RL = 500Ω
6
RL = 150Ω
4
2
AV = 2
0
AV = 2
0
1
10
Frequency (MHz)
100
1
Small Signal Step Response
10
Frequency (MHz)
100
Large Signal Step Response
VS = ±5V
RL = 150Ω
AV = 2
VS = ±5V
RL = 150Ω
AV = 2
200mV/div
1V/div
10ns/div
10ns/div
Settling Time vs Settling Accuracy
Transimpedance (RoI) vs Temperature
25
625
AV = 2
RL = 150Ω
VSTEP = 5VP-P output
600
15
RoI (kΩ)
Settling Time (ns)
20
10
575
550
5
0
0.01
0.1
Settling Accuracy (%)
7
1
525
-40
10
60
Die Temperature (°C)
110
160
EL5197, EL5197A
Typical Performance Curves
(Continued)
Frequency Response (Gain)
SO8 Package
Frequency Response (Phase)
SO8 Package
90
AV = -1
AV = 2
0
2
AV = 1
-2
Phase (°)
Normalized Magnitude (dB)
6
-6
-10
-90
-180
-270
-14
1M
RL = 150Ω
10M
100M
-360
1M
1G
RL = 150Ω
10M
Frequency (Hz)
100M
1G
Frequency (Hz)
PSRR and CMRR vs Temperature
ICMR and IPSR vs Temperature
90
2
80
1.5
PSRR
ICMR/IPSR (µA/V)
PSRR/CMRR (dB)
70
60
50
CMRR
40
30
ICMR+
1
IPSR
0.5
ICMR-
0
20
10
-40
10
60
110
-0.5
-40
160
10
Die Temperature (°C)
60
110
160
Die Temperature (°C)
Offset Voltage vs Temperature
Input Current vs Temperature
2
60
40
Input Current (µA)
VOS (mV)
1
0
-1
20
IB0
IB+
-20
-40
-2
-40
10
60
Die Temperature (°C)
8
110
160
-60
-40
10
60
Die Temperature (°C)
110
160
EL5197, EL5197A
Typical Performance Curves
(Continued)
Supply Current vs Temperature
Positive Input Resistance vs Temperature
5
60
50
Supply Current (mA)
4
RIN+ (kΩ)
40
30
20
10
0
-40
60
10
110
3
2
1
0
-40
160
10
60
110
160
Die Temperature (°C)
Die Temperature (°C)
Positive Output Swing vs Temperature for Various
Loads
Negative Output Swing vs Temperature for Various
Loads
4.2
-3.5
4.1
150Ω
-3.6
1kΩ
-3.7
VOUT (V)
VOUT (V)
4
3.9
3.8
3.7
150Ω
-3.8
-3.9
-4
1kΩ
3.6
-4.1
3.5
-40
10
60
110
-4.2
-40
160
10
Die Temperature (°C)
60
110
160
Die Temperature (°C)
Output Current vs Temperature
Slew Rate vs Temperature
130
4000
Slew Rate (V/µS)
Sink
IOUT (mA)
125
Source
120
115
-40
10
60
Die Temperature (°C)
9
110
160
3500
3000
2500
-40
AV = 2
RL = 150Ω
10
60
Die Temperature (°C)
110
160
EL5197, EL5197A
Typical Performance Curves
(Continued)
Enable Response
Disable Response
500mV/div
500mV/div
5V/div
5V/div
20ns/div
400ns/div
Package Power Dissipation vs Ambient Temperature
JEDEC JESD51-3 Low Effective Thermal Conductivity
Test Board
0.7
Power Dissipation (W)
A
0.5
0.4
SO
T-2
θJ
3
A =2
56
°C
/W
391mW
0.3
0.2
0.1
0
-50-40 -25
909mW
0.8
8
/W
SO 0°C
1
=1
θ JA
θJ
Power Dissipation (W)
625mW
/W
8
C
SO 60°
=1
0.6
1
0.9
Package Power Dissipation vs Ambient Temperature
JEDEC JESD51-7 High Effective Thermal Conductivity
Test Board
0.7
0.6
0.5
0.4
θJ
435mW
SO
T-2
3
A =2
0.3
0.2
30
°C
/W
0.1
0
25
50
75 85 100
Ambient Temperature (°C)
10
125
0
-50-40 -25
0
25
50
75 85 100
Ambient Temperature (°C)
125
EL5197, EL5197A
Pin Descriptions
8-PIN SO
5-PIN SOT-23 6-PIN SOT-23 PIN NAME
1, 5
2
4
4
FUNCTION
NC
Not connected
IN-
Inverting input
EQUIVALENT CIRCUIT
RG
IN+
IN-
RF
Circuit 1
3
3
3
IN+
Non-inverting input
4
2
2
VS-
Negative supply
6
1
1
OUT
Output
(See circuit 1)
OUT
RF
Circuit 2
7
5
8
6
VS+
Positive supply
5
CE
Chip enable
VS+
CE
VSCircuit 3
11
EL5197, EL5197A
Applications Information
Product Description
The EL5197 is a fixed gain amplifier that offers a wide -3dB
bandwidth of 200MHz and a low supply current of 4mA. The
EL5197 works with supply voltages ranging from a single 5V
to 10V and they are also capable of swinging to within 1V of
either supply on the output. This combination of high
bandwidth and low power, together with aggressive pricing
make the EL5197 the ideal choice for many low-power/highbandwidth applications such as portable, handheld, or
battery-powered equipment.
For varying bandwidth and higher gains, consider the
EL5191 with 1GHz on a 9mA supply current or the EL5193
with 300MHz on a 4mA supply current. Versions include
single, dual, and triple amp packages with 5-pin SOT-23, 16pin QSOP, and 8-pin or 16-pin SO outlines.
temperature and process, external resistor should not be
used to adjust the gain settings.
400
400
-
IN-
+
IN+
FIGURE 1. AV = +2
400
400
IN-
IN+
+
FIGURE 2. AV = -1
Power Supply Bypassing and Printed Circuit
Board Layout
As with any high frequency device, good printed circuit board
layout is necessary for optimum performance. Low
impedance ground plane construction is essential. Surface
mount components are recommended, but if leaded
components are used, lead lengths should be as short as
possible. The power supply pins must be well bypassed to
reduce the risk of oscillation. The combination of a 4.7µF
tantalum capacitor in parallel with a 0.01µF capacitor has
been shown to work well when placed at each supply pin.
Disable/Power-Down
The EL5197A amplifier can be disabled placing its output in
a high impedance state. When disabled, the amplifier supply
current is reduced to < 150µA. The EL5197A is disabled
when its CE pin is pulled up to within 1V of the positive
supply. Similarly, the amplifier is enabled by floating or
pulling its CE pin to at least 3V below the positive supply. For
±5V supply, this means that an EL5197A amplifier will be
enabled when CE is 2V or less, and disabled when CE is
above 4V. Although the logic levels are not standard TTL,
this choice of logic voltages allows the EL5197A to be
enabled by tying CE to ground, even in 5V single supply
applications. The CE pin can be driven from CMOS outputs.
Gain Setting
The EL5197A is built with internal feedback and gain
resistors. The internal feedback resistors have equal value;
as a result, the amplifier can be configured into gain of +1,
-1, and +2 without any external resistors. Figure 1 shows the
amplifier in gain of +2 configuration. The gain error is ±2%
maximum. Figure 2 shows the amplifier in gain of -1
configuration. For gain of +1, IN+ and IN- should be
connected together as shown in Figure 3. This configuration
avoids the effects of any parasitic capacitance on the IN- pin.
Since the internal feedback and gain resistors change with
12
400
IN-
400
+
IN+
FIGURE 3. AV = +1
Supply Voltage Range and Single-Supply
Operation
The EL5197 has been designed to operate with supply
voltages having a span of greater than or equal to 5V and
less than 11V. In practical terms, this means that the EL5197
will operate on dual supplies ranging from ±2.5V to ±5V. With
single-supply, the EL5197 will operate from 5V to 10V.
As supply voltages continue to decrease, it becomes
necessary to provide input and output voltage ranges that
can get as close as possible to the supply voltages. The
EL5197 has an input range which extends to within 2V of
either supply. So, for example, on ±5V supplies, the EL5197
has an input range which spans ±3V. The output range of the
EL5197 is also quite large, extending to within 1V of the
supply rail. On a ±5V supply, the output is therefore capable
of swinging from -4V to +4V. Single-supply output range is
larger because of the increased negative swing due to the
EL5197, EL5197A
external pull-down resistor to ground. Figure 4 shows an ACcoupled, gain of +2, +5V single supply circuit configuration.
400
+5
decouple the EL5197 from the cable and allow extensive
capacitive drive. However, other applications may have high
capacitive loads without a back-termination resistor. In these
applications, a small series resistor (usually between 5Ω and
50Ω) can be placed in series with the output to eliminate
most peaking.
Current Limiting
400
+5
0.1µF
+
VOUT
1k
Power Dissipation
0.1µF
VIN
The EL5197 has no internal current-limiting circuitry. If the
output is shorted, it is possible to exceed the Absolute
Maximum Rating for output current or power dissipation,
potentially resulting in the destruction of the device.
1k
FIGURE 4.
Video Performance
For good video performance, an amplifier is required to
maintain the same output impedance and the same
frequency response as DC levels are changed at the output.
This is especially difficult when driving a standard video load
of 150Ω, because of the change in output current with DC
level. Previously, good differential gain could only be
achieved by running high idle currents through the output
transistors (to reduce variations in output impedance.) These
currents were typically comparable to the entire 4mA supply
current of each EL5197 amplifier. Special circuitry has been
incorporated in the EL5197 to reduce the variation of output
impedance with current output. This results in dG and dP
specifications of 0.03% and 0.04°, while driving 150Ω at a
gain of 2.
Video performance has also been measured with a 500Ω
load at a gain of +1. Under these conditions, the EL5197 has
dG and dP specifications of 0.03% and 0.04°, respectively.
With the high output drive capability of the EL5197, it is
possible to exceed the 125°C Absolute Maximum junction
temperature under certain very high load current conditions.
Generally speaking when RL falls below about 25Ω, it is
important to calculate the maximum junction temperature
(TJMAX) for the application to determine if power supply
voltages, load conditions, or package type need to be
modified for the EL5197 to remain in the safe operating area.
These parameters are calculated as follows:
T JMAX = T MAX + ( θ JA × n × PD MAX )
where:
TMAX = Maximum ambient temperature
θJA = Thermal resistance of the package
n = Number of amplifiers in the package
PDMAX = Maximum power dissipation of each amplifier in
the package
PDMAX for each amplifier can be calculated as follows:
V OUTMAX
PD MAX = ( 2 × V S × I SMAX ) + ( V S - V OUTMAX ) × ---------------------------R
L
Output Drive Capability
In spite of its low 4mA of supply current, the EL5197 is
capable of providing a minimum of ±95mA of output current
with a minimum of ±95mA of output drive.
where:
VS = Supply voltage
Driving Cables and Capacitive Loads
ISMAX = Maximum supply current of 1A
When used as a cable driver, double termination is always
recommended for reflection-free performance. For those
applications, the back-termination series resistor will
VOUTMAX = Maximum output voltage (required)
RL = Load resistance
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
13