iDESYN Preliminary iD8255 Dual 1.5MHz, 800mA Synchronous Step-Down Converter General Description Applications The iD8255 is a dual PWM step-down converter TV Tuner/Box containing two independent 1.5MHz constant Portable Instrument frequency, and current mode outputs. Each channel DataCom integrates a main switch and a synchronous rectifier PDAs for high efficiency with no external Schottky diode 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 iD8255 - □□ □□□ □ 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD needed. The iD8255 is suitable for powering portable Features equipment that operates from a single cell Lithium-Ion 800mA Output Current on Each Channel (Li+) battery to 5.5V power source. Each converter can 2.5V to 5.5V Input Voltage Range supply 800mA of load current from a 2.5V to 5.5V input 1.5MHz Constant Frequency Operation voltage. The iD8255 can also run at 100% duty cycle Low Dropout Operation at 100% Duty Cycle for low dropout applications. Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 μA Shutdown Current Current Mode Operation Over Temperature Protection Over Current Protection Up to 95% Efficiency Internally Compensated Lead Free and Green Devices Available Ordering Information Taping Package R: Tape and Reel F3A:DFN-10 (3x3) (RoHS / Green Compliant) Output Voltage Voltage Code Adjustable AD Marking Information For marking information, please contact our sales representative directly or through distributor around your location. Jan. 2010 1 V0.1 iDESYN Preliminary iD8255 Typical Application Circuit (Adjustable Operation) VIN1/IN2 2.5V ~5.5V CIN1 4.7μF 8 R5 100KΩ 3 R6 100KΩ IN2 IN1 CIN2 4.7μF 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD 1 OFF ON VOUT1 1.8V 800mA COUT1 10μF L1 2.2μH 10 C3 22pF R1 300KΩ EN1 2 EN2 SW2 SW1 FB1 R2 150KΩ FB2 GND1 Supply Voltage VIN 6V Power Dissipation, PD @ TA=25°C DFN -10(3x3) 2.083W Lead Temperature Storage Temperature Jan. 2010 OFF ON L2 2.2μH C4 22pF 7 R3 680KΩ VOUT2 3.3V 800mA COUT2 10μF R4 150KΩ 4 Recommended Operating Conditions Input Voltage VIN 2.5V to 5.5V EN Input Voltage 0V to VIN Junction Temperature Thermal Resistance, θja DFN -10(3x3) 5 GND2 9 Absolute Maximum Ratings (Note 1) 6 Ambient Operating Temperature -40°C to 125°C -40°C to 85°C 48°C/W 260°C -65°C to 150°C 2 V0.1 iDESYN Preliminary iD8255 Pin Configurations (Top View) (Top View) DFN-10 (3mm x 3mm) EN1 1 10 SW1 FB1 2 9 GND1 IN2 3 8 IN1 GND2 4 7 FB2 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD SW2 5 6 EN2 Exposed pad on backside Pin Description Number Name Description 1 EN1 Channel 1 Enable Control Input. Drive EN1 above 1.5V to turn on the Channel 1. Drive EN1 below 0.3V to turn off. In shutdown situation, all functions are disabled to decrease the supply current below 1μA.There is no pull high or pull low ability inside. 2 FB1 Channel 1 Feedback Input. Connect FB1 to the center point of the external resistor divider. The feedback voltage is 0.6V. 3 IN2 Channel 2 Supply Input. Bypass to GND with a 4.7μF or greater ceramic capacitor. 4 GND2 5 SW2 Channel 2 Power Switch Output. Inductor connection to drains of the internal PMOSFET and NMOSFET switches. 6 EN2 Channel 2 Enable Control Input. Drive EN2 above 1.5V to turn on the Channel 2. Drive EN2 below 0.3V to turn it off. In shutdown situation, all functions are disabled to decrease the supply current below 1μA.There is no pull high or pull low ability inside. 7 FB2 Channel 2 Feedback Input. Connect FB2 to the center point of the external resistor divider. The feedback voltage is 0.6V. 8 IN1 Channel 1 Supply Input. Bypass to GND with a 4.7μF or greater ceramic capacitor. 9 GND1 10 SW1 Jan. 2010 Ground 2. Connected the exposed pad to GND2. Ground 1. Connected the exposed pad to GND1. Channel 1 Power Switch Output. Inductor connection to drains of the internal PMOSFET and NMOSFET switches. 3 V0.1 iDESYN Preliminary iD8255 Functional Block Diagram 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD Jan. 2010 4 V0.1 iDESYN Preliminary iD8255 Electrical Characteristics (Unless otherwise specified VIN=5.0V, FOSC=1.5MHz, TA=25oC) Parameters Condition Min Typ Max Units Reference Voltage VFB Quiescent Current Shutdown Current Under Voltage Lockout Threshold Operating Voltage Range –40°C ≤ TA ≤ +85°C VEN = VIN = 5V, VFB=0.65V VEN = 0V ; VIN = 5V VEN pull high; VIN falling 0.582 0.600 50 0.1 1.60 0.618 100 1.0 1.88 5.5 V μA μA V V PMOSFET ON Resistance RON IOUT=200mA NMOSFET ON Resistance RON 1.0 2.5 VIN=3.6V 0.37 VIN=2.5V 0.45 VIN=3.6V VIN=2.5V VOUT = VIN = 5V ; VEN = 0V VSW = 0V or 5V VIN = 2.5V to 5.5V VIN = 2.5V to 5.5V VEN = VIN = 5V -40oC ≦ TA ≦ +85oC VEN = 0V to 5.5V Ω 0.55 0.63 IOUT=200mA Ω 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD SW Leakage Current Current Limit Oscillation Frequency Thermal Shutdown Threshold EN Threshold Voltage EN Input Current Maximum Duty Cycle 0.01 1 1.2 0.3 1.5 165 0.96 0.01 100 1.0 μA 1.8 1.8 A MHz o C V μA % 1.5 1.0 Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Jan. 2010 5 V0.1 iDESYN Preliminary iD8255 Typical Performance Characteristics (Unless otherwise specified TA=25℃). Efficiency vs. Output Current 100% 100% 90% 90% 80% 80% Efficiency Efficiency Efficiency vs. Output Current 70% 70% 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD 60% VIN = 5.0V 60% VIN = 4.2V VIN = 5.0V 50% 50% VIN = 4.2V VEN = VIN, VOUT = 3.3V, L = 2.2μH 40% 0 100 200 300 400 500 600 700 VIN = 3.3V VIN = 2.5V VEN = VIN, VOUT = 1.2V, L = 2.2μH 40% 800 0 100 200 300 400 500 600 700 800 Output Current (mA) Output Current (mA) Feedback Voltage vs. Output Current Feedback Voltage vs. Temperature 0.63 0.63 VIN = 4.2V 0.62 VIN = 3.3V VIN = 2.5V 0.61 0.60 0.59 0.58 VEN = VIN, L = 2.2μH 0.57 0 100 200 300 400 500 600 700 0.62 0.61 0.60 0.59 0.58 800 -40 -25 -10 20 35 50 65 80 95 110 125 Temperature (℃) Frequency vs. Input Voltage Frequency vs. Temperature 1.80 1.70 1.70 1.60 1.50 1.40 1.30 VEN = VIN, IOUT = 800mA 1.20 3 3.5 4 4.5 5 1.60 1.50 1.40 1.30 VEN = VIN = 5.0V, IOUT = 800mA 1.20 -40 -25 -10 5.5 Input Voltage (V) Jan. 2010 5 Output Current (mA) 1.80 2.5 VEN = VIN = 5.0V, IOUT = 800mA 0.57 Frequency (MHz) Frequency (MHz) Feedback Voltage (V) Feedback Voltage (V) VIN = 5.0V 5 20 35 50 65 80 95 110 125 Temperature (℃) 6 V0.1 iDESYN Preliminary iD8255 Standby Current vs. Temperature 120 120 100 100 Standby Current (μA) Standby Current (μA) Standby Current vs. Input Voltage 80 60 40 80 60 40 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD 20 20 VEN1 = VEN2 = VIN, No Load VEN1 = VEN2 = VIN =5.0V, No Load 0 0 3 3.5 4 4.5 5 5.5 -40 -20 0 20 40 100 120 140 Quiescent Current vs. Input Voltage Quiescent Current vs. Temperature 60 50 50 40 30 20 10 VEN1 = VEN2 = VIN, No Switching 0 40 30 20 10 VEN1 = VEN2 = VIN =5.0V, No Switching 0 2.5 3 3.5 4 4.5 5 5.5 -40 -20 0 20 40 60 80 100 120 140 Input Voltage (V) Temperature (℃) Shutdown Current vs. Input Voltage Shutdown Current vs. Temperature 0.1 0.96 VEN1 = VEN2 = GND Shutdown Current (μA) VEN1 = VEN2 = GND Shutdown Current (μA) 80 Temperature (℃) 60 0.08 0.06 0.04 0.02 0 0.80 0.64 0.48 0.32 0.16 0.00 2.5 3 3.5 4 4.5 5 5.5 -40 Input Voltage (V) Jan. 2010 60 Input Voltage (V) Quiescent Current (μA) Quiescent Current (μA) 2.5 -20 0 20 40 60 80 100 120 140 Temperature (℃) 7 V0.1 iDESYN Preliminary iD8255 Current Limit vs. Input Voltage P-MOS RDS(ON) vs. Input Voltage 1.8 0.7 0.6 P-MOS RDS(ON) (Ω) Current Limit (A) 1.6 1.4 1.2 0.5 0.4 0.3 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD 1.0 0.2 ILOAD = 800mA VIN = VEN, VFB = 0V ILOAD = 400mA VEN1 = VEN2 = VIN 0.8 0.1 2.5 3.0 3.5 4.0 4.5 5.0 5.5 2.5 Input Voltage (V) 3 3.5 4 4.5 5 5.5 Input Voltage (V) Enable Threshold Voltage vs. Input Voltage UVLO Enable Threshold Voltage (V) 0.9 ON OFF 0.8 VIN (DC) (2V/Div) 0.7 0.6 VSW (DC) (2V/Div) 0.5 0.4 0.3 2.5 3.0 3.5 4.0 4.5 5.0 VIN = 5.0V, VOUT = 1.2V, L = 2.2μH, IOUT = 100mA 5.5 Input Voltage (V) Time (10ms/Div) Steady State Operating Steady State Operating VSW (DC) (5V/Div) VSW (DC) (5V/Div) VOUT (AC) (20mV/Div) VOUT (AC) (20mV/Div) ISW (DC) (500mA/Div) ISW (DC) (500mA/Div) Jan. 2010 VIN = 5.5V, VOUT = 1.2V, L = 2.2μH, IOUT = 400mA VIN = 5.5V, VOUT = 3.3V, L = 2.2μH, IOUT = 400mA Time (500ns/Div) Time (1μs/Div) 8 V0.1 iDESYN Preliminary iD8255 Steady State Operation Steady State Operation VSW (DC) (5V/Div) VSW (DC) (5V/Div) VOUT (AC) (20mV/Div) VOUT (AC) (5mV/Div) ISW (DC) (500mA/Div) ISW (DC) (500mA/Div) 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD VIN = 5.5V, VOUT = 1.2V, L = 2.2μH, IOUT = 800mA VIN = 5.5V, VOUT = 3.3V, L = 2.2μH, IOUT = 800mA Time (500ns/Div) Time (500ns/Div) Cross Regulation Cross Regulation SW1 (DC) (5V/Div) SW1 (DC) (5V/Div) VOUT1 (AC) (20mV/Div) VOUT1 (AC) (20mV/Div) SW2 (DC) (5V/Div) SW2 (DC) (5V/Div) VOUT2 (AC) (20mV/Div) VOUT2 (AC) (20mV/Div) Time (500ns/Div) Time (500ns/Div) VIN = 5.5V, VIN = 5.5V, VOUT1 = 1.2V, L1 = 2.2μH, IOUT1 = 400mA , VOUT2 = 3.3V, L2 = 2.2μH, IOUT2 = 400mA VOUT1 = 1.2V, L1 = 2.2μH, IOUT1 = 800mA , VOUT2 = 3.3V, L2 = 2.2μH, IOUT2 = 800mA Load Transient Response Load Transient Response VOUT1 (AC) (100mV/Div) VOUT1 (AC) (100mV/Div) IOUT1 (DC) (500mA/Div) IOUT1 (DC) (500mA/Div) VOUT2 (AC) (100mV/Div) VOUT2 (AC) (100mV/Div) IOUT2 (DC) (500mA/Div) IOUT2 (DC) (500mA/Div) Time (200μs/Div) Time (200μs/Div) VIN = 5.0V, VIN = 5.0V, VOUT1 = 1.2V, C3=22pF, L1 = 2.2μH, IOUT1 = 100mA~600mA, VOUT2 = 3.3V, C4=220pF, L2 = 2.2μH, IOUT2 = 100mA~600mA VOUT1 = 1.2V, C3=220pF, L1 = 2.2μH, IOUT1 = 400mA~800mA, VOUT2 = 3.3V, C4=220pF, L2 = 2.2μH, IOUT2 = 400mA~800mA Jan. 2010 9 V0.1 iDESYN Preliminary Power On from VIN iD8255 Power On from VIN VIN (DC) (5V/Div) VIN (DC) (5V/Div) VOUT (DC) (1V/Div) VOUT (DC) (2V/Div) IIN (DC) (1A/Div) IIN (DC) (500mA/Div) 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD (Resistive Load) VIN = 5.5V, VOUT = 1.2V, L = 2.2μH, IOUT = 800mA (Resistive Load) VIN = 5.5V, VOUT = 3.3V, L = 2.2μH, IOUT = 800mA Time (250μs/Div) Time (500μs/Div) Power On from EN Power On from EN VEN (DC) (5V/Div) VEN (DC) (5V/Div) VOUT (DC) (500mV/Div) VOUT (DC) (2V/Div) IIN (DC) (500mA/Div) IIN (DC) (200mA/Div) (Resistive Load) VIN = 5.5V, VOUT = 1.2V, L = 2.2μH, IOUT = 800mA (Resistive Load) VIN = 5.5V, VOUT = 3.3V, L = 2.2μH, IOUT = 800mA Time (100μs/Div) Jan. 2010 Time (100μs/Div) 10 V0.1 iDESYN Preliminary iD8255 Functional Description the main switch is held on continuously to deliver The iD8255 is a constant frequency current mode current to the output up to the PFET current limit. The PWM step-down converter. The iD8255 is optimized output voltage then is the input voltage minus the for low voltage, Li-Ion battery powered applications voltage drop across the main switch and the inductor. where high efficiency and small size are critical. The Short Circuit Protection iD8255 uses an external resistor divider to set the The iD8255 has a short circuit protection. When the output voltage from 0.6V to 6V. The device integrates output is shorted to ground, the oscillator frequency is both a main switch and a synchronous rectifier, which reduced to prevent the inductor current from increasing 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD provides high efficiency and eliminates an external beyond the PFET current limit. The PFET current limit Schottky diode. The iD8255 can achieve 100% duty is also reduced to lower the short circuit current. The cycle. The duty cycle D of a step-down converter is frequency and current limit will return to the normal defined as: values once the short circuit condition is removed and D = TON × f OSC × 100% ≈ the feedback voltage reaches 0.6V. VOUT × 100% VIN Maximum Load current where TON is the main switch on time, and fOSC is the The iD8255 can operate down to 2.2V input voltage, oscillator frequency 1.5MHz. however the maximum load current decreases at lower Current Mode PWM Control input due to large IR drop on the main switch and Slope compensated current mode PWM control synchronous rectifier. The slope compensation signal provides stable switching and cycle-by-cycle current reduces the peak inductor current as a function of the limit for superior load and line response and protection duty cycle to prevent sub-harmonic oscillations at duty of the internal main switch and synchronous rectifier. cycles greater than 50%. Conversely the current limit The iD8255 switches at a constant frequency and increases as the duty cycle decreases. regulates the output voltage. During each cycle the Output Voltage Setting PWM comparator modulates the power transferred to The external resistor divider sets the output voltage. the load by changing the inductor peak current based The feedback resistor R1 also sets the feedback loop on the feedback error voltage. During normal operation, bandwidth with the internal compensation capacitor. the main switch is turned on for a certain time to ramp Choose R1 around 300kΩ for optimal transient the inductor current at each rising edge of the internal response. R2 is then given by: oscillator, and switched off when the peak inductor current is above the error voltage. When the main ⎡ V ⎞ - 1⎤ R2 = R1/ ⎢⎛⎜ OUT ⎟ ⎥ 0.6 ⎠ ⎦ ⎣⎝ switch is off, the synchronous rectifier will be turned on Inductor Selection immediately and stay on until either the next cycle A 1μH to 10μH inductor with DC current rating at least starts. 25% higher than the maximum load current is The iD8255 allows the main switch to remain on for recommended more than one switching cycle and increases the duty efficiency, the inductor DC resistance shall be <200mΩ. cycle while the input voltage is dropping close to the For most designs, the inductance value can be derived output voltage. When the duty cycle reaches 100%, from the following equation: Jan. 2010 11 for most applications. For best V0.1 iDESYN L= Preliminary VOUT × (VIN - VOUT ) VIN × ΔI L × f OSC iD8255 PD ( MAX ) = (T ( J MAX ) − TA ) θ JA where ΔIL is Inductor Ripple Current. Choose inductor Where TJ(MAX) is the maximum operation junction ripple current approximately 30% of the maximum load temperature 125°C, TA is the ambient temperature and current, 600mA. The maximum inductor peak current is: the θJA is the junction to ambient thermal resistance. I L(MAX) = I LOAD + ΔI L 2 For recommended operating conditions specification of iD8255 where TJ(MAX) is the maximum junction Under light load conditions below 100mA, larger temperature of the die (125°C) and TA is the maximum 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD inductance is recommended for improved efficiency. ambient temperature. The junction to ambient thermal Input Capacitor Selection resistance θJA is layout dependent. For DFN-10(3x3) The input capacitor reduces the surge current drawn packages, the thermal resistance θJA is 48°C/W on the from the input and switching noise from the device. standard JEDEC 51-7 four-layers thermal test board. The input capacitor impedance at the switching The maximum power dissipation at TA = 25°C can be frequency shall be less than input source impedance to calculated by following formula: prevent high frequency switching current passing to PD(MAX) = (125°C − 25°C ) / (48°C/W) = 2.083W the input. Ceramic capacitors with X5R or X7R for DFN-10(3x3) packages. The maximum power dielectrics are highly recommended because of their dissipation depends on operating ambient temperature low ESR and small temperature coefficients. For most for fixed TJ(MAX) and thermal resistance θJA. For iD8255 applications, a 4.7μF capacitor is sufficient. Output packages, the Figure of de-rating curves allows the Capacitor Selection The output capacitor keeps output designer to see the effect of rising ambient voltage ripple small and ensures regulation loop stable. temperature on the maximum power allowed. The output capacitor impedance shall be low at the switching frequency. Ceramic capacitors with X5R or Maximum Power Dissipation ΔVOUT is approximately: ΔVOUT ⎤ V × (VIN - VOUT ) ⎡ 1 ≤ OUT × ⎢ESR + ⎥ VIN × f OSC × L 8 × f OSC × C3 ⎦ ⎣ Thermal Considerations For continuous operation, do not exceed the maximum operation junction temperature 125°C. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings Maximum Power Dissipation (W) X7R dielectrics are recommended. The output ripple 2.5 2 1.5 1 0.5 0 0 25 50 75 100 125 Ambient Temperature(˚C) airflow and temperature difference between junctions to ambient. The maximum power dissipation can be calculated by following formula: Jan. 2010 12 V0.1 iDESYN Preliminary iD8255 Layout Considerations When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the iD8255. These items are also illustrated graphically in layout diagram. Check the following in your layout: 1. The power traces, consisting of the GND trace, the SW trace and the IN trace should be kept short, direct and wide. 2. Does the FB pin connect directly to the VOUT? The R1 resistance must be connected between the (+) plate of COUT1. The R3 resistance must be connected between the (+) plate of COUT2. 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD 3. Does the (+) plate of CIN connect to IN pin as closely as possible? This capacitor avoided the AC current to the internal power MOSFETs. 4. Keep the switching node “SW” away from the sensitive FB node. 5. Keep the (–) plates of CIN1 and COUT1 as close as possible. 6. Keep the (–) plates of CIN2 and COUT2 as close as possible. COUT must be near iD8255. The resistor divider, R1 and R2, must be connected between the (+) plate of COUT and a ground line terminated near GND. FB node copper area should be minimized and keep far away from noise sources (SW, IN). COUT1 L1 SW should be connected to Inductor by wide and short trace, keep sensitive compontents away from this trace. iD8255 R2 R1 CR1 EN1 1 10 SW1 FB1 2 9 GND1 IN2 3 8 IN1 GND2 4 7 FB2 CIN2 CIN must be placed between IN and GND as closer as Possible. GND CIN1 CR3 R3 R4 SW2 5 6 EN2 L2 Top layer Bottom layer COUT2 The exposed pad and GND should be connected to a strong ground plane for heat sinking and noise prevention. PCB Layout Guide Jan. 2010 13 V0.1 iDESYN Preliminary iD8255 Packaging DFN-10 (3mm x 3mm) 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD SYMBOLS A A1 A3 b D D1 E E1 e L θ Jan. 2010 DIMENSIONS IN MILLIMETERS MIN 0.80 0.00 --0.18 2.95 --2.85 ----0.30 -12° NOM 0.90 0.01 0.2 REF 0.23 3.0 BSC 2.2 BSC 3.0 BSC 1.6 BSC 0.5BSC 0.40 --- MAX 1.00 0.03 --0.28 3.03 --3.15 ----0.50 0° 14 DIMENSIONS IN INCH MIN 0.031 0.000 --0.0071 0.116 --0.116 ----0.012 -12° NOM 0.035 0.0004 0.008 0.009 0.118 0.087 0.118 0.063 0.020 0.016 --- MAX 0.039 0.0012 --0.011 0.119 --0.119 ----0.020 --- V0.1 iDESYN Preliminary iD8255 Footprint DFN-10 (3mm x 3mm) 5 6 司 0 2 公 0 限 1 3 有 2 技 m 5 o 5 商 科 c 7 . 0 ic 理 业 / 代 伟 5 y 5 级 鑫 w 1 x 6 一 鸿 h ) . 0 市 w 1 体 w 3 圳 w 深 55-2 :// 半导 p 7 力 t 0 t : 益 H L ( n TE y s e iD Jan. 2010 Package Number of PIN DFN-10 (3x3) 10 Footprint Dimension (mm) P A B C D Sx Sy M 0.50 3.80 2.10 0.85 0.30 2.50 1.50 2.30 15 Tolerance ±0.030 V0.1