ETC MAX16801

19-3880; Rev 2; 1/10
ৰ‫ۇ‬
భᄋ৙ຶ
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
``````````````````````````````````` ᄂቶ
NBY27912B0C0NBY27913B0Cဵ঱ೡࣞ)IC* MFEདࣅ໭఼
ᒜJDLjด‫਺۞ݝ‬೫࿸ଐጙৈ౑ၒྜྷपᆍMFEདࣅ໭Ⴥኊࡼ
ཝ‫࢟ݝ‬വLjး੝ᄰ፿ᑍීਜ਼መာ።፿ăNBY27912ऻ‫ޟ‬း
੝ᄰ፿ၒྜྷ)96WBDᒗ376WBDᑳഗ࢟ኹၒྜྷ*! MFEདࣅ໭Lj
NBY27913း፿᎖ࢅၒྜྷ࢟ኹ)21/9WEDᒗ35WED*! MFEད
ࣅ໭ă
♦ း੝cvdlĂcpptuĂgmzcbdlĂTFQJDਜ਼໚჈ᅠແ
ኊገறමࢯஂMFE࢟ഗဟLjభಽ፿ຢ࿟ࡼᇙ‫ތ‬हࡍ໭ጲૺ
றࣞᆐ2&ࡼ૥ᓰăᄰਭࢅຫQXNೡࣞࢯஂభဣሚ୷౑ࡼ
ೡࣞࢯஂपᆍă
♦ ด‫ࡒݝ‬ᎌᇙ‫ތ‬हࡍ໭ਜ਼2&றࣞࡼ૥ᓰLjభဣሚறමࡼ
MFE࢟ഗࢯஂ
NBY279120NBY27913௥ᎌၒྜྷ་ኹჄࢾ)VWMP*ᄂቶLjభ
࿸ᒙၒྜྷ໪ࣅ࢟ኹLj݀భཀྵۣᏴ࢟Ꮞࢰൢဟᑵ‫ޟ‬৔ᔫă
NBY27912௥ᎌ୷঱ᒣૄ࢟ኹࡼด‫ݝ‬ᔈ௟་ኹჄࢾ࢟വLj
࠭ऎ଼છ೫ಭሣါMFEདࣅ໭ࡼ࿸ଐăNBY27913ด‫ݝ‬඗
ᎌᑚৈᔈ௟࢟വLjభᒇ୻ᎅ,23W࢟ኹᄋ৙ມᒙ࢟Ꮞă
♦ 373lI{ ±23&ࡼৼࢾఎਈຫൈ
ด‫ݝ‬ᆈࢯࡼ373lI{ৼࢾఎਈຫൈᏤ኏ᎁછኡᐋࠟቶᏄୈ
ਜ਼൉݆ᏄୈLj࠭ऎဣሚஜ࠯Ă঱ቶଥ‫ ࡼ܈‬MFE དࣅ໭ă
NBY27912B0NBY27913Bࡼᔢࡍᐴహ‫܈‬ᆐ61&LjNBY27912C0
NBY27913Cࡼᔢࡍᐴహ‫܈‬ᆐ86&ăᑚቋ໭ୈ௿‫ݧ‬፿9፛୭
μNBY® ॖᓤLjభ৔ᔫᏴ.51°Dᒗ,96°Dᆨࣞपᆍă
♦ ௥ᎌ୷঱ᒣૄ࢟ኹࡼด‫ݝ‬ᔈ௟VWMP! )NBY27912*
♦ ঱ࡉ61X૞ৎ঱ࡼၒ߲৖ൈ
♦ ᄰ፿ಭሣၒྜྷ࢟ኹपᆍǖ
ᑳഗઁࡼ96WBDᒗ376WBD! )NBY27912*
♦ JO፛୭ᒇ୻ᎅ21/9WEDᒗ35WEDၒྜྷདࣅ)NBY27913*
♦ QXN૞ሣቶೡࣞࢯஂ
♦ ེਈࣥ
♦ ၫᔊྟ໪ࣅ
♦ భ‫߈ܠ‬ၒྜྷ໪ࣅ࢟ኹ
♦ 56μB! )࢜ቯᒋ*໪ࣅ࢟Ꮞ࢟ഗLj2/5nB! )࢜ቯᒋ*
৔ᔫ࢟Ꮞ࢟ഗ
♦ 61&! )NBY27912B0NBY27913B*૞86&
)NBY27912C0NBY27913C*ᔢࡍᐴహ‫܈‬
♦ ‫ݧ‬፿ᆈቯ9፛୭μNBYॖᓤ
``````````````````````````````````` ።፿
ಭሣါED.ED! MFEདࣅ໭
࿜ጓᎧ৔ጓᑍී
SHC۳਒Lj፿᎖MDE! UWਜ਼
ପ၁໭
ᓤြᎧ୐ᓔᑍී
``````````````````````````````` ࢾ৪ቧᇦ
TEMP
RANGE
PART
μNBYဵNbyjn! Joufhsbufe! Qspevdut-! Jod/ࡼᓖ‫ݿ‬࿜‫ܪ‬ă
PINPACKAGE
MAX16801AEUA+
-40°C to +85°C
MAX16801BEUA+
-40°C to +85°C
8 μMAX
8 μMAX
MAX16802AEUA+
-40°C to +85°C
8 μMAX
MAX16802BEUA+
-40°C to +85°C
8 μMAX
, ‫ܭ‬ာᇄ໺ॖᓤă
`````````````````````````````````````````````````````````````````````` ࢜ቯ৔ᔫ࢟വ
10.8VDC TO 24VDC
ENABLE
UVLO/EN
IN
C3
L1
DIM/FB
VCC
PWM
LEDs
D1
MAX16802B
COMP
CS
Q1
NDRV
GND
C1
C2
R1
GND
வসǖNBY279120NBY27913࿸ଐ৔ᔫ᎖঱ኹሆLjᓖፀቃቦ‫ݷ‬ᔫă
________________________________________________________________ Maxim Integrated Products
1
‫۾‬ᆪဵ፞ᆪၫ௣ᓾ೯ࡼፉᆪLjᆪᒦభถࡀᏴडፉ࿟ࡼ‫ݙ‬ᓰཀྵ૞ࡇᇙăྙኊ஠ጙ‫ݛ‬ཀྵཱྀLj༿Ᏼิࡼ࿸ଐᒦ‫ݬ‬ఠ፞ᆪᓾ೯ă
ᎌਈଥৃĂ৙ૡૺࢿ৪ቧᇦLj༿ೊ൥Nbyjn዇ᒴሾ၉ᒦቦǖ21911!963!235:!)۱ᒦਪཌ*Lj21911!263!235:!)ฉᒦਪཌ*Lj
૞षᆰNbyjnࡼᒦᆪᆀᐶǖdijob/nbyjn.jd/dpnă
NBY27912B0C0NBY27913B0C
``````````````````````````````````` গၤ
NBY27912B0C0NBY27913B0C
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
ABSOLUTE MAXIMUM RATINGS
IN to GND..........................................................................-0.3V to +30V
VCC to GND ......................................................................-0.3V to +13V
DIM/FB, COMP, UVLO/EN, CS to GND....................-0.3V to +6V
NDRV to GND.............................................-0.3V to (VCC + 0.3V)
Continuous Power Dissipation (TA = +70°C)
8-Pin μMAX (derate 4.5mW/°C above +70°C) ..............362mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range ............................-65°C to +150°C
Junction Temperature ......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VIN = +12V (MAX16801: VIN must first be brought up to +23.6V for startup), 10nF bypass capacitors at IN and VCC, CNDRV = 0μF,
VUVLO/EN = +1.4V, VDIM/FB = +1.0V, COMP = unconnected, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values
are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
UNDERVOLTAGE LOCKOUT/STARTUP
Bootstrap UVLO Wake-Up Level
VSUVR
VIN rising (MAX16801 only)
19.68
21.6
23.60
V
Bootstrap UVLO Shutdown Level
VSUVF
VIN falling (MAX16801 only)
9.05
9.74
10.43
V
UVLO/EN Wake-Up Threshold
VULR2
UVLO/EN rising
1.188
1.28
1.371
V
UVLO/EN Shutdown Threshold
VULF2
UVLO/EN falling
1.168
1.23
1.291
UVLO/EN Input Current
IUVLO
TJ = +125°C
ISTART
VIN = +19V, for MAX16801 only when in
bootstrap UVLO
UVLO/EN Hysteresis
IN Supply Current In
Undervoltage Lockout
IN Voltage Range
UVLO/EN Propagation Delay
Bootstrap UVLO Propagation
Delay
VIN
V
25
nA
50
mV
45
10.8
tEXTR
UVLO/EN steps up from +1.1V to +1.4V
12
tEXTF
UVLO/EN steps down from +1.4V to +1.1V
1.8
tBUVR
VIN steps up from +9V to +24V
5
tBUVF
VIN steps down from +24V to +9V
1
VCCSP
VIN = +10.8V to +24V, sinking 1μA to 20mA
from VCC
90
μA
24
V
μs
μs
INTERNAL SUPPLY
VCC Regulator Set Point
IN Supply Current After Startup
IIN
Shutdown Supply Current
7
VIN = +24V
1.4
UVLO/EN = low
10.5
V
2.5
mA
90
μA
GATE DRIVER
Driver Output Impedance
Measured at NDRV sinking, 100mA
2
4
RON(HIGH) Measured at NDRV sourcing, 20mA
RON(LOW)
4
12
Driver Peak Sink Current
Driver Peak Source Current
Ω
1
A
0.65
A
PWM COMPARATOR
Comparator Offset Voltage
CS Input Bias Current
Comparator Propagation Delay
Minimum On-Time
2
VOPWM
ICS
tPWM
tON(MIN)
VCOMP - VCS
VCS = 0V
VCS = +0.1V
1.15
1.38
-2
1.70
V
+2
μA
60
ns
150
ns
_______________________________________________________________________________________
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
(VIN = +12V (MAX16801: VIN must first be brought up to +23.6V for startup), 10nF bypass capacitors at IN and VCC, CNDRV = 0μF,
VUVLO/EN = +1.4V, VDIM/FB = +1.0V, COMP = unconnected, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values
are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
262
291
320
mV
+2
μA
CURRENT-SENSE COMPARATOR
Current-Sense Trip Threshold
VCS
CS Input Bias Current
ICS
Propagation Delay From
Comparator Input to NDRV
Switching Frequency
Maximum Duty Cycle
tPWM
VCS = 0V
50mV overdrive
fSW
DMAX
-2
60
230
ns
262
290
MAX1680_A
50
50.5
MAX1680_B
75
76
26.1
29.0
kHz
%
IN CLAMP VOLTAGE
IN Clamp Voltage
VINC
2mA sink current, MAX16801 only (Note 3)
24.1
V
ERROR AMPLIFIER
Voltage Gain
RLOAD = 100kΩ
80
dB
Unity-Gain Bandwidth
RLOAD = 100kΩ, CLOAD = 200pF
2
MHz
Phase Margin
RLOAD = 100kΩ, CLOAD = 200pF
65
DIM/FB Input Offset Voltage
Degrees
3
COMP Clamp Voltage
High
2.2
3.5
Low
0.4
1.1
mV
V
Source Current
0.5
mA
Sink Current
0.5
mA
Reference Voltage
VREF
(Note 2)
1.218
1.230
Input Bias Current
COMP Short-Circuit Current
8
1.242
V
50
nA
mA
THERMAL SHUTDOWN
Thermal-Shutdown Temperature
130
°C
Thermal Hysteresis
25
°C
15,872
Clock
cycles
Reference Voltage Steps During
Soft-Start
31
Steps
Reference Voltage Step
40
mV
DIGITAL SOFT-START
Soft-Start Duration
Note 1: All devices are 100% tested at TA = +85°C. All limits over temperature are guaranteed by characterization.
Note 2: VREF is measured with DIM/FB connected to the COMP pin (see the Functional Diagram).
Note 3: The MAX16801 is intended for use in universal input offline drivers. The internal clamp circuit is used to prevent the bootstrap capacitor (C1 in Figure 5) from charging to a voltage beyond the absolute maximum rating of the device when
UVLO/EN is low. The maximum current to IN (hence to clamp) when UVLO/EN is low (device in shutdown), must be externally limited to 2mA (max). Clamp currents higher than 2mA may result in clamp voltage higher than +30V, thus exceeding
the absolute maximum rating for IN. For the MAX16802, do not exceed the +24V maximum operating voltage of the device.
_______________________________________________________________________________________
3
NBY27912B0C0NBY27913B0C
ELECTRICAL CHARACTERISTICS (continued)
`````````````````````````````````````````````````````````````````````` ࢜ቯ৔ᔫᄂቶ
(VUVLO/EN = +1.4V, VDIM/FB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.)
21.55
10.1
MAX16801 VIN FALLING
UVLO/EN WAKE-UP THRESHOLD
vs. TEMPERATURE
1.280
UVLO/EN RISING
1.275
MAX16801 toc03
MAX16801 VIN RISING
MAX16801 toc01
21.60
BOOTSTRAP UVLO SHUTDOWN LEVEL
vs. TEMPERATURE
MAX16801 toc02
BOOTSTRAP UVLO WAKE-UP LEVEL
vs. TEMPERATURE
10.0
21.45
UVLO/EN (V)
VIN (V)
VIN (V)
21.50
9.9
21.40
1.270
1.265
1.260
9.8
21.35
1.255
9.7
-20
0
20
40
60
80
1.250
-40
-20
0
20
40
60
80
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
TEMPERATURE (°C)
TEMPERATURE (°C)
UVLO/EN SHUTDOWN THRESHOLD
vs. TEMPERATURE
VIN SUPPLY CURRENT IN UNDERVOLTAGE
LOCKOUT vs. TEMPERATURE
VIN SUPPLY CURRENT AFTER STARTUP
vs. TEMPERATURE
UVLO/EN FALLING
52
51
50
1.25
1.5
MAX16801 toc05
1.30
MAX16801 toc04
-40
VIN = 19V
MAX16801 WHEN IN BOOTSTRAP UVLO
MAX16802 WHEN UVLO/EN IS LOW
VIN = 24V
MAX16801 toc06
21.30
1.4
1.20
48
IIN (mA)
ISTART (μA)
UVLO/EN (V)
49
47
1.3
46
45
1.15
1.2
44
43
-20
0
20
40
60
80
0
20
40
60
0
20
40
60
VCC REGULATOR SET POINT
vs. TEMPERATURE
CURRENT-SENSE THRESHOLD
vs. TEMPERATURE
VIN = 10.8V
8.8
8.7
10mA LOAD
VCC (V)
9.5
8.5
8.4
9.4
20mA LOAD
8.3
NDRV OUTPUT IS
SWITCHING
9.3
8.2
-20
0
20
40
TEMPERATURE (°C)
60
80
TOTAL NUMBER OF
DEVICES = 100
+3σ
305
80
300
295
MEAN
290
285
280
-3σ
275
8.1
9.2
310
CURRENT-SENSE THRESHOLD (mV)
MAX16801 toc07
8.9
MAX116801 toc08
VCC REGULATOR SET POINT
vs. TEMPERATURE
8.6
-40
-20
-40
80
TEMPERATURE (°C)
NDRV OUTPUT IS NOT
SWITCHING, VDIM/FB = 1.5V
9.6
-20
TEMPERATURE (°C)
VIN = 19V
NO LOAD
9.7
-40
TEMPERATURE (°C)
9.8
4
1.1
42
-40
270
-40
-20
0
20
40
TEMPERATURE (°C)
60
80
-40
-20
0
20
40
TEMPERATURE (°C)
_______________________________________________________________________________________
60
80
MAX16801 toc09
1.10
VCC (V)
NBY27912B0C0NBY27913B0C
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
SWITCHING FREQUENCY
vs. TEMPERATURE
15
10
5
260
255
250
-3σ
270
280
290
300
310
10
-20
0
20
40
60
80
230
240
250
260
270
280
SWITCHING FREQUENCY (kHz)
PROPAGATION DELAY FROM
CURRENT-SENSE COMPARATOR INPUT
TO NDRV vs. TEMPERATURE
UVLO/EN PROPAGATION DELAY
vs. TEMPERATURE
REFERENCE VOLTAGE
vs. TEMPERATURE
60
55
50
0
20
40
60
80
VIN = 12V
1.229
1.228
1.227
1.226
UVLO/EN FALLING
1.225
-40
-20
0
20
40
60
-40
80
-20
0
20
40
60
TEMPERATURE (°C)
TEMPERATURE (°C)
TEMPERATURE (°C)
INPUT CURRENT
vs. INPUT VOLTAGE
INPUT CLAMP VOLTAGE
vs. TEMPERATURE
NDRV OUTPUT IMPEDANCE
vs. TEMPERATURE
9
8
7
6
5
4
27.0
IIN = 2mA
26.8
26.6
2.2
2.1
1.9
26.2
1.8
1.7
25.8
1.6
25.6
1.5
2
25.4
1.4
1
25.2
1.3
0
25.0
3
10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
INPUT VOLTAGE (V)
VIN = 24V
SINKING 100mA
2.0
26.4
26.0
80
MAX16801 toc18
MAX16801 toc16
10
RON (Ω)
-20
INPUT CLAMP VOLTAGE (V)
-40
UVLO/EN RISING
REFERENCE VOLTAGE (V)
65
1.230
MAX16801 toc14
MAX16801 toc13
70
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
290
MAX16801 toc15
TEMPERATURE (°C)
UNDERVOLTAGE LOCKOUT DELAY (μs)
CURRENT-SENSE THRESHOLD (mV)
75
MAX16801 toc12
15
0
-40
320
20
5
240
260
tPWM (ns)
MEAN
245
0
INPUT CURRENT (mA)
265
TOTAL NUMBER OF
DEVICES = 200
25
PERCENTAGE OF UNITS (%)
20
270
30
MAX16801 toc17
PERCENTAGE OF UNITS (%)
25
TOTAL NUMBER OF
DEVICES = 100
+3σ
275
SWITCHING FREQUENCY
MAX16801 toc11
TOTAL NUMBER OF
DEVICES = 200
280
SWITCHING FREQUENCY (kHz)
30
MAX16801 toc10
CURRENT-SENSE THRESHOLD
1.2
-40
-20
0
20
40
TEMPERATURE (°C)
60
80
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
_______________________________________________________________________________________
5
NBY27912B0C0NBY27913B0C
``````````````````````````````````````````````````````````````````````````` ࢜ቯ৔ᔫᄂቶ)ኚ*
(VUVLO/EN = +1.4V, VDIM/FB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.)
```````````````````````````````````````````````````````````````````````````` ࢜ቯ৔ᔫᄂቶ)ኚ*
(VUVLO/EN = +1.4V, VDIM/FB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.)
ERROR-AMPLIFIER OPEN-LOOP GAIN
AND PHASE vs. FREQUENCY
NDRV OUTPUT IMPEDANCE
vs. TEMPERATURE
4.8
4.6
100
30
80
10
GAIN
60
4.4
GAIN (dB)
4.2
4.0
3.8
50
40
-10
-30
20
-50
0
-70
PHASE
-20
-90
3.6
-40
-110
3.4
-60
-130
3.2
-80
-150
3.0
-100
-40
-20
0
20
40
60
0.1
80
1
10
100
1k
PHASE (DEGREES)
VIN = 24V
SOURCING 20mA
MAX16801 toc20
120
MAX16801 toc19
5.0
RON (Ω)
NBY27912B0C0NBY27913B0C
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
-170
10k 100k 1M 10M 100M
FREQUENCY (Hz)
TEMPERATURE (°C)
`````````````````````````````````````````````````````````````````````````` ፛୭ႁී
፛୭
෗߂
1
UVLO/EN
2
DIM/FB
ࢅຫQXNೡࣞࢯஂၒྜྷ0ᇙ‫ތ‬हࡍ໭नሤၒྜྷ࣡ă
3
COMP
ᇙ‫ތ‬हࡍ໭ၒ߲ăᏴ঱றࣞMFE࢟ഗࢯஂ።፿ᒦLj୓‫ޡݗ‬Ꮔୈೌ୻ᏴEJN0GCਜ਼DPNQᒄମă
4
CS
৖ถ
ᅪ‫ݝ‬భ‫߈ܠ‬་ኹჄࢾăVWMP࿸ᒙၒྜྷ໪ࣅ࢟ኹă୓VWMPೌ୻ᒗHOEభணᒏ໭ୈ৔ᔫă
࢟ഗঢ።ቧ੓ೌ୻࣡Lj፿᎖࢟ഗࢯஂă୻ᒗଶഗ࢟ᔜ঱࣡ăభጲ፿SD൉݆໭߹བྷ༄ዘ࿟ࡼඇࠦă
5
GND
࢟Ꮞ࢐ă
6
NDRV
ᅪ‫ݝ‬o৥ࡸNPTGFUᐜ૵ೌ୻࣡ă
7
VCC
8
IN
ᐜ૵དࣅ࢟Ꮞăด‫ݝ‬ᎅJOଢ଼ኹࡻࡵăWDD ᎧHOEମ୻ጙᒑ21oG૞ྏᒋৎ঱ࡼབྷẮ࢟ྏ໭ă
JD࢟ᏎăJOᎧHOEମ୻ጙᒑ21oG૞ྏᒋৎ঱ࡼབྷẮ࢟ྏ໭ăᔈ௟৔ᔫෝါ)NBY27912*ሆLjభᏴၒྜྷ࢟Ꮞ
ਜ਼JOᒄମ୻ጙৈ໪ࣅ࢟ᔜăມᒙླྀᔝ࢟Ꮞೌ୻ᒗক࢛)‫ݬ‬୅ᅄ6*ă࣪᎖NBY27913LjJOᒇ୻୻,21/9Wᒗ,35W
࢟Ꮞă
``````````````````````````````` ሮᇼႁී
NBY279120NBY27913ᇹ೰໭ୈ፿᎖঱ೡࣞ)IC*! MFEࡼੱ
ഗདࣅLjး੝ᄰ፿ᑍීਜ਼መာ።፿ăকᇹ೰໭ୈᓜᆐ৆
ಭਜ਼ऻ৆ಭ࢟വᅠແ࿸ଐLjྙ cvdlĂcpptuĂgmzcbdl ਜ਼
TFQJDࢀLj৔ᔫᏴೌኚ૞ऻೌኚෝါăఎਈຫൈᏴด‫ݝ‬ᆈ
ࢯᆐ373lI{ৼࢾᒋLjభဣሚ࢟ഗෝါ఼ᒜă௥ᎌ୷঱ᒣ
ૄ࢟ኹ)22/:W*ࡼᔈ௟VWMP࢟വĂިࢅ໪ࣅ࢟ഗጲૺࢅ৔
6
ᔫ࢟ഗᄂቶLjభဣሚ঱቉ࡼᄰ፿ၒྜྷMFEདࣅ໭ăকᇹ೰
໭ୈ߹ดᒙᔈ௟VWMPᅪLjથถᄰਭVWMP0FO፛୭࣪ၒྜྷ
໪ࣅ࢟ኹ஠ቲ‫߈ܠ‬࿸ᒙăNBY27912ऻ‫ޟ‬း੝ᄰ፿ୣഗၒ
ྜྷ)96WBDᒗ376WBDᑳഗ࢟ኹၒྜྷ*དࣅ໭ăNBY27913ऻ
‫ޟ‬း੝ࢅၒྜྷ࢟ኹ)21/9WEDᒗ35WED*።፿ă
NBY279120NBY27913ᓆᒲ໐ପ၁ഗਭᅪ‫ݝ‬NPTGFUࡼ࢟
ഗLj࠭ऎဣሚ࣪MFE࢟ഗࡼࢯஂă
_______________________________________________________________________________________
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
ࡩበຢஉᆨިਭ,241°D )࢜ቯᒋ*ဟLjดᒙࡼਈࣥ࢟വభ
໪ࣅۣઐ৖ถă
ྦኊገறමࢯஂMFE࢟ഗLjభಽ፿ຢ࿟ᇙ‫ތ‬हࡍ໭ጲૺற
ࣞᆐ2&ࡼ૥ᓰ)ᅄ:*ăᑚጙऄᅪनౣభࡍࡍଢ଼ࢅᎅ᎖ᇄᏎ
Ꮔୈ‫ܤ‬છਜ਼ມ‫ތ‬Ⴥ‫ޘ‬ညࡼ፬ሰLj݀༦ᒑኊᔢ࿩ࡼᅪᆍᏄ
ୈ૾భဣሚă
ሣቶೡࣞࢯஂဵᄰਭᏴDT࿟ࡼጙৈཇਜ਼ஂ࢛౶ဣሚࡼLj
ྙᅄ7ਜ਼ᅄ8Ⴥာă
ೡࣞࢯஂ
ࢅຫQXN )࢟ഗᐮ݆*ೡࣞࢯஂᐌᄰਭᏴ໭ୈࡼEJN0GC፛
୭࿟ဗଝጙৈनሤ൝૷QXNቧ੓౶ဣሚ)ᅄ9*ăᑚᒬऱज
࣪᎖กቋገཇࢯஂೡࣞဟዏৃۣߒ਒ໍ‫ࡼܤݙ‬።፿‫ޝ‬੝
ጐ኏્ဵ၅ኡऱ‫ښ‬ă჈ဵᄰਭ࣪ੱࢾ७ࣞࡼMFE࢟ഗ஠ቲ
ᐮ݆ဣሚࢯ਒ࡼă
୓ࢅຫQXNೡࣞࢯஂቧ੓ᒇ୻ౣྜྷEJN0GC፛୭భဣሚ౑
पᆍࡼೡࣞࢯஂă
૥᎖NBY27912࿸ଐࡼMFEདࣅ࢟വ‫ݧ‬፿ጙৈ঱ᒋ໪ࣅ࢟
ᔜS2ᆐ߼ถ࢟ྏD2ߠ࢟)ᅄ6૞ᅄ:*ăᏴ߱ဪ୿ࣤLjߠ࢟
࢟ኹࢅ᎖ด‫ݝ‬ᔈ௟VWMPඡሢ࢟ኹLj໭ୈሿ੒ࡼஸზ࢟ഗ
ஞᆐ56μB )࢜ቯᒋ*ăࢅ໪ࣅ࢟ഗਜ਼୷঱ᒣૄ࢟ኹࡼᔈ௟
VWMPభࡍࡍଢ଼ࢅS2ࡼ৖੒Lj૾‫ဵܣ‬Ᏼᄰ፿ୣഗၒྜྷ࢟ኹ
ᆡ᎖঱࣡ဟ৖੒ጐ੪ቃă
NBY279120NBY27913ࡼມᒙ
ࡩ‫ܤ‬ኹ໭ࡀᏴဟLjᎅ‫ܤ‬ኹ໭ဣሚᔈ௟)ᅄ6*ă‫ݧ‬፿ऻ৆ಭ
ါᅠແဟጐభᒇ୻ᎅMFE‫ޘ‬ညມᒙ)ᅄ2*ă
R5
R1
R2
IN
AC
IN
BRIDGE
RECTIFIER
COMP
C1
C2
Q1
NDRV
VCC
GND
MAX16801B
CS
C3
DIM/FB
UVLO/EN
R3
R6
R4
L1
C4
TOTAL LED VOLTAGE:
11V TO 23V
D3
ᅄ2/! Ᏼऻ৆ಭቯgmzcbdlདࣅ໭ᒦಽ፿MFEᆐJDᄋ৙ມᒙ
_______________________________________________________________________________________
7
NBY27912B0C0NBY27913B0C
ࡩ৔ᔫᏴࡒᎌ‫ܤ‬ኹ໭ࡼᔈ௟ෝါဟ)ᅄ6*Ljক࢟വથభᄋ
৙ࡍࣶၫ࣢വ৺ᑇۣઐăࡩ߲ሚ࣢വ৺ᑇဟLj࢒ྯླྀᔝ
࢟ኹଢ଼ᒗ ,21W ጲሆLjᒘဧ VWMP ࢟വਈ‫ܕ‬৙৊ᅪ‫ݝ‬
NPTGFUࡼᐜ૵དࣅቧ੓ăᑚ્ᒮቤ߿खጙࠨྟ໪ࣅਭ߈ă
NBY27912B0C0NBY27913B0C
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
VDC
R
VDC
Q
R
IN
IN
MAX16802A
D
(a)
D
MAX16802A
C
(b)
ᅄ3/! )b*࢟ᔜ.໡ฃऔ૵਌ਜ਼)c*஭ᄏ਌.໡ฃऔ૵਌.࢟ᔜມᒙ࢟വ
NBY27913భᒇ୻ᎅ21/9WEDᒗ35WEDၒྜྷ࢟ኹ஠ቲມᒙă
ಽ፿࢟ᔜ໭.໡ฃऔ૵਌)ᅄ3b*૞஭ᄏ਌.໡ฃऔ૵਌.࢟ᔜ
໭ມᒙ࢟വ)ᅄ3c*LjNBY27913ጐభ፿Ᏼৎ঱ᒇഗၒྜྷ࢟
ኹࡼ‫ޝ‬੝ă
NBY279120NBY27913་ኹჄࢾ
NBY279120NBY27913௥ᎌጙৈၒྜྷ࢟ኹVWMP0FO፛୭ă
VWMPඡሢ࢟ኹᆐ,2/39WăᒑᎌᏴক፛୭࢟ኹࡍ᎖,2/39W
ઁ࢟വ‫ݣ‬ఎဪ৔ᔫăVWMP࢟വభဧDQXN‫୷܈‬໭ĂJMJN
‫୷܈‬໭Ăᑩ࡬໭ጲૺၒ߲དࣅ໭ࠀ᎖ਈࣥᓨზLjጲି࿩
࢟ഗሿ੒)‫ݬ‬୅৖ถౖᅄ*ăಽ፿কVWMP৖ถభ࿸ᒙၒྜྷ
໪ࣅ࢟ኹăॊኹ࢟ᔜS3ਜ਼S4 )ᅄ6*ᔜᒋࡼଐႯ৛ါྙሆǖ
R3 ≅
VULR2 × VIN
500 × IUVLO (VIN − VULR2 )
ኡᐋS4ᔜᒋဟLj።ဧVWMP0FOၒྜྷມᒙ࢟ഗᏴS3࿟ࡼኹ
ଢ଼Ⴥ‫ޘ‬ညࡼᇙ‫ތ‬ᔢࢅăW VMS3 > ,2/39WLjJ VWMP > 61oB
)ᔢࡍᒋ*LjWJO ဵ࢟Ꮞ໪ࣅဟࡼၒྜྷ࢟Ꮞ࢟ኹᒋă
V − VULR2
R2 = IN
× R3
VULR2
໚ᒦJVWMPဵVWMP0FO፛୭ࡼၒྜྷ࢟ഗLjWVMS3ဵVWMP0FO
઩ታඡሢă
8
NBY27912ᔈ௟་ኹჄࢾ
߹೫NBY279120NBY27913௿௥ᎌࡼᅪ‫ݝ‬భ‫߈ܠ‬VWMPᅪLj
NBY27912 થดᒙጙৈऄᅪࡼᔈ௟ VWMPLjᏴ࿸ଐ঱ኹ
MFEདࣅ໭ဟऻ‫ޟ‬ᎌ፿)‫ݬ‬୅৖ถౖᅄ*ăᑚዹᏤ኏໭ୈᏴ
߱ဪ࿟࢟ဟᔈቲ໪ࣅăࡩ W JO ঱᎖ᔈ௟ VWMP ඡሢ࢟ኹ
,34/7WဟLjNBY27912ఎဪ໪ࣅă໪ࣅ໐ମLjVWMP࢟വ
ۣߒDQXN‫୷܈‬໭ĂJMJN‫୷܈‬໭Ăᑩ࡬໭ጲૺၒ߲དࣅ
໭ࠀ᎖ਈࣥᓨზLjጲିቃ࢟ഗሿ੒ăጙࡡWJO ࡉࡵ,34/7WLj
VWMP࢟വ໪ࣅDQXN‫୷܈‬໭ĂJMJN‫୷܈‬໭ਜ਼ᑩ࡬໭Lj݀
Ꮴ኏ၒ߲དࣅ໭ఎဪఎਈ‫ݷ‬ᔫăྙਫWJO ଢ଼ᒗ,:/8WጲሆLj
VWMP࢟വᐌਈࣥDQXN‫୷܈‬໭ĂJMJN‫୷܈‬໭Ăᑩ࡬໭ጲ
ૺၒ߲དࣅ໭Lj࠭ऎဧNBY27912ऩૄᒗ໪ࣅෝါă
NBY27912໪ࣅ৔ᔫෝါ
Ᏼ৆ಭါMFEདࣅ໭።፿ᒦLjWJO ནᔈ‫ܤ‬ኹ໭ࡼ࢒ྯླྀᔝă
཭ऎLj໪ࣅဟ‫ܤ‬ኹ໭ᒦ඗ᎌ࢟ถᄋ৙ăፐࠥLjኊገᄂࢾ
ࡼᔈ௟ਭ߈ăᅄ4Ⴥာᆐ໪ࣅဟJOਜ਼W DD ፛୭࿟ࡼ࢟ኹă
ఎဪLjWJO ਜ਼WDD ௿ᆐ1Wăဗଝ࢟Ꮞ࢟ኹᒄઁLj໪ࣅ࢟ᔜ
S2୓D2ߠᒗ෭ৈᒦମ࢟ኹăࠥဟLjด‫ݝ‬ᆮኹ໭ఎဪሶD3
ߠ࢟ )‫ݬ‬୅ᅄ6*ăᏴᎅS2ᄋ৙ࡼ࢟ഗࡩᒦLjNBY27912ஞ
፿56μBLj໚᎜ၒྜྷ࢟ഗᐌᆐD2ਜ਼D3ߠ࢟ăࡩWDD ࢟ኹத
႒ᆐ,:/6WဟLjᄫᒏ࣪D3ߠ࢟LjऎD2ೝ࣡ࡼ࢟ኹଖኚ࿟ဍLj
ᒇࡵক࢟ྏ࿟ࡼ࢟ኹࡉࡵ઩ታ࢟ኹ,34/7WᆐᒏăጙࡡWJO
ࡍ᎖ᔈ௟VWMPඡሢ࢟ኹLjOESWఎဪఎਈNPTGFULj݀
_______________________________________________________________________________________
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
VCC
2V/div
MAX16801
VIN PIN
5V/div
NBY279120NBY27913ࡼྟ໪ࣅᄂቶభဧMFE࢟ഗᏴ၊఼
ෝါሆዘቓຸ࿟ဍăࡩᅙಭVWMPᓨზઁఎဪྟ໪ࣅਭ߈ă
ଝᒗहࡍ໭ᄴሤஂ࢛ࡼ࢟ኹᏴ71ntࡼྟ໪ࣅဟମด࠭1ᒇ
ሣ࿟ဍᒗ,2/34Wăᅄ5መာ೫1/6Bࡼ࢜ቯၒ߲࢟ഗᏴ໪ࣅ
ਭ߈ᒦࡼ‫ܤ‬છ༽ౚăభᓖፀࡵMFE࢟ഗጲ୿ᄇऱါဍ঱ă
ᑚဵᎅ᎖‫ݧ‬፿೫ၫᔊྟ໪ࣅଆၣăᎧ໚჈໭ୈ‫ݙ‬ᄴࡼဵLj
ดᒙहࡍ໭ࡼ૥ᓰ࢟ኹဵྟ໪ࣅࡼăᑚᒬऱजถ୷ੑ࢐
఼ᒜMFE࢟ഗă
0
o৥ࡸNPTGFUఎਈདࣅ໭
100ms/div
ᅄ4/! ࡩNBY27912ࠀ᎖ᔈ௟ෝါሆLj໪ࣅဟࡼWJO ਜ਼WDD
ሶ࢒औླྀᔝਜ਼࢒ྯླྀᔝࠅၒ࢟ถăྙਫ࢒ྯླྀᔝၒ߲୐
ೂ࢟ኹ঱᎖,:/8W )ᔈ௟VWMPࢅ࣡ඡሢ*Ljᐌ໪ࣅਭ߈ᅲ
߅Ljఎဪೌኚ৔ᔫă
ྙਫᏴ໪ࣅᅲ߅ᒄ༄W JO ଢ଼ᒗ,:/8WጲሆLjᐌ໭ୈऩૄᒗ
ࢅ࢟ഗVWMPᓨზăᑚᒬ༽ౚሆLjభᐐࡍD2౶ࡀ߼ᔗ৫ࡼ
࢟ถLjጲ‫ླྀྯ࢒ܣ‬ᔝ࿟୐ೂ໦ᔗ৫ࡼ࢟ኹă
OESW፛୭ถདࣅᅪ‫ݝ‬o৥ࡸNPTGFUăOESWၒ߲ᎅด‫ݝ‬
ᆮኹ໭)WDD*৙࢟Ljকด‫ݝ‬ᆮኹ໭Ᏼด‫ݝ‬࿸ᒙᆐᏖ,:/6Wă
࣪᎖ᄰ፿ၒྜྷ࢟ኹਜ਼ࡒᎌ‫ܤ‬ኹ໭ࡼ።፿ऎዔLjჅ‫ݧ‬፿ࡼ
NPTGFU‫ܘ‬ኍถߌ၊࢟Ꮞ࢟ኹᔢ঱ဟࡼᒇഗ࢟ຳᎧ‫ܤ‬ኹ໭
߱଀ࡼन࿴࢟ኹᒄਜ਼ă࣪᎖ࡍࣶၫ‫ݧ‬፿ऻೌኚgmzcbdlᅠແ
ࡼಭሣါ።፿ऎዔLjኊገऄࢾ࢟ኹᆐ711WࡼNPTGFUă
OESWถᏎ߲0ᇢྜྷިਭ761nB02111nBख़ᒋ࢟ഗăჅኡᐋ
ࡼNPTGFU‫ޘ‬ညࡼࡴᄰႼ੒ਜ਼ఎਈႼ੒‫ܘ‬ኍᏴభ୻၊ࡼप
ᆍดă
ด‫ݝ‬ᇙ‫ތ‬हࡍ໭
NBY279120NBY27913۞౪ጙৈด‫ݝ‬ᇙ‫ތ‬हࡍ໭Ljభ፿౶
ऻ‫ޟ‬றཀྵ࢐ࢯஂMFE࢟ഗăಿྙLjᅄ6Ⴥာࡼऻ৆ಭါ࢟
ᏎăMFE࢟ഗࡼଐႯ৛ါྙሆǖ
V
ILED = REF
R7
100mA/div
໚ᒦWSFG > ,2/34Wăहࡍ໭ࡼᄴሤၒྜྷ࣡ᎅด‫୻ೌݝ‬ᒗ
ၫᔊྟ໪ࣅ࢟വLjཀྵۣ໪ࣅਭ߈ᒦ૥ᓰ࢟ኹદൻ࿟ဍLj
݀୓ক૥ᓰ࢟ኹဗଝᒗক፛୭ăᑚዹభ༓ᒜMFE࢟ഗᏴჅ
ᎌᓨზሆ࣒‫ږ‬ᑍᎾࢾࡼऱါᎌኔ࢐ဍ঱ă
0
10ms/div
ᅄ5/! ߱ဪ໪ࣅဟࡼ࢜ቯྟ໪ࣅ࢟ഗ
_______________________________________________________________________________________
9
NBY27912B0C0NBY27913B0C
````````````````````````````````` ྟ໪ࣅ
NBY27912B0C0NBY27913B0C
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
``````````````````````````````` ።፿ቧᇦ
ଣ࿸ D2 ? D3Ljᐌ‫ږ‬ጲሆ৛ါଐႯS2ǖ
× C1
V
IC1 = SUVR
(500ms)
NBY27912፿᎖঱ೡࣞMFEདࣅ໭
ࡼ໪ࣅဟମఠ൅
JO๬വ࢟ྏD2፿᎖Ᏼ࢟വধধ઩ታဟኸႥᄋ৙৔ᔫ࢟ഗ
)ᅄ6*ăD2ࡼߛࡁਜ਼࢒ྯླྀᔝࡼೌ୻ऱါ௼ࢾ೫భ፿᎖໪
ࣅࡼᒲ໐ၫăࡍྏᒋD2ዓ‫ޠ‬೫໪ࣅဟମLjࡣถᏴ߱ဪ໪
ࣅ୿ࣤᄋ৙ৎࣶ࢟੗ጲᑽߒৎࣶࡼఎਈᒲ໐ăྙਫD2ࡼ
ྏᒋვቃLjกඐOESW୓඗ᎌᔗ৫ࡼဟମఎਈNPTGFULj
࠭ऎ‫ݙ‬ถᏴ࢒ྯླྀᔝ࿟୐ೂᔗ৫ࡼ࢟ኹᆐ໭ୈᄋ৙࢟ᏎLj
ᒘဧWJO ଢ଼ᒗ,:/8Wጲሆă໭ୈऩૄVWMPᓨზऎ‫ݙ‬ถ໪ࣅă
D2ਜ਼D3ኊ‫ݧ‬፿ࢅቛധ࢟ྏă
ଣࢾᏴࢅ࢟Ꮞ࢟ኹᓨზሆ )96WBDၒྜྷࡼᄰ፿ಭሣါ።፿*
ಭሣါMFEདࣅ໭྆ገᆒߒቃ᎖611ntࡼ໪ࣅဟମLj໪ࣅ
࢟ᔜS2።ถᄴဟᄋ৙໭ୈჅኊࡼᔢࡍ໪ࣅມᒙ࢟ഗ)ᔢ‫ތ‬
ᓨზሆ :1μ B*ਜ਼ᆐ D2ĂD3 ߠ࢟Ⴥኊࡼ࢟ഗăᏴᎾ໐ࡼ
611nt໪ࣅဟମดLj๬വ࢟ྏD3‫ܘ‬ኍ‫ࡵ࢟ߠۻ‬,:/6WLjऎ
D2‫ܘ‬ኍߠ࢟ࡵ,35Wă
ᎅ᎖NBY27912ด‫ݝ‬ᎌ71ntࡼྟ໪ࣅဟମLjD2‫ܘ‬ኍࡀ߼ᔗ
৫ࡼ࢟੗Ljጲ‫ܣ‬ᒗ࿩Ᏼᑚࣤဟମดሶ໭ୈ৙።࢟ഗă፿
ጲሆ৛ါத႒ଐႯჅኊࡼ࢟ྏᒋǖ
Ig = Qgtot × fSW
C1 =
(IIN + Ig ) (tSS )
VHYST
໚ᒦJJO ဵ໪ࣅઁNBY27912ࡼด‫࢟ݝ‬Ꮞ࢟ഗ)2/5nB*LjRhupu
ဵR2ࡼᔐᐜ૵࢟੗LjgTX ဵNBY27912ࡼఎਈຫൈ)373lI{*Lj
WIZTU ဵᔈ௟VWMPᒣૄ࢟ኹ)22/:W*LjuTT ဵด‫ྟݝ‬໪ࣅဟ
ମ)71nt*ă
ಿྙǖ
Ig = (8nC) × (262kHz) = 2.1mA
C1 =
(1.4mA + 2.1mA) × (60ms) = 17.5μF
(12V)
R1 =
VIN(MIN) − VSUVR
IC1 + ISTART
໚ᒦ W JO)NJO* ဵ።፿ᒦࡼᔢቃၒྜྷ࢟ኹLjW TVWS ဵᔈ௟
VWMP઩ታ࢟ຳ)ᔢࡍᒋ,34/7W*LjJTUBSU ဵ໪ࣅဟJO࿟ࡼ࢟
Ꮞ࢟ഗ)ᔢࡍᒋ:1μB*ă
ಿྙLjୣഗၒྜྷ࢟ኹནᔢቃᒋ96WဟLjᎌǖ
IC1 =
R1 =
( 24V ) × (15μF )
= 0.72mA
( 500ms)
120V
−
24V
(0.72mA + (90μA))
= 119kΩ
࢟ᔜན‫ܪ‬ᓰᒋ231lΩă
ྙਫᏤ኏ৎ‫ࡼޠ‬໪ࣅဟମLjᐌS2ᔜᒋభኡནࡻ‫܈‬࿟ၤଐ
ႯᒋৎࡍጙቋLjᑚዹభጲଢ଼ࢅক࢟ᔜࡼ৖੒ă
࿟ၤ໪ࣅऱ‫ښ‬భ፿᎖ಢ႒᎖ᅄ6ࡼ࢟വăক࢟വᒦ࢒ྯླྀ
ᔝᎧၒ߲ླྀᔝᄴሤăፐऎྀੜဟମ࢒ྯླྀᔝࡼ࢟ኹᎧၒ
߲࢟ኹᔐ߅ᑵ‫܈‬Lj݀ਜ਼ၒ߲࢟ኹள಼ሤᄴࡼྟ໪ࣅਭ߈ă
D2࠭,33Wह࢟ᒗ,21Wࡼᔢ࣢ह࢟ဟମ‫ܘ‬ኍࡍ᎖71ntࡼྟ
໪ࣅဟମă
ဣሚᔈ௟ࡼ഍ጙৈऱजဵᏴࢯஂၒ߲࢟ኹࡼླྀᔝᒄᅪ‫ݧ‬
፿ጙৈࣖೂࡼມᒙླྀᔝLj݀ဧມᒙླྀᔝᎧNPTGFUࡴᄰဟ
ମᄴሤ)‫ݬ‬୅ᅄ:*ăᏴࠥ༽ౚሆLjჅኊࡼ࢟ྏᒋ௓ቃࣶ೫ă
཭ऎLjᏴᑚᒬऱါሆLjၒྜྷ࢟ኹपᆍ‫ܘ‬ኍቃ᎖3;2ăᏴ௼
ࢾມᒙླྀᔝဵ॥Ꭷၒ߲ᄴሤဟLjથᎌ഍ጙৈኊገఠ൅ࡼ
ᆰᄌăྙਫᄴሤLjᐌMFEདࣅ࢟വ્Ᏼၒ߲࣢വᓨზሆࡌ
ᡅਜ਼ྟ໪ࣅăࡣဵLjྙਫມᒙླྀᔝᎧNPTGFUࡴᄰဟମᄴ
ሤLj௓‫ݙ‬௥ᎌকᄂቶă
࢟ྏᒋན‫ܪ‬ᓰᒋ26μGă
10
______________________________________________________________________________________
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
ᅄ6৊߲೫ጙৈ૥᎖NBY27912ࡼಭሣါIC! MFEདࣅ໭።
፿࢟വă‫ܤ‬ኹ໭U2భࡍࡍᄋ঱࿸ଐࡼഉ૚ቶăด‫ݝ‬ᇙ‫ތ‬
हࡍ໭భဣሚऻ‫ޟ‬றཀྵࡼMFE࢟ഗ఼ᒜă
ᅄ7৊߲೫ጙৈ௥ᎌሣቶೡࣞࢯஂ৖ถࡼऻೌኚgmzcbdl
MFEདࣅ໭ăMFEᔐ࢟ኹభࢅ᎖૞঱᎖ၒྜྷ࢟ኹă
ᅄ8৊߲೫ጙৈೌኚࡴᄰෝါࡼIC! MFE! cvdlདࣅ໭Lj௥
ᎌሣቶࢯ਒Ljᒑኊ࿩೟ࡼᅪ‫ݝ‬Ꮔୈă
ᅄ9৊߲೫ጙৈ૥᎖NBY27912Ă‫ݧ‬፿ࢅຫQXNऱါࢯ਒
ࡼಭሣါ৆ಭgmzcbdl IC MFEདࣅ໭ăQXNቧ੓ኊገनሤ
)‫ݬ‬୅৖ถౖᅄ*ă‫ܤ‬ኹ໭U2ᄋ৙‫ڔ‬ཝ৆ಭLj৔ᔫ᎖ᄰ፿ୣ
ഗ࢟Ꮞ)96WBDᒗ376WBD*ă
D1
T1
VSUPPLY
D2
R1
R2
C4
Q1
NDRV
IN
VOUT
LEDs
C1
VCC
CS
R4
C2
COMP
R6
R7
MAX16801
C3
GND
DIM/FB
UVLO/EN
R3
R5
GND
ᅄ6/! ಭሣါĂऻ৆ಭĂgmzcbdl! MFEདࣅ໭Lj௥ᎌభ‫߈ܠ‬ၒྜྷ໪ࣅ࢟ኹ
______________________________________________________________________________________
11
NBY27912B0C0NBY27913B0C
።፿࢟വ
NBY27912B0C0NBY27913B0C
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
VIN
10.8V TO 24V
R1
UVLO/EN
DIM/FB
1
8
2
7
COMP 3
CS
MAX16802B
4
6
5
LED(s)
L1
IN
C4
VCC
NDRV
Q1
D1
GND
R2
R4
R3
DIMMING
C2
C3
R5
C1
GND
ᅄ7/! ௥ᎌೡࣞࢯஂ৖ถࡼNBY27913! gmzcbdl! IC! MFEདࣅ໭Ljၒྜྷ࢟ኹपᆍ21/9Wᒗ35W
VIN
10.8V TO 24V
R1
LED(s)
UVLO/EN
DIM/FB
1
8
2
7
COMP 3
CS
MAX16802B
4
6
5
D1
IN
C4
VCC
NDRV
Q1
L1
GND
R2
R3
R4
DIMMING
C2
C3
R5
C1
GND
ᅄ8/! ௥ᎌೡࣞࢯஂ৖ถࡼNBY27913! cvdl! IC! MFEདࣅ໭Ljၒྜྷ࢟ኹपᆍ21/9Wᒗ35W
12
______________________________________________________________________________________
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
NBY27912B0C0NBY27913B0C
OPTIONAL ONLY WHEN PWM DIMMING IS USED
D3
T1
D1
C4
D2
R2
R1
UNIVERSAL
AC INPUT
Q1
NDRV
VCC
LEDs
C3
BRIDGE
RECTIFIER
IN
C6
GND
MAX16801B
CS
C1
C2
DIM/FB
R4
UVLO/EN
R3
*PWM
C5
*WARNING: PWM DIMMING SIGNAL IS SHOWN AT THE PRIMARY SIDE.
USE AN OPTOCOUPLER FOR SAFETY ISOLATION OF THE PWM SIGNAL.
ᅄ9/! ᄰ፿ୣഗၒྜྷĂಭሣါĂ৆ಭቯgmzcbdl! IC! MFEདࣅ໭Lj‫ݧ‬፿ࢅຫQXNࢯ਒
D1
T1
+VIN
D3
R1
U2
OPTO LED
R2
R8
Q1
NDRV
IN
VOUT
C1
VCC
CS
R11
C4
C3
R4
MAX16801
R7
U2
OPTO TRANS
COMP
R9
Z1
GND
U3
TLV431
R5
DIM/FB
R6
UVLO/EN
R3
C2
GND
C5
R10
ᅄ:/! ᄰ፿ၒྜྷĂಭሣါĂ৆ಭቯgmzcbdl! IC! MFEདࣅ໭Lj௥ᎌ঱றࣞ࢟ഗࢯஂᄂቶ
______________________________________________________________________________________
13
NBY27912B0C0NBY27913B0C
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
`````````````````````````````````````````````````````````````````````````` ৖ถౖᅄ
IN
IN
CLAMP
26.1V
VCC
VCC
IN
REGULATOR
BOOTSTRAP UVLO**
REG_OK
DIGITAL
SOFT-START
VL
REFERENCE
1.23V
21.6V
9.74V
UVLO/EN
(INTERNAL 5.25V SUPPLY)
UVLO
1.28V
1.23V
COMP
DIM/FB
DRIVER
S
ERROR
AMP
NDRV
Q
R
CPWM
VOPWM
CS
*OSCILLATOR
262kHz
1.38V
THERMAL
SHUTDOWN
VCS
0.3V
LIM
MAX16801
MAX16802
``````````````````````````````` ኡቯᒎฉ
BOOTSTRAP
UVLO
STARTUP
VOLTAGE
(V)
MAX DUTY
CYCLE (%)
MAX16801A
Yes
22
50
MAX16801B
Yes
22
75
PART
MAX16802A
No
10.8*
50
MAX16802B
No
10.8*
75
*NBY27913඗ᎌด‫ݝ‬ᔈ௟VWMPă
WDD ፛୭࢟ኹ঱᎖,8W )JO፛୭࢟ኹᆐ,21/9Wဟࡼۣᑺၒ߲*Lj
݀༦VWMP0FO፛୭ᆐ঱࢟ຳဟNBY27913ఎဪ৔ᔫă
14
GND
*MAX16801A/MAX16802A: 50% MAXIMUM DUTY CYCLE
MAX16801B/MAX16802B: 75% MAXIMUM DUTY CYCLE
**MAX16801 ONLY
``````````````````````````````` ፛୭๼ᒙ
TOP VIEW
UVLO/EN 1
8 IN
7 VCC
DIM/FB 2
COMP 3
MAX16801
MAX16802
CS 4
6 NDRV
5 GND
μMAX
______________________________________________________________________________________
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
ॖᓤಢቯ
ॖᓤ‫ܠ‬൩
ᆪ࡭‫ܠ‬੓
8 μMAX
—
21-0036
______________________________________________________________________________________
15
NBY27912B0C0NBY27913B0C
```````````````````````````````````````````````````````````````````````````` ॖᓤቧᇦ
ྙኊᔢதࡼॖᓤᅪተቧᇦਜ਼੆๤‫ݚ‬௜Lj༿‫އ‬ኯ china.maxim-ic.com/packagesă༿ᓖፀLjॖᓤ‫ܠ‬൩ᒦࡼĐ,đĂĐ$đ૞Đ.đஞ‫ܭ‬ာSpITᓨზă
ॖᓤᅄᒦభถ۞਺‫ݙ‬ᄴࡼᆘᓮᔊ९LjࡣॖᓤᅄᒑᎧॖᓤᎌਈLjᎧSpITᓨზᇄਈă
NBY27912B0C0NBY27913B0C
፿᎖঱ೡࣞMFEདࣅ໭ࡼ
ಭሣါĂED.ED! QXN఼ᒜ໭
```````````````````````````````````````````````````````````````````````````` ኀࢿ಼ဥ
ኀࢿ੓
ኀࢿ྇໐
ႁී
ኀখ጑
0
10/05
ᔢ߱‫۾ۈ‬ă
—
1
1/06
ᐐଝ೫NBY27913BFVB,໭ୈă
1
2
1/10
ৎᑵ೫ଐႯ৛ါLjৎቤ೫ሆ‫ܪ‬Lj݀࿎߹೫ॖᓤᅄă
1, 2, 3, 6–15
Nbyjn ۱ய‫ࠀူێ‬
۱ய 9439ቧረ ᎆᑶ‫ܠ‬൩ 211194
඾ॅ࢟જǖ911!921!1421
࢟જǖ121.7322 62::
ࠅᑞǖ121.7322 63::
Nbyjn‫࣪ݙ‬Nbyjn‫ޘ‬ອጲᅪࡼྀੜ࢟വဧ፿ঌᐊLjጐ‫ݙ‬ᄋ৙໚ᓜಽ኏భăNbyjnۣഔᏴྀੜဟମĂ඗ᎌྀੜᄰۨࡼ༄ᄋሆኀখ‫ޘ‬ອᓾ೯ਜ਼ਖৃࡼཚಽă
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2010 Maxim Integrated Products
Nbyjn ဵ Nbyjn!Joufhsbufe!Qspevdut-!Jod/ ࡼᓖ‫ݿ‬࿜‫ܪ‬ă
MAX16801, MAX16801A, MAX16801B, MAX16802, MAX16802A, MAX16802B 离线式、DC-DC PWM控制器,用于高亮度LED驱动器 - 概述
ENGLISH • 简体中文 • 日本語 • 한국어 Login | Register
请输入关键词或器件型号
最新内容
产品
方案
设计
应用
技术支持
销售联络
公司简介
我的Maxim
Maxim > 产品 > 汽车电子产品 > MAX16801, MAX16801A, ...
Maxim > 产品 > 电源和电池管理 > MAX16801, MAX16801A, ...
MAX16801, MAX16801A, MAX16801B, MAX16802, MAX16802A, MAX16802B
离线式、DC-DC PWM控制器,用于高亮度LED驱动器
具有宽工作范围、高电流精度的LED驱动方案
概述 技术文档 定购信息 用户说明 (0) 所有内容 状况
状况:生产中。
概述
MAX16801A/B/MAX16802A/B高亮度(HB) LED驱动控制器IC含有设计宽输入电压范围LED驱动
完整的数据资料
器所需的全部电路,适用于通用照明和显示器应用。MAX16801非常适用于通用输
入(85VAC至265VAC整流电压输入) LED驱动器,MAX16802适用于低输入电
下载 Rev. 2 (PDF, 212kB)
英文
压(10.8VDC至24VDC) LED驱动器。
下载 Rev. 2 (PDF, 700kB)
中文
需要精密调节LED电流时,可利用板上误差放大器以及精度为1%的基准。通过低频PWM亮度调
节可实现较宽的亮度调节范围。
MAX16801/MAX16802具有输入欠压锁定(UVLO)特性,可设置输入启动电压,并可确保在电源跌落时正常工作。MAX16801具有大滞
回的内部自举欠压锁定电路,从而简化了离线LED驱动器的设计。MAX16802没有这个内部自举电路,可直接由+12V电压偏置。
内部微调的262kHz固定开关频率允许优化选择磁性元件和滤波元件,从而实现紧凑、高性价比的LED驱动
器。MAX16801A/MAX16802A的最大占空比为50%,MAX16801B/MAX16802B的最大占空比为75%。这些器件均采用8引脚µMAX®封
装,可工作在-40°C至+85°C温度范围内。
现备有评估板:MAX16802BEVKIT
关键特性
应用/使用
适合buck、boost、flyback、SEPIC和其它拓扑
高达50W或更高的输出功率
通用离线输入电压范围:85VAC至265VAC整流电压(MAX16801)
IN引脚直接由10.8V至24V直流输入驱动(MAX16802)
内部带有误差放大器和1%精度的基准,可实现精密的LED电流调节
PWM或线性亮度调节
262kHz ±12%固定开关频率
热关断
数字软启动
可编程输入启动电压
大滞回内部自举UVLO (MAX16801)
45µA (典型值)启动电源电流,1.4mA (典型值)工作电源电流
50% (MAX16801A/MAX16802A)或75% (MAX16801B/MAX16802B)最大占空比
采用微型8引脚µMAX封装
商用与工业照明
装饰灯与建筑照明
离线式DC-DC LED驱动器
RGB背光,用于LCD TV和监视器
Key Specifications: High Brightness LED Drivers
Part
Device Device Application
VIN
VIN
VIN
(V)
(V)
(V)
Topology
LED
http://china.maxim-ic.com/datasheet/index.mvp/id/5001[2010-8-12 8:16:37]
LED
ILED per
String
Channel
Volt. Internal
(A)
Pwr.
PWM
PWM
Freq. Dimming
Dimming
Price
(kHz) Freq.
EV
Ratio
MAX16801, MAX16801A, MAX16801B, MAX16802, MAX16802A, MAX16802B 离线式、DC-DC PWM控制器,用于高亮度LED驱动器 - 概述
Number
max
MAX16801 (V)
Channels
min
max
Boost/SEPIC
Flyback
Boost/SEPIC
Buck
MAX16802 Flyback
max
max
max
max
Kit
24
1
1
10.8
24
3
250
No
图表
典型工作电路
相关产品
MAX16802BEVKIT MAX16802B评估板
类似产品:浏览其它类似产品线
查看所有High Brightness LED Drivers (25产品)
更多信息
[ 2005-11-14 ]
没有找到你需要的产品吗?
应用工程师帮助选型,下个工作日回复
参数搜索
应用帮助
概述
技术文档
定购信息
概述
关键特性
应用/ 使用
关键指标
图表
注释、注解
相关产品
数据资料
应用笔记
评估板
设计指南
可靠性报告
软件/ 模型
价格与供货
样品
在线订购
封装信息
无铅信息
参考文献: 19- 3880 Rev. 2; 2010- 04- 01
本页最后一次更新: 2010- 04- 01
联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明
© 2010 Maxim Integrated Products版权所有
http://china.maxim-ic.com/datasheet/index.mvp/id/5001[2010-8-12 8:16:37]
262
2
See
Notes
max
400
查看所有High Brightness LED Drivers (23)
新品发布
(kHz)
MOSFETs
No
$0.66
@1k
Yes
$0.66
@1k
3000
19-0560; Rev 0; 5/06
NBY27913Cຶৰ‫ۇ‬
``````````````````````````````````` ᄂቶ
NBY27913Cຶৰ‫)ۇ‬FW lju*፿౶ዝာ૥᎖NBY27913Cࡼ࢟
ഗ఼ᒜĂࡍ࢟ഗၒ߲ MFE དࣅ໭ăຶৰ‫ۇ‬భᄋ৙ᆮࢾࡼ
861nB ၒ߲࢟ഗLj৔ᔫᏴ 21/9W ᒗ 41W ࢟Ꮞ࢟ኹᒄମLj৔
ᔫᆨࣞपᆍᆐ.51°Dᒗ,96°Dă
♦ 21/9Wᒗ41W౑࢟Ꮞ࢟ኹपᆍ
NBY27913C ຶৰ‫ۇ‬௥ᎌೝᒬ‫ݙ‬ᄴಢቯࡼೡ఼ࣞᒜऱါǖ
ಽ፿ෝผၒྜྷ࢟ኹ૞QXNၒྜྷቧ੓఼ᒜMFEೡࣞăকຶ
ৰ‫ۇ‬થ௥ᎌVWMP৖ถLjᏴၒྜྷ࢟Ꮞ࢟ኹਭࢅဟਈ‫ຶܕ‬ৰ
‫ۇ‬Lj݀༦భጲᏴ MFE ఎവဟᆐຶৰ‫ۇ‬ᄋ৙ਭኹۣઐă
NBY27913Cຶৰ‫ဵۇ‬ᅲཝ‫ڔ‬ᓤ݀ளਭ‫ހ‬၂ࡼ࢟വ‫ۇ‬ă
வসǖࡩ߲ሚዏᒮ৺ᑇ૞ပ቉ᓨზဟLj‫ຶ۾‬ৰ‫ۇ‬భถሿ
੒௤ࡍถ೟Ljᐆ߅Ꮔୈ૞ᏄୈႵຢࡼ঱Ⴅ୎࿴ă༿டဇ
‫ݷ‬ᔫ‫ຶ۾‬ৰ‫ۇ‬Ljጲ‫ܜ‬඾భถࡼཽ࿽࿛਴ă
♦ ࢟ഗ఼ᒜၒ߲
♦ 23Wၒ߲ဟ࢟ഗభࡉ861nB
♦ ሣቶ૞QXNೡ఼ࣞᒜ
♦ ൸Ᏺဟ቉ൈ঱ࡉ91&
♦ ࢟Ꮞ࢟ኹ་ኹჄࢾ
♦ ၒ߲ਭኹۣઐ
``````````````````````````````` ࢾ৪ቧᇦ
PART
TEMP RANGE
IC PACKAGE
MAX16802BEVKIT
-40°C to +85°C
8 μMAX®
μNBYဵNbyjn! Joufhsbufe! Qspevdut-! Jod/ࡼᓖ‫ݿ‬࿜‫ܪ‬ă
`````````````````````````````````````````````````````````````````````````` Ꮔୈ೰‫ܭ‬
DESIGNATION
C1, C2, C5, C6
C3, C4, C7
C8
QTY
QTY
R1
1
R2
1
11kΩ ±1%, 1/8W resistor (0603)
R3
1
499kΩ ±1%, 1/8W resistor (0603)
73.2kΩ ±1%, 1/8W resistor (0603)
L1
1
Q1
1
3
0.1μF, 50V X7R SMD ceramic
capacitors
Murata GRM188R71H104KA93D or
TDK C1608X7R1H104K
470pF, 50V X7R ceramic capacitor
Murata GRM188R71H471KA01D or
TDK C1608X7R1H471K
1nF, 50V X7R ceramic capacitor
Murata GRM188R71H102KA01D or
TDK C1608X7R1H102K
22V, 1.5W zener diode
Vishay SMZG3797B
60V, 1A Schottky diode
Central Semiconductor CMSH1-60M
or Diodes Inc. B160
20V, small-signal Schottky diode
Vishay SD103CWS or
Diodes Inc. SD103CWS
0.1in, 2-pin hole headers
(through hole)
1
D1
1
D2
1
1
2
DESCRIPTION
4.7μH, 4.2A peak SMD inductor
Coilcraft DO3308P-472ML
60V, 3.2A n-channel MOSFET
Vishay Si3458DV
392kΩ ±1%, 1/8W resistor (0603)
4
1
J1, J2
DESIGNATION
4.7μF, 50V X7R ceramic capacitors
Murata GRM32ER71H475KA88L
C9
D3
DESCRIPTION
R4
1
R5, R7
2
1kΩ ±1%, 1/8W resistors (0603)
R6
1
330Ω ±1%, 1/4W resistor (1206)
R8
1
220Ω ±1%, 1/8W resistor (0603)
R9
1
R10
1
0.10Ω ±1%, 1/2W resistor (1206)
Susumu RL1632R-R100-F
1Ω ±5%, 1/8W resistor (0603)
U1
1
MAX16802B (8-pin μMAX)
4
0.1in, 2-pin male connectors
(through hole)
1
MAX16802B PC board
VIN, VLED,
PWM_IN,
LIN_IN
—
________________________________________________________________ Maxim Integrated Products
1
‫۾‬ᆪဵNbyjnᑵါ፞ᆪᓾ೯ࡼፉᆪLjNbyjn‫࣪ݙ‬डፉᒦࡀᏴࡼ‫ތ‬ፊ૞ᎅࠥ‫ޘ‬ညࡼࡇᇙঌᐊă༿ᓖፀፉᆪᒦభถࡀᏴᆪᔊᔝᒅ૞
डፉࡇᇙLjྙኊཀྵཱྀྀੜࠤᎫࡼᓰཀྵቶLj༿‫ݬ‬ఠ Nbyjnᄋ৙ࡼ፞ᆪ‫ۈ‬ᓾ೯ă
Ⴣན඾ॅዹອਜ਼ᔢቤ‫ࡼۈ‬ၫ௣ᓾ೯Lj༿षᆰNbyjnࡼᓍ጑ǖxxx/nbyjn.jd/dpn/doă
ຶৰ‫ۇ‬ǖNBY27913C
``````````````````````````````````` গၤ
ຶৰ‫ۇ‬ǖNBY27913C
NBY27913Cຶৰ‫ۇ‬
``````````````````````````````` ౐Ⴅྜྷඡ
NBY27913Cຶৰ‫ဵۇ‬ᅲཝᓤ๼݀ளਭ‫ހ‬၂ࡼ࢟വ‫ۇ‬ă‫ږ‬
ᑍሆ೰‫ݛ‬ᒾዩᑺ໚৔ᔫ༽ౚăᏴᅲ߅Ⴥᎌೌ୻ᒄ༄Lj‫ݙ‬
ገ୻ᄰ࢟Ꮞă
2* ୓ᒇഗ࢟Ꮞ)1ᒗ41W૞ৎ঱Lj2B*ೌ୻ᒗ,WJOਜ਼HOEă
3* ୓࢟ኹ‫ܭ‬૞ာ݆໭ਜ਼MFEᑫ೰)ࠈቲೌ୻Lj861nBᑵሶ
࢟ഗሆኹଢ଼Ꮦᆐ23W*ೌ୻ᒗ,WMFEਜ਼.WMFE࣡Ǘዴ૵
୻,WMFELjፓ૵୻.WMFEă
4* ୻ᄰᄢሣK2ਜ਼K3ጲணᒏೡࣞࢯஂă
5* ࡌఎ࢟ᏎLj݀୓ၒྜྷ࢟ኹᐐଝࡵ21/9Wጲ࿟ăၒ߲࢟ኹ
୓ᐐࡍࡵ MFE ᑫ೰ᑵሶມᒙ࢟ኹLj݀ᄋ৙ࡍᏖ 861nB
ᆮࢾࡼMFEຳ௿࢟ഗă୓ၒྜྷ࢟ኹᐐᒗ41WLjຳ௿ၒ߲
࢟ഗᏴᑳৈ࢟Ꮞ࢟ኹपᆍดۣߒᆮࢾă
কຶৰ‫ۇ‬૥᎖৔ᔫᏴ 373lI{Ăऻೌኚ࢟ഗෝါ)EDN*ࡼ
cvdl.cpptuᓞધ໭Ljඛৈᒲ໐ᆐၒ߲ᄋ৙ጙࢾถ೟Lj௥ᄏࡼ
ถ೟ᒋᓍገན௼᎖࢟ঢਜ਼፿ઓభ‫ࡼ߈ܠ‬ख़ᒋ࢟ঢ࢟ഗLjᎧ
ၒྜྷ࢟ኹᇄਈă‫ږ‬ᑍᑚጙ๼ᒙLjຶৰ‫ࡼۇ‬ၒ߲࢟ኹਜ਼Ᏼ৊
ࢾMFE৔ᔫ࢟ኹሆ৙৊MFEࡼၒ߲࢟ഗᎧ࢟Ꮞ࢟ኹᇄਈă
কຶৰ‫ۇ‬࿸ଐ፿᎖དࣅMFEঌᏲLj23W৔ᔫ࢟ኹሆభᄋ৙
঱ࡉ861nBࡼᔢࡍ࢟ഗăྙਫMFEࡼ৔ᔫ࢟ኹ୷ࢅLjกඐ
ᔢࡍၒ߲࢟ഗ୓‫܈ږ‬ಿᐐଝLjభۣߒᆮࢾࡼၒ߲৖ൈă
ᆐདࣅ‫ݙ‬ᄴ৔ᔫ࢟ኹࡼMFEᑫ೰Ljኊገখ‫ܤ‬ଶഗ࢟ᔜăሆ
ෂ৊߲೫‫ݙ‬ᄴ৔ᔫ࢟ኹሆଶഗ࢟ᔜଐႯऱजࡼሮᇼႁීă
ၒྜྷ࢟ᏎVWMP
6* ࣥఎ࣢വ໭K2Lj݀ᏴQXN`JO࿟ଝᏲQXNቧ੓)ຫൈᆐ
311I{-! ७ࣞᆐ 1 ᒗ 3W*ă࠭ 1 ᒗ 211&খ‫ܤ‬ᐴహ‫܈‬LjMFE
ೡࣞႲᒄ‫ܤ‬છLjሤ።࢐࠭ 211&‫ܤ‬છᒗ 1&ăࡩ QXN ቧ
੓ᐴహ‫܈‬ᆐ1&ဟLjMFEೡࣞᆐ211&ă
ၒྜྷ࢟Ꮞ VWMP ࢟വᎅ S4ĂS5 ᔝ߅ࡼ࢟ᔜᆀ൥ဣሚăক
࢟ᔜᆀ൥ଶ‫ހ‬ၒྜྷ࢟Ꮞ࢟ኹLj݀Ᏼၒྜྷ࢟ኹ঱᎖21/9Wဟ
ᄰਭFO፛୭໪ࣅ࢟വăࡩFO፛୭ࡼ࢟ኹဍ঱ဟLj໚઩ታ
࢟ኹඡሢᆐ2/34WLj௥ᎌ61nWᒣૄă໭ୈጙࡡఎဪ৔ᔫLj
჈ᒑᏴၒྜྷ࢟Ꮞ࢟ኹࢅ᎖21/5W )ఠ൅ࡵᒣૄ࢟ኹ*ဟ‫્ݣ‬
ਈࣥă
7* ୻ᄰ K2 ݀୓ࣥఎ K3ăೌ୻ጙৈభ‫࢟ܤ‬ኹᏎᒗ MJO`JOLj
Ᏼ1ᒗ2/7Wᒄମࢯஂ࢟ኹăMFEೡࣞ୓Ᏼ211&Ꭷ1&ᒄ
ମ‫ܤ‬છăၒྜྷMJO`JO࢟ኹᆐ1WဟLjMFEೡࣞᆐ211&ă
VWMPඡሢభ‫ږ‬ᑍሆ೰৛ါᄰਭ࢟ᔜS2ਜ਼S3஠ቲࢯஂǖ
⎛V
⎞
R3 = ⎜ UVLO − 1⎟ × R4
⎝ 1.23
⎠
வসǖ‫୻ݙ‬ঌᏲဟ༿ᇖ৊ຶৰ‫ۇ‬࿟࢟ă
໚ᒦLjW VWMP ᆐჅገཇࡼ VWMP ඡሢăᆐۣߒඡሢறࣞLj
S5።ቃ᎖211lΩă
``````````````````````````````` ሮᇼႁී
NBY27913C ຶৰ‫)ۇ‬FW lju*ဵ࢟ഗ఼ᒜቯĂࡍ࢟ഗၒ߲
MFEདࣅ໭Ljభᄋ৙঱ࡉ861nBࡼᆮࢾ࢟ഗLj༦‫ݙ‬၊࢟Ꮞ
࢟ኹ‫ܤ‬છ፬ሰă
```````````````````````````````````````````````````````````````````````` Ꮔୈ৙።࿜
SUPPLIER
PHONE
FAX
WEBSITE
Central Semiconductor
631-435-1110
631-435-3388
www.centralsemi.com
Coilcraft
847-639-6400
847-639-1469
www.coilcraft.com
Diodes Inc.
805-446-4800
805-446-4850
www.diodes.com
Murata
770-436-1300
770-436-3030
www.murata.com
Susumu Co Ltd.
208-328-0307
208-328-0308
www.susumu-usa.com
TDK
847-390-4373
847-390-4428
www.component.tdk.com
Vishay
402-563-6866
402-563-6296
www.vishay.com
ᓖǖᎧ࿟ၤᏄ໭ୈ৙።࿜ೊᇹဟLj༿ႁීิᑵᏴဧ፿ࡼဵNBY27913Că
2
_______________________________________________________________________________________
NBY27913Cຶৰ‫ۇ‬
WMFE ᑵ૵፛୭ሤ࣪᎖ HOE ࡼᔢࡍ࢟ኹᎅ S2ĂS3 ᔝ߅ࡼ
नౣᆀ൥ሢᒜᏴ56WLjকᆀ൥ೌ୻ᒗNBY27913CࡼGC፛
୭ăྙਫຶৰ‫ۇ‬Ᏼ඗ᎌ୻ঌᏲဟఎ໪૞ MFE ఎവLjᐌ
WMFEᑵ૵࢟ኹభถ્࿟ဍࡵ‫ڔݙ‬ཝࡼ࢟ኹăด‫ݝ‬ᇙ‫ތ‬ह
ࡍ໭્ଶ‫ހ‬ᑚᒬ༽ౚLj࠭ऎଢ଼ࢅ࢟ঢࡼख़ᒋ࢟ഗLj୓
WMFEᑵ૵፛୭ࡼ࢟ኹሢᒜᏴ56Wጲดă૾‫ܣ‬ဧ፿೫ᑚᒬ
ۣઐLj྆୐ፇᏴ৊ຶৰ‫ۇ‬࿟࢟ᒄ༄୻࿟ᒎࢾࡼঌᏲă
QXNೡࣞࢯஂ
ᄰਭࢯஂೌ୻Ᏼ QXO`JO ၒྜྷ࣡ࡼ QXN ቧ੓ᐴహ‫܈‬౶఼
ᒜMFEೡࣞăQXN`JOၒྜྷᆐ঱࢟ຳဟਈࣥMFE࢟ഗǗၒ
ྜྷᆐࢅ࢟ຳဟఎ໪MFE࢟ഗăቧ੓ख़ᒋᏴ2/6Wᒗ6/1WĂຫ
ൈᆐ211I{ᒗ2111I{Ljᄰਭখ‫ܤ‬ᐴహ‫ஂࢯ܈‬MFEೡࣞăຫ
ൈࢅ᎖211I{ࡼቧ੓భถ્ࡴᒘၒ߲࿑ႄăᐐࡍᐴహ‫܈‬ဟLj
MFEೡࣞିྦྷLjनᒄጾ཭ăQXNᐴహ‫܈‬ᆐ1&ဟLjMFEೡ
ࣞࡉࡵ211&ă
ሣቶೡࣞࢯஂ
ሣቶೡࣞࢯஂဵᄰਭখ‫ ܤ‬MJO`JO ၒྜྷ࢟ኹࡼ७ࣞ౶఼ᒜ
MFE ೡࣞăMJO`JO ၒྜྷࢯᒜଶഗቧ੓LjᏴ‫ݙ‬ᄴࡼ࢟ഗሆ
߿खNPTGFUăᑚጙਭ߈્஠ጙ‫఼ݛ‬ᒜၒ߲࢟ഗLj࠭ऎࡉ
ࡵ఼ᒜMFEೡࣞࡼ෹ࡼăፐᆐᏴྀੜೡࣞࢀ଀MFEဪᒫۣ
ߒࡴᄰᓨზLjሣቶೡࣞࢯஂ‫ޘ્ݙ‬ည࿑ႄሚሷăᏴ 1 ᒗ
2/7WपᆍดࢯஂMJO`JO࢟ኹLjభဧMFEೡࣞᏴ211&ᒗ1&
ମ‫ܤ‬છăMJO`JO࢟ኹᐐࡍဟLjMFEೡࣞିྦྷLjनᒄጾ཭ă
MJO`JO࢟ኹᆐ1WဟLjMFEೡࣞᆐ211&ă
ࢯஂၒ߲৖ൈ
ো௣ሆ೰৛ါࢯஂଶഗ࢟ᔜ S:Ljభጲখ‫ຶܤ‬ৰ‫ࡼۇ‬ᔢࡍ
ၒ߲৖ൈǖ23WĂ861nBăᓖፀǖຶৰ‫ۇ‬ᔢࡍၒ߲࢟ഗሢ
ᒜᏴ861nBĂᔢࡍၒ߲࢟ኹሢᒜᏴ26WLj༦ᔢࡍၒ߲৖ൈ
ሢᒜᏴ9/36Xă
၅ሌଐႯᔢቃၒྜྷ࢟ኹሆࡼᔢଛࡴᄰᐴహ‫܈‬ǖ
VLED + VD
DON =
VINMIN + VLED + VD
ଐႯჅገཇࡼख़ᒋ࢟ঢ࢟ഗǖ
k × 2 × ILED
IP = f
1 − DON
໚ᒦLjl g ᆐĐኀᑵፐᔇđ)ऻ೹ஏᇹၫ*Ljক࢟വᒦ୓໚࿸
ᒙᆐ2/2ă
ଐႯჅኊࡼ࢟ঢᒋLj݀ኡᐋᔢ୻த‫ܪ‬ᓰᒋࡣቃ᎖ଐႯᒋ
ࡼ࢟ঢǖ
L=
DON × VINMIN
fSW × IP
໚ᒦLjMᆐ࢟ঢM2ࡼ࢟ঢᒋǗgTX ᆐఎਈຫൈLjࢀ᎖373lI{ă
ᄰਭन૮ෝါᄋ৙৊ၒ߲࢟വࡼ৖ൈᆐǖ
PIN =
1
× L × IP2 × fSW
2
ၒ߲࢟വሿ੒ࡼ৖ൈᆐǖ
POUT = VLED × ILED + VD × ILED
ো௣ถ೟၆ੱࢾേLj࿟ၤೝৈࢀါሤࢀLj࠭ऎཇ߲ጙৈ
ৎறཀྵࡼख़ᒋ࢟ঢ࢟ഗǖ
⎛ 2 × (VLED + VD ) × ILED ⎞
IP = ⎜
⎟
⎝
⎠
fSW × L
ো௣ཇࡻࡼJQFBLLjಽ፿ሆါଐႯଶഗ࢟ᔜS:ǖ
R9 =
0.292 × (R8 + R7)
IPEAK × R7
໚ᒦLj1/3:3Wᆐଶഗඡሢ࢟ኹăS8ĂS9ᔝ߅ጙৈ࢟ᔜॊ
ኹ໭Ljถ৫Ᏼ໭ୈଶഗ፛୭ᒄ༄‫܈ږ‬ಿଢ଼ࢅଶഗ࢟ᔜ࿟
ࡼኹଢ଼ă
ᄢሣኡᐋ
‫ݙ‬ဧ፿QXNೡࣞࢯஂဟ୓ᄢሣK2୻ᄰǗ‫ݙ‬ဧ፿ሣቶೡࣞ
ࢯஂဟ୓ᄢሣK3୻ᄰă
໚ᒦLjW JONJO ᆐᔢቃၒྜྷ࢟ኹLjW MFE ᆐ MFE ৔ᔫ࢟ኹLj
JMFE ᆐჅገཇࡼMFE࢟ഗLjWE ᆐE3ࡼᑵሶ࢟ኹă
_______________________________________________________________________________________
3
ຶৰ‫ۇ‬ǖNBY27913C
ၒ߲ਭኹۣઐ
ຶৰ‫ۇ‬ǖNBY27913C
NBY27913Cຶৰ‫ۇ‬
-VLED
+VIN
R1
392kΩ
1%
GND
R3
499kΩ
1%
R5
1kΩ
1%
PWM_IN
C2
4.7μF
50V
C1
4.7μF
50V
1
R6
330Ω
1%
D1
22V
L1
4.7μH
C3
0.1μF
50V
IN
UVLO/EN
8
D2
CMSH1-60M
MAX16802B
2
R4
73.2kΩ
1%
J1
PWM_GND
C9
1nF
50V
LIN_IN
LIN_GND
R2
11kΩ
1%
J2
3 COMP
4
C8
470pF
50V
R7
1kΩ
1%
DIM/FB
CS
VCC
NDRV
GND
7
6
5
R8
220Ω
1%
R10
1Ω
12 56
3
C7
0.1μF
50V
Q1
Si3458DV
4
R9
0.10Ω
1%
ᅄ2/! NBY27913Cຶৰ‫ۇ‬Ꮗಯᅄ
4
C5
4.7μF
50V
C6
4.7μF
50V
+VLED
U1
D3
SD103CWS
C4
0.1μF
50V
_______________________________________________________________________________________
NBY27913Cຶৰ‫ۇ‬
ຶৰ‫ۇ‬ǖNBY27913C
ᅄ3/! NBY27913Cຶৰ‫ۇ‬Ꮔୈ‫ݚ‬௜—Ꮔୈ‫ށ‬
ᅄ4/! NBY27913Cຶৰ‫ۇ‬QDC‫ݚ‬௜—Ꮔୈ‫ށ‬
ᅄ5/! NBY27913Cຶৰ‫ۇ‬QDC‫ݚ‬௜—੆୻‫ށ‬
Nbyjn‫࣪ݙ‬Nbyjn‫ޘ‬ອጲᅪࡼྀੜ࢟വဧ፿ঌᐊLjጐ‫ݙ‬ᄋ৙໚ᓜಽ኏భăNbyjnۣഔᏴྀੜဟମĂ඗ᎌྀੜᄰۨࡼ༄ᄋሆኀখ‫ޘ‬ອᓾ೯ਜ਼ਖৃࡼཚಽă
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ______________________5
© 2006 Maxim Integrated Products
Printed USA
ဵ Nbyjn!Joufhsbufe!Qspevdut-!Jod/ ࡼᓖ‫ݿ‬࿜‫ܪ‬ă
MAX16802BEVKIT MAX16802B评估板 - 概述
ENGLISH • 简体中文 • 日本語 • 한국어 Login | Register
请输入关键词或器件型号
最新内容
产品
方案
设计
应用
技术支持
销售联络
公司简介
我的Maxim
Maxim > 产品 > 电源和电池管理 > MAX16802BEVKIT
MAX16802BEVKIT
MAX16802B评估板
概述 技术文档 定购信息 用户说明 (0) 所有内容 状况
状况:生产中。
概述
MAX16802B评估板(EV kit)用来演示基于MAX16802B的电流控制型、大电
流LED驱动器。该评估板具备高达750mA的稳定电流供给能力,并可运行
在10.8V至30V电源电压之间,工作温度范围为-40°C至+85°C。
完整的数据资料
MAX16802B评估板具有两种不同类型的亮度控制方式:使用模拟输入电压
或PWM输入信号来控制LED亮度。该评估板还具有UVLO功能,可以在输入电源
电压过低时关闭评估板,并且可以在LED开路时为评估板提供过压保
护。MAX16802B评估板是一块经过完全安装与测试的电路板。
英文
下载 Rev. 0 (PDF, 132kB)
中文
下载 Rev. 0 (PDF, 640kB)
警告:当出现严重故障或失效状态时,本评估板有巨大能量耗散,可能会造成元件或元件碎片的高速溅射。请小心操作本
评估板,以避免可能的人身伤害。
关键特性
应用/使用
10.8V至30V电源电压范围
电流控制型输出
12V输出时,电流可高达750mA
线性或PWM亮度控制
满载时效率高达80%
电源电压欠压锁定
输出过压保护
相关产品
MAX16801,
MAX16801A,
MAX16801B,
MAX16802,
MAX16802A,
MAX16802B
离线式、DC-DC PWM控制器,用于高亮度LED驱动器
没有找到你需要的产品吗?
应用工程师帮助选型,下个工作日回复
参数搜索
应用帮助
概述
技术文档
定购信息
概述
数据资料
价格与供货
http://china.maxim-ic.com/datasheet/index.mvp/id/5209[2010-8-12 8:16:14]
商用与工业照明
装饰灯与建筑照明
离线式DC-DC LED驱动器
RGB背光,用于LCD TV和监视
器
MAX16802BEVKIT MAX16802B评估板 - 概述
关键特性
应用/ 使用
关键指标
图表
注释、注解
相关产品
应用笔记
评估板
设计指南
可靠性报告
软件/ 模型
样品
在线订购
封装信息
无铅信息
参考文献: 19- 0560 Rev. 0; 2006- 05- 30
本页最后一次更新: 2006- 07- 20
联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明
© 2010 Maxim Integrated Products版权所有
http://china.maxim-ic.com/datasheet/index.mvp/id/5209[2010-8-12 8:16:14]
19-0560; Rev 0; 5/06
MAX16802B Evaluation Kit
The MAX16802B evaluation kit (EV kit) demonstrates a
current-controlled, high-output-current LED driver
based on the MAX16802B. This EV kit is capable of
supplying stable output currents of up to 750mA, can
run at supply voltages between 10.8V and 30V, and can
operate at temperatures ranging from -40°C to +85°C.
The MAX16802B EV kit features two different types of
dimming controls using either a linear input voltage or a
PWM input signal to control the LED brightness. This EV
kit also has a UVLO feature to turn off the EV kit operation during low input supply voltage and an overvoltage
protection to protect the EV kit under an open-LED condition. The MAX16802B EV kit is a fully assembled and
tested board.
Warning: Under severe fault or failure conditions, this
EV kit may dissipate large amounts of power, which
could result in the mechanical ejection of a component
or of component debris at high velocity. Operate this
EV kit with care to avoid possible personal injury.
Features
♦ 10.8V to 30V Wide Supply Voltage Range
♦ Current-Controlled Output
♦ Up to 750mA LED Current at 12V Output
♦ Linear and PWM Dimming Control
♦ Over 80% Efficiency at Full Load
♦ Supply Undervoltage Lockout
♦ Output Overvoltage Protection
Ordering Information
PART
TEMP RANGE
IC PACKAGE
MAX16802BEVKIT
-40°C to +85°C
8 µMAX®
µMAX is a registered trademark of Maxim Integrated Products, Inc.
Component List
DESIGNATION
C1, C2, C5, C6
C3, C4, C7
C8
QTY
DESCRIPTION
DESIGNATION
QTY
R1
1
R2
1
11kΩ ±1%, 1/8W resistor (0603)
R3
1
499kΩ ±1%, 1/8W resistor (0603)
73.2kΩ ±1%, 1/8W resistor (0603)
4
4.7µF, 50V X7R ceramic capacitors
Murata GRM32ER71H475KA88L
L1
1
Q1
1
3
0.1µF, 50V X7R SMD ceramic
capacitors
Murata GRM188R71H104KA93D or
TDK C1608X7R1H104K
470pF, 50V X7R ceramic capacitor
Murata GRM188R71H471KA01D or
TDK C1608X7R1H471K
1nF, 50V X7R ceramic capacitor
Murata GRM188R71H102KA01D or
TDK C1608X7R1H102K
22V, 1.5W zener diode
Vishay SMZG3797B
60V, 1A Schottky diode
Central Semiconductor CMSH1-60M
or Diodes Inc. B160
20V, small-signal Schottky diode
Vishay SD103CWS or
Diodes Inc. SD103CWS
0.1in, 2-pin hole headers
(through hole)
1
C9
1
D1
1
D2
1
D3
1
J1, J2
2
DESCRIPTION
4.7µH, 4.2A peak SMD inductor
Coilcraft DO3308P-472ML
60V, 3.2A n-channel MOSFET
Vishay Si3458DV
392kΩ ±1%, 1/8W resistor (0603)
R4
1
R5, R7
2
1kΩ ±1%, 1/8W resistors (0603)
R6
1
330Ω ±1%, 1/4W resistor (1206)
R8
1
220Ω ±1%, 1/8W resistor (0603)
R9
1
R10
1
0.10Ω ±1%, 1/2W resistor (1206)
Susumu RL1632R-R100-F
1Ω ±5%, 1/8W resistor (0603)
U1
1
MAX16802B (8-pin µMAX)
4
0.1in, 2-pin male connectors
(through hole)
1
MAX16802B PC board
VIN, VLED,
PWM_IN,
LIN_IN
—
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX16802B
General Description
Evaluates: MAX16802B
MAX16802B Evaluation Kit
Quick Start
The MAX16802B EV kit is fully assembled and tested.
Follow these steps to verify operation. Do not turn on
the power supply until all connections are completed.
1) Connect a DC power supply (0 to 30V or above, 1A)
to +VIN and GND.
2) Connect a voltmeter or oscilloscope and the LED
array (connected in series to drop about 12V at
750mA forward current) to +VLED and -VLED with
anode connected to +VLED and cathode to -VLED.
3) Close the jumpers J1 and J2 to disable dimming.
4) Turn on the power supply and increase the input
voltage to above 10.8V. The output voltage increases to forward bias the LED array and delivers
approximately 750mA regulated average LED current. Increase the supply further up to 30V and the
output average current will be regulated throughout
the range.
5) Open shunt J1 and apply a PWM signal to PWM_IN
with a frequency of 200Hz and 0 to 2V amplitude.
Vary the duty cycle from 0 to 100% and the LED
brightness varies from 100% to 0%. When the PWM
duty cycle is 0%, the LED brightness is 100%.
6) Close J1, and then open J2. Connect a variable voltage source to LIN_IN and vary the voltage between
0 and 1.6V. The LED brightness varies from 100% to
0%. When the voltage input at LIN_IN is 0V, the LED
brightness is 100%.
Caution: Avoid powering up the EV kit without connecting load.
Detailed Description
The MAX16802B evaluation kit is a current-controlled,
high-output-current LED driver capable of supplying
constant currents up to 750mA, irrespective of supply
voltage variations.
This EV kit is based on a discontinuous current mode
(DCM) buck-boost converter operating at 262kHz to
deliver a finite amount of energy to the output every
cycle. The amount of this energy depends primarily on
the value of the inductor and the user-programmable
peak inductor current and does not depend on the supply voltage. Due to this configuration, the power output
of the EV kit, and thus the output current supplied to the
LED at a given LED operating voltage, becomes independent of the supply voltage.
This EV kit is designed to drive LED loads capable of
taking up to 750mA of maximum current at a 12V operating voltage. If an LED load with lower operating voltage
is used, then the maximum output current will increase
by the same ratio to maintain the output power constant.
To drive an LED array with a different operating voltage,
the value of the current-sense resistor needs to be
adjusted. Calculation of the current-sense resistor for a
different output operating voltage is explained in later
sections.
Input Supply UVLO
Input supply UVLO is implemented by using a resistor
network that combines R3 and R4, which senses the
input supply voltage and uses the EN pin to turn on the
circuit when the input supply voltage goes above
10.8V. The wake-up threshold of EN is 1.23V when the
voltage at EN is rising, and it has a hysteresis of 50mV.
Once the device is turned on, due to the hysteresis, the
device turns off only if the input supply voltage goes
below 10.4V.
The UVLO threshold can be adjusted by varying R1 or
R2 using the equation below:
⎛V
⎞
R3 = ⎜ UVLO − 1⎟ × R4
⎝ 1.23
⎠
where VUVLO is the desired UVLO threshold. To maintain threshold accuracy, keep the value of R4 less than
100kΩ.
Component Suppliers
PHONE
FAX
Central Semiconductor
SUPPLIER
631-435-1110
631-435-3388
www.centralsemi.com
WEBSITE
Coilcraft
847-639-6400
847-639-1469
www.coilcraft.com
Diodes Inc.
805-446-4800
805-446-4850
www.diodes.com
Murata
770-436-1300
770-436-3030
www.murata.com
Susumu Co Ltd.
208-328-0307
208-328-0308
www.susumu-usa.com
TDK
847-390-4373
847-390-4428
www.component.tdk.com
Vishay
402-563-6866
402-563-6296
www.vishay.com
Note: Indicate you are using the MAX16802B when contacting these manufacturers.
2
_______________________________________________________________________________________
MAX16802B Evaluation Kit
PWM Dimming
The PWM dimming is for controlling the LED brightness
by adjusting the duty cycle of the PWM input signal
connected to the PWM_IN input. A HIGH at PWM_IN
input turns off the LED current and LOW turns on the
LED current. Connect a signal with peak amplitude
between 1.5V to 5.0V and with frequency between
100Hz to 1000Hz and vary the duty cycle to adjust the
LED brightness. Frequencies lower than 100Hz can
introduce flickering in the light output. LED brightness
reduces when duty cycle is increased and vice-versa.
When the PWM duty cycle is 0%, the LED brightness
will be 100%.
Linear Dimming
The linear dimming is for controlling the LED brightness
by varying the amplitude of the voltage connected to
the LIN_IN input. The voltage at the LIN_IN input modulates the current-sense signal and makes the MOSFET
trip at a different current level. This process, in turn,
changes the output current and thus controls the LED
brightness. Since the LED is continuously on at all
brightness levels, flickering effect is not present with
linear dimming. Vary the LIN_IN voltage between 0 and
1.6V to adjust LED brightness from 100% to 0%. LED
brightness reduces when the voltage at LIN_IN is
increased and vice-versa. When the voltage at LIN_IN
is 0V the LED brightness is 100%.
Adjusting the Output Power
To change the maximum output power of the EV kit
from 12V at 750mA to a different level, adjust the value
of the current-sense resistor, R9, using the following
equations. Note that the maximum output current of the
EV kit is limited to 750mA, the maximum output voltage
is limited to 15V, and the maximum output power is limited to 8.25W.
Initially calculate the approximate optimum ON duty
cycle required at the minimum input voltage:
VLED + VD
VINMIN + VLED + VD
DON =
where V INMIN is the minimum input supply voltage,
VLED is the LED operating voltage, ILED is the desired
LED current and VD is the forward voltage of D2.
Calculate the approximate required peak inductor current:
k × 2 × ILED
IP = f
1 − DON
where kf is a noncritical “fudge factor” set equal to 1.1
for this circuit.
Calculate the approximate required inductor value and
choose the closest standard value smaller than the calculated value:
L=
DON × VINMIN
fSW × IP
where L is the inductance value of inductor L1, and fSW
is the switching frequency equal to 262kHz.
Power transferred to the output circuit by the flyback
process is:
PIN =
1
× L × IP2 × fSW
2
Power consumed by the output circuit is:
POUT = VLED × ILED + VD × ILED
Conservation of power requires that the above two
equations can be equated and solved for a more precise value of the required peak inductor current.
⎛ 2 × (VLED + VD ) × ILED ⎞
IP = ⎜
⎟
⎝
⎠
fSW × L
Set the value of the current-sense resistor, R9, based
on the IPEAK value using the following equation:
R9 =
0.292 × (R8 + R7)
IPEAK × R7
where 0.292V is the current-sense trip threshold voltage. R7 and R8 form a voltage-divider, which scales
down the voltage across the current-sense resistor
before reaching the current-sense pin of the device.
Jumper Selection
Keep jumper J1 closed when PWM dimming is not
used. Keep jumper J2 closed when linear dimming is
not used.
_______________________________________________________________________________________
3
Evaluates: MAX16802B
Output Overvoltage Protection
The maximum voltage at the positive pin of VLED with
respect to GND is limited to 45V by a feedback network
formed by R1 and R2, which is connected to the FB pin
of the MAX16802B. If the EV kit is turned on with no load
or if the LED connection opens, the voltage at the positive pin of VLED may rise to unsafe levels. This condition
is sensed by the internal error amplifier, which reduces
the peak inductor current to limit the voltage at the positive pin of VLED to 45V. Even if this protection is present,
it is recommended to connect the specified load before
powering up the EV kit.
Evaluates: MAX16802B
MAX16802B Evaluation Kit
-VLED
+VIN
R1
392kΩ
1%
GND
R3
499kΩ
1%
R5
1kΩ
1%
PWM_IN
C2
4.7µF
50V
C1
4.7µF
50V
1
R6
330Ω
1%
D1
22V
L1
4.7µH
C3
0.1µF
50V
IN
UVLO/EN
8
D2
CMSH1-60M
MAX16802B
2
R4
73.2kΩ
1%
J1
PWM_GND
C9
1nF
50V
LIN_IN
LIN_GND
R2
11kΩ
1%
J2
3 COMP
4
C8
470pF
50V
R7
1kΩ
1%
DIM/FB
CS
VCC
NDRV
GND
7
6
5
R8
220Ω
1%
R10
1Ω
12 56
3
C7
0.1µF
50V
Q1
Si3458DV
4
R9
0.10Ω
1%
Figure 1. MAX16802B EV Kit Schematic
4
C5
4.7µF
50V
C6
4.7µF
50V
+VLED
U1
D3
SD103CWS
C4
0.1µF
50V
_______________________________________________________________________________________
MAX16802B Evaluation Kit
Figure 3. MAX16802B EV Kit PC Board Layout—Component
Side
Figure 4. MAX16802B EV Kit PC Board Layout—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 5
© 2006 Maxim Integrated Products
Boblet
Printed USA
is a registered trademark of Maxim Integrated Products, Inc.
Evaluates: MAX16802B
Figure 2. MAX16802B EV Kit Component Placement Guide—
Component Side
19-3880; Rev 2; 1/10
KIT
ATION
EVALU
E
L
B
A
AVAIL
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
Features
♦ Suitable for Buck, Boost, Flyback, SEPIC, and
Other Topologies
♦ Up to 50W or Higher Output Power
♦ Universal Offline Input Voltage Range: Rectified
85VAC to 265VAC (MAX16801)
♦ IN Pin Directly Driven From 10.8VDC to 24VDC
Input (MAX16802)
♦ Internal Error Amplifier with 1% Accurate
Reference for Precise LED Current Regulation
♦ PWM or Linear Dimming
♦ Fixed Switching Frequency of 262kHz ±12%
♦ Thermal Shutdown
♦ Digital Soft-Start
♦ Programmable Input Startup Voltage
♦ Internal Bootstrap UVLO with Large Hysteresis
(MAX16801)
♦ 45µA (typ) Startup Supply Current, 1.4mA (typ)
Operating Supply Current
♦ 50% (MAX16801A/MAX16802A) or 75%
(MAX16801B/MAX16802B) Maximum Duty Cycle
♦ Available in a Tiny 8-Pin µMAX Package
The MAX16801A/B/MAX16802A/B high-brightness (HB)
LED driver-control ICs contain all the circuitry required
for the design of wide-input-voltage-range LED drivers
for general lighting and display applications. The
MAX16801 is well suited for universal input (rectified
85VAC to 265VAC) LED drivers, while the MAX16802 is
intended for low-input-voltage (10.8VDC to 24VDC) LED
drivers.
When the LED current needs to be tightly regulated, an
additional on-board error amplifier with 1% accurate reference can be utilized. A wide dimming range can be
implemented by using low-frequency PWM dimming.
The MAX16801/MAX16802 feature an input undervoltage
lockout (UVLO) for programming the input-supply start
voltage, and to ensure proper operation during brownout
conditions. The MAX16801 has an internal-bootstrap
undervoltage lockout circuit with a large hysteresis that
simplifies offline LED driver designs. The MAX16802 does
not have this internal bootstrap circuit and can be biased
directly from a +12V rail.
The 262kHz fixed switching frequency is internally
trimmed, allowing for optimization of the magnetic and filter components, resulting in a compact, cost-effective
LED driver. The MAX16801A/MAX16802A are offered with
50% maximum duty cycle. The MAX16801B/MAX16802B
are offered with 75% maximum duty cycle. These devices
are available in an 8-pin µMAX® package and operate
over the -40°C to +85°C temperature range.
Ordering Information
TEMP
RANGE
PART
Applications
Offline and DC-DC LED
Drivers
RGB Back Light for LCD
TVs and Monitors
Commercial and
Industrial Lighting
Decorative and
Architectural Lighting
PINPACKAGE
MAX16801AEUA+
-40°C to +85°C
8 µMAX
MAX16801BEUA+
-40°C to +85°C
8 µMAX
MAX16802AEUA+
-40°C to +85°C
8 µMAX
MAX16802BEUA+
-40°C to +85°C
8 µMAX
+Denotes lead-free package.
µMAX is a registered trademark of Maxim Integrated Products, Inc.
Typical Operating Circuit
10.8VDC TO 24VDC
ENABLE
UVLO/EN
IN
C3
L1
DIM/FB
VCC
PWM
LEDs
D1
MAX16802B
COMP
CS
Q1
NDRV
GND
C1
C2
R1
GND
Warning: The MAX16801/MAX16802 are designed to work with high voltages. Exercise caution.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX16801A/B/MAX16802A/B
General Description
MAX16801A/B/MAX16802A/B
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
ABSOLUTE MAXIMUM RATINGS
IN to GND..........................................................................-0.3V to +30V
VCC to GND ......................................................................-0.3V to +13V
DIM/FB, COMP, UVLO, CS to GND..........................-0.3V to +6V
NDRV to GND.............................................-0.3V to (VCC + 0.3V)
Continuous Power Dissipation (TA = +70°C)
8-Pin µMAX (derate 4.5mW/°C above +70°C) ..............362mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range ............................-65°C to +150°C
Junction Temperature ......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VIN = +12V (MAX16801: VIN must first be brought up to +23.6V for startup), 10nF bypass capacitors at IN and VCC, CNDRV = 0µF,
VUVLO = +1.4V, VDIM/FB = +1.0V, COMP = unconnected, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are
at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
UNDERVOLTAGE LOCKOUT/STARTUP
Bootstrap UVLO Wake-Up Level
VSUVR
VIN rising (MAX16801 only)
19.68
21.6
23.60
V
Bootstrap UVLO Shutdown Level
VSUVF
VIN falling (MAX16801 only)
9.05
9.74
10.43
V
UVLO/EN Wake-Up Threshold
VULR2
UVLO/EN rising
1.188
1.28
1.371
V
UVLO/EN Shutdown Threshold
VULF2
UVLO/EN falling
1.168
1.23
1.291
UVLO/EN Input Current
IUVLO
TJ = +125°C
UVLO/EN Hysteresis
IN Supply Current In
Undervoltage Lockout
IN Voltage Range
UVLO/EN Propagation Delay
Bootstrap UVLO Propagation
Delay
ISTART
VIN = +19V, for MAX16801 only when in
bootstrap UVLO
VIN
V
25
nA
50
mV
45
10.8
tEXTR
UVLO/EN steps up from +1.1V to +1.4V
12
tEXTF
UVLO/EN steps down from +1.4V to +1.1V
1.8
tBUVR
VIN steps up from +9V to +24V
5
tBUVF
VIN steps down from +24V to +9V
1
VCCSP
VIN = +10.8V to +24V, sinking 1µA to 20mA
from VCC
90
µA
24
V
µs
µs
INTERNAL SUPPLY
VCC Regulator Set Point
IN Supply Current After Startup
IIN
Shutdown Supply Current
7
VIN = +24V
1.4
UVLO/EN = low
10.5
V
2.5
mA
90
µA
GATE DRIVER
Driver Output Impedance
RON(LOW)
Measured at NDRV sinking, 100mA
2
4
RON(HIGH) Measured at NDRV sourcing, 20mA
4
12
Driver Peak Sink Current
Driver Peak Source Current
Ω
1
A
0.65
A
PWM COMPARATOR
Comparator Offset Voltage
CS Input Bias Current
Comparator Propagation Delay
Minimum On-Time
2
VOPWM
ICS
tPWM
tON(MIN)
VCOMP - VCS
VCS = 0V
VCS = +0.1V
1.15
1.38
-2
1.70
V
+2
µA
60
ns
150
ns
_______________________________________________________________________________________
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
(VIN = +12V (MAX16801: VIN must first be brought up to +23.6V for startup), 10nF bypass capacitors at IN and VCC, CNDRV = 0µF,
VUVLO = +1.4V, VDIM/FB = +1.0V, COMP = unconnected, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are
at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
262
291
320
mV
+2
µA
CURRENT-SENSE COMPARATOR
Current-Sense Trip Threshold
VCS
CS Input Bias Current
ICS
Propagation Delay From
Comparator Input to NDRV
Switching Frequency
Maximum Duty Cycle
tPWM
VCS = 0V
50mV overdrive
fSW
DMAX
-2
60
230
ns
262
290
MAX1680_A
50
50.5
MAX1680_B
75
76
26.1
29.0
kHz
%
IN CLAMP VOLTAGE
IN Clamp Voltage
VINC
2mA sink current, MAX16801 only (Note 3)
24.1
V
ERROR AMPLIFIER
Voltage Gain
RLOAD = 100kΩ
80
dB
Unity-Gain Bandwidth
RLOAD = 100kΩ, CLOAD = 200pF
2
MHz
Phase Margin
RLOAD = 100kΩ, CLOAD = 200pF
65
Degrees
DIM/FB Input Offset Voltage
3
COMP Clamp Voltage
High
2.2
3.5
Low
0.4
1.1
mV
V
Source Current
0.5
mA
Sink Current
0.5
mA
Reference Voltage
VREF
(Note 2)
1.218
1.230
Input Bias Current
COMP Short-Circuit Current
1.242
V
50
nA
8
mA
Thermal-Shutdown Temperature
130
°C
Thermal Hysteresis
25
°C
15,872
Clock
cycles
Reference Voltage Steps During
Soft-Start
31
Steps
Reference Voltage Step
40
mV
THERMAL SHUTDOWN
DIGITAL SOFT-START
Soft-Start Duration
Note 1: All devices are 100% tested at TA = +85°C. All limits over temperature are guaranteed by characterization.
Note 2: VREF is measured with DIM/FB connected to the COMP pin (see the Functional Diagram).
Note 3: The MAX16801 is intended for use in universal input offline drivers. The internal clamp circuit is used to prevent the bootstrap capacitor (C1 in Figure 5) from charging to a voltage beyond the absolute maximum rating of the device when
EN/UVLO is low. The maximum current to IN (hence to clamp) when UVLO is low (device in shutdown), must be externally
limited to 2mA (max). Clamp currents higher than 2mA may result in clamp voltage higher than +30V, thus exceeding the
absolute maximum rating for IN. For the MAX16802, do not exceed the +24V maximum operating voltage of the device.
_______________________________________________________________________________________
3
MAX16801A/B/MAX16802A/B
ELECTRICAL CHARACTERISTICS (continued)
Typical Operating Characteristics
(VUVLO/EN = +1.4V, VFB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.)
21.55
10.1
MAX16801 VIN FALLING
UVLO/EN WAKE-UP THRESHOLD
vs. TEMPERATURE
1.280
UVLO/EN RISING
1.275
MAX16801 toc03
MAX16801 VIN RISING
MAX16801 toc01
21.60
BOOTSTRAP UVLO SHUTDOWN LEVEL
vs. TEMPERATURE
MAX16801 toc02
BOOTSTRAP UVLO WAKE-UP LEVEL
vs. TEMPERATURE
10.0
21.45
UVLO/EN (V)
VIN (V)
VIN (V)
21.50
9.9
21.40
1.270
1.265
1.260
9.8
21.35
1.255
9.7
-20
0
20
40
60
80
1.250
-40
-20
0
20
40
60
80
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
TEMPERATURE (°C)
TEMPERATURE (°C)
UVLO/EN SHUTDOWN THRESHOLD
vs. TEMPERATURE
VIN SUPPLY CURRENT IN UNDERVOLTAGE
LOCKOUT vs. TEMPERATURE
VIN SUPPLY CURRENT AFTER STARTUP
vs. TEMPERATURE
UVLO/EN FALLING
52
51
50
1.25
1.5
MAX16801 toc05
1.30
MAX16801 toc04
-40
VIN = 19V
MAX16801 WHEN IN BOOTSTRAP UVLO
MAX16802 WHEN UVLO/EN IS LOW
VIN = 24V
MAX16801 toc06
21.30
1.4
1.20
48
IIN (mA)
ISTART (µA)
UVLO/EN (V)
49
47
1.3
46
45
1.15
1.2
44
43
-20
0
20
40
60
80
0
20
40
60
-20
0
20
40
60
VCC REGULATOR SET POINT
vs. TEMPERATURE
CURRENT-SENSE THRESHOLD
vs. TEMPERATURE
VIN = 10.8V
8.8
8.7
10mA LOAD
VCC (V)
9.5
8.5
8.4
9.4
20mA LOAD
8.3
NDRV OUTPUT IS
SWITCHING
9.3
8.2
-20
0
20
40
TEMPERATURE (°C)
60
80
TOTAL NUMBER OF
DEVICES = 100
+3σ
305
80
300
295
MEAN
290
285
280
-3σ
275
8.1
9.2
310
CURRENT-SENSE THRESHOLD (µV)
MAX16801 toc07
8.9
MAX116801 toc08
VCC REGULATOR SET POINT
vs. TEMPERATURE
8.6
-40
-40
80
TEMPERATURE (°C)
NDRV OUTPUT IS NOT
SWITCHING, VFB = 1.5V
9.6
-20
TEMPERATURE (°C)
VIN = 19V
NO LOAD
9.7
-40
TEMPERATURE (°C)
9.8
4
1.1
42
-40
270
-40
-20
0
20
40
TEMPERATURE (°C)
60
80
-40
-20
0
20
40
TEMPERATURE (°C)
_______________________________________________________________________________________
60
80
MAX16801 toc09
1.10
VCC (V)
MAX16801A/B/MAX16802A/B
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
SWITCHING FREQUENCY
vs. TEMPERATURE
15
10
5
255
250
-3σ
270
280
290
300
310
10
-20
0
20
40
60
80
230
240
250
260
270
280
SWITCHING FREQUENCY (kHz)
PROPAGATION DELAY FROM
CURRENT-SENSE COMPARATOR INPUT
TO NDRV vs. TEMPERATURE
UVLO/EN PROPAGATION DELAY
vs. TEMPERATURE
REFERENCE VOLTAGE
vs. TEMPERATURE
60
55
50
-20
0
20
40
60
80
VIN = 12V
1.229
1.228
1.227
1.226
UVLO/EN FALLING
1.225
-40
-20
0
20
40
60
-40
80
-20
0
20
40
60
TEMPERATURE (°C)
TEMPERATURE (°C)
TEMPERATURE (°C)
INPUT CURRENT
vs. INPUT CLAMP VOLTAGE
INPUT CLAMP VOLTAGE
vs. TEMPERATURE
NDRV OUTPUT IMPEDANCE
vs. TEMPERATURE
8
7
6
5
4
27.0
IIN = 2mA
26.8
26.6
2.2
2.1
1.9
26.2
1.8
1.7
25.8
1.6
25.6
1.5
2
25.4
1.4
1
25.2
1.3
0
25.0
3
10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
INPUT VOLTAGE (V)
VIN = 24V
SINKING 100mA
2.0
26.4
26.0
80
MAX16801 toc18
9
RON (Ω)
MAX16801 toc16
10
INPUT CLAMP VOLTAGE (V)
-40
UVLO/EN RISING
REFERENCE VOLTAGE (V)
65
1.230
MAX16801 toc14
MAX16801 toc13
70
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
290
MAX16801 toc15
TEMPERATURE (°C)
UNDERVOLTAGE LOCKOUT DELAY (µs)
CURRENT-SENSE THRESHOLD (mV)
75
MAX16801 toc12
15
0
-40
320
20
5
240
260
tPWM (ns)
MEAN
260
245
0
INPUT CURRENT (mA)
265
TOTAL NUMBER OF
DEVICES = 200
25
PERCENTAGE OF UNITS (%)
20
270
30
MAX16801 toc17
PERCENTAGE OF UNITS (%)
25
TOTAL NUMBER OF
DEVICES = 100
+3σ
275
SWITCHING FREQUENCY
MAX16801 toc11
TOTAL NUMBER OF
DEVICES = 200
280
SWITCHING FREQUENCY (kHz)
30
MAX16801 toc10
CURRENT-SENSE THRESHOLD
1.2
-40
-20
0
20
40
TEMPERATURE (°C)
60
80
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
_______________________________________________________________________________________
5
MAX16801A/B/MAX16802A/B
Typical Operating Characteristics (continued)
(VUVLO/EN = +1.4V, VFB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VUVLO/EN = +1.4V, VFB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.)
ERROR-AMPLIFIER OPEN-LOOP GAIN
AND PHASE vs. FREQUENCY
NDRV OUTPUT IMPEDANCE
vs. TEMPERATURE
4.8
4.6
100
30
80
10
GAIN
60
4.4
GAIN (dB)
4.2
4.0
3.8
50
-10
40
-30
20
-50
0
-70
PHASE
-20
-90
3.6
-40
-110
3.4
-60
-130
3.2
-80
-150
3.0
-100
-40
-20
0
20
40
60
0.1
80
1
10
100
1k
PHASE (DEGREES)
VIN = 24V
SOURCING 20mA
MAX16801 toc20
120
MAX16801 toc19
5.0
RON (Ω)
MAX16801A/B/MAX16802A/B
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
-170
10k 100k 1M 10M 100M
FREQUENCY (Hz)
TEMPERATURE (°C)
Pin Description
PIN
NAME
FUNCTION
Externally Programmable Undervoltage Lockout. UVLO programs the input start voltage. Connect
UVLO to GND to disable the device.
1
UVLO/EN
2
DIM/FB
Low-Frequency PWM Dimming Input/Error-Amplifier Inverting Input
3
COMP
Error-Amplifier Output. Connect the compensation components between DIM/FB and COMP in highaccuracy LED current regulation.
4
CS
Current-Sense Connection for Current Regulation. Connect to high side of sense resistor. An RC filter
may be necessary to eliminate leading-edge spikes.
5
GND
6
NDRV
7
VCC
Gate-Drive Supply. Internally regulated down from IN. Decouple with a 10nF or larger capacitor to GND.
8
IN
IC Supply. Decouple with a 10nF or larger capacitor to GND. For bootstrapped operation (MAX16801),
connect a startup resistor from the input supply line to IN. Connect the bias winding supply to this point
(see Figure 5). For the MAX16802, connect IN directly to a +10.8V to +24V supply.
Power-Supply Ground
External n-Channel MOSFET Gate Connection
Detailed Description
The MAX16801/MAX16802 family of devices is intended for constant current drive of high-brightness (HB)
LEDs used in general lighting and display applications.
They are specifically designed for use in isolated and
nonisolated circuit topologies such as buck, boost, flyback, and SEPIC, operating in continuous or discontinuous mode. Current mode control is implemented with
an internally trimmed, fixed 262kHz switching frequency. A bootstrap UVLO with a large hysteresis (11.9V),
very low startup current, and low operating current
6
result in an efficient universal-input LED driver. In addition to the internal bootstrap UVLO, these devices also
offer programmable input startup voltage programmed
through the UVLO/EN pin. The MAX16801 is well suited
for universal AC input (rectified 85VAC to 265VAC) drivers. The MAX16802 is well suited for low input voltage
(10.8VDC to 24VDC) applications.
The MAX16801/MAX16802 regulate the LED current by
monitoring current through the external MOSFET cycle
by cycle.
_______________________________________________________________________________________
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
the power dissipation across R1, even at the high end
of the universal AC input voltage.
An internal shutdown circuit protects the device whenever the junction temperature exceeds +130°C (typ).
Dimming
Linear dimming can be implemented by creating a
summing node at CS, as shown in Figures 6 and 7.
Low-frequency PWM (chopped-current) dimming is
possible by applying an inverted-logic PWM signal to
the DIM/FB pin of the IC (Figure 8). This might be a preferred way of dimming in situations where it is critical to
retain the light spectrum unchanged. It is accomplished by keeping constant the amplitude of the
chopped LED current.
MAX16801/MAX16802 Biasing
Implement bootstrapping from the transformer when it
is present (Figure 5). Biasing can also be realized
directly from the LEDs in non-isolated topologies
(Figure 1).
Bias the MAX16802 directly from the input voltage of
10.8VDC to 24VDC. The MAX16802 can also be used
R5
R1
R2
IN
AC
IN
BRIDGE
RECTIFIER
COMP
C1
C2
Q1
NDRV
VCC
GND
MAX16801B
CS
C3
DIM/FB
UVLO/EN
R3
R6
R4
L1
C4
TOTAL LED VOLTAGE:
11V TO 23V
D3
Figure 1. Biasing the IC using LEDs in Nonisolated Flyback Driver
_______________________________________________________________________________________
7
MAX16801A/B/MAX16802A/B
When in the bootstrapped mode with a transformer
(Figure 5), the circuit is protected against most output
short-circuit faults when the tertiary voltage drops
below +10V, causing the UVLO to turn off the gate
drive of the external MOSFET. This re-initiates a startup
sequence with soft-start.
When the LED current needs to be tightly regulated, an
internal error amplifier with 1% accurate reference can
be used (Figure 9). This additional feedback minimizes
the impact of passive circuit component variations and
tolerances, and can be implemented with a minimum
number of additional external components.
A wide dimming range can be implemented using a
low-frequency PWM dimming signal fed directly to the
DIM/FB pin.
LED driver circuits designed with the MAX16801 use a
high-value startup resistor R1 that charges a reservoir
capacitor C1 (Figure 5 or Figure 9). During this initial
period, while the voltage is less than the internal bootstrap UVLO threshold, the device typically consumes
only 45µA of quiescent current. This low startup current
and the large bootstrap UVLO hysteresis help minimize
MAX16801A/B/MAX16802A/B
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
VDC
R
VDC
Q
R
IN
IN
MAX16802A
D
D
MAX16802A
C
(b)
(a)
Figure 2. (a) Resistor-Zener and (b) Transistor-Zener-Resistor Bias Arrangements
in applications with higher input DC voltages by implementing resistor-Zener bias (Figure 2a) or transistorZener-resistor bias (Figure 2b).
MAX16801/MAX16802 Undervoltage
Lockout
The MAX16801/MAX16802 have an input voltage
UVLO/EN pin. The threshold of this UVLO is +1.28V.
Before any operation can commence, the voltage on
this pin has to exceed +1.28V. The UVLO circuit keeps
the CPWM comparator, ILIM comparator, oscillator,
and output driver in shutdown to reduce current consumption (see the Functional Diagram). Use this UVLO
function to program the input start voltage. Calculate
the divider resistor values, R2 and R3 (Figure 5), by
using the following formulas:
R3 ≅
VULR2 × VIN
500 × IUVLO (VIN − VULR2 )
The value of R3 is calculated to minimize the voltagedrop error across R2 as a result of the input bias current of the UVLO/EN pin. V ULR2 = +1.28V, I UVLO =
50nA (max), VIN is the value of the input-supply voltage
where the power supply must start.
V − VULR2
R2 = IN
× R3
VULR2
where IUVLO is the UVLO/EN pin input current, and
VULR2 is the UVLO/EN wake-up threshold.
8
MAX16801 Bootstrap Undervoltage
Lockout
In addition to the externally programmable UVLO function offered in both the MAX16801/MAX16802, the
MAX16801 has an additional internal bootstrap UVLO
that is very useful when designing high-voltage LED
drivers (see the Functional Diagram). This allows the
device to bootstrap itself during initial power-up. The
MAX16801 attempts to start when V IN exceeds the
bootstrap UVLO threshold of +23.6V. During startup,
the UVLO circuit keeps the CPWM comparator, ILIM
comparator, oscillator, and output driver shut down to
reduce current consumption. Once V IN reaches
+23.6V, the UVLO circuit turns on both the CPWM and
ILIM comparators, as well as the oscillator, and allows
the output driver to switch. If VIN drops below +9.7V,
the UVLO circuit will shut down the CPWM comparator,
ILIM comparator, oscillator, and output driver thereby
returning the MAX16801 to the startup mode.
MAX16801 Startup Operation
In isolated LED driver applications, VIN can be derived
from a tertiary winding of a transformer. However, at
startup there is no energy delivered through the transformer. Therefore, a special bootstrap sequence is
required. Figure 3 shows the voltages on IN and VCC
during startup. Initially, both VIN and VCC are 0V. After
the line voltage is applied, C1 charges through the
startup resistor R1 to an intermediate voltage. At this
point, the internal regulator begins charging C2 (see
Figure 5). The MAX16801 uses only 45µA of the current
supplied by R1, and the remaining input current
charges C1 and C2. The charging of C2 stops when
the VCC voltage reaches approximately +9.5V, while
the voltage across C1 continues rising until it reaches
_______________________________________________________________________________________
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
VCC
2V/div
MAX16801
VIN PIN
5V/div
0
The MAX16801/MAX16802 soft-start feature allows the
LED current to ramp up in a controlled manner. Softstart begins after UVLO deasserts. The voltage applied
to the noninverting node of the amplifier ramps from 0
to +1.23V over a 60ms soft-start timeout period. Figure
4 shows a typical 0.5A output current during startup.
Note the staircase increase of the LED current. This is a
result of the digital soft-starting technique used. Unlike
other devices, the reference voltage to the internal
amplifier is soft-started. This method results in superior
control of the LED current.
n-Channel MOSFET Switch Driver
100ms/div
Figure 3. VIN and VCC During Startup when Using the
MAX16801 in Bootstrapped Mode
the wake-up level of +23.6V. Once VIN exceeds the
bootstrap UVLO threshold, NDRV begins switching the
MOSFET and transfers energy to the secondary and
tertiary outputs. If the voltage on the tertiary output
builds to a value higher than +9.7V (the bootstrap
UVLO lower threshold), then startup has been accomplished and sustained operation commences.
If VIN drops below +9.7V before startup is complete,
the device goes back to low-current UVLO. In this
case, increase C1 in order to store enough energy to
allow for the voltage at the tertiary winding to build up.
The NDRV pin drives an external n-channel MOSFET.
The NDRV output is supplied by the internal regulator
(VCC), which is internally set to approximately +9.5V.
For the universal input voltage and applications with a
transformer, the MOSFET used must be able to withstand the DC level of the high-line input voltage plus
the reflected voltage at the primary of the transformer.
For most offline applications that use the discontinuous
flyback topology, this requires a MOSFET rated at
600V. NDRV can source/sink in excess of the
650mA/1000mA peak current. Select a MOSFET that
yields acceptable conduction and switching losses.
Internal Error Amplifier
The MAX16801/MAX16802 include an internal error
amplifier that can be used to regulate the LED current
very accurately. For example, see the nonisolated
power supply in Figure 5. Calculate the LED current
using the following equation:
V
ILED = REF
R7
100mA/div
where V REF = +1.23V. The amplifier’s noninverting
input is internally connected to a digital soft-start circuit
that gradually increases the reference voltage during
startup and is applied to this pin. This forces the LED
current to come up in an orderly and well-defined manner under all conditions.
0
10ms/div
Figure 4. Typical Current Soft-Start During Initial Startup
_______________________________________________________________________________________
9
MAX16801A/B/MAX16802A/B
Soft-Start
MAX16801A/B/MAX16802A/B
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
Applications Information
Assuming C1 > C2, calculate the value of R1 as follows:
Startup Time Considerations for HighBrightness LED Drivers Using MAX16801
The IN bypass capacitor C1 supplies current immediately after wake-up (Figure 5). The size of C1 and the
connection configuration of the tertiary winding determine the number of cycles available for startup. Large
values of C1 increase the startup time but also supply
gate charge for more cycles during initial startup. If the
value of C1 is too small, V IN drops below +9.7V
because NDRV does not have enough time to switch
and build up sufficient voltage across the tertiary winding that powers the device. The device goes back into
UVLO and does not start. Use low-leakage capacitors
for C1 and C2.
Assuming that offline LED drivers keep typical startup
times to less than 500ms even in low-line conditions
(85VAC input for universal offline applications), size the
startup resistor R1 to supply both the maximum startup
bias of the device (90µA, worst case) and the charging
current for C1 and C2. The bypass capacitor C2 must
charge to +9.5V and C1 to +24V, all within the desired
time period of 500ms.
Because of the internal 60ms soft-start time of the
MAX16801, C1 must store enough charge to deliver
current to the device for at least this much time. To calculate the approximate amount of capacitance
required, use the following formula:
Ig = Qgtot × fSW
C1 =
(IIN + Ig ) (tSS )
VHYST
where IIN is the MAX16801’s internal supply current
after startup (1.4mA), Qgtot is the total gate charge for
Q1, f SW is the MAX16801’s switching frequency
(262kHz), V HYST is the bootstrap UVLO hysteresis
(11.9V) and tSS is the internal soft-start time (60ms).
For example:
Ig = (8nC) × (262kHz) = 2.1mA
C1 =
(1.4mA + 2.1mA) × (60ms) = 17.5µF
(12V)
× C1
V
IC1 = SUVR
(500ms)
R1 =
VIN(MIN) − VSUVR
IC1 + ISTART
where VIN(MIN) is the minimum input supply voltage for
the application, VSUVR is the bootstrap UVLO wake-up
level (+23.6V, max), and ISTART is the IN supply current
at startup (90µA, max).
For example, for the minimum AC input of 85V:
IC1 =
( 24V ) × (15µF )
= 0.72mA
( 500ms)
R1 =
120V − 24V
= 119kΩ
(0.72mA + (90µA))
Choose the 120kΩ standard value.
Choose a higher value for R1 than the one calculated
above if longer startup time can be tolerated in order to
minimize power loss on this resistor.
The above startup method is applicable to a circuit similar to the one shown in Figure 5. In this circuit, the tertiary winding has the same phase as the output
windings. Thus, the voltage on the tertiary winding at
any given time is proportional to the output voltage and
goes through the same soft-start period as the output
voltage. The minimum discharge voltage of C1 from
+22V to +10V must be greater than the soft-start time of
60ms.
Another method of bootstrapping the circuit is to have a
separate bias winding than the one used for regulating
the output voltage and to connect the bias winding so
that it is in phase with the MOSFET ON time (see Figure
9). In this case, the amount of capacitance required is
much smaller.
However, in this mode, the input voltage range has to
be less than 2:1. Another consideration is whether the
bias winding is in phase with the output. If so, the LED
driver circuit hiccups and soft-starts under output shortcircuit conditions. However, this property is lost if the
bias winding is in phase with the MOSFET ON time.
Choose the 15µF standard value.
10
______________________________________________________________________________________
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
Figure 8 shows an offline isolated flyback HB LED driver with low-frequency PWM using MAX16801. The
PWM signal needs to be inverted (see the Functional
Diagram). Transformer T1 provides full safety isolation
and operation from universal AC line (85VAC to
265VAC).
D1
T1
VSUPPLY
D2
R1
R2
C4
Q1
NDRV
IN
VOUT
LEDs
C1
VCC
CS
R4
C2
COMP
R6
R7
MAX16801
C3
GND
DIM/FB
UVLO/EN
R3
R5
GND
Figure 5. Offline, Nonisolated, Flyback LED Driver with Programmable Input-Supply Start Voltage
______________________________________________________________________________________
11
MAX16801A/B/MAX16802A/B
Application Circuits
Figure 5 shows an offline application of an HB LED driver using the MAX16801. The use of transformer T1
allows significant design flexibility. Use the internal
error amplifier for a very accurate LED current control.
Figure 6 shows a discontinuous flyback LED driver with
linear dimming capability. The total LED voltage can be
lower or higher than the input voltage.
Figure 7 shows a continuous-conduction-mode HB LED
buck driver with linear dimming and just a few external
components.
MAX16801A/B/MAX16802A/B
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
VIN
10.8V TO 24V
R1
UVLO/EN
DIM/FB
1
8
2
7
COMP 3
CS
MAX16802B
4
6
5
LED(s)
L1
IN
C4
VCC
NDRV
Q1
D1
GND
R2
R4
R3
DIMMING
C2
C3
R5
C1
GND
Figure 6. MAX16802 Flyback HB LED Driver with Dimming Capability, 10.8V to 24V Input Voltage Range
VIN
10.8V TO 24V
R1
LED(s)
UVLO/EN
DIM/FB
1
8
2
7
COMP 3
CS
MAX16802B
4
6
5
D1
IN
C4
VCC
NDRV
Q1
L1
GND
R2
R3
R4
DIMMING
C2
C3
R5
C1
GND
Figure 7. MAX16802 Buck HB LED Driver with Dimming Capability, 10.8V to 24V Input Voltage Range
12
______________________________________________________________________________________
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
MAX16801A/B/MAX16802A/B
OPTIONAL ONLY WHEN PWM DIMMING IS USED
D3
T1
D1
C4
D2
R2
R1
UNIVERSAL
AC INPUT
Q1
NDRV
VCC
LEDs
C3
BRIDGE
RECTIFIER
IN
C6
GND
MAX16801B
CS
C1
C2
DIM/FB
R4
UVLO/EN
R3
*PWM
C5
*WARNING: PWM DIMMING SIGNAL IS SHOWN AT THE PRIMARY SIDE.
USE AN OPTOCOUPLER FOR SAFETY ISOLATION OF THE PWM SIGNAL.
Figure 8. Universal AC Input, Offline, Isolated Flyback HB LED Driver with Low-Frequency PWM Dimming
D1
T1
+VIN
D3
R1
U2
OPTO LED
R2
R8
Q1
NDRV
IN
VOUT
C1
VCC
CS
R11
C4
C3
R4
MAX16801
R7
U2
OPTO TRANS
COMP
R9
Z1
GND
U3
TLV431
R5
DIM/FB
R6
UVLO/EN
R3
C2
C5
GND
R10
Figure 9. Universal Input, Offline, High-Accuracy Current Regulation in an Isolated Flyback HB LED Driver
______________________________________________________________________________________
13
MAX16801A/B/MAX16802A/B
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
Functional Diagram
IN
IN
CLAMP
26.1V
VCC
VCC
IN
REGULATOR
BOOTSTRAP UVLO**
REG_OK
DIGITAL
SOFT-START
VL
REFERENCE
1.23V
21.6V
9.74V
UVLO
(INTERNAL 5.25V SUPPLY)
UVLO
1.28V
1.23V
COMP
FB
DRIVER
S
ERROR
AMP
NDRV
Q
R
CPWM
VOPWM
CS
*OSCILLATOR
264kHz
1.38V
THERMAL
SHUTDOWN
VCS
0.3V
LIM
MAX16801
MAX16802
GND
*MAX16801A/MAX16802A: 50% MAXIMUM DUTY CYCLE
MAX16801B/MAX16802B: 75% MAXIMUM DUTY CYCLE
**MAX16801 ONLY
Selector Guide
BOOTSTRAP
UVLO
STARTUP
VOLTAGE
(V)
MAX DUTY
CYCLE (%)
MAX16801A
Yes
22
50
MAX16801B
Yes
22
75
PART
MAX16802A
No
10.8*
50
MAX16802B
No
10.8*
75
*The MAX16802 does not have an internal bootstrap UVLO.
The MAX16802 starts operation as long as the VCC pin is higher than +7V, (the guaranteed output with an IN pin voltage of
+10.8V), and the UVLO/EN pin is high.
14
Pin Configuration
TOP VIEW
UVLO/EN 1
8 IN
7 VCC
DIM/FB 2
COMP 3
MAX16801
MAX16802
CS 4
6 NDRV
5 GND
µMAX
______________________________________________________________________________________
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
8 µMAX
—
21-0036
______________________________________________________________________________________
15
MAX16801A/B/MAX16802A/B
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
MAX16801A/B/MAX16802A/B
Offline and DC-DC PWM Controllers for
High-Brightness LED Drivers
Revision History
REVISION
NUMBER
REVISION
DATE
0
10/05
Initial release
1
1/06
MAX16802AEUA+ parts are available
2
1/10
Corrected formulas, updated subscripts, and removed package outline
DESCRIPTION
PAGES
CHANGED
—
1
1, 2, 3, 6–14
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2010 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.