19-3880; Rev 2; 1/10 ৰۇ భᄋຶ ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ ``````````````````````````````````` ᄂቶ NBY27912B0C0NBY27913B0Cဵೡࣞ)IC* MFEདࣅ఼ ᒜJDLjด۞ݝ೫ଐጙৈၒྜྷपᆍMFEདࣅჅኊࡼ ཝ࢟ݝവLjးᄰᑍීਜ਼መာ።ăNBY27912ऻޟး ᄰၒྜྷ)96WBDᒗ376WBDᑳഗ࢟ኹၒྜྷ*! MFEདࣅLj NBY27913း᎖ࢅၒྜྷ࢟ኹ)21/9WEDᒗ35WED*! MFEད ࣅă ♦ းcvdlĂcpptuĂgmzcbdlĂTFQJDਜ਼ᅠແ ኊገறමࢯஂMFE࢟ഗဟLjభಽຢࡼᇙތहࡍጲૺ றࣞᆐ2&ࡼᓰăᄰਭࢅຫQXNೡࣞࢯஂభဣሚ୷ࡼ ೡࣞࢯஂपᆍă ♦ ดࡒݝᎌᇙތहࡍਜ਼2&றࣞࡼᓰLjభဣሚறමࡼ MFE࢟ഗࢯஂ NBY279120NBY27913ᎌၒྜྷ་ኹჄࢾ)VWMP*ᄂቶLjభ ᒙၒྜྷࣅ࢟ኹLj݀భཀྵۣᏴ࢟Ꮞࢰൢဟᑵޟᔫă NBY27912ᎌ୷ᒣૄ࢟ኹࡼดݝᔈ་ኹჄࢾ࢟വLj ࠭ऎ଼છ೫ಭሣါMFEདࣅࡼଐăNBY27913ดݝ ᎌᑚৈᔈ࢟വLjభᒇᎅ,23W࢟ኹᄋມᒙ࢟Ꮞă ♦ 373lI{ ±23&ࡼৼࢾఎਈຫൈ ดݝᆈࢯࡼ373lI{ৼࢾఎਈຫൈᏤᎁછኡᐋࠟቶᏄୈ ਜ਼݆ᏄୈLj࠭ऎဣሚஜĂቶଥ ࡼ܈MFE དࣅă NBY27912B0NBY27913Bࡼᔢࡍᐴహ܈ᆐ61&LjNBY27912C0 NBY27913Cࡼᔢࡍᐴహ܈ᆐ86&ăᑚቋୈݧ9୭ μNBY® ॖᓤLjభᔫᏴ.51°Dᒗ,96°Dᆨࣞपᆍă ♦ ᎌ୷ᒣૄ࢟ኹࡼดݝᔈVWMP! )NBY27912* ♦ ࡉ61Xৎࡼၒ߲ൈ ♦ ᄰಭሣၒྜྷ࢟ኹपᆍǖ ᑳഗઁࡼ96WBDᒗ376WBD! )NBY27912* ♦ JO୭ᒇᎅ21/9WEDᒗ35WEDၒྜྷདࣅ)NBY27913* ♦ QXNሣቶೡࣞࢯஂ ♦ ེਈࣥ ♦ ၫᔊྟࣅ ♦ భ߈ܠၒྜྷࣅ࢟ኹ ♦ 56μB! )࢜ቯᒋ*ࣅ࢟Ꮞ࢟ഗLj2/5nB! )࢜ቯᒋ* ᔫ࢟Ꮞ࢟ഗ ♦ 61&! )NBY27912B0NBY27913B*86& )NBY27912C0NBY27913C*ᔢࡍᐴహ܈ ♦ ݧᆈቯ9୭μNBYॖᓤ ``````````````````````````````````` ። ಭሣါED.ED! MFEདࣅ ጓᎧጓᑍී SHC۳Lj᎖MDE! UWਜ਼ ପ၁ ᓤြᎧᓔᑍී ``````````````````````````````` ࢾ৪ቧᇦ TEMP RANGE PART μNBYဵNbyjn! Joufhsbufe! Qspevdut-! Jod/ࡼᓖݿܪă PINPACKAGE MAX16801AEUA+ -40°C to +85°C MAX16801BEUA+ -40°C to +85°C 8 μMAX 8 μMAX MAX16802AEUA+ -40°C to +85°C 8 μMAX MAX16802BEUA+ -40°C to +85°C 8 μMAX , ܭာᇄॖᓤă `````````````````````````````````````````````````````````````````````` ࢜ቯᔫ࢟വ 10.8VDC TO 24VDC ENABLE UVLO/EN IN C3 L1 DIM/FB VCC PWM LEDs D1 MAX16802B COMP CS Q1 NDRV GND C1 C2 R1 GND வসǖNBY279120NBY27913ଐᔫ᎖ኹሆLjᓖፀቃቦݷᔫă ________________________________________________________________ Maxim Integrated Products 1 ۾ᆪဵ፞ᆪၫᓾ೯ࡼፉᆪLjᆪᒦభถࡀᏴडፉࡼݙᓰཀྵࡇᇙăྙኊጙݛཀྵཱྀLj༿Ᏼิࡼଐᒦݬఠ፞ᆪᓾ೯ă ᎌਈଥৃĂૡૺࢿ৪ቧᇦLj༿ೊNbyjnᒴሾ၉ᒦቦǖ21911!963!235:!)۱ᒦਪཌ*Lj21911!263!235:!)ฉᒦਪཌ*Lj षᆰNbyjnࡼᒦᆪᆀᐶǖdijob/nbyjn.jd/dpnă NBY27912B0C0NBY27913B0C ``````````````````````````````````` গၤ NBY27912B0C0NBY27913B0C ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ ABSOLUTE MAXIMUM RATINGS IN to GND..........................................................................-0.3V to +30V VCC to GND ......................................................................-0.3V to +13V DIM/FB, COMP, UVLO/EN, CS to GND....................-0.3V to +6V NDRV to GND.............................................-0.3V to (VCC + 0.3V) Continuous Power Dissipation (TA = +70°C) 8-Pin μMAX (derate 4.5mW/°C above +70°C) ..............362mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range ............................-65°C to +150°C Junction Temperature ......................................................+150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VIN = +12V (MAX16801: VIN must first be brought up to +23.6V for startup), 10nF bypass capacitors at IN and VCC, CNDRV = 0μF, VUVLO/EN = +1.4V, VDIM/FB = +1.0V, COMP = unconnected, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS UNDERVOLTAGE LOCKOUT/STARTUP Bootstrap UVLO Wake-Up Level VSUVR VIN rising (MAX16801 only) 19.68 21.6 23.60 V Bootstrap UVLO Shutdown Level VSUVF VIN falling (MAX16801 only) 9.05 9.74 10.43 V UVLO/EN Wake-Up Threshold VULR2 UVLO/EN rising 1.188 1.28 1.371 V UVLO/EN Shutdown Threshold VULF2 UVLO/EN falling 1.168 1.23 1.291 UVLO/EN Input Current IUVLO TJ = +125°C ISTART VIN = +19V, for MAX16801 only when in bootstrap UVLO UVLO/EN Hysteresis IN Supply Current In Undervoltage Lockout IN Voltage Range UVLO/EN Propagation Delay Bootstrap UVLO Propagation Delay VIN V 25 nA 50 mV 45 10.8 tEXTR UVLO/EN steps up from +1.1V to +1.4V 12 tEXTF UVLO/EN steps down from +1.4V to +1.1V 1.8 tBUVR VIN steps up from +9V to +24V 5 tBUVF VIN steps down from +24V to +9V 1 VCCSP VIN = +10.8V to +24V, sinking 1μA to 20mA from VCC 90 μA 24 V μs μs INTERNAL SUPPLY VCC Regulator Set Point IN Supply Current After Startup IIN Shutdown Supply Current 7 VIN = +24V 1.4 UVLO/EN = low 10.5 V 2.5 mA 90 μA GATE DRIVER Driver Output Impedance Measured at NDRV sinking, 100mA 2 4 RON(HIGH) Measured at NDRV sourcing, 20mA RON(LOW) 4 12 Driver Peak Sink Current Driver Peak Source Current Ω 1 A 0.65 A PWM COMPARATOR Comparator Offset Voltage CS Input Bias Current Comparator Propagation Delay Minimum On-Time 2 VOPWM ICS tPWM tON(MIN) VCOMP - VCS VCS = 0V VCS = +0.1V 1.15 1.38 -2 1.70 V +2 μA 60 ns 150 ns _______________________________________________________________________________________ ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ (VIN = +12V (MAX16801: VIN must first be brought up to +23.6V for startup), 10nF bypass capacitors at IN and VCC, CNDRV = 0μF, VUVLO/EN = +1.4V, VDIM/FB = +1.0V, COMP = unconnected, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 262 291 320 mV +2 μA CURRENT-SENSE COMPARATOR Current-Sense Trip Threshold VCS CS Input Bias Current ICS Propagation Delay From Comparator Input to NDRV Switching Frequency Maximum Duty Cycle tPWM VCS = 0V 50mV overdrive fSW DMAX -2 60 230 ns 262 290 MAX1680_A 50 50.5 MAX1680_B 75 76 26.1 29.0 kHz % IN CLAMP VOLTAGE IN Clamp Voltage VINC 2mA sink current, MAX16801 only (Note 3) 24.1 V ERROR AMPLIFIER Voltage Gain RLOAD = 100kΩ 80 dB Unity-Gain Bandwidth RLOAD = 100kΩ, CLOAD = 200pF 2 MHz Phase Margin RLOAD = 100kΩ, CLOAD = 200pF 65 DIM/FB Input Offset Voltage Degrees 3 COMP Clamp Voltage High 2.2 3.5 Low 0.4 1.1 mV V Source Current 0.5 mA Sink Current 0.5 mA Reference Voltage VREF (Note 2) 1.218 1.230 Input Bias Current COMP Short-Circuit Current 8 1.242 V 50 nA mA THERMAL SHUTDOWN Thermal-Shutdown Temperature 130 °C Thermal Hysteresis 25 °C 15,872 Clock cycles Reference Voltage Steps During Soft-Start 31 Steps Reference Voltage Step 40 mV DIGITAL SOFT-START Soft-Start Duration Note 1: All devices are 100% tested at TA = +85°C. All limits over temperature are guaranteed by characterization. Note 2: VREF is measured with DIM/FB connected to the COMP pin (see the Functional Diagram). Note 3: The MAX16801 is intended for use in universal input offline drivers. The internal clamp circuit is used to prevent the bootstrap capacitor (C1 in Figure 5) from charging to a voltage beyond the absolute maximum rating of the device when UVLO/EN is low. The maximum current to IN (hence to clamp) when UVLO/EN is low (device in shutdown), must be externally limited to 2mA (max). Clamp currents higher than 2mA may result in clamp voltage higher than +30V, thus exceeding the absolute maximum rating for IN. For the MAX16802, do not exceed the +24V maximum operating voltage of the device. _______________________________________________________________________________________ 3 NBY27912B0C0NBY27913B0C ELECTRICAL CHARACTERISTICS (continued) `````````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ (VUVLO/EN = +1.4V, VDIM/FB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.) 21.55 10.1 MAX16801 VIN FALLING UVLO/EN WAKE-UP THRESHOLD vs. TEMPERATURE 1.280 UVLO/EN RISING 1.275 MAX16801 toc03 MAX16801 VIN RISING MAX16801 toc01 21.60 BOOTSTRAP UVLO SHUTDOWN LEVEL vs. TEMPERATURE MAX16801 toc02 BOOTSTRAP UVLO WAKE-UP LEVEL vs. TEMPERATURE 10.0 21.45 UVLO/EN (V) VIN (V) VIN (V) 21.50 9.9 21.40 1.270 1.265 1.260 9.8 21.35 1.255 9.7 -20 0 20 40 60 80 1.250 -40 -20 0 20 40 60 80 -40 -20 0 20 40 60 80 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) UVLO/EN SHUTDOWN THRESHOLD vs. TEMPERATURE VIN SUPPLY CURRENT IN UNDERVOLTAGE LOCKOUT vs. TEMPERATURE VIN SUPPLY CURRENT AFTER STARTUP vs. TEMPERATURE UVLO/EN FALLING 52 51 50 1.25 1.5 MAX16801 toc05 1.30 MAX16801 toc04 -40 VIN = 19V MAX16801 WHEN IN BOOTSTRAP UVLO MAX16802 WHEN UVLO/EN IS LOW VIN = 24V MAX16801 toc06 21.30 1.4 1.20 48 IIN (mA) ISTART (μA) UVLO/EN (V) 49 47 1.3 46 45 1.15 1.2 44 43 -20 0 20 40 60 80 0 20 40 60 0 20 40 60 VCC REGULATOR SET POINT vs. TEMPERATURE CURRENT-SENSE THRESHOLD vs. TEMPERATURE VIN = 10.8V 8.8 8.7 10mA LOAD VCC (V) 9.5 8.5 8.4 9.4 20mA LOAD 8.3 NDRV OUTPUT IS SWITCHING 9.3 8.2 -20 0 20 40 TEMPERATURE (°C) 60 80 TOTAL NUMBER OF DEVICES = 100 +3σ 305 80 300 295 MEAN 290 285 280 -3σ 275 8.1 9.2 310 CURRENT-SENSE THRESHOLD (mV) MAX16801 toc07 8.9 MAX116801 toc08 VCC REGULATOR SET POINT vs. TEMPERATURE 8.6 -40 -20 -40 80 TEMPERATURE (°C) NDRV OUTPUT IS NOT SWITCHING, VDIM/FB = 1.5V 9.6 -20 TEMPERATURE (°C) VIN = 19V NO LOAD 9.7 -40 TEMPERATURE (°C) 9.8 4 1.1 42 -40 270 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 -40 -20 0 20 40 TEMPERATURE (°C) _______________________________________________________________________________________ 60 80 MAX16801 toc09 1.10 VCC (V) NBY27912B0C0NBY27913B0C ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ SWITCHING FREQUENCY vs. TEMPERATURE 15 10 5 260 255 250 -3σ 270 280 290 300 310 10 -20 0 20 40 60 80 230 240 250 260 270 280 SWITCHING FREQUENCY (kHz) PROPAGATION DELAY FROM CURRENT-SENSE COMPARATOR INPUT TO NDRV vs. TEMPERATURE UVLO/EN PROPAGATION DELAY vs. TEMPERATURE REFERENCE VOLTAGE vs. TEMPERATURE 60 55 50 0 20 40 60 80 VIN = 12V 1.229 1.228 1.227 1.226 UVLO/EN FALLING 1.225 -40 -20 0 20 40 60 -40 80 -20 0 20 40 60 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) INPUT CURRENT vs. INPUT VOLTAGE INPUT CLAMP VOLTAGE vs. TEMPERATURE NDRV OUTPUT IMPEDANCE vs. TEMPERATURE 9 8 7 6 5 4 27.0 IIN = 2mA 26.8 26.6 2.2 2.1 1.9 26.2 1.8 1.7 25.8 1.6 25.6 1.5 2 25.4 1.4 1 25.2 1.3 0 25.0 3 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 INPUT VOLTAGE (V) VIN = 24V SINKING 100mA 2.0 26.4 26.0 80 MAX16801 toc18 MAX16801 toc16 10 RON (Ω) -20 INPUT CLAMP VOLTAGE (V) -40 UVLO/EN RISING REFERENCE VOLTAGE (V) 65 1.230 MAX16801 toc14 MAX16801 toc13 70 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 290 MAX16801 toc15 TEMPERATURE (°C) UNDERVOLTAGE LOCKOUT DELAY (μs) CURRENT-SENSE THRESHOLD (mV) 75 MAX16801 toc12 15 0 -40 320 20 5 240 260 tPWM (ns) MEAN 245 0 INPUT CURRENT (mA) 265 TOTAL NUMBER OF DEVICES = 200 25 PERCENTAGE OF UNITS (%) 20 270 30 MAX16801 toc17 PERCENTAGE OF UNITS (%) 25 TOTAL NUMBER OF DEVICES = 100 +3σ 275 SWITCHING FREQUENCY MAX16801 toc11 TOTAL NUMBER OF DEVICES = 200 280 SWITCHING FREQUENCY (kHz) 30 MAX16801 toc10 CURRENT-SENSE THRESHOLD 1.2 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 -40 -20 0 20 40 60 80 TEMPERATURE (°C) _______________________________________________________________________________________ 5 NBY27912B0C0NBY27913B0C ``````````````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ)ኚ* (VUVLO/EN = +1.4V, VDIM/FB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.) ```````````````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ)ኚ* (VUVLO/EN = +1.4V, VDIM/FB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.) ERROR-AMPLIFIER OPEN-LOOP GAIN AND PHASE vs. FREQUENCY NDRV OUTPUT IMPEDANCE vs. TEMPERATURE 4.8 4.6 100 30 80 10 GAIN 60 4.4 GAIN (dB) 4.2 4.0 3.8 50 40 -10 -30 20 -50 0 -70 PHASE -20 -90 3.6 -40 -110 3.4 -60 -130 3.2 -80 -150 3.0 -100 -40 -20 0 20 40 60 0.1 80 1 10 100 1k PHASE (DEGREES) VIN = 24V SOURCING 20mA MAX16801 toc20 120 MAX16801 toc19 5.0 RON (Ω) NBY27912B0C0NBY27913B0C ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ -170 10k 100k 1M 10M 100M FREQUENCY (Hz) TEMPERATURE (°C) `````````````````````````````````````````````````````````````````````````` ୭ႁී ୭ ߂ 1 UVLO/EN 2 DIM/FB ࢅຫQXNೡࣞࢯஂၒྜྷ0ᇙތहࡍनሤၒྜྷ࣡ă 3 COMP ᇙތहࡍၒ߲ăᏴறࣞMFE࢟ഗࢯஂ።ᒦLjޡݗᏄୈೌᏴEJN0GCਜ਼DPNQᒄମă 4 CS ถ ᅪݝభ߈ܠ་ኹჄࢾăVWMPᒙၒྜྷࣅ࢟ኹăVWMPೌᒗHOEభணᒏୈᔫă ࢟ഗঢ።ቧೌ࣡Lj᎖࢟ഗࢯஂăᒗଶഗ࢟ᔜ࣡ăభጲSD݆߹བྷ༄ዘࡼඇࠦă 5 GND ࢟Ꮞă 6 NDRV ᅪݝoࡸNPTGFUᐜೌ࣡ă 7 VCC 8 IN ᐜདࣅ࢟ᏎăดݝᎅJOଢ଼ኹࡻࡵăWDD ᎧHOEମጙᒑ21oGྏᒋৎࡼབྷẮ࢟ྏă JD࢟ᏎăJOᎧHOEମጙᒑ21oGྏᒋৎࡼབྷẮ࢟ྏăᔈᔫෝါ)NBY27912*ሆLjభᏴၒྜྷ࢟Ꮞ ਜ਼JOᒄମጙৈࣅ࢟ᔜăມᒙླྀᔝ࢟Ꮞೌᒗক࢛)ݬᅄ6*ă࣪᎖NBY27913LjJOᒇ,21/9Wᒗ,35W ࢟Ꮞă ``````````````````````````````` ሮᇼႁී NBY279120NBY27913ᇹୈ᎖ೡࣞ)IC*! MFEࡼੱ ഗདࣅLjးᄰᑍීਜ਼መာ።ăকᇹୈᓜᆐ ಭਜ਼ऻಭ࢟വᅠແଐLjྙ cvdlĂcpptuĂgmzcbdl ਜ਼ TFQJDࢀLjᔫᏴೌኚऻೌኚෝါăఎਈຫൈᏴดݝᆈ ࢯᆐ373lI{ৼࢾᒋLjభဣሚ࢟ഗෝါ఼ᒜăᎌ୷ᒣ ૄ࢟ኹ)22/:W*ࡼᔈVWMP࢟വĂިࢅࣅ࢟ഗጲૺࢅ 6 ᔫ࢟ഗᄂቶLjభဣሚࡼᄰၒྜྷMFEདࣅăকᇹ ୈ߹ดᒙᔈVWMPᅪLjથถᄰਭVWMP0FO୭࣪ၒྜྷ ࣅ࢟ኹቲ߈ܠᒙăNBY27912ऻޟးᄰୣഗၒ ྜྷ)96WBDᒗ376WBDᑳഗ࢟ኹၒྜྷ*དࣅăNBY27913ऻ ޟးࢅၒྜྷ࢟ኹ)21/9WEDᒗ35WED*።ă NBY279120NBY27913ᓆᒲ໐ପ၁ഗਭᅪݝNPTGFUࡼ࢟ ഗLj࠭ऎဣሚ࣪MFE࢟ഗࡼࢯஂă _______________________________________________________________________________________ ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ ࡩበຢஉᆨިਭ,241°D )࢜ቯᒋ*ဟLjดᒙࡼਈࣥ࢟വభ ࣅۣઐถă ྦኊገறමࢯஂMFE࢟ഗLjభಽຢᇙތहࡍጲૺற ࣞᆐ2&ࡼᓰ)ᅄ:*ăᑚጙऄᅪनౣభࡍࡍଢ଼ࢅᎅ᎖ᇄᏎ Ꮔୈܤછਜ਼ມތჅޘညࡼ፬ሰLj݀༦ᒑኊᔢࡼᅪᆍᏄ ୈ૾భဣሚă ሣቶೡࣞࢯஂဵᄰਭᏴDTࡼጙৈཇਜ਼ஂ࢛ဣሚࡼLj ྙᅄ7ਜ਼ᅄ8Ⴥာă ೡࣞࢯஂ ࢅຫQXN )࢟ഗᐮ݆*ೡࣞࢯஂᐌᄰਭᏴୈࡼEJN0GC ୭ဗଝጙৈनሤ൝QXNቧဣሚ)ᅄ9*ăᑚᒬऱज ࣪᎖กቋገཇࢯஂೡࣞဟዏৃۣߒໍࡼܤݙ።ޝ ጐ્ဵ၅ኡऱښăဵᄰਭ࣪ੱࢾ७ࣞࡼMFE࢟ഗቲ ᐮ݆ဣሚࢯࡼă ࢅຫQXNೡࣞࢯஂቧᒇౣྜྷEJN0GC୭భဣሚ पᆍࡼೡࣞࢯஂă ᎖NBY27912ଐࡼMFEདࣅ࢟വݧጙৈᒋࣅ࢟ ᔜS2ᆐถ࢟ྏD2ߠ࢟)ᅄ6ᅄ:*ăᏴ߱ဪࣤLjߠ࢟ ࢟ኹࢅ᎖ดݝᔈVWMPඡሢ࢟ኹLjୈሿࡼஸზ࢟ഗ ஞᆐ56μB )࢜ቯᒋ*ăࢅࣅ࢟ഗਜ਼୷ᒣૄ࢟ኹࡼᔈ VWMPభࡍࡍଢ଼ࢅS2ࡼLj૾ဵܣᏴᄰୣഗၒྜྷ࢟ኹ ᆡ᎖࣡ဟጐ੪ቃă NBY279120NBY27913ࡼມᒙ ࡩܤኹࡀᏴဟLjᎅܤኹဣሚᔈ)ᅄ6*ăݧऻಭ ါᅠແဟጐభᒇᎅMFEޘညມᒙ)ᅄ2*ă R5 R1 R2 IN AC IN BRIDGE RECTIFIER COMP C1 C2 Q1 NDRV VCC GND MAX16801B CS C3 DIM/FB UVLO/EN R3 R6 R4 L1 C4 TOTAL LED VOLTAGE: 11V TO 23V D3 ᅄ2/! ᏴऻಭቯgmzcbdlདࣅᒦಽMFEᆐJDᄋມᒙ _______________________________________________________________________________________ 7 NBY27912B0C0NBY27913B0C ࡩᔫᏴࡒᎌܤኹࡼᔈෝါဟ)ᅄ6*Ljক࢟വથభᄋ ࡍࣶၫവ৺ᑇۣઐăࡩ߲ሚവ৺ᑇဟLjྯླྀᔝ ࢟ኹଢ଼ᒗ ,21W ጲሆLjᒘဧ VWMP ࢟വਈܕᅪݝ NPTGFUࡼᐜདࣅቧăᑚ્ᒮቤ߿खጙࠨྟࣅਭ߈ă NBY27912B0C0NBY27913B0C ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ VDC R VDC Q R IN IN MAX16802A D (a) D MAX16802A C (b) ᅄ3/! )b*࢟ᔜ.ฃऔਜ਼)c*ᄏ.ฃऔ.࢟ᔜມᒙ࢟വ NBY27913భᒇᎅ21/9WEDᒗ35WEDၒྜྷ࢟ኹቲມᒙă ಽ࢟ᔜ.ฃऔ)ᅄ3b*ᄏ.ฃऔ.࢟ᔜ ມᒙ࢟വ)ᅄ3c*LjNBY27913ጐభᏴৎᒇഗၒྜྷ࢟ ኹࡼޝă NBY279120NBY27913་ኹჄࢾ NBY279120NBY27913ᎌጙৈၒྜྷ࢟ኹVWMP0FO୭ă VWMPඡሢ࢟ኹᆐ,2/39WăᒑᎌᏴক୭࢟ኹࡍ᎖,2/39W ઁ࢟വݣఎဪᔫăVWMP࢟വభဧDQXN୷܈ĂJMJN ୷܈Ăᑩጲૺၒ߲དࣅࠀ᎖ਈࣥᓨზLjጲି ࢟ഗሿ)ݬถౖᅄ*ăಽকVWMPถభᒙၒྜྷ ࣅ࢟ኹăॊኹ࢟ᔜS3ਜ਼S4 )ᅄ6*ᔜᒋࡼଐႯါྙሆǖ R3 ≅ VULR2 × VIN 500 × IUVLO (VIN − VULR2 ) ኡᐋS4ᔜᒋဟLj።ဧVWMP0FOၒྜྷມᒙ࢟ഗᏴS3ࡼኹ ଢ଼ჅޘညࡼᇙތᔢࢅăW VMS3 > ,2/39WLjJ VWMP > 61oB )ᔢࡍᒋ*LjWJO ဵ࢟Ꮞࣅဟࡼၒྜྷ࢟Ꮞ࢟ኹᒋă V − VULR2 R2 = IN × R3 VULR2 ᒦJVWMPဵVWMP0FO୭ࡼၒྜྷ࢟ഗLjWVMS3ဵVWMP0FO ታඡሢă 8 NBY27912ᔈ་ኹჄࢾ ߹೫NBY279120NBY27913ᎌࡼᅪݝభ߈ܠVWMPᅪLj NBY27912 થดᒙጙৈऄᅪࡼᔈ VWMPLjᏴଐኹ MFEདࣅဟऻޟᎌ)ݬถౖᅄ*ăᑚዹᏤୈᏴ ߱ဪ࢟ဟᔈቲࣅăࡩ W JO ᎖ᔈ VWMP ඡሢ࢟ኹ ,34/7WဟLjNBY27912ఎဪࣅăࣅ໐ମLjVWMP࢟വ ۣߒDQXN୷܈ĂJMJN୷܈Ăᑩጲૺၒ߲དࣅ ࠀ᎖ਈࣥᓨზLjጲିቃ࢟ഗሿăጙࡡWJO ࡉࡵ,34/7WLj VWMP࢟വࣅDQXN୷܈ĂJMJN୷܈ਜ਼ᑩLj݀ Ꮴၒ߲དࣅఎဪఎਈݷᔫăྙਫWJO ଢ଼ᒗ,:/8WጲሆLj VWMP࢟വᐌਈࣥDQXN୷܈ĂJMJN୷܈Ăᑩጲ ૺၒ߲དࣅLj࠭ऎဧNBY27912ऩૄᒗࣅෝါă NBY27912ࣅᔫෝါ ᏴಭါMFEདࣅ።ᒦLjWJO ནᔈܤኹࡼྯླྀᔝă ऎLjࣅဟܤኹᒦᎌ࢟ถᄋăፐࠥLjኊገᄂࢾ ࡼᔈਭ߈ăᅄ4ჅာᆐࣅဟJOਜ਼W DD ୭ࡼ࢟ኹă ఎဪLjWJO ਜ਼WDD ᆐ1Wăဗଝ࢟Ꮞ࢟ኹᒄઁLjࣅ࢟ᔜ S2D2ߠᒗ෭ৈᒦମ࢟ኹăࠥဟLjดݝᆮኹఎဪሶD3 ߠ࢟ )ݬᅄ6*ăᏴᎅS2ᄋࡼ࢟ഗࡩᒦLjNBY27912ஞ 56μBLjၒྜྷ࢟ഗᐌᆐD2ਜ਼D3ߠ࢟ăࡩWDD ࢟ኹத ႒ᆐ,:/6WဟLjᄫᒏ࣪D3ߠ࢟LjऎD2ೝ࣡ࡼ࢟ኹଖኚဍLj ᒇࡵক࢟ྏࡼ࢟ኹࡉࡵታ࢟ኹ,34/7WᆐᒏăጙࡡWJO ࡍ᎖ᔈVWMPඡሢ࢟ኹLjOESWఎဪఎਈNPTGFULj݀ _______________________________________________________________________________________ ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ VCC 2V/div MAX16801 VIN PIN 5V/div NBY279120NBY27913ࡼྟࣅᄂቶభဧMFE࢟ഗᏴ၊఼ ෝါሆዘቓຸဍăࡩᅙಭVWMPᓨზઁఎဪྟࣅਭ߈ă ଝᒗहࡍᄴሤஂ࢛ࡼ࢟ኹᏴ71ntࡼྟࣅဟମด࠭1ᒇ ሣဍᒗ,2/34Wăᅄ5መာ೫1/6Bࡼ࢜ቯၒ߲࢟ഗᏴࣅ ਭ߈ᒦࡼܤછ༽ౚăభᓖፀࡵMFE࢟ഗጲᄇऱါဍă ᑚဵᎅ᎖ݧ೫ၫᔊྟࣅଆၣăᎧୈݙᄴࡼဵLj ดᒙहࡍࡼᓰ࢟ኹဵྟࣅࡼăᑚᒬऱजถ୷ੑ ఼ᒜMFE࢟ഗă 0 oࡸNPTGFUఎਈདࣅ 100ms/div ᅄ4/! ࡩNBY27912ࠀ᎖ᔈෝါሆLjࣅဟࡼWJO ਜ਼WDD ሶऔླྀᔝਜ਼ྯླྀᔝࠅၒ࢟ถăྙਫྯླྀᔝၒ߲ ೂ࢟ኹ᎖,:/8W )ᔈVWMPࢅ࣡ඡሢ*Ljᐌࣅਭ߈ᅲ ߅Ljఎဪೌኚᔫă ྙਫᏴࣅᅲ߅ᒄ༄W JO ଢ଼ᒗ,:/8WጲሆLjᐌୈऩૄᒗ ࢅ࢟ഗVWMPᓨზăᑚᒬ༽ౚሆLjభᐐࡍD2ࡀᔗ৫ࡼ ࢟ถLjጲླྀྯܣᔝೂᔗ৫ࡼ࢟ኹă OESW୭ถདࣅᅪݝoࡸNPTGFUăOESWၒ߲ᎅดݝ ᆮኹ)WDD*࢟LjকดݝᆮኹᏴดݝᒙᆐᏖ,:/6Wă ࣪᎖ᄰၒྜྷ࢟ኹਜ਼ࡒᎌܤኹࡼ።ऎዔLjჅݧࡼ NPTGFUܘኍถߌ၊࢟Ꮞ࢟ኹᔢဟࡼᒇഗ࢟ຳᎧܤኹ ߱ࡼन࢟ኹᒄਜ਼ă࣪᎖ࡍࣶၫݧऻೌኚgmzcbdlᅠແ ࡼಭሣါ።ऎዔLjኊገऄࢾ࢟ኹᆐ711WࡼNPTGFUă OESWถᏎ߲0ᇢྜྷިਭ761nB02111nBख़ᒋ࢟ഗăჅኡᐋ ࡼNPTGFUޘညࡼࡴᄰႼਜ਼ఎਈႼܘኍᏴభ၊ࡼप ᆍดă ดݝᇙތहࡍ NBY279120NBY27913۞౪ጙৈดݝᇙތहࡍLjభ ऻޟறཀྵࢯஂMFE࢟ഗăಿྙLjᅄ6Ⴥာࡼऻಭါ࢟ ᏎăMFE࢟ഗࡼଐႯါྙሆǖ V ILED = REF R7 100mA/div ᒦWSFG > ,2/34Wăहࡍࡼᄴሤၒྜྷ࣡ᎅดೌݝᒗ ၫᔊྟࣅ࢟വLjཀྵۣࣅਭ߈ᒦᓰ࢟ኹદൻဍLj ݀কᓰ࢟ኹဗଝᒗক୭ăᑚዹభ༓ᒜMFE࢟ഗᏴჅ ᎌᓨზሆ࣒ږᑍᎾࢾࡼऱါᎌኔဍă 0 10ms/div ᅄ5/! ߱ဪࣅဟࡼ࢜ቯྟࣅ࢟ഗ _______________________________________________________________________________________ 9 NBY27912B0C0NBY27913B0C ````````````````````````````````` ྟࣅ NBY27912B0C0NBY27913B0C ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ ``````````````````````````````` ።ቧᇦ ଣ D2 ? D3LjᐌږጲሆါଐႯS2ǖ × C1 V IC1 = SUVR (500ms) NBY27912᎖ೡࣞMFEདࣅ ࡼࣅဟମఠ JOവ࢟ྏD2᎖Ᏼ࢟വধধታဟኸႥᄋᔫ࢟ഗ )ᅄ6*ăD2ࡼߛࡁਜ਼ྯླྀᔝࡼೌऱါࢾ೫భ᎖ ࣅࡼᒲ໐ၫăࡍྏᒋD2ዓޠ೫ࣅဟମLjࡣถᏴ߱ဪ ࣅࣤᄋৎࣶ࢟ጲᑽߒৎࣶࡼఎਈᒲ໐ăྙਫD2ࡼ ྏᒋვቃLjกඐOESWᎌᔗ৫ࡼဟମఎਈNPTGFULj ࠭ऎݙถᏴྯླྀᔝೂᔗ৫ࡼ࢟ኹᆐୈᄋ࢟ᏎLj ᒘဧWJO ଢ଼ᒗ,:/8WጲሆăୈऩૄVWMPᓨზऎݙถࣅă D2ਜ਼D3ኊݧࢅቛധ࢟ྏă ଣࢾᏴࢅ࢟Ꮞ࢟ኹᓨზሆ )96WBDၒྜྷࡼᄰಭሣါ።* ಭሣါMFEདࣅ྆ገᆒߒቃ᎖611ntࡼࣅဟମLjࣅ ࢟ᔜS2።ถᄴဟᄋୈჅኊࡼᔢࡍࣅມᒙ࢟ഗ)ᔢތ ᓨზሆ :1μ B*ਜ਼ᆐ D2ĂD3 ߠ࢟Ⴥኊࡼ࢟ഗăᏴᎾ໐ࡼ 611ntࣅဟମดLjവ࢟ྏD3ܘኍࡵ࢟ߠۻ,:/6WLjऎ D2ܘኍߠ࢟ࡵ,35Wă ᎅ᎖NBY27912ดݝᎌ71ntࡼྟࣅဟମLjD2ܘኍࡀᔗ ৫ࡼ࢟LjጲܣᒗᏴᑚࣤဟମดሶୈ።࢟ഗă ጲሆါத႒ଐႯჅኊࡼ࢟ྏᒋǖ Ig = Qgtot × fSW C1 = (IIN + Ig ) (tSS ) VHYST ᒦJJO ဵࣅઁNBY27912ࡼด࢟ݝᏎ࢟ഗ)2/5nB*LjRhupu ဵR2ࡼᔐᐜ࢟LjgTX ဵNBY27912ࡼఎਈຫൈ)373lI{*Lj WIZTU ဵᔈVWMPᒣૄ࢟ኹ)22/:W*LjuTT ဵดྟݝࣅဟ ମ)71nt*ă ಿྙǖ Ig = (8nC) × (262kHz) = 2.1mA C1 = (1.4mA + 2.1mA) × (60ms) = 17.5μF (12V) R1 = VIN(MIN) − VSUVR IC1 + ISTART ᒦ W JO)NJO* ဵ።ᒦࡼᔢቃၒྜྷ࢟ኹLjW TVWS ဵᔈ VWMPታ࢟ຳ)ᔢࡍᒋ,34/7W*LjJTUBSU ဵࣅဟJOࡼ࢟ Ꮞ࢟ഗ)ᔢࡍᒋ:1μB*ă ಿྙLjୣഗၒྜྷ࢟ኹནᔢቃᒋ96WဟLjᎌǖ IC1 = R1 = ( 24V ) × (15μF ) = 0.72mA ( 500ms) 120V − 24V (0.72mA + (90μA)) = 119kΩ ࢟ᔜནܪᓰᒋ231lΩă ྙਫᏤৎࡼޠࣅဟମLjᐌS2ᔜᒋభኡནࡻ܈ၤଐ ႯᒋৎࡍጙቋLjᑚዹభጲଢ଼ࢅক࢟ᔜࡼă ၤࣅऱښభ᎖ಢ႒᎖ᅄ6ࡼ࢟വăক࢟വᒦྯླྀ ᔝᎧၒ߲ླྀᔝᄴሤăፐऎྀੜဟମྯླྀᔝࡼ࢟ኹᎧၒ ߲࢟ኹᔐ߅ᑵ܈Lj݀ਜ਼ၒ߲࢟ኹள಼ሤᄴࡼྟࣅਭ߈ă D2࠭,33Wह࢟ᒗ,21Wࡼᔢह࢟ဟମܘኍࡍ᎖71ntࡼྟ ࣅဟମă ဣሚᔈࡼጙৈऱजဵᏴࢯஂၒ߲࢟ኹࡼླྀᔝᒄᅪݧ ጙৈࣖೂࡼມᒙླྀᔝLj݀ဧມᒙླྀᔝᎧNPTGFUࡴᄰဟ ମᄴሤ)ݬᅄ:*ăᏴࠥ༽ౚሆLjჅኊࡼ࢟ྏᒋቃࣶ೫ă ऎLjᏴᑚᒬऱါሆLjၒྜྷ࢟ኹपᆍܘኍቃ᎖3;2ăᏴ ࢾມᒙླྀᔝဵ॥Ꭷၒ߲ᄴሤဟLjથᎌጙৈኊገఠࡼ ᆰᄌăྙਫᄴሤLjᐌMFEདࣅ࢟വ્Ᏼၒ߲വᓨზሆࡌ ᡅਜ਼ྟࣅăࡣဵLjྙਫມᒙླྀᔝᎧNPTGFUࡴᄰဟମᄴ ሤLjݙᎌকᄂቶă ࢟ྏᒋནܪᓰᒋ26μGă 10 ______________________________________________________________________________________ ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ ᅄ6߲೫ጙৈ᎖NBY27912ࡼಭሣါIC! MFEདࣅ። ࢟വăܤኹU2భࡍࡍᄋଐࡼഉቶăดݝᇙތ हࡍభဣሚऻޟறཀྵࡼMFE࢟ഗ఼ᒜă ᅄ7߲೫ጙৈᎌሣቶೡࣞࢯஂถࡼऻೌኚgmzcbdl MFEདࣅăMFEᔐ࢟ኹభࢅ᎖᎖ၒྜྷ࢟ኹă ᅄ8߲೫ጙৈೌኚࡴᄰෝါࡼIC! MFE! cvdlདࣅLj ᎌሣቶࢯLjᒑኊࡼᅪݝᏄୈă ᅄ9߲೫ጙৈ᎖NBY27912ĂݧࢅຫQXNऱါࢯ ࡼಭሣါಭgmzcbdl IC MFEདࣅăQXNቧኊገनሤ )ݬถౖᅄ*ăܤኹU2ᄋڔཝಭLjᔫ᎖ᄰୣ ഗ࢟Ꮞ)96WBDᒗ376WBD*ă D1 T1 VSUPPLY D2 R1 R2 C4 Q1 NDRV IN VOUT LEDs C1 VCC CS R4 C2 COMP R6 R7 MAX16801 C3 GND DIM/FB UVLO/EN R3 R5 GND ᅄ6/! ಭሣါĂऻಭĂgmzcbdl! MFEདࣅLjᎌభ߈ܠၒྜྷࣅ࢟ኹ ______________________________________________________________________________________ 11 NBY27912B0C0NBY27913B0C ።࢟വ NBY27912B0C0NBY27913B0C ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ VIN 10.8V TO 24V R1 UVLO/EN DIM/FB 1 8 2 7 COMP 3 CS MAX16802B 4 6 5 LED(s) L1 IN C4 VCC NDRV Q1 D1 GND R2 R4 R3 DIMMING C2 C3 R5 C1 GND ᅄ7/! ᎌೡࣞࢯஂถࡼNBY27913! gmzcbdl! IC! MFEདࣅLjၒྜྷ࢟ኹपᆍ21/9Wᒗ35W VIN 10.8V TO 24V R1 LED(s) UVLO/EN DIM/FB 1 8 2 7 COMP 3 CS MAX16802B 4 6 5 D1 IN C4 VCC NDRV Q1 L1 GND R2 R3 R4 DIMMING C2 C3 R5 C1 GND ᅄ8/! ᎌೡࣞࢯஂถࡼNBY27913! cvdl! IC! MFEདࣅLjၒྜྷ࢟ኹपᆍ21/9Wᒗ35W 12 ______________________________________________________________________________________ ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ NBY27912B0C0NBY27913B0C OPTIONAL ONLY WHEN PWM DIMMING IS USED D3 T1 D1 C4 D2 R2 R1 UNIVERSAL AC INPUT Q1 NDRV VCC LEDs C3 BRIDGE RECTIFIER IN C6 GND MAX16801B CS C1 C2 DIM/FB R4 UVLO/EN R3 *PWM C5 *WARNING: PWM DIMMING SIGNAL IS SHOWN AT THE PRIMARY SIDE. USE AN OPTOCOUPLER FOR SAFETY ISOLATION OF THE PWM SIGNAL. ᅄ9/! ᄰୣഗၒྜྷĂಭሣါĂಭቯgmzcbdl! IC! MFEདࣅLjݧࢅຫQXNࢯ D1 T1 +VIN D3 R1 U2 OPTO LED R2 R8 Q1 NDRV IN VOUT C1 VCC CS R11 C4 C3 R4 MAX16801 R7 U2 OPTO TRANS COMP R9 Z1 GND U3 TLV431 R5 DIM/FB R6 UVLO/EN R3 C2 GND C5 R10 ᅄ:/! ᄰၒྜྷĂಭሣါĂಭቯgmzcbdl! IC! MFEདࣅLjᎌறࣞ࢟ഗࢯஂᄂቶ ______________________________________________________________________________________ 13 NBY27912B0C0NBY27913B0C ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ `````````````````````````````````````````````````````````````````````````` ถౖᅄ IN IN CLAMP 26.1V VCC VCC IN REGULATOR BOOTSTRAP UVLO** REG_OK DIGITAL SOFT-START VL REFERENCE 1.23V 21.6V 9.74V UVLO/EN (INTERNAL 5.25V SUPPLY) UVLO 1.28V 1.23V COMP DIM/FB DRIVER S ERROR AMP NDRV Q R CPWM VOPWM CS *OSCILLATOR 262kHz 1.38V THERMAL SHUTDOWN VCS 0.3V LIM MAX16801 MAX16802 ``````````````````````````````` ኡቯᒎฉ BOOTSTRAP UVLO STARTUP VOLTAGE (V) MAX DUTY CYCLE (%) MAX16801A Yes 22 50 MAX16801B Yes 22 75 PART MAX16802A No 10.8* 50 MAX16802B No 10.8* 75 *NBY27913ᎌดݝᔈVWMPă WDD ୭࢟ኹ᎖,8W )JO୭࢟ኹᆐ,21/9Wဟࡼۣᑺၒ߲*Lj ݀༦VWMP0FO୭ᆐ࢟ຳဟNBY27913ఎဪᔫă 14 GND *MAX16801A/MAX16802A: 50% MAXIMUM DUTY CYCLE MAX16801B/MAX16802B: 75% MAXIMUM DUTY CYCLE **MAX16801 ONLY ``````````````````````````````` ୭ᒙ TOP VIEW UVLO/EN 1 8 IN 7 VCC DIM/FB 2 COMP 3 MAX16801 MAX16802 CS 4 6 NDRV 5 GND μMAX ______________________________________________________________________________________ ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ ॖᓤಢቯ ॖᓤܠ൩ ᆪܠ 8 μMAX — 21-0036 ______________________________________________________________________________________ 15 NBY27912B0C0NBY27913B0C ```````````````````````````````````````````````````````````````````````````` ॖᓤቧᇦ ྙኊᔢதࡼॖᓤᅪተቧᇦਜ਼ݚLj༿އኯ china.maxim-ic.com/packagesă༿ᓖፀLjॖᓤܠ൩ᒦࡼĐ,đĂĐ$đĐ.đஞܭာSpITᓨზă ॖᓤᅄᒦభถ۞ݙᄴࡼᆘᓮᔊ९LjࡣॖᓤᅄᒑᎧॖᓤᎌਈLjᎧSpITᓨზᇄਈă NBY27912B0C0NBY27913B0C ᎖ೡࣞMFEདࣅࡼ ಭሣါĂED.ED! QXN఼ᒜ ```````````````````````````````````````````````````````````````````````````` ኀࢿ಼ဥ ኀࢿ ኀࢿ྇໐ ႁී ኀখ 0 10/05 ᔢ߱۾ۈă — 1 1/06 ᐐଝ೫NBY27913BFVB,ୈă 1 2 1/10 ৎᑵ೫ଐႯါLjৎቤ೫ሆܪLj݀࿎߹೫ॖᓤᅄă 1, 2, 3, 6–15 Nbyjn ۱யࠀူێ ۱ய 9439ቧረ ᎆᑶܠ൩ 211194 ॅ࢟જǖ911!921!1421 ࢟જǖ121.7322 62:: ࠅᑞǖ121.7322 63:: Nbyjn࣪ݙNbyjnޘອጲᅪࡼྀੜ࢟വဧঌᐊLjጐݙᄋᓜಽభăNbyjnۣഔᏴྀੜဟମĂᎌྀੜᄰۨࡼ༄ᄋሆኀখޘອᓾ೯ਜ਼ਖৃࡼཚಽă 16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2010 Maxim Integrated Products Nbyjn ဵ Nbyjn!Joufhsbufe!Qspevdut-!Jod/ ࡼᓖݿܪă MAX16801, MAX16801A, MAX16801B, MAX16802, MAX16802A, MAX16802B 离线式、DC-DC PWM控制器,用于高亮度LED驱动器 - 概述 ENGLISH • 简体中文 • 日本語 • 한국어 Login | Register 请输入关键词或器件型号 最新内容 产品 方案 设计 应用 技术支持 销售联络 公司简介 我的Maxim Maxim > 产品 > 汽车电子产品 > MAX16801, MAX16801A, ... Maxim > 产品 > 电源和电池管理 > MAX16801, MAX16801A, ... MAX16801, MAX16801A, MAX16801B, MAX16802, MAX16802A, MAX16802B 离线式、DC-DC PWM控制器,用于高亮度LED驱动器 具有宽工作范围、高电流精度的LED驱动方案 概述 技术文档 定购信息 用户说明 (0) 所有内容 状况 状况:生产中。 概述 MAX16801A/B/MAX16802A/B高亮度(HB) LED驱动控制器IC含有设计宽输入电压范围LED驱动 完整的数据资料 器所需的全部电路,适用于通用照明和显示器应用。MAX16801非常适用于通用输 入(85VAC至265VAC整流电压输入) LED驱动器,MAX16802适用于低输入电 下载 Rev. 2 (PDF, 212kB) 英文 压(10.8VDC至24VDC) LED驱动器。 下载 Rev. 2 (PDF, 700kB) 中文 需要精密调节LED电流时,可利用板上误差放大器以及精度为1%的基准。通过低频PWM亮度调 节可实现较宽的亮度调节范围。 MAX16801/MAX16802具有输入欠压锁定(UVLO)特性,可设置输入启动电压,并可确保在电源跌落时正常工作。MAX16801具有大滞 回的内部自举欠压锁定电路,从而简化了离线LED驱动器的设计。MAX16802没有这个内部自举电路,可直接由+12V电压偏置。 内部微调的262kHz固定开关频率允许优化选择磁性元件和滤波元件,从而实现紧凑、高性价比的LED驱动 器。MAX16801A/MAX16802A的最大占空比为50%,MAX16801B/MAX16802B的最大占空比为75%。这些器件均采用8引脚µMAX®封 装,可工作在-40°C至+85°C温度范围内。 现备有评估板:MAX16802BEVKIT 关键特性 应用/使用 适合buck、boost、flyback、SEPIC和其它拓扑 高达50W或更高的输出功率 通用离线输入电压范围:85VAC至265VAC整流电压(MAX16801) IN引脚直接由10.8V至24V直流输入驱动(MAX16802) 内部带有误差放大器和1%精度的基准,可实现精密的LED电流调节 PWM或线性亮度调节 262kHz ±12%固定开关频率 热关断 数字软启动 可编程输入启动电压 大滞回内部自举UVLO (MAX16801) 45µA (典型值)启动电源电流,1.4mA (典型值)工作电源电流 50% (MAX16801A/MAX16802A)或75% (MAX16801B/MAX16802B)最大占空比 采用微型8引脚µMAX封装 商用与工业照明 装饰灯与建筑照明 离线式DC-DC LED驱动器 RGB背光,用于LCD TV和监视器 Key Specifications: High Brightness LED Drivers Part Device Device Application VIN VIN VIN (V) (V) (V) Topology LED http://china.maxim-ic.com/datasheet/index.mvp/id/5001[2010-8-12 8:16:37] LED ILED per String Channel Volt. Internal (A) Pwr. PWM PWM Freq. Dimming Dimming Price (kHz) Freq. EV Ratio MAX16801, MAX16801A, MAX16801B, MAX16802, MAX16802A, MAX16802B 离线式、DC-DC PWM控制器,用于高亮度LED驱动器 - 概述 Number max MAX16801 (V) Channels min max Boost/SEPIC Flyback Boost/SEPIC Buck MAX16802 Flyback max max max max Kit 24 1 1 10.8 24 3 250 No 图表 典型工作电路 相关产品 MAX16802BEVKIT MAX16802B评估板 类似产品:浏览其它类似产品线 查看所有High Brightness LED Drivers (25产品) 更多信息 [ 2005-11-14 ] 没有找到你需要的产品吗? 应用工程师帮助选型,下个工作日回复 参数搜索 应用帮助 概述 技术文档 定购信息 概述 关键特性 应用/ 使用 关键指标 图表 注释、注解 相关产品 数据资料 应用笔记 评估板 设计指南 可靠性报告 软件/ 模型 价格与供货 样品 在线订购 封装信息 无铅信息 参考文献: 19- 3880 Rev. 2; 2010- 04- 01 本页最后一次更新: 2010- 04- 01 联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明 © 2010 Maxim Integrated Products版权所有 http://china.maxim-ic.com/datasheet/index.mvp/id/5001[2010-8-12 8:16:37] 262 2 See Notes max 400 查看所有High Brightness LED Drivers (23) 新品发布 (kHz) MOSFETs No $0.66 @1k Yes $0.66 @1k 3000 19-0560; Rev 0; 5/06 NBY27913Cຶৰۇ ``````````````````````````````````` ᄂቶ NBY27913Cຶৰ)ۇFW lju*ዝာ᎖NBY27913Cࡼ࢟ ഗ఼ᒜĂࡍ࢟ഗၒ߲ MFE དࣅăຶৰۇభᄋᆮࢾࡼ 861nB ၒ߲࢟ഗLjᔫᏴ 21/9W ᒗ 41W ࢟Ꮞ࢟ኹᒄମLj ᔫᆨࣞपᆍᆐ.51°Dᒗ,96°Dă ♦ 21/9Wᒗ41W࢟Ꮞ࢟ኹपᆍ NBY27913C ຶৰۇᎌೝᒬݙᄴಢቯࡼೡ఼ࣞᒜऱါǖ ಽෝผၒྜྷ࢟ኹQXNၒྜྷቧ఼ᒜMFEೡࣞăকຶ ৰۇથᎌVWMPถLjᏴၒྜྷ࢟Ꮞ࢟ኹਭࢅဟਈຶܕৰ ۇLj݀༦భጲᏴ MFE ఎവဟᆐຶৰۇᄋਭኹۣઐă NBY27913Cຶৰဵۇᅲཝڔᓤ݀ளਭހ၂ࡼ࢟വۇă வসǖࡩ߲ሚዏᒮ৺ᑇပᓨზဟLjຶ۾ৰۇభถሿ ࡍถLjᐆ߅ᏄୈᏄୈႵຢࡼႥă༿டဇ ݷᔫຶ۾ৰۇLjጲܜభถࡼཽă ♦ ࢟ഗ఼ᒜၒ߲ ♦ 23Wၒ߲ဟ࢟ഗభࡉ861nB ♦ ሣቶQXNೡ఼ࣞᒜ ♦ ൸Ᏺဟൈࡉ91& ♦ ࢟Ꮞ࢟ኹ་ኹჄࢾ ♦ ၒ߲ਭኹۣઐ ``````````````````````````````` ࢾ৪ቧᇦ PART TEMP RANGE IC PACKAGE MAX16802BEVKIT -40°C to +85°C 8 μMAX® μNBYဵNbyjn! Joufhsbufe! Qspevdut-! Jod/ࡼᓖݿܪă `````````````````````````````````````````````````````````````````````````` Ꮔୈܭ DESIGNATION C1, C2, C5, C6 C3, C4, C7 C8 QTY QTY R1 1 R2 1 11kΩ ±1%, 1/8W resistor (0603) R3 1 499kΩ ±1%, 1/8W resistor (0603) 73.2kΩ ±1%, 1/8W resistor (0603) L1 1 Q1 1 3 0.1μF, 50V X7R SMD ceramic capacitors Murata GRM188R71H104KA93D or TDK C1608X7R1H104K 470pF, 50V X7R ceramic capacitor Murata GRM188R71H471KA01D or TDK C1608X7R1H471K 1nF, 50V X7R ceramic capacitor Murata GRM188R71H102KA01D or TDK C1608X7R1H102K 22V, 1.5W zener diode Vishay SMZG3797B 60V, 1A Schottky diode Central Semiconductor CMSH1-60M or Diodes Inc. B160 20V, small-signal Schottky diode Vishay SD103CWS or Diodes Inc. SD103CWS 0.1in, 2-pin hole headers (through hole) 1 D1 1 D2 1 1 2 DESCRIPTION 4.7μH, 4.2A peak SMD inductor Coilcraft DO3308P-472ML 60V, 3.2A n-channel MOSFET Vishay Si3458DV 392kΩ ±1%, 1/8W resistor (0603) 4 1 J1, J2 DESIGNATION 4.7μF, 50V X7R ceramic capacitors Murata GRM32ER71H475KA88L C9 D3 DESCRIPTION R4 1 R5, R7 2 1kΩ ±1%, 1/8W resistors (0603) R6 1 330Ω ±1%, 1/4W resistor (1206) R8 1 220Ω ±1%, 1/8W resistor (0603) R9 1 R10 1 0.10Ω ±1%, 1/2W resistor (1206) Susumu RL1632R-R100-F 1Ω ±5%, 1/8W resistor (0603) U1 1 MAX16802B (8-pin μMAX) 4 0.1in, 2-pin male connectors (through hole) 1 MAX16802B PC board VIN, VLED, PWM_IN, LIN_IN — ________________________________________________________________ Maxim Integrated Products 1 ۾ᆪဵNbyjnᑵါ፞ᆪᓾ೯ࡼፉᆪLjNbyjn࣪ݙडፉᒦࡀᏴࡼތፊᎅࠥޘညࡼࡇᇙঌᐊă༿ᓖፀፉᆪᒦభถࡀᏴᆪᔊᔝᒅ डፉࡇᇙLjྙኊཀྵཱྀྀੜࠤᎫࡼᓰཀྵቶLj༿ݬఠ Nbyjnᄋࡼ፞ᆪۈᓾ೯ă Ⴣནॅዹອਜ਼ᔢቤࡼۈၫᓾ೯Lj༿षᆰNbyjnࡼᓍǖxxx/nbyjn.jd/dpn/doă ຶৰۇǖNBY27913C ``````````````````````````````````` গၤ ຶৰۇǖNBY27913C NBY27913Cຶৰۇ ``````````````````````````````` Ⴅྜྷඡ NBY27913Cຶৰဵۇᅲཝᓤ݀ளਭހ၂ࡼ࢟വۇăږ ᑍሆݛᒾዩᑺᔫ༽ౚăᏴᅲ߅Ⴥᎌೌᒄ༄Ljݙ ገᄰ࢟Ꮞă 2* ᒇഗ࢟Ꮞ)1ᒗ41WৎLj2B*ೌᒗ,WJOਜ਼HOEă 3* ࢟ኹܭာ݆ਜ਼MFEᑫ)ࠈቲೌLj861nBᑵሶ ࢟ഗሆኹଢ଼Ꮦᆐ23W*ೌᒗ,WMFEਜ਼.WMFE࣡Ǘዴ ,WMFELjፓ.WMFEă 4* ᄰᄢሣK2ਜ਼K3ጲணᒏೡࣞࢯஂă 5* ࡌఎ࢟ᏎLj݀ၒྜྷ࢟ኹᐐଝࡵ21/9Wጲăၒ߲࢟ኹ ᐐࡍࡵ MFE ᑫᑵሶມᒙ࢟ኹLj݀ᄋࡍᏖ 861nB ᆮࢾࡼMFEຳ࢟ഗăၒྜྷ࢟ኹᐐᒗ41WLjຳၒ߲ ࢟ഗᏴᑳৈ࢟Ꮞ࢟ኹपᆍดۣߒᆮࢾă কຶৰۇ᎖ᔫᏴ 373lI{Ăऻೌኚ࢟ഗෝါ)EDN*ࡼ cvdl.cpptuᓞધLjඛৈᒲ໐ᆐၒ߲ᄋጙࢾถLjᄏࡼ ถᒋᓍገན᎖࢟ঢਜ਼ઓభࡼ߈ܠख़ᒋ࢟ঢ࢟ഗLjᎧ ၒྜྷ࢟ኹᇄਈăږᑍᑚጙᒙLjຶৰࡼۇၒ߲࢟ኹਜ਼Ᏼ ࢾMFEᔫ࢟ኹሆMFEࡼၒ߲࢟ഗᎧ࢟Ꮞ࢟ኹᇄਈă কຶৰۇଐ᎖དࣅMFEঌᏲLj23Wᔫ࢟ኹሆభᄋ ࡉ861nBࡼᔢࡍ࢟ഗăྙਫMFEࡼᔫ࢟ኹ୷ࢅLjกඐ ᔢࡍၒ߲࢟ഗ܈ږಿᐐଝLjభۣߒᆮࢾࡼၒ߲ൈă ᆐདࣅݙᄴᔫ࢟ኹࡼMFEᑫLjኊገখܤଶഗ࢟ᔜăሆ ෂ߲೫ݙᄴᔫ࢟ኹሆଶഗ࢟ᔜଐႯऱजࡼሮᇼႁීă ၒྜྷ࢟ᏎVWMP 6* ࣥఎവK2Lj݀ᏴQXN`JOଝᏲQXNቧ)ຫൈᆐ 311I{-! ७ࣞᆐ 1 ᒗ 3W*ă࠭ 1 ᒗ 211&খܤᐴహ܈LjMFE ೡࣞႲᒄܤછLjሤ።࠭ 211&ܤછᒗ 1&ăࡩ QXN ቧ ᐴహ܈ᆐ1&ဟLjMFEೡࣞᆐ211&ă ၒྜྷ࢟Ꮞ VWMP ࢟വᎅ S4ĂS5 ᔝ߅ࡼ࢟ᔜᆀဣሚăক ࢟ᔜᆀଶހၒྜྷ࢟Ꮞ࢟ኹLj݀Ᏼၒྜྷ࢟ኹ᎖21/9Wဟ ᄰਭFO୭ࣅ࢟വăࡩFO୭ࡼ࢟ኹဍဟLjታ ࢟ኹඡሢᆐ2/34WLjᎌ61nWᒣૄăୈጙࡡఎဪᔫLj ᒑᏴၒྜྷ࢟Ꮞ࢟ኹࢅ᎖21/5W )ఠࡵᒣૄ࢟ኹ*ဟ્ݣ ਈࣥă 7* ᄰ K2 ݀ࣥఎ K3ăೌጙৈభ࢟ܤኹᏎᒗ MJO`JOLj Ᏼ1ᒗ2/7Wᒄମࢯஂ࢟ኹăMFEೡࣞᏴ211&Ꭷ1&ᒄ ମܤછăၒྜྷMJO`JO࢟ኹᆐ1WဟLjMFEೡࣞᆐ211&ă VWMPඡሢభږᑍሆါᄰਭ࢟ᔜS2ਜ਼S3ቲࢯஂǖ ⎛V ⎞ R3 = ⎜ UVLO − 1⎟ × R4 ⎝ 1.23 ⎠ வসǖݙঌᏲဟ༿ᇖຶৰۇ࢟ă ᒦLjW VWMP ᆐჅገཇࡼ VWMP ඡሢăᆐۣߒඡሢறࣞLj S5።ቃ᎖211lΩă ``````````````````````````````` ሮᇼႁී NBY27913C ຶৰ)ۇFW lju*ဵ࢟ഗ఼ᒜቯĂࡍ࢟ഗၒ߲ MFEདࣅLjభᄋࡉ861nBࡼᆮࢾ࢟ഗLj༦ݙ၊࢟Ꮞ ࢟ኹܤછ፬ሰă ```````````````````````````````````````````````````````````````````````` Ꮔୈ። SUPPLIER PHONE FAX WEBSITE Central Semiconductor 631-435-1110 631-435-3388 www.centralsemi.com Coilcraft 847-639-6400 847-639-1469 www.coilcraft.com Diodes Inc. 805-446-4800 805-446-4850 www.diodes.com Murata 770-436-1300 770-436-3030 www.murata.com Susumu Co Ltd. 208-328-0307 208-328-0308 www.susumu-usa.com TDK 847-390-4373 847-390-4428 www.component.tdk.com Vishay 402-563-6866 402-563-6296 www.vishay.com ᓖǖᎧၤᏄୈ።ೊᇹဟLj༿ႁීิᑵᏴဧࡼဵNBY27913Că 2 _______________________________________________________________________________________ NBY27913Cຶৰۇ WMFE ᑵ୭ሤ࣪᎖ HOE ࡼᔢࡍ࢟ኹᎅ S2ĂS3 ᔝ߅ࡼ नౣᆀሢᒜᏴ56WLjকᆀೌᒗNBY27913CࡼGC ୭ăྙਫຶৰۇᏴᎌঌᏲဟఎ MFE ఎവLjᐌ WMFEᑵ࢟ኹభถ્ဍࡵڔݙཝࡼ࢟ኹăดݝᇙތह ࡍ્ଶހᑚᒬ༽ౚLj࠭ऎଢ଼ࢅ࢟ঢࡼख़ᒋ࢟ഗLj WMFEᑵ୭ࡼ࢟ኹሢᒜᏴ56Wጲดă૾ܣဧ೫ᑚᒬ ۣઐLj྆ፇᏴຶৰۇ࢟ᒄ༄ᒎࢾࡼঌᏲă QXNೡࣞࢯஂ ᄰਭࢯஂೌᏴ QXO`JO ၒྜྷ࣡ࡼ QXN ቧᐴహ܈఼ ᒜMFEೡࣞăQXN`JOၒྜྷᆐ࢟ຳဟਈࣥMFE࢟ഗǗၒ ྜྷᆐࢅ࢟ຳဟఎMFE࢟ഗăቧख़ᒋᏴ2/6Wᒗ6/1WĂຫ ൈᆐ211I{ᒗ2111I{Ljᄰਭখܤᐴహஂࢯ܈MFEೡࣞăຫ ൈࢅ᎖211I{ࡼቧభถ્ࡴᒘၒ߲࿑ႄăᐐࡍᐴహ܈ဟLj MFEೡࣞିྦྷLjनᒄጾăQXNᐴహ܈ᆐ1&ဟLjMFEೡ ࣞࡉࡵ211&ă ሣቶೡࣞࢯஂ ሣቶೡࣞࢯஂဵᄰਭখ ܤMJO`JO ၒྜྷ࢟ኹࡼ७఼ࣞᒜ MFE ೡࣞăMJO`JO ၒྜྷࢯᒜଶഗቧLjᏴݙᄴࡼ࢟ഗሆ ߿खNPTGFUăᑚጙਭ߈્ጙ఼ݛᒜၒ߲࢟ഗLj࠭ऎࡉ ࡵ఼ᒜMFEೡࣞࡼࡼăፐᆐᏴྀੜೡࣞࢀMFEဪᒫۣ ߒࡴᄰᓨზLjሣቶೡࣞࢯஂޘ્ݙည࿑ႄሚሷăᏴ 1 ᒗ 2/7WपᆍดࢯஂMJO`JO࢟ኹLjభဧMFEೡࣞᏴ211&ᒗ1& ମܤછăMJO`JO࢟ኹᐐࡍဟLjMFEೡࣞିྦྷLjनᒄጾă MJO`JO࢟ኹᆐ1WဟLjMFEೡࣞᆐ211&ă ࢯஂၒ߲ൈ োሆါࢯஂଶഗ࢟ᔜ S:Ljభጲখຶܤৰࡼۇᔢࡍ ၒ߲ൈǖ23WĂ861nBăᓖፀǖຶৰۇᔢࡍၒ߲࢟ഗሢ ᒜᏴ861nBĂᔢࡍၒ߲࢟ኹሢᒜᏴ26WLj༦ᔢࡍၒ߲ൈ ሢᒜᏴ9/36Xă ၅ሌଐႯᔢቃၒྜྷ࢟ኹሆࡼᔢଛࡴᄰᐴహ܈ǖ VLED + VD DON = VINMIN + VLED + VD ଐႯჅገཇࡼख़ᒋ࢟ঢ࢟ഗǖ k × 2 × ILED IP = f 1 − DON ᒦLjl g ᆐĐኀᑵፐᔇđ)ऻஏᇹၫ*Ljক࢟വᒦ ᒙᆐ2/2ă ଐႯჅኊࡼ࢟ঢᒋLj݀ኡᐋᔢதܪᓰᒋࡣቃ᎖ଐႯᒋ ࡼ࢟ঢǖ L= DON × VINMIN fSW × IP ᒦLjMᆐ࢟ঢM2ࡼ࢟ঢᒋǗgTX ᆐఎਈຫൈLjࢀ᎖373lI{ă ᄰਭन૮ෝါᄋၒ߲࢟വࡼൈᆐǖ PIN = 1 × L × IP2 × fSW 2 ၒ߲࢟വሿࡼൈᆐǖ POUT = VLED × ILED + VD × ILED োถ၆ੱࢾേLjၤೝৈࢀါሤࢀLj࠭ऎཇ߲ጙৈ ৎறཀྵࡼख़ᒋ࢟ঢ࢟ഗǖ ⎛ 2 × (VLED + VD ) × ILED ⎞ IP = ⎜ ⎟ ⎝ ⎠ fSW × L োཇࡻࡼJQFBLLjಽሆါଐႯଶഗ࢟ᔜS:ǖ R9 = 0.292 × (R8 + R7) IPEAK × R7 ᒦLj1/3:3Wᆐଶഗඡሢ࢟ኹăS8ĂS9ᔝ߅ጙৈ࢟ᔜॊ ኹLjถ৫Ᏼୈଶഗ୭ᒄ༄܈ږಿଢ଼ࢅଶഗ࢟ᔜ ࡼኹଢ଼ă ᄢሣኡᐋ ݙဧQXNೡࣞࢯஂဟᄢሣK2ᄰǗݙဧሣቶೡࣞ ࢯஂဟᄢሣK3ᄰă ᒦLjW JONJO ᆐᔢቃၒྜྷ࢟ኹLjW MFE ᆐ MFE ᔫ࢟ኹLj JMFE ᆐჅገཇࡼMFE࢟ഗLjWE ᆐE3ࡼᑵሶ࢟ኹă _______________________________________________________________________________________ 3 ຶৰۇǖNBY27913C ၒ߲ਭኹۣઐ ຶৰۇǖNBY27913C NBY27913Cຶৰۇ -VLED +VIN R1 392kΩ 1% GND R3 499kΩ 1% R5 1kΩ 1% PWM_IN C2 4.7μF 50V C1 4.7μF 50V 1 R6 330Ω 1% D1 22V L1 4.7μH C3 0.1μF 50V IN UVLO/EN 8 D2 CMSH1-60M MAX16802B 2 R4 73.2kΩ 1% J1 PWM_GND C9 1nF 50V LIN_IN LIN_GND R2 11kΩ 1% J2 3 COMP 4 C8 470pF 50V R7 1kΩ 1% DIM/FB CS VCC NDRV GND 7 6 5 R8 220Ω 1% R10 1Ω 12 56 3 C7 0.1μF 50V Q1 Si3458DV 4 R9 0.10Ω 1% ᅄ2/! NBY27913CຶৰۇᏇಯᅄ 4 C5 4.7μF 50V C6 4.7μF 50V +VLED U1 D3 SD103CWS C4 0.1μF 50V _______________________________________________________________________________________ NBY27913Cຶৰۇ ຶৰۇǖNBY27913C ᅄ3/! NBY27913CຶৰۇᏄୈݚ—Ꮔୈށ ᅄ4/! NBY27913CຶৰۇQDCݚ—Ꮔୈށ ᅄ5/! NBY27913CຶৰۇQDCݚ—ށ Nbyjn࣪ݙNbyjnޘອጲᅪࡼྀੜ࢟വဧঌᐊLjጐݙᄋᓜಽభăNbyjnۣഔᏴྀੜဟମĂᎌྀੜᄰۨࡼ༄ᄋሆኀখޘອᓾ೯ਜ਼ਖৃࡼཚಽă Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ______________________5 © 2006 Maxim Integrated Products Printed USA ဵ Nbyjn!Joufhsbufe!Qspevdut-!Jod/ ࡼᓖݿܪă MAX16802BEVKIT MAX16802B评估板 - 概述 ENGLISH • 简体中文 • 日本語 • 한국어 Login | Register 请输入关键词或器件型号 最新内容 产品 方案 设计 应用 技术支持 销售联络 公司简介 我的Maxim Maxim > 产品 > 电源和电池管理 > MAX16802BEVKIT MAX16802BEVKIT MAX16802B评估板 概述 技术文档 定购信息 用户说明 (0) 所有内容 状况 状况:生产中。 概述 MAX16802B评估板(EV kit)用来演示基于MAX16802B的电流控制型、大电 流LED驱动器。该评估板具备高达750mA的稳定电流供给能力,并可运行 在10.8V至30V电源电压之间,工作温度范围为-40°C至+85°C。 完整的数据资料 MAX16802B评估板具有两种不同类型的亮度控制方式:使用模拟输入电压 或PWM输入信号来控制LED亮度。该评估板还具有UVLO功能,可以在输入电源 电压过低时关闭评估板,并且可以在LED开路时为评估板提供过压保 护。MAX16802B评估板是一块经过完全安装与测试的电路板。 英文 下载 Rev. 0 (PDF, 132kB) 中文 下载 Rev. 0 (PDF, 640kB) 警告:当出现严重故障或失效状态时,本评估板有巨大能量耗散,可能会造成元件或元件碎片的高速溅射。请小心操作本 评估板,以避免可能的人身伤害。 关键特性 应用/使用 10.8V至30V电源电压范围 电流控制型输出 12V输出时,电流可高达750mA 线性或PWM亮度控制 满载时效率高达80% 电源电压欠压锁定 输出过压保护 相关产品 MAX16801, MAX16801A, MAX16801B, MAX16802, MAX16802A, MAX16802B 离线式、DC-DC PWM控制器,用于高亮度LED驱动器 没有找到你需要的产品吗? 应用工程师帮助选型,下个工作日回复 参数搜索 应用帮助 概述 技术文档 定购信息 概述 数据资料 价格与供货 http://china.maxim-ic.com/datasheet/index.mvp/id/5209[2010-8-12 8:16:14] 商用与工业照明 装饰灯与建筑照明 离线式DC-DC LED驱动器 RGB背光,用于LCD TV和监视 器 MAX16802BEVKIT MAX16802B评估板 - 概述 关键特性 应用/ 使用 关键指标 图表 注释、注解 相关产品 应用笔记 评估板 设计指南 可靠性报告 软件/ 模型 样品 在线订购 封装信息 无铅信息 参考文献: 19- 0560 Rev. 0; 2006- 05- 30 本页最后一次更新: 2006- 07- 20 联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明 © 2010 Maxim Integrated Products版权所有 http://china.maxim-ic.com/datasheet/index.mvp/id/5209[2010-8-12 8:16:14] 19-0560; Rev 0; 5/06 MAX16802B Evaluation Kit The MAX16802B evaluation kit (EV kit) demonstrates a current-controlled, high-output-current LED driver based on the MAX16802B. This EV kit is capable of supplying stable output currents of up to 750mA, can run at supply voltages between 10.8V and 30V, and can operate at temperatures ranging from -40°C to +85°C. The MAX16802B EV kit features two different types of dimming controls using either a linear input voltage or a PWM input signal to control the LED brightness. This EV kit also has a UVLO feature to turn off the EV kit operation during low input supply voltage and an overvoltage protection to protect the EV kit under an open-LED condition. The MAX16802B EV kit is a fully assembled and tested board. Warning: Under severe fault or failure conditions, this EV kit may dissipate large amounts of power, which could result in the mechanical ejection of a component or of component debris at high velocity. Operate this EV kit with care to avoid possible personal injury. Features ♦ 10.8V to 30V Wide Supply Voltage Range ♦ Current-Controlled Output ♦ Up to 750mA LED Current at 12V Output ♦ Linear and PWM Dimming Control ♦ Over 80% Efficiency at Full Load ♦ Supply Undervoltage Lockout ♦ Output Overvoltage Protection Ordering Information PART TEMP RANGE IC PACKAGE MAX16802BEVKIT -40°C to +85°C 8 µMAX® µMAX is a registered trademark of Maxim Integrated Products, Inc. Component List DESIGNATION C1, C2, C5, C6 C3, C4, C7 C8 QTY DESCRIPTION DESIGNATION QTY R1 1 R2 1 11kΩ ±1%, 1/8W resistor (0603) R3 1 499kΩ ±1%, 1/8W resistor (0603) 73.2kΩ ±1%, 1/8W resistor (0603) 4 4.7µF, 50V X7R ceramic capacitors Murata GRM32ER71H475KA88L L1 1 Q1 1 3 0.1µF, 50V X7R SMD ceramic capacitors Murata GRM188R71H104KA93D or TDK C1608X7R1H104K 470pF, 50V X7R ceramic capacitor Murata GRM188R71H471KA01D or TDK C1608X7R1H471K 1nF, 50V X7R ceramic capacitor Murata GRM188R71H102KA01D or TDK C1608X7R1H102K 22V, 1.5W zener diode Vishay SMZG3797B 60V, 1A Schottky diode Central Semiconductor CMSH1-60M or Diodes Inc. B160 20V, small-signal Schottky diode Vishay SD103CWS or Diodes Inc. SD103CWS 0.1in, 2-pin hole headers (through hole) 1 C9 1 D1 1 D2 1 D3 1 J1, J2 2 DESCRIPTION 4.7µH, 4.2A peak SMD inductor Coilcraft DO3308P-472ML 60V, 3.2A n-channel MOSFET Vishay Si3458DV 392kΩ ±1%, 1/8W resistor (0603) R4 1 R5, R7 2 1kΩ ±1%, 1/8W resistors (0603) R6 1 330Ω ±1%, 1/4W resistor (1206) R8 1 220Ω ±1%, 1/8W resistor (0603) R9 1 R10 1 0.10Ω ±1%, 1/2W resistor (1206) Susumu RL1632R-R100-F 1Ω ±5%, 1/8W resistor (0603) U1 1 MAX16802B (8-pin µMAX) 4 0.1in, 2-pin male connectors (through hole) 1 MAX16802B PC board VIN, VLED, PWM_IN, LIN_IN — ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 Evaluates: MAX16802B General Description Evaluates: MAX16802B MAX16802B Evaluation Kit Quick Start The MAX16802B EV kit is fully assembled and tested. Follow these steps to verify operation. Do not turn on the power supply until all connections are completed. 1) Connect a DC power supply (0 to 30V or above, 1A) to +VIN and GND. 2) Connect a voltmeter or oscilloscope and the LED array (connected in series to drop about 12V at 750mA forward current) to +VLED and -VLED with anode connected to +VLED and cathode to -VLED. 3) Close the jumpers J1 and J2 to disable dimming. 4) Turn on the power supply and increase the input voltage to above 10.8V. The output voltage increases to forward bias the LED array and delivers approximately 750mA regulated average LED current. Increase the supply further up to 30V and the output average current will be regulated throughout the range. 5) Open shunt J1 and apply a PWM signal to PWM_IN with a frequency of 200Hz and 0 to 2V amplitude. Vary the duty cycle from 0 to 100% and the LED brightness varies from 100% to 0%. When the PWM duty cycle is 0%, the LED brightness is 100%. 6) Close J1, and then open J2. Connect a variable voltage source to LIN_IN and vary the voltage between 0 and 1.6V. The LED brightness varies from 100% to 0%. When the voltage input at LIN_IN is 0V, the LED brightness is 100%. Caution: Avoid powering up the EV kit without connecting load. Detailed Description The MAX16802B evaluation kit is a current-controlled, high-output-current LED driver capable of supplying constant currents up to 750mA, irrespective of supply voltage variations. This EV kit is based on a discontinuous current mode (DCM) buck-boost converter operating at 262kHz to deliver a finite amount of energy to the output every cycle. The amount of this energy depends primarily on the value of the inductor and the user-programmable peak inductor current and does not depend on the supply voltage. Due to this configuration, the power output of the EV kit, and thus the output current supplied to the LED at a given LED operating voltage, becomes independent of the supply voltage. This EV kit is designed to drive LED loads capable of taking up to 750mA of maximum current at a 12V operating voltage. If an LED load with lower operating voltage is used, then the maximum output current will increase by the same ratio to maintain the output power constant. To drive an LED array with a different operating voltage, the value of the current-sense resistor needs to be adjusted. Calculation of the current-sense resistor for a different output operating voltage is explained in later sections. Input Supply UVLO Input supply UVLO is implemented by using a resistor network that combines R3 and R4, which senses the input supply voltage and uses the EN pin to turn on the circuit when the input supply voltage goes above 10.8V. The wake-up threshold of EN is 1.23V when the voltage at EN is rising, and it has a hysteresis of 50mV. Once the device is turned on, due to the hysteresis, the device turns off only if the input supply voltage goes below 10.4V. The UVLO threshold can be adjusted by varying R1 or R2 using the equation below: ⎛V ⎞ R3 = ⎜ UVLO − 1⎟ × R4 ⎝ 1.23 ⎠ where VUVLO is the desired UVLO threshold. To maintain threshold accuracy, keep the value of R4 less than 100kΩ. Component Suppliers PHONE FAX Central Semiconductor SUPPLIER 631-435-1110 631-435-3388 www.centralsemi.com WEBSITE Coilcraft 847-639-6400 847-639-1469 www.coilcraft.com Diodes Inc. 805-446-4800 805-446-4850 www.diodes.com Murata 770-436-1300 770-436-3030 www.murata.com Susumu Co Ltd. 208-328-0307 208-328-0308 www.susumu-usa.com TDK 847-390-4373 847-390-4428 www.component.tdk.com Vishay 402-563-6866 402-563-6296 www.vishay.com Note: Indicate you are using the MAX16802B when contacting these manufacturers. 2 _______________________________________________________________________________________ MAX16802B Evaluation Kit PWM Dimming The PWM dimming is for controlling the LED brightness by adjusting the duty cycle of the PWM input signal connected to the PWM_IN input. A HIGH at PWM_IN input turns off the LED current and LOW turns on the LED current. Connect a signal with peak amplitude between 1.5V to 5.0V and with frequency between 100Hz to 1000Hz and vary the duty cycle to adjust the LED brightness. Frequencies lower than 100Hz can introduce flickering in the light output. LED brightness reduces when duty cycle is increased and vice-versa. When the PWM duty cycle is 0%, the LED brightness will be 100%. Linear Dimming The linear dimming is for controlling the LED brightness by varying the amplitude of the voltage connected to the LIN_IN input. The voltage at the LIN_IN input modulates the current-sense signal and makes the MOSFET trip at a different current level. This process, in turn, changes the output current and thus controls the LED brightness. Since the LED is continuously on at all brightness levels, flickering effect is not present with linear dimming. Vary the LIN_IN voltage between 0 and 1.6V to adjust LED brightness from 100% to 0%. LED brightness reduces when the voltage at LIN_IN is increased and vice-versa. When the voltage at LIN_IN is 0V the LED brightness is 100%. Adjusting the Output Power To change the maximum output power of the EV kit from 12V at 750mA to a different level, adjust the value of the current-sense resistor, R9, using the following equations. Note that the maximum output current of the EV kit is limited to 750mA, the maximum output voltage is limited to 15V, and the maximum output power is limited to 8.25W. Initially calculate the approximate optimum ON duty cycle required at the minimum input voltage: VLED + VD VINMIN + VLED + VD DON = where V INMIN is the minimum input supply voltage, VLED is the LED operating voltage, ILED is the desired LED current and VD is the forward voltage of D2. Calculate the approximate required peak inductor current: k × 2 × ILED IP = f 1 − DON where kf is a noncritical “fudge factor” set equal to 1.1 for this circuit. Calculate the approximate required inductor value and choose the closest standard value smaller than the calculated value: L= DON × VINMIN fSW × IP where L is the inductance value of inductor L1, and fSW is the switching frequency equal to 262kHz. Power transferred to the output circuit by the flyback process is: PIN = 1 × L × IP2 × fSW 2 Power consumed by the output circuit is: POUT = VLED × ILED + VD × ILED Conservation of power requires that the above two equations can be equated and solved for a more precise value of the required peak inductor current. ⎛ 2 × (VLED + VD ) × ILED ⎞ IP = ⎜ ⎟ ⎝ ⎠ fSW × L Set the value of the current-sense resistor, R9, based on the IPEAK value using the following equation: R9 = 0.292 × (R8 + R7) IPEAK × R7 where 0.292V is the current-sense trip threshold voltage. R7 and R8 form a voltage-divider, which scales down the voltage across the current-sense resistor before reaching the current-sense pin of the device. Jumper Selection Keep jumper J1 closed when PWM dimming is not used. Keep jumper J2 closed when linear dimming is not used. _______________________________________________________________________________________ 3 Evaluates: MAX16802B Output Overvoltage Protection The maximum voltage at the positive pin of VLED with respect to GND is limited to 45V by a feedback network formed by R1 and R2, which is connected to the FB pin of the MAX16802B. If the EV kit is turned on with no load or if the LED connection opens, the voltage at the positive pin of VLED may rise to unsafe levels. This condition is sensed by the internal error amplifier, which reduces the peak inductor current to limit the voltage at the positive pin of VLED to 45V. Even if this protection is present, it is recommended to connect the specified load before powering up the EV kit. Evaluates: MAX16802B MAX16802B Evaluation Kit -VLED +VIN R1 392kΩ 1% GND R3 499kΩ 1% R5 1kΩ 1% PWM_IN C2 4.7µF 50V C1 4.7µF 50V 1 R6 330Ω 1% D1 22V L1 4.7µH C3 0.1µF 50V IN UVLO/EN 8 D2 CMSH1-60M MAX16802B 2 R4 73.2kΩ 1% J1 PWM_GND C9 1nF 50V LIN_IN LIN_GND R2 11kΩ 1% J2 3 COMP 4 C8 470pF 50V R7 1kΩ 1% DIM/FB CS VCC NDRV GND 7 6 5 R8 220Ω 1% R10 1Ω 12 56 3 C7 0.1µF 50V Q1 Si3458DV 4 R9 0.10Ω 1% Figure 1. MAX16802B EV Kit Schematic 4 C5 4.7µF 50V C6 4.7µF 50V +VLED U1 D3 SD103CWS C4 0.1µF 50V _______________________________________________________________________________________ MAX16802B Evaluation Kit Figure 3. MAX16802B EV Kit PC Board Layout—Component Side Figure 4. MAX16802B EV Kit PC Board Layout—Solder Side Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 5 © 2006 Maxim Integrated Products Boblet Printed USA is a registered trademark of Maxim Integrated Products, Inc. Evaluates: MAX16802B Figure 2. MAX16802B EV Kit Component Placement Guide— Component Side 19-3880; Rev 2; 1/10 KIT ATION EVALU E L B A AVAIL Offline and DC-DC PWM Controllers for High-Brightness LED Drivers Features ♦ Suitable for Buck, Boost, Flyback, SEPIC, and Other Topologies ♦ Up to 50W or Higher Output Power ♦ Universal Offline Input Voltage Range: Rectified 85VAC to 265VAC (MAX16801) ♦ IN Pin Directly Driven From 10.8VDC to 24VDC Input (MAX16802) ♦ Internal Error Amplifier with 1% Accurate Reference for Precise LED Current Regulation ♦ PWM or Linear Dimming ♦ Fixed Switching Frequency of 262kHz ±12% ♦ Thermal Shutdown ♦ Digital Soft-Start ♦ Programmable Input Startup Voltage ♦ Internal Bootstrap UVLO with Large Hysteresis (MAX16801) ♦ 45µA (typ) Startup Supply Current, 1.4mA (typ) Operating Supply Current ♦ 50% (MAX16801A/MAX16802A) or 75% (MAX16801B/MAX16802B) Maximum Duty Cycle ♦ Available in a Tiny 8-Pin µMAX Package The MAX16801A/B/MAX16802A/B high-brightness (HB) LED driver-control ICs contain all the circuitry required for the design of wide-input-voltage-range LED drivers for general lighting and display applications. The MAX16801 is well suited for universal input (rectified 85VAC to 265VAC) LED drivers, while the MAX16802 is intended for low-input-voltage (10.8VDC to 24VDC) LED drivers. When the LED current needs to be tightly regulated, an additional on-board error amplifier with 1% accurate reference can be utilized. A wide dimming range can be implemented by using low-frequency PWM dimming. The MAX16801/MAX16802 feature an input undervoltage lockout (UVLO) for programming the input-supply start voltage, and to ensure proper operation during brownout conditions. The MAX16801 has an internal-bootstrap undervoltage lockout circuit with a large hysteresis that simplifies offline LED driver designs. The MAX16802 does not have this internal bootstrap circuit and can be biased directly from a +12V rail. The 262kHz fixed switching frequency is internally trimmed, allowing for optimization of the magnetic and filter components, resulting in a compact, cost-effective LED driver. The MAX16801A/MAX16802A are offered with 50% maximum duty cycle. The MAX16801B/MAX16802B are offered with 75% maximum duty cycle. These devices are available in an 8-pin µMAX® package and operate over the -40°C to +85°C temperature range. Ordering Information TEMP RANGE PART Applications Offline and DC-DC LED Drivers RGB Back Light for LCD TVs and Monitors Commercial and Industrial Lighting Decorative and Architectural Lighting PINPACKAGE MAX16801AEUA+ -40°C to +85°C 8 µMAX MAX16801BEUA+ -40°C to +85°C 8 µMAX MAX16802AEUA+ -40°C to +85°C 8 µMAX MAX16802BEUA+ -40°C to +85°C 8 µMAX +Denotes lead-free package. µMAX is a registered trademark of Maxim Integrated Products, Inc. Typical Operating Circuit 10.8VDC TO 24VDC ENABLE UVLO/EN IN C3 L1 DIM/FB VCC PWM LEDs D1 MAX16802B COMP CS Q1 NDRV GND C1 C2 R1 GND Warning: The MAX16801/MAX16802 are designed to work with high voltages. Exercise caution. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX16801A/B/MAX16802A/B General Description MAX16801A/B/MAX16802A/B Offline and DC-DC PWM Controllers for High-Brightness LED Drivers ABSOLUTE MAXIMUM RATINGS IN to GND..........................................................................-0.3V to +30V VCC to GND ......................................................................-0.3V to +13V DIM/FB, COMP, UVLO, CS to GND..........................-0.3V to +6V NDRV to GND.............................................-0.3V to (VCC + 0.3V) Continuous Power Dissipation (TA = +70°C) 8-Pin µMAX (derate 4.5mW/°C above +70°C) ..............362mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range ............................-65°C to +150°C Junction Temperature ......................................................+150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VIN = +12V (MAX16801: VIN must first be brought up to +23.6V for startup), 10nF bypass capacitors at IN and VCC, CNDRV = 0µF, VUVLO = +1.4V, VDIM/FB = +1.0V, COMP = unconnected, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS UNDERVOLTAGE LOCKOUT/STARTUP Bootstrap UVLO Wake-Up Level VSUVR VIN rising (MAX16801 only) 19.68 21.6 23.60 V Bootstrap UVLO Shutdown Level VSUVF VIN falling (MAX16801 only) 9.05 9.74 10.43 V UVLO/EN Wake-Up Threshold VULR2 UVLO/EN rising 1.188 1.28 1.371 V UVLO/EN Shutdown Threshold VULF2 UVLO/EN falling 1.168 1.23 1.291 UVLO/EN Input Current IUVLO TJ = +125°C UVLO/EN Hysteresis IN Supply Current In Undervoltage Lockout IN Voltage Range UVLO/EN Propagation Delay Bootstrap UVLO Propagation Delay ISTART VIN = +19V, for MAX16801 only when in bootstrap UVLO VIN V 25 nA 50 mV 45 10.8 tEXTR UVLO/EN steps up from +1.1V to +1.4V 12 tEXTF UVLO/EN steps down from +1.4V to +1.1V 1.8 tBUVR VIN steps up from +9V to +24V 5 tBUVF VIN steps down from +24V to +9V 1 VCCSP VIN = +10.8V to +24V, sinking 1µA to 20mA from VCC 90 µA 24 V µs µs INTERNAL SUPPLY VCC Regulator Set Point IN Supply Current After Startup IIN Shutdown Supply Current 7 VIN = +24V 1.4 UVLO/EN = low 10.5 V 2.5 mA 90 µA GATE DRIVER Driver Output Impedance RON(LOW) Measured at NDRV sinking, 100mA 2 4 RON(HIGH) Measured at NDRV sourcing, 20mA 4 12 Driver Peak Sink Current Driver Peak Source Current Ω 1 A 0.65 A PWM COMPARATOR Comparator Offset Voltage CS Input Bias Current Comparator Propagation Delay Minimum On-Time 2 VOPWM ICS tPWM tON(MIN) VCOMP - VCS VCS = 0V VCS = +0.1V 1.15 1.38 -2 1.70 V +2 µA 60 ns 150 ns _______________________________________________________________________________________ Offline and DC-DC PWM Controllers for High-Brightness LED Drivers (VIN = +12V (MAX16801: VIN must first be brought up to +23.6V for startup), 10nF bypass capacitors at IN and VCC, CNDRV = 0µF, VUVLO = +1.4V, VDIM/FB = +1.0V, COMP = unconnected, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 262 291 320 mV +2 µA CURRENT-SENSE COMPARATOR Current-Sense Trip Threshold VCS CS Input Bias Current ICS Propagation Delay From Comparator Input to NDRV Switching Frequency Maximum Duty Cycle tPWM VCS = 0V 50mV overdrive fSW DMAX -2 60 230 ns 262 290 MAX1680_A 50 50.5 MAX1680_B 75 76 26.1 29.0 kHz % IN CLAMP VOLTAGE IN Clamp Voltage VINC 2mA sink current, MAX16801 only (Note 3) 24.1 V ERROR AMPLIFIER Voltage Gain RLOAD = 100kΩ 80 dB Unity-Gain Bandwidth RLOAD = 100kΩ, CLOAD = 200pF 2 MHz Phase Margin RLOAD = 100kΩ, CLOAD = 200pF 65 Degrees DIM/FB Input Offset Voltage 3 COMP Clamp Voltage High 2.2 3.5 Low 0.4 1.1 mV V Source Current 0.5 mA Sink Current 0.5 mA Reference Voltage VREF (Note 2) 1.218 1.230 Input Bias Current COMP Short-Circuit Current 1.242 V 50 nA 8 mA Thermal-Shutdown Temperature 130 °C Thermal Hysteresis 25 °C 15,872 Clock cycles Reference Voltage Steps During Soft-Start 31 Steps Reference Voltage Step 40 mV THERMAL SHUTDOWN DIGITAL SOFT-START Soft-Start Duration Note 1: All devices are 100% tested at TA = +85°C. All limits over temperature are guaranteed by characterization. Note 2: VREF is measured with DIM/FB connected to the COMP pin (see the Functional Diagram). Note 3: The MAX16801 is intended for use in universal input offline drivers. The internal clamp circuit is used to prevent the bootstrap capacitor (C1 in Figure 5) from charging to a voltage beyond the absolute maximum rating of the device when EN/UVLO is low. The maximum current to IN (hence to clamp) when UVLO is low (device in shutdown), must be externally limited to 2mA (max). Clamp currents higher than 2mA may result in clamp voltage higher than +30V, thus exceeding the absolute maximum rating for IN. For the MAX16802, do not exceed the +24V maximum operating voltage of the device. _______________________________________________________________________________________ 3 MAX16801A/B/MAX16802A/B ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (VUVLO/EN = +1.4V, VFB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.) 21.55 10.1 MAX16801 VIN FALLING UVLO/EN WAKE-UP THRESHOLD vs. TEMPERATURE 1.280 UVLO/EN RISING 1.275 MAX16801 toc03 MAX16801 VIN RISING MAX16801 toc01 21.60 BOOTSTRAP UVLO SHUTDOWN LEVEL vs. TEMPERATURE MAX16801 toc02 BOOTSTRAP UVLO WAKE-UP LEVEL vs. TEMPERATURE 10.0 21.45 UVLO/EN (V) VIN (V) VIN (V) 21.50 9.9 21.40 1.270 1.265 1.260 9.8 21.35 1.255 9.7 -20 0 20 40 60 80 1.250 -40 -20 0 20 40 60 80 -40 -20 0 20 40 60 80 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) UVLO/EN SHUTDOWN THRESHOLD vs. TEMPERATURE VIN SUPPLY CURRENT IN UNDERVOLTAGE LOCKOUT vs. TEMPERATURE VIN SUPPLY CURRENT AFTER STARTUP vs. TEMPERATURE UVLO/EN FALLING 52 51 50 1.25 1.5 MAX16801 toc05 1.30 MAX16801 toc04 -40 VIN = 19V MAX16801 WHEN IN BOOTSTRAP UVLO MAX16802 WHEN UVLO/EN IS LOW VIN = 24V MAX16801 toc06 21.30 1.4 1.20 48 IIN (mA) ISTART (µA) UVLO/EN (V) 49 47 1.3 46 45 1.15 1.2 44 43 -20 0 20 40 60 80 0 20 40 60 -20 0 20 40 60 VCC REGULATOR SET POINT vs. TEMPERATURE CURRENT-SENSE THRESHOLD vs. TEMPERATURE VIN = 10.8V 8.8 8.7 10mA LOAD VCC (V) 9.5 8.5 8.4 9.4 20mA LOAD 8.3 NDRV OUTPUT IS SWITCHING 9.3 8.2 -20 0 20 40 TEMPERATURE (°C) 60 80 TOTAL NUMBER OF DEVICES = 100 +3σ 305 80 300 295 MEAN 290 285 280 -3σ 275 8.1 9.2 310 CURRENT-SENSE THRESHOLD (µV) MAX16801 toc07 8.9 MAX116801 toc08 VCC REGULATOR SET POINT vs. TEMPERATURE 8.6 -40 -40 80 TEMPERATURE (°C) NDRV OUTPUT IS NOT SWITCHING, VFB = 1.5V 9.6 -20 TEMPERATURE (°C) VIN = 19V NO LOAD 9.7 -40 TEMPERATURE (°C) 9.8 4 1.1 42 -40 270 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 -40 -20 0 20 40 TEMPERATURE (°C) _______________________________________________________________________________________ 60 80 MAX16801 toc09 1.10 VCC (V) MAX16801A/B/MAX16802A/B Offline and DC-DC PWM Controllers for High-Brightness LED Drivers Offline and DC-DC PWM Controllers for High-Brightness LED Drivers SWITCHING FREQUENCY vs. TEMPERATURE 15 10 5 255 250 -3σ 270 280 290 300 310 10 -20 0 20 40 60 80 230 240 250 260 270 280 SWITCHING FREQUENCY (kHz) PROPAGATION DELAY FROM CURRENT-SENSE COMPARATOR INPUT TO NDRV vs. TEMPERATURE UVLO/EN PROPAGATION DELAY vs. TEMPERATURE REFERENCE VOLTAGE vs. TEMPERATURE 60 55 50 -20 0 20 40 60 80 VIN = 12V 1.229 1.228 1.227 1.226 UVLO/EN FALLING 1.225 -40 -20 0 20 40 60 -40 80 -20 0 20 40 60 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) INPUT CURRENT vs. INPUT CLAMP VOLTAGE INPUT CLAMP VOLTAGE vs. TEMPERATURE NDRV OUTPUT IMPEDANCE vs. TEMPERATURE 8 7 6 5 4 27.0 IIN = 2mA 26.8 26.6 2.2 2.1 1.9 26.2 1.8 1.7 25.8 1.6 25.6 1.5 2 25.4 1.4 1 25.2 1.3 0 25.0 3 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 INPUT VOLTAGE (V) VIN = 24V SINKING 100mA 2.0 26.4 26.0 80 MAX16801 toc18 9 RON (Ω) MAX16801 toc16 10 INPUT CLAMP VOLTAGE (V) -40 UVLO/EN RISING REFERENCE VOLTAGE (V) 65 1.230 MAX16801 toc14 MAX16801 toc13 70 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 290 MAX16801 toc15 TEMPERATURE (°C) UNDERVOLTAGE LOCKOUT DELAY (µs) CURRENT-SENSE THRESHOLD (mV) 75 MAX16801 toc12 15 0 -40 320 20 5 240 260 tPWM (ns) MEAN 260 245 0 INPUT CURRENT (mA) 265 TOTAL NUMBER OF DEVICES = 200 25 PERCENTAGE OF UNITS (%) 20 270 30 MAX16801 toc17 PERCENTAGE OF UNITS (%) 25 TOTAL NUMBER OF DEVICES = 100 +3σ 275 SWITCHING FREQUENCY MAX16801 toc11 TOTAL NUMBER OF DEVICES = 200 280 SWITCHING FREQUENCY (kHz) 30 MAX16801 toc10 CURRENT-SENSE THRESHOLD 1.2 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 -40 -20 0 20 40 60 80 TEMPERATURE (°C) _______________________________________________________________________________________ 5 MAX16801A/B/MAX16802A/B Typical Operating Characteristics (continued) (VUVLO/EN = +1.4V, VFB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VUVLO/EN = +1.4V, VFB = +1V, COMP = unconnected, VCS = 0V, TA = +25°C, unless otherwise noted.) ERROR-AMPLIFIER OPEN-LOOP GAIN AND PHASE vs. FREQUENCY NDRV OUTPUT IMPEDANCE vs. TEMPERATURE 4.8 4.6 100 30 80 10 GAIN 60 4.4 GAIN (dB) 4.2 4.0 3.8 50 -10 40 -30 20 -50 0 -70 PHASE -20 -90 3.6 -40 -110 3.4 -60 -130 3.2 -80 -150 3.0 -100 -40 -20 0 20 40 60 0.1 80 1 10 100 1k PHASE (DEGREES) VIN = 24V SOURCING 20mA MAX16801 toc20 120 MAX16801 toc19 5.0 RON (Ω) MAX16801A/B/MAX16802A/B Offline and DC-DC PWM Controllers for High-Brightness LED Drivers -170 10k 100k 1M 10M 100M FREQUENCY (Hz) TEMPERATURE (°C) Pin Description PIN NAME FUNCTION Externally Programmable Undervoltage Lockout. UVLO programs the input start voltage. Connect UVLO to GND to disable the device. 1 UVLO/EN 2 DIM/FB Low-Frequency PWM Dimming Input/Error-Amplifier Inverting Input 3 COMP Error-Amplifier Output. Connect the compensation components between DIM/FB and COMP in highaccuracy LED current regulation. 4 CS Current-Sense Connection for Current Regulation. Connect to high side of sense resistor. An RC filter may be necessary to eliminate leading-edge spikes. 5 GND 6 NDRV 7 VCC Gate-Drive Supply. Internally regulated down from IN. Decouple with a 10nF or larger capacitor to GND. 8 IN IC Supply. Decouple with a 10nF or larger capacitor to GND. For bootstrapped operation (MAX16801), connect a startup resistor from the input supply line to IN. Connect the bias winding supply to this point (see Figure 5). For the MAX16802, connect IN directly to a +10.8V to +24V supply. Power-Supply Ground External n-Channel MOSFET Gate Connection Detailed Description The MAX16801/MAX16802 family of devices is intended for constant current drive of high-brightness (HB) LEDs used in general lighting and display applications. They are specifically designed for use in isolated and nonisolated circuit topologies such as buck, boost, flyback, and SEPIC, operating in continuous or discontinuous mode. Current mode control is implemented with an internally trimmed, fixed 262kHz switching frequency. A bootstrap UVLO with a large hysteresis (11.9V), very low startup current, and low operating current 6 result in an efficient universal-input LED driver. In addition to the internal bootstrap UVLO, these devices also offer programmable input startup voltage programmed through the UVLO/EN pin. The MAX16801 is well suited for universal AC input (rectified 85VAC to 265VAC) drivers. The MAX16802 is well suited for low input voltage (10.8VDC to 24VDC) applications. The MAX16801/MAX16802 regulate the LED current by monitoring current through the external MOSFET cycle by cycle. _______________________________________________________________________________________ Offline and DC-DC PWM Controllers for High-Brightness LED Drivers the power dissipation across R1, even at the high end of the universal AC input voltage. An internal shutdown circuit protects the device whenever the junction temperature exceeds +130°C (typ). Dimming Linear dimming can be implemented by creating a summing node at CS, as shown in Figures 6 and 7. Low-frequency PWM (chopped-current) dimming is possible by applying an inverted-logic PWM signal to the DIM/FB pin of the IC (Figure 8). This might be a preferred way of dimming in situations where it is critical to retain the light spectrum unchanged. It is accomplished by keeping constant the amplitude of the chopped LED current. MAX16801/MAX16802 Biasing Implement bootstrapping from the transformer when it is present (Figure 5). Biasing can also be realized directly from the LEDs in non-isolated topologies (Figure 1). Bias the MAX16802 directly from the input voltage of 10.8VDC to 24VDC. The MAX16802 can also be used R5 R1 R2 IN AC IN BRIDGE RECTIFIER COMP C1 C2 Q1 NDRV VCC GND MAX16801B CS C3 DIM/FB UVLO/EN R3 R6 R4 L1 C4 TOTAL LED VOLTAGE: 11V TO 23V D3 Figure 1. Biasing the IC using LEDs in Nonisolated Flyback Driver _______________________________________________________________________________________ 7 MAX16801A/B/MAX16802A/B When in the bootstrapped mode with a transformer (Figure 5), the circuit is protected against most output short-circuit faults when the tertiary voltage drops below +10V, causing the UVLO to turn off the gate drive of the external MOSFET. This re-initiates a startup sequence with soft-start. When the LED current needs to be tightly regulated, an internal error amplifier with 1% accurate reference can be used (Figure 9). This additional feedback minimizes the impact of passive circuit component variations and tolerances, and can be implemented with a minimum number of additional external components. A wide dimming range can be implemented using a low-frequency PWM dimming signal fed directly to the DIM/FB pin. LED driver circuits designed with the MAX16801 use a high-value startup resistor R1 that charges a reservoir capacitor C1 (Figure 5 or Figure 9). During this initial period, while the voltage is less than the internal bootstrap UVLO threshold, the device typically consumes only 45µA of quiescent current. This low startup current and the large bootstrap UVLO hysteresis help minimize MAX16801A/B/MAX16802A/B Offline and DC-DC PWM Controllers for High-Brightness LED Drivers VDC R VDC Q R IN IN MAX16802A D D MAX16802A C (b) (a) Figure 2. (a) Resistor-Zener and (b) Transistor-Zener-Resistor Bias Arrangements in applications with higher input DC voltages by implementing resistor-Zener bias (Figure 2a) or transistorZener-resistor bias (Figure 2b). MAX16801/MAX16802 Undervoltage Lockout The MAX16801/MAX16802 have an input voltage UVLO/EN pin. The threshold of this UVLO is +1.28V. Before any operation can commence, the voltage on this pin has to exceed +1.28V. The UVLO circuit keeps the CPWM comparator, ILIM comparator, oscillator, and output driver in shutdown to reduce current consumption (see the Functional Diagram). Use this UVLO function to program the input start voltage. Calculate the divider resistor values, R2 and R3 (Figure 5), by using the following formulas: R3 ≅ VULR2 × VIN 500 × IUVLO (VIN − VULR2 ) The value of R3 is calculated to minimize the voltagedrop error across R2 as a result of the input bias current of the UVLO/EN pin. V ULR2 = +1.28V, I UVLO = 50nA (max), VIN is the value of the input-supply voltage where the power supply must start. V − VULR2 R2 = IN × R3 VULR2 where IUVLO is the UVLO/EN pin input current, and VULR2 is the UVLO/EN wake-up threshold. 8 MAX16801 Bootstrap Undervoltage Lockout In addition to the externally programmable UVLO function offered in both the MAX16801/MAX16802, the MAX16801 has an additional internal bootstrap UVLO that is very useful when designing high-voltage LED drivers (see the Functional Diagram). This allows the device to bootstrap itself during initial power-up. The MAX16801 attempts to start when V IN exceeds the bootstrap UVLO threshold of +23.6V. During startup, the UVLO circuit keeps the CPWM comparator, ILIM comparator, oscillator, and output driver shut down to reduce current consumption. Once V IN reaches +23.6V, the UVLO circuit turns on both the CPWM and ILIM comparators, as well as the oscillator, and allows the output driver to switch. If VIN drops below +9.7V, the UVLO circuit will shut down the CPWM comparator, ILIM comparator, oscillator, and output driver thereby returning the MAX16801 to the startup mode. MAX16801 Startup Operation In isolated LED driver applications, VIN can be derived from a tertiary winding of a transformer. However, at startup there is no energy delivered through the transformer. Therefore, a special bootstrap sequence is required. Figure 3 shows the voltages on IN and VCC during startup. Initially, both VIN and VCC are 0V. After the line voltage is applied, C1 charges through the startup resistor R1 to an intermediate voltage. At this point, the internal regulator begins charging C2 (see Figure 5). The MAX16801 uses only 45µA of the current supplied by R1, and the remaining input current charges C1 and C2. The charging of C2 stops when the VCC voltage reaches approximately +9.5V, while the voltage across C1 continues rising until it reaches _______________________________________________________________________________________ Offline and DC-DC PWM Controllers for High-Brightness LED Drivers VCC 2V/div MAX16801 VIN PIN 5V/div 0 The MAX16801/MAX16802 soft-start feature allows the LED current to ramp up in a controlled manner. Softstart begins after UVLO deasserts. The voltage applied to the noninverting node of the amplifier ramps from 0 to +1.23V over a 60ms soft-start timeout period. Figure 4 shows a typical 0.5A output current during startup. Note the staircase increase of the LED current. This is a result of the digital soft-starting technique used. Unlike other devices, the reference voltage to the internal amplifier is soft-started. This method results in superior control of the LED current. n-Channel MOSFET Switch Driver 100ms/div Figure 3. VIN and VCC During Startup when Using the MAX16801 in Bootstrapped Mode the wake-up level of +23.6V. Once VIN exceeds the bootstrap UVLO threshold, NDRV begins switching the MOSFET and transfers energy to the secondary and tertiary outputs. If the voltage on the tertiary output builds to a value higher than +9.7V (the bootstrap UVLO lower threshold), then startup has been accomplished and sustained operation commences. If VIN drops below +9.7V before startup is complete, the device goes back to low-current UVLO. In this case, increase C1 in order to store enough energy to allow for the voltage at the tertiary winding to build up. The NDRV pin drives an external n-channel MOSFET. The NDRV output is supplied by the internal regulator (VCC), which is internally set to approximately +9.5V. For the universal input voltage and applications with a transformer, the MOSFET used must be able to withstand the DC level of the high-line input voltage plus the reflected voltage at the primary of the transformer. For most offline applications that use the discontinuous flyback topology, this requires a MOSFET rated at 600V. NDRV can source/sink in excess of the 650mA/1000mA peak current. Select a MOSFET that yields acceptable conduction and switching losses. Internal Error Amplifier The MAX16801/MAX16802 include an internal error amplifier that can be used to regulate the LED current very accurately. For example, see the nonisolated power supply in Figure 5. Calculate the LED current using the following equation: V ILED = REF R7 100mA/div where V REF = +1.23V. The amplifier’s noninverting input is internally connected to a digital soft-start circuit that gradually increases the reference voltage during startup and is applied to this pin. This forces the LED current to come up in an orderly and well-defined manner under all conditions. 0 10ms/div Figure 4. Typical Current Soft-Start During Initial Startup _______________________________________________________________________________________ 9 MAX16801A/B/MAX16802A/B Soft-Start MAX16801A/B/MAX16802A/B Offline and DC-DC PWM Controllers for High-Brightness LED Drivers Applications Information Assuming C1 > C2, calculate the value of R1 as follows: Startup Time Considerations for HighBrightness LED Drivers Using MAX16801 The IN bypass capacitor C1 supplies current immediately after wake-up (Figure 5). The size of C1 and the connection configuration of the tertiary winding determine the number of cycles available for startup. Large values of C1 increase the startup time but also supply gate charge for more cycles during initial startup. If the value of C1 is too small, V IN drops below +9.7V because NDRV does not have enough time to switch and build up sufficient voltage across the tertiary winding that powers the device. The device goes back into UVLO and does not start. Use low-leakage capacitors for C1 and C2. Assuming that offline LED drivers keep typical startup times to less than 500ms even in low-line conditions (85VAC input for universal offline applications), size the startup resistor R1 to supply both the maximum startup bias of the device (90µA, worst case) and the charging current for C1 and C2. The bypass capacitor C2 must charge to +9.5V and C1 to +24V, all within the desired time period of 500ms. Because of the internal 60ms soft-start time of the MAX16801, C1 must store enough charge to deliver current to the device for at least this much time. To calculate the approximate amount of capacitance required, use the following formula: Ig = Qgtot × fSW C1 = (IIN + Ig ) (tSS ) VHYST where IIN is the MAX16801’s internal supply current after startup (1.4mA), Qgtot is the total gate charge for Q1, f SW is the MAX16801’s switching frequency (262kHz), V HYST is the bootstrap UVLO hysteresis (11.9V) and tSS is the internal soft-start time (60ms). For example: Ig = (8nC) × (262kHz) = 2.1mA C1 = (1.4mA + 2.1mA) × (60ms) = 17.5µF (12V) × C1 V IC1 = SUVR (500ms) R1 = VIN(MIN) − VSUVR IC1 + ISTART where VIN(MIN) is the minimum input supply voltage for the application, VSUVR is the bootstrap UVLO wake-up level (+23.6V, max), and ISTART is the IN supply current at startup (90µA, max). For example, for the minimum AC input of 85V: IC1 = ( 24V ) × (15µF ) = 0.72mA ( 500ms) R1 = 120V − 24V = 119kΩ (0.72mA + (90µA)) Choose the 120kΩ standard value. Choose a higher value for R1 than the one calculated above if longer startup time can be tolerated in order to minimize power loss on this resistor. The above startup method is applicable to a circuit similar to the one shown in Figure 5. In this circuit, the tertiary winding has the same phase as the output windings. Thus, the voltage on the tertiary winding at any given time is proportional to the output voltage and goes through the same soft-start period as the output voltage. The minimum discharge voltage of C1 from +22V to +10V must be greater than the soft-start time of 60ms. Another method of bootstrapping the circuit is to have a separate bias winding than the one used for regulating the output voltage and to connect the bias winding so that it is in phase with the MOSFET ON time (see Figure 9). In this case, the amount of capacitance required is much smaller. However, in this mode, the input voltage range has to be less than 2:1. Another consideration is whether the bias winding is in phase with the output. If so, the LED driver circuit hiccups and soft-starts under output shortcircuit conditions. However, this property is lost if the bias winding is in phase with the MOSFET ON time. Choose the 15µF standard value. 10 ______________________________________________________________________________________ Offline and DC-DC PWM Controllers for High-Brightness LED Drivers Figure 8 shows an offline isolated flyback HB LED driver with low-frequency PWM using MAX16801. The PWM signal needs to be inverted (see the Functional Diagram). Transformer T1 provides full safety isolation and operation from universal AC line (85VAC to 265VAC). D1 T1 VSUPPLY D2 R1 R2 C4 Q1 NDRV IN VOUT LEDs C1 VCC CS R4 C2 COMP R6 R7 MAX16801 C3 GND DIM/FB UVLO/EN R3 R5 GND Figure 5. Offline, Nonisolated, Flyback LED Driver with Programmable Input-Supply Start Voltage ______________________________________________________________________________________ 11 MAX16801A/B/MAX16802A/B Application Circuits Figure 5 shows an offline application of an HB LED driver using the MAX16801. The use of transformer T1 allows significant design flexibility. Use the internal error amplifier for a very accurate LED current control. Figure 6 shows a discontinuous flyback LED driver with linear dimming capability. The total LED voltage can be lower or higher than the input voltage. Figure 7 shows a continuous-conduction-mode HB LED buck driver with linear dimming and just a few external components. MAX16801A/B/MAX16802A/B Offline and DC-DC PWM Controllers for High-Brightness LED Drivers VIN 10.8V TO 24V R1 UVLO/EN DIM/FB 1 8 2 7 COMP 3 CS MAX16802B 4 6 5 LED(s) L1 IN C4 VCC NDRV Q1 D1 GND R2 R4 R3 DIMMING C2 C3 R5 C1 GND Figure 6. MAX16802 Flyback HB LED Driver with Dimming Capability, 10.8V to 24V Input Voltage Range VIN 10.8V TO 24V R1 LED(s) UVLO/EN DIM/FB 1 8 2 7 COMP 3 CS MAX16802B 4 6 5 D1 IN C4 VCC NDRV Q1 L1 GND R2 R3 R4 DIMMING C2 C3 R5 C1 GND Figure 7. MAX16802 Buck HB LED Driver with Dimming Capability, 10.8V to 24V Input Voltage Range 12 ______________________________________________________________________________________ Offline and DC-DC PWM Controllers for High-Brightness LED Drivers MAX16801A/B/MAX16802A/B OPTIONAL ONLY WHEN PWM DIMMING IS USED D3 T1 D1 C4 D2 R2 R1 UNIVERSAL AC INPUT Q1 NDRV VCC LEDs C3 BRIDGE RECTIFIER IN C6 GND MAX16801B CS C1 C2 DIM/FB R4 UVLO/EN R3 *PWM C5 *WARNING: PWM DIMMING SIGNAL IS SHOWN AT THE PRIMARY SIDE. USE AN OPTOCOUPLER FOR SAFETY ISOLATION OF THE PWM SIGNAL. Figure 8. Universal AC Input, Offline, Isolated Flyback HB LED Driver with Low-Frequency PWM Dimming D1 T1 +VIN D3 R1 U2 OPTO LED R2 R8 Q1 NDRV IN VOUT C1 VCC CS R11 C4 C3 R4 MAX16801 R7 U2 OPTO TRANS COMP R9 Z1 GND U3 TLV431 R5 DIM/FB R6 UVLO/EN R3 C2 C5 GND R10 Figure 9. Universal Input, Offline, High-Accuracy Current Regulation in an Isolated Flyback HB LED Driver ______________________________________________________________________________________ 13 MAX16801A/B/MAX16802A/B Offline and DC-DC PWM Controllers for High-Brightness LED Drivers Functional Diagram IN IN CLAMP 26.1V VCC VCC IN REGULATOR BOOTSTRAP UVLO** REG_OK DIGITAL SOFT-START VL REFERENCE 1.23V 21.6V 9.74V UVLO (INTERNAL 5.25V SUPPLY) UVLO 1.28V 1.23V COMP FB DRIVER S ERROR AMP NDRV Q R CPWM VOPWM CS *OSCILLATOR 264kHz 1.38V THERMAL SHUTDOWN VCS 0.3V LIM MAX16801 MAX16802 GND *MAX16801A/MAX16802A: 50% MAXIMUM DUTY CYCLE MAX16801B/MAX16802B: 75% MAXIMUM DUTY CYCLE **MAX16801 ONLY Selector Guide BOOTSTRAP UVLO STARTUP VOLTAGE (V) MAX DUTY CYCLE (%) MAX16801A Yes 22 50 MAX16801B Yes 22 75 PART MAX16802A No 10.8* 50 MAX16802B No 10.8* 75 *The MAX16802 does not have an internal bootstrap UVLO. The MAX16802 starts operation as long as the VCC pin is higher than +7V, (the guaranteed output with an IN pin voltage of +10.8V), and the UVLO/EN pin is high. 14 Pin Configuration TOP VIEW UVLO/EN 1 8 IN 7 VCC DIM/FB 2 COMP 3 MAX16801 MAX16802 CS 4 6 NDRV 5 GND µMAX ______________________________________________________________________________________ Offline and DC-DC PWM Controllers for High-Brightness LED Drivers PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 8 µMAX — 21-0036 ______________________________________________________________________________________ 15 MAX16801A/B/MAX16802A/B Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. MAX16801A/B/MAX16802A/B Offline and DC-DC PWM Controllers for High-Brightness LED Drivers Revision History REVISION NUMBER REVISION DATE 0 10/05 Initial release 1 1/06 MAX16802AEUA+ parts are available 2 1/10 Corrected formulas, updated subscripts, and removed package outline DESCRIPTION PAGES CHANGED — 1 1, 2, 3, 6–14 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2010 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.