'现里 EXDerts Forum 复合 PFC/PWM 新昂 CM6903/4 、 CM6805 芯片却能程圈、电骂街j险与应用电路 刘胜利 摘 深圳中电公司电力所 要:本文将分三个专题介绍新品 CM6903/4 和仅封装不同的 CM6805 关键词 CM6805 SOIC 贴片封装 CM6903/4 SIP 羊边引脚封装 CM6903/4 和 CM6905 的芯片内部电路结构设 大修改的第兰代新产品。其突出特点是:去掉了原 计完全相同,其差异之处仅在于外壳封装不同,以 ML4803 中的单脚误差放大器,取而代之的是用 适应各类用户的需要 GMV 增强跨导变化率电路(见图 l 左脚中部),它 CM6805 是 SOIC 贴片封装 10 个引脚 IC; 而 CM6903/4 则是单侧→边 9 个引脚 立式 SIP 封装,它在印刷电路板的占地面积更小。 由黄新年主持设计的高颇开关电源 PFC 专用 把 PFC 电压环路的瞬态响应提高了 5~ 1O倍。 (请见图 1) CM6903/4 和 CM6805 仍保留了关键的电路调 集成电路,在中小功率电源里有广泛的应用价值。 制技术 "LETE": 前沿调制 PFC 、后沿调制的 PWM 它们大体 t 可分为两类共 17 个品种: 控制技术,可尽量减小 PFC 输出直流储能电容器中 (一)、只单独输出 PFC 控制脉冲 IC (带 PWM 时 钟)者有: 1 、 CM6500/01: 外壳封装 16 脚、立插式/贴片 式(有 47% 的 PWM 时钟) 2 、 CM6503/04: 外壳封装 8 脚、立插式/贴片 式(有 50% 的 PWM 时钟) 3 、 CM656 1/2: 8 脚封装,立式/贴式,设计在 临界导通的单一 PFC (二)、复合 PFC/PWM 两路控制脉冲输出的 IC 有: (I)、小功率电源应用场合:几十瓦 ~300W 1, CM6805: 贴片封装、 10 个引脚(应用电路 详见前面 90W 电源内容) 2 、 CM6903/04: 立式单侧 9 引脚。前者均为 67阻缸,后者 PWM 为 134阻Iz 。 3 、 CM680~/04: 为 8 脚封装 (2)、中功率电源应用场合:几百瓦 ~1000W (CM6800 的 UVLO=13V) CM6800/01 /24: 16 个 引脚、立式和贴片,与 ML4800 和 ML4824 兼容。 (3)、大功率电源应用场合:几千瓦范围 CM6900/0 1102: 是 20 个引脚封装,立插式/贴 片式。见另外资料。 图 1 是 CM6903/4 和 CM6805 的芯片内部电路 设计功能方框图和 IC 简化外国电路结构示意图。 的脉动电流。以及 "ICST": 输入电流整形的 PFC 技术。 IC 用于 BOOST-PFC 平均电流型控制升压式 功率因数校正器,可在连续导通 CCM 或者非连续 导通 DCM 两种状态下工作。新产品的电路和功能 改进还有如下特点: 1 、增加了 VinOK 电压比较器:见图 1 中部下 方。它能保证 PFC 到达稳态之前,仍然关断 PWM 输出脉冲。 Vin-OK 的门限电压是 2.5V 和 0.75V: 其滞后电压为1.75V (已经申报了专利)。 2 、在 PWM 系统增设了具有 10mS 数字式软起 动电路:见图中间下方。 3 、 PWM 控制电路的引脚减少到只有两个: PWM-OUT 、 DC一一ILIMIT; 4 、增加了三种故障(过压、欠压、降压)检 测比较器:见图左侧下方 Tri-Fault Detect: 它简化 电路使之符合 ULl 950 安全标准。取消了内部齐纳 二极管。 5 、还有 VCC-OVP 电路:见图 l 左侧中部。 当 VCC>18V 或 19 .4V 时(具有1. 5V 滞后电压), 关断 PFC 系统(已经申报专利)。 6 、不需要降压电阻器:用 RAC=500KQ 接在 IAC 脚与电网整流输出端之间,即可起动 IC 供电 VCC (早己申报专利)。 它们是对第 1 代 PFC/PWM 芯片 ML4803 又作出重 圈 2004 年第 5 期(总第 42 期 H 牛@咆低 I~ 喧〉 China Power &,pply Su rvey w'M 。,附M 唱aM。 "震荡『-h忌 『M 切Hh2部饵 蝙M 去 IC-①脚 …{!j....... vcc R1C '<. lKQ R'"ter -. MOOA 冉HMmm 遐(协 PFCCLK8 PWMCLKI Trl-F ault Oelect -rWMO T 3······ HM wm 也远)《斗 @尼 H黑莓,一间》 1. 5V 10mS 1...", I --::i1 I r-"""" -1.0←-IY川LlMIT DW" ,...D I PWM ",1'圄 I ←… i C川丁flLr|MVK、| Iv弘...h斗二-i二--1 E 曹一.-.....- CM6903 CM6904 刷c= 例Hz fpf叫 7KHz fp 川 wm=67 例川 K阳 Hz 川 =134 叫 4 PWMOF 怦 F 作1.............................................曰............................................ 图 1 CM6903/4 和 CM6805 内部功能方框与外电路 以~IUM町、 岳阳 - -. |*面立自 E XDerts Forum 7 、 CM6903/4 和 CM6805 用 IAC 脚实现自动斜 16 、热阻抗( 率补偿,提高了轻载时的信噪比,并改善高电网电 e JA); 80 oC/W (请见图 2) 压时的 THD 。 CM6θ03/4 复合 PFCIPWM 芯片各引脚功能概 CM6903/4 可广泛用于个人电脑 PC 开关电源、 述: 交流适配器、网络服务器、 UPS 电源、显示器和彩 ①脚 电、通讯电源、直流马达等。图 2 是 CM6903 的典 该脚接到原边 PWM 电流互感器或电流检测电 型应用电路。 DC一IUMIT 阻上,它为 PWM 级提供脉冲电流限制(出现在 设计 CM6903 的 PFC 和 PWM 工作频率均在 1. 5V) ,并为 PWM 级的电流控制提供峰值电流反馈 67KHz; CM6904 则让 PWM 工作频率在高两倍的 通路。电流斜坡在 IC 内部偏移1. 2V 后,再与光祸 134阻z ,它使 PWM 系统可选用更小的磁性组件, 反馈电压比较,以确定 PWM 的占空比。 而 PFC 仍维持最佳工作频率 67KHzo CM6903/4 各 ②脚 引脚符号与功能简述在表 1 中。 是 IC 的供电输入引脚。 Vcc 的起动电流是 100 表 1 Vcc μA 。空载时 V CC 电流是 2mA o Vcc 静态电流包括 符号 功能 IC 偏置电流与 PFC 和 PWM 的输出电流。给定了工 DCLuMIT PWM 限流比较器输入 作频率和 MOSFET 栅电荷量 (Qg) ,就能计算出 2 Vcc 工作电压 PFC 和 PWM 的平均输出电流为 10盯=QgX 元。还 3 PWMOUT PWM 驱动器输出 4 PFCOUT PFC 驱动器输出 5 GND 接地 6 LSENSE PFC 限流比较器的电流检测输入 7 VEAO PFC 跨导电压误差放大器输出 8 VFB PFC 跨导电压误差放大器输入 9 IAC PFC 电流检测输入和起动系统 引脚 包括任何栅极驱动变换器所要求的平均磁化电流。 Vcc 电压值与 PFC 输出电压成比例。在内部它被连 接到 VccOVP 比较器C1 9 .4V) 上,为 PFC 级提供 CM6903/4 的极限工作电压、电流和温度范围: 1 、最高供电电压值 VccMAX=23V(IC 内部 BiCMOS 可驱动 IGBT) 2 、 IAC 脚电压 GND一。 .3V 到 1V (系统起动 后) 3 、 ISENSE 脚电压 GND-0.3V 到 Vcc+0.3V 5 , PWMOUT 电压 GND-0.3V 到 Vcc+0.3V 6 、 VEAO 脚电压 o 到 6.3V 7 、其它引脚电压 GND-o.3V 到 V REF+0.3V 8 、Icc 电流(平均值); 40mA (空载时 IC 电· 流 2mA) 9 、峰值 PFCOUT 电流 高质量瓷介旁路电容器、并尽量靠近 IC 。良好的旁 路滤波对 CM6903/4 的稳定工作极为重要。' 通常 Vcc 是从升压电感器的附加线圈上产生 的,其电压值和 PFC 输出电压成比例。由于 VccOVP 的最大电压是 19 .4V ,内部分流器限制 Vcc 过压在 一个合理的值上。或外接一个箱位电路(IN5250B) , ③脚和④脚 1. 5μJ 这两个脚是大电流驱动器,能提供 ::!:0.5A 峰值 电流直接驱动功率 MOSFET 的栅极。这两种输出 在 Vcc 低于欠压锁定门限值或 REFOK 比较器输出 为低电平时,均被维持在低电位(无脉冲输出)。 ⑤脚 GND IC 的正常至关重要。因此需要采用高频率的接地技 术。详见稍后的专题实施要点。 ⑥脚 0 150 C 0 -65. C 到 150 C 14 、工作温度范围 -45 C 到 85 C ISENSE 它接到电阻器或传感 PFC 输入电流的电流互 0 13 、储藏温度范围 0 PFCOUT 和 PWMOUT 的零电位地线返回点。高质量、低阻抗的接地,对 0.5A 11 、每周期 PFC OUT 及 PWMOUT 的能量: 12 、结点温度 压为 15V 工作,而关闭电压为 10Vo Vcc 必须外接 GND 是所有与 PFC 和 PWM 电路系统均相关 0.5A 10 、峰值 PWMOUT 电流 到 UVLO 和 REFOK 电路上,使 IC 启动的 Vcc 电 但本芯片不必要的。 -5V 到 0.7V 4 、 PFCOUT 电压 冗余的高速过压保护 (OVP)o Vcc 还在内部被连接 感器上。相对于 IC 接地而言,它应该是负极性的。 0 15 、导线温度(焊接, 10 秒); 260 C 0 。 词 J 圈 2004 年第 5 期(总第 42 期><牛@咆低 t~'ID China PoWfl r ~upply Su rwy 。 在 mag 繁裙、雪慧、密切法 、 喃 SM '<, PWMOUT PWM_Vln 归mh望 MOS 件鸭 ω避 (、M Z ,飞 暗R 中如石J 同》 SH -4- PWM IN 工 PFCOUT VEA。 GND ISENSF IÁC "":" 044 工 |警戒立自 E 'xverts Forum 它内接电流限制比较器和电流传感反馈信号。 IUMIT 输出电压的可调电阻器上,为 i去电压提供反馈通 关断电平是 -1 V 路,使 PFC 的输出调节在设定的数值上。 0 ISENsE 的反馈信号在内部被放大 4 倍的增益,并与内部的斜波比较,以设定 PFC 占空 ⑨脚 比。升压感应器的电流与内部可调斜波的交点,决 它直接通过-前馈电阻 RAC (800KQ) 与 AC 定升压的停止时间 o 这需要在 ISENSE 和 PFC 升压 全波整流器的输出端相连接,具有两个重要的功 感应电阻之间加一个 RC 滤波器。 能, 1.系统起动前,为系统提供起动电流,这样系 ⑦脚 V EAO 统就不需要另外加起动电阻了。 2. 系统起动后, RAC 该脚连接到 PFC 跨导电压误差放大器输出端, 七的电流将为系统提供自动斜波补偿,并且这个前 为放大器提供必需的反馈补偿网络。 @脚 I AC (j 分具有特色) 馈信号能在轻载或高电压输入的情况下,大大提高 V FB 系统的信噪比。 PFC 跨导电压误差放大器输入脚,它接到 PFC 表2 CM6903/4 电气特性参数(测量条件 Vcc=15V,RT=52.3KQ , CT=470pF 。通常在室温下测) 条件 参数 符号 最小 典型 最大 单位 PFC-I UMIT 比较器 门限电压 -0.9 输出延时 150 1.1 5 300 V ns PWM 软启动 软启动时间 正常启动 10 ms DC-IUMIT 比较器 (PWM) 门限电压 1.4 1. 5 150 1.6 300 62 67 74 60 0.3 2 67 0 .45 输出延时 V ns 振荡器 初始精度 TA=25"C 电压稳定性 lOV<Vcc<15V KHz 9毛 温度稳定件 总变化量 整个电网和温度范围内 死区时间 仅 PFC 9毛 74.5 0.65 KHz O % ' μs PFC 最小占空比 最大占 3号比 I Ac =100uA V FB =2.55V ISENSE=OV IAc=OuA,V FB=2.0V,ISENSE=O V 90 95 输出低阻抗 输出低电压 8 0.8 0 .4 8 14.2 50 I ouT: -100mA I ouT :- lOmA,Vcc二8V 输出同阻坑 输出局电压 上升/下降时间 IoUT=100mA Vcc=15V C L=1000pF . i'WM 占宅比 CM6903 CM6904 13.5 。-50 0-50 15 1.5 1.5 15 < 8 0.8 0.7 8 14.2 50 IouT : -100mA I ouT : -lOmA, Vcc=8V 上升/下降时间 IoUT= 1OOmA ,V cc= 15V CL=1000pF 13.5 Q V V Q V ns 0 49.5 输出局阻坑 输出局电压 15 1.5 0.8 15 。-49.5 输出低阻抗 输出低电压 % % % Q V V Q V Ns 电源 启动电流 工作电流 Vcc=11 V,CL=O Vcc=15V,C L=0 欠庄|羽锁门限 14.7 4.85 欠压闭锁滞后 100 2.5 15 5 150 4 15.3 5.15 uA mA V V y 因 2004 年第 5 期(总第 42 期 H 牛@咆馀傅 '10 China Power 函'l.pp阳 Survey |警戒E E xverts Forum 表3 CM6903 应用电路图中各电阻器数值清单 C55 12nF 、 16V (4) 、低压铝电解电容器:精度 20% (1)小功率金属膜电阻器:精度 1% R12 R13 432KX 2 R46 100K C17 470μF , R16 R17: 348KX 2 R48 10K C18 470nF , 19V , 13.3mA, 5Q 4.6K C24 68μF , R45 66. 5K R4 158K R65 475 Q 1. 5w R18 255m Q 1W (3) 热敏电阻器 RT1: 10mQ , 0.lW,精度 20% (4) 碳膜小功率电阻器:精度 10% R2 560K R8 33K 、 R3 、 R5 10KX2 R59 68Q R35 1W 4.7 Q2WX2 R6 10 Q 、 1W R1 100K 、 1W (6) 小功率金属膜 表4 100 Q R11 R28 22Q X2 R43 R44 1. OKX2 R61 604Q 只 R10: R26 18芷、 R27 100K 、 2W 3W 17. 饵,精度 10% CM6903 应用电路图中各电容器数值清单 368V ,陶瓷 X2 C2 、 C3: 1nF , C8: 100PF, 368V,瓷介 C9: 10nF , C10: 39μF , 380V ,铝电解 C20: 1nF , 456V ,陶瓷 380V ,瓷介 C2 1: 470PF , 950V,瓷介 C23: 470PF , 456V , ...... C15 10nF , 456V ,瓷介 C1 : 330nF 、 C5: 33nF 、 C38 1. 5nF 、 19V C40 3. 3nF 、 19V C6 1. 0 μF 、 C19 100nF 、 19V C46 56nF 、 C51 390PF 、 L4 L5 203μH , 20μH , 8.6A , l 1. 3mQ 8A , 11m Q CM6903 应用电路中半导体器件规格 CM4312.5V 基准电压, U1 : U3: 2% CM6903 复合 PFC!PWM 电网桥式整流器, D4: D5: Boost 二极管, 368V , 1. 6A 380V , 2.54A 0.4W GP 肖特基 D6 、 D7: BAT85 , ZD1: 6.8V 齐纳二极管, IS01: D8 D10 D18: H11A817C ,光祸 IC D12 D13: D11 D14 D20 D15 D17: GP 肖特基工极管 GP 二极管 1N4002X 3 只 D9: 双高压二极管, A~B O.lW , 10% ' 局压二极管 X3 只 MUR1100 型 1N4148 , GPX2 只 160V , 4A , 5W 2 、 R18 (来自光电隔离器)必须把实体引脚对 接 IC 地线端脚。 3 、 C4 和 C5 电容器实体引脚,应直接焊到 R5 、 Rll 和 IC 接地脚。- 25V 25VX2 lμH , 引脚。应使开关电流到芯片接地点的距离最短。 19V 100nF 、 3. 1A , 224m Q L2 、 L3 撞为另一结点,再把该结点连接到芯片 IC 的地线 (3) 低压瓷介电容器:精度 20% 2nF 、 Boost 电感器, 2.4耐, 3.1A , 449mQ , L1 l 、应先让 R5 和 Rll 两个电阻器的引脚对接相 16V 2. CM6903 应用电路中电感器数值 键要点: 16V C4 表5 高频开关电源印制板元器件实体布局连接关 (2) 低压瓷介电容器:精度 5% C13 160V ,瓷介 表6 (1)高压电容器:精度均 20% C11 、 10nF , 精度 20% R9 (5) 碳膜中功率电阻器:精度 10% R34 、 C12 4.7 Q 2WX2 R34 、 R35 25V , 150mQ (5) 高压电容器:精度 20% (2) 巾功率金属膜电阻器:精度 1% R31 19V , 362mA, 380M Q 4 、 Ql 三极管的源极脚也应直接焊到 R5 、 Rll 、 IC 地脚、和 C4 、 C5 结点上。 5 、除了 R18 之外,电路中其它元件的引脚也 16V 应只接"星状"结点,把它作为一个绝对的接点。 16V y China Power Supply SunJey 2004 年第 5 期(总第 42 期)(牛@J~说 t~'~ > 圄 |警咂立自 E xverts Forum 电间输入 电班植丑5 4昏-一... IIN 1.0Aldiv Boosl 输出 直配电压 +--20VI咀阳 100ms/div IC Ground ML4803 100ms/div 'c 附 \Il!.Ii.V'N=220V. c l 寸 CM6903/4 图 5 瞬态负载突变时的实测波形(在 OW 空载 图 3 高频接地技术的星状地线布局连接示意图 与 100W 加载之间通断开关) (左侧为原 ML4 803 两个波形,右侧为新 CM6903/4 两个波形) 电网输入 电同捕入 电流波形 i?;;二jjJ电? ‘1.0 div ......:.\.\‘-号, I j 1. 0A! div A/ -←白?…叩牛斗 1\1)(1 民 l1Í1ù 山 :I Boost 输川 l j úiÆè 电压 1γ川寸 11 ←→ :i1 川 VdÎv 50ms/div 直i;í~ 电压 ‘--一~ 20V/div L ι...L...二4 100ms/div 50ms/div CM690:3/ 1 ML4803 ML4803 图 4 瞬态响应测量波形:在 100W 负载下电网 [电网输入电川、 V川 ~220V"时) 100ms/div CM6903/4 图 6 瞬态负载突变时的实测波形(在 OW 空载 变高从 100WV A<σ→200V AC (左侧为原 ML4803 两 与 lOOW 加载之间通断开关) (左侧为原 ML4803 个波形,右侧为新 CM6903/4 两个波形) 两个波形,右侧为新 CM6903/4 两个波形) 如果要在电源副边整流加同步整流电路,可采用图 7 电路结构和器件,有关电阻值也要作相应改动。 250V,d 2.15A ' 1、J ~ , d一-30 .+ RYl RY2 RY3 RY4 4 .7 M 4.7M 4.7M .UM F工严习。 '" 图 7 P 11 2004 年第 5 期(总第 42 期)(牛@咆侬博 'ID China Po wer 亨咣pply Suruey 如果要在电源副边整流加同步整流电路,可采用图 7 电路结构和器件,有关电阻值也要作相应改动。 250VAc /2.15A ' + 19Vf4 N z , m .+ R" 寻Y2 RY3 阿Y4 4 .7 M 4.7M 4 , 7M 47M 仨与严习。 222 图 7 F 7越A CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO GENERAL DESCRIPTION FEATURES The CM6903/4 is a space-saving PFC-PWM controller for ! power factor corrected, switched mode power supplies that Patent Number #5,565,761, #5,747,977, #5,742,151, #5,804,950, #5,798,635 offers very low start-up and operating currents. For the ! Pin to pin compatible with FAN6903/4 power supply less than 500Watt, its input current shaping ! Enable lowest BOM for power supply with PFC PFC performance could be very close to CM6800 or ! Internally synchronized PFC and PWM in one IC ML4800 architecture. ! Patented slew rate enhanced voltage error amplifier with Power Factor Correction (PFC) offers the use of smaller, ! Universal Line Input Voltage lower cost bulk capacitors, reduces power line loading and ! CCM boost or DCM boost with leading edge modulation advanced input current shaping technique stress on the switching FETs, and results in a power supply fully compliant to IEC1000-3-2 specifications. The PFC using Input Current Shaping Technique ! CM6903/4 includes circuits for the implementation of a Feedforward IAC pin to do the automatic slope compensation leading edge, input current shaping technique “boost” type ! PFC and a trailing edge, PWM. PFCOVP, PFC VCCOVP, Precision -1V PFC ILIMIT, Tri-Fault Detect comparator to meet UL1950 The CM6903’s PFC and PWM operate at the same ! No bleed resistor required ! Low supply currents; start-up: 100uA typical, operating frequency, 67kHz. The PFC frequency of the CM6904 is current: 2mA typical. automatically set at half that of the 134kHz PWM. This ! Synchronized leading PFC and trailing edge modulation higher frequency allows the user to design with smaller PWM to reduce ripple current in the storage capacitor PWM components while maintaining the optimum operating between the PFC and PWM sections and to reduce frequency for the PFC. An PFC OVP comparator shuts switching noise in the system down the PFC section in the event of a sudden decrease in ! VINOK Comparator to guarantee to enable PWM when PFC reach steady state load. The PFC section also includes peak current limiting for enhanced system reliability. ! High efficiency trailing-edge current mode PWM ! UVLO, REFOK, and brownout protection ! Digital PWM softstart: CM6903 (10ms), CM6904 (5ms) ! Precision PWM 1.5V current limit for current mode operation 24 Hours Technical Support---WebSIM Champion provides customers an online circuit simulation tool called WebSIM. You could simply logon our website at www.champion-micro.com for details. ! UPS ! Battery Charger ! DC Motor Power Supply ! Monitor Power Supply ! Telecom System Power Supply ! Distributed Power 2002/12/16 Preliminary Rev. 0.4 IAC IPC Power Supply VFB ! VEAO Internet Server Power Supply ISENSE ! GND AC Adaptor SOP-16 (S16) Top View PFCOUT ! SIP-09 (Z09) Front View PWMOUT Desktop PC Power Supply VCC ! PIN CONFIGURATION DC ILIMIT APPLICATIONS 1 2 3 4 5 6 7 8 9 1 PFC OUT 2 NC 16 GN D NC 15 3 GN D PW M O UT 14 4 I SEN SE NC 13 5 VEAO V CC 12 6 V FB NC 11 7 I AC DC I LIM IT 10 8 NC NC Champion Microelectronic Corporation Page 1 9 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO PIN DESCRIPTION Pin No. Symbol Description Operating Voltage Typ. Max. Min. 1 DC ILIMIT PWM current limit comparator input 0 2 VCC Positive supply 10 3 PWM OUT PWM driver output 4 PFC OUT PFC driver output 5 GND Ground 6 ISENSE Current sense input to the PFC current limit comparator 7 VEAO 8 VFB PFC transconductance voltage error amplifier input 0 9 IAC Feedforward input to do slope compensation and to start up 0 Unit 1.5 V 23 V 0 VCC V 0 VCC V -5 0.7 V 0 6 V 3 V 1 V PFC transconductance voltage error amplifier output 15 2.5 the system BLOCK DIAGRAM 9 IAC 2 VCC VREFOK R1C 4K ohm R1B + 400K ohm + + 100K ohm . U1 R1A - ISENSE 6 . . OUT S . ISENSEAMP + SUM Q 4 PFCCMP R VREF OK R PFCOUT Q gmv VFB 8 . 2.5V . RAMP UVLO . + VCC . . UVLO FAULTB 7 VEAO VCC VCC OVP + 17.9V 16.4V - . OSC Tri-Fault Detect PFCCLKB PFCCLKB . PWMCLK . - PWMCLK . 0.5V + PFC OVP 2.5V - VFB - 0.75V + + 2.45V + 2.75V VREF OK Q PWMOUT R R . R - 1.5V 10mS . + S Q . - -1V 3 VIN OK + . PFC ILIMIT . PWM CLK 1V . PWMCMP CM6903 fpfc= 67KHz fpwm=67KHz . SS 1 DCILIMIT 2002/12/16 Preliminary Rev. 0.4 Champion Microelectronic Corporation CM6904 fpfc= 67KHz fpwm=134KHz 5 GND Page 2 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO ORDERING INFORMATION Part Number Temperature Range CM6903IZ -40℃ to 125℃ Package 9-Pin SIP (Z09) CM6903IS -40℃ to 125℃ 16-Pin SOP (S16) CM6904IZ -40℃ to 125℃ 9-Pin SIP (Z09) ABSOLUTE MAXIMUM RATINGS Absolute Maximum ratings are those values beyond which the device could be permanently damaged. Parameter VCC MAX IAC (after start up) ISENSE Voltage PFC OUT PWM OUT VEAO Voltage on Any Other Pin ICC Current (Average) Peak PFC OUT Current, Source or Sink Peak PWM OUT Current, Source or Sink PFC OUT, PWM OUT Energy Per Cycle Junction Temperature Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 10 sec) Thermal Resistance (θJA) Min. GND-0.3 -5 GND – 0.3 GND – 0.3 0 GND – 0.3 -65 -40 ELECTRICAL CHARACTERISTICS Max. 23 1.0 0.7 VCC + 0.3 VCC + 0.3 6.3 VREF + 0.3 40 0.5 0.5 1.5 150 150 125 260 80 Units V V V V V V V mA A A µJ ℃ ℃ ℃ ℃ ℃/W Unless otherwise stated, these specifications apply Vcc=+15V, TA=Operating Temperature Range (Note 1) Symbol Parameter Test Conditions CM6903/4 Min. Typ. Max. Unit Voltage Error Amplifier (gmv) Input Voltage Range Transconductance 0 VNONINV = VINV, VEAO = 3.75V Feedback Reference Voltage Input Bias Current 30 65 90 µmho 2.5 2.55 V -0.5 -1.0 µA 5.8 Output Low Voltage Sink Current V 2.45 Note 2 Output High Voltage 5 6.0 0.1 V 0.4 V VFB = 3V, VEAO = 6V -20 -35 µA VFB = 1.5V, VEAO = 1.5V 30 40 µA 50 60 dB 50 60 dB 850 1000 1150 Ohm Threshold Voltage 17.4 17.9 18.4 V Hysteresis 1.4 1.5 1.65 V Source Current Open Loop Gain Power Supply Rejection Ratio 11V < VCC < 16.5V IAC Input Impedance ISENSE = 0V VCC OVP Comparator 2002/12/16 Preliminary Rev. 0.4 Champion Microelectronic Corporation Page 3 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO ELECTRICAL CHARACTERISTICS (Conti.) Unless otherwise stated, these specifications apply Vcc=+15V, RT = 52.3kΩ, CT = 470pF, TA=Operating Temperature Range (Note 1) Symbol Parameter Test Conditions CM6903/4 Unit Min. Typ. Max. 2.70 2.77 2.85 V 290 mV -1 -1.15 V 150 300 ns 2.35 2.45 2.55 V 1.65 1.75 1.85 V PFC OVP Comparator Threshold Voltage Hysteresis 230 PFC ILIMIT Comparator Threshold Voltage -0.9 Delay to Output VIN OK Comparator Threshold Voltage Hysteresis PWM Digital Soft Start Digital Soft Start Timer (Note 2) Right After Start Up (CM6903) 10 ms Right After Start Up (CM6904) 5 ms DC ILIMIT Comparator Threshold Voltage 1.4 1.5 1.6 V 150 300 ns 2.75 2.85 V 2 4 ms 0.4 0.5 0.6 V 62 67 74 kHz Delay to Output (Note 2) Tri-Fault Detect Comparator Fault Detect HIGH Time to Fault Detect HIGH 2.65 VFB=VFAULT DETECT LOW to VFB = OPEN, 470pF from VFB to GND Fault Detect LOW Oscillator Initial Accuracy TA = 25℃ Voltage Stability 10V < VCC < 15V Temperature Stability Total Variation Line, Temp PFC Dead Time (Note 2) 1 % 2 % 60 67 74.5 kHz 0.3 0.45 0.65 µs 0 % PFC Minimum Duty Cycle IAC=100uA,VFB=2.55V, ISENSE = 0V Maximum Duty Cycle IAC=0uA,VFB=2.0V, ISENSE = 0V 90 Output Low Impedance Output Low Voltage Rise/Fall Time (Note 2) 2002/12/16 Preliminary Rev. 0.4 % 8 15 ohm IOUT = -100mA 0.8 1.5 V IOUT = -10mA, VCC = 8V 0.4 0.8 V 8 15 ohm Output High Impendence Output High Voltage 95 IOUT = 100mA, VCC = 15V 13.5 CL = 1000pF Champion Microelectronic Corporation 14.2 V 50 ns Page 4 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO ELECTRICAL CHARACTERISTICS (Conti.) Unless otherwise stated, these specifications apply Vcc=+15V, RT = 52.3kΩ, CT = 470pF, TA=Operating Temperature Range (Note 1) Symbol Parameter CM6903/4 Test Conditions Min. Typ. Max. Unit PWM Duty Cycle Range CM6903 0-49.5 0-50 % CM6904 0-49.5 0-50 % 8 15 ohm IOUT = -100mA 0.8 1.5 V IOUT = -10mA, VCC = 8V 0.7 1.5 V 8 15 ohm Output Low Impedance Output Low Voltage Output High Impendence Output High Voltage IOUT = 100mA, VCC = 15V Rise/Fall Time (Note 2) 13.5 CL = 1000pF 14.2 V 50 ns Supply Start-Up Current VCC = 11V, CL = 0 100 150 uA Operating Current VCC = 15V, CL = 0 2.5 4.0 mA Undervoltage Lockout Threshold 14.7 15 15.3 V Undervoltage Lockout Hysteresis 4.85 5 5.15 V Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions. Note 2: Guaranteed by design, not 100% production test. TYPICAL PERFORMANCE CHARACTERISTIC 127 Transconductance (umho) 120 113 106 99 92 85 78 71 64 57 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 VFB (V) Voltage Error Amplifier (gmv) Transconductance 2002/12/16 Preliminary Rev. 0.4 Champion Microelectronic Corporation Page 5 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO Functional Description The CM6903/4 consists of an ICST (Input Current Shaping Technique), CCM (Continuous Conduction Mode) or DCM (Discontinuous Conduction Mode) boost PFC (Power Factor Correction) front end and a synchronized PWM (Pulse Width Modulator) back end. The CM6903/4 is pin to pin compatible with FAN6903/4 (9 pin SIP package), which is the second generation of the ML4803 with 8 pin package. It is distinguished from earlier combo controllers by its low count, innovative input current shaping technique, and very low start-up and operating currents. The PWM section is dedicated to peak current mode operation. It uses conventional trailing-edge modulation, while the PFC uses leading-edge modulation. This patented Leading Edge/Trailing Edge (LETE) modulation technique helps to minimize ripple current in the PFC DC buss capacitor. The main improvements from ML4803 are: 1.) Remove the one pin error amplifier and add back the slew rate enhancement gmv, which is using voltage input instead of current input. This transconductance amplifier will increase the transient response 5 to 10 times from the conventional OP 2.) VFB PFC OVP comparator 3.) Tri-fault Detect for UL1950 compliance and enhanced safety 4.) A feedforward signal from IAC pin is added to do the automatic slope compensation. This increases the signal to noise ratio during the light load; therefore, THD is improved at light load and high input line voltage. 5.) CM6903 does not require the bleed resistor and it uses the less than 500k ohm resistor between IAC pin and rectified line voltage to feed the initial current before the chip wakes up. 6.) VINOK comparator is added to guaranteed PWM cannot turn on until VFB reaches 2.5V in which PFC boost output is about steady state, typical 380V. 7.) A 10mS digital PWM soft start circuit is added 8.) 9 pin SIP package 9.) No internal Zener but with VCCOVP comparator Detailed Pin Descriptions DCILIMIT (Pin 1) This pin is tied to the primary side PWM current sense resistor or transformer. It provides the internal pulse-by-pulse current limit for the PWM stage (which occurs at 1.5V) and the peak current mode feedback path for the current mode control of the PWM stage. Besides current information, the optocouple also goes into DCILIMIT pin. Therefore, it is the SUM Amplifier input. VCC (Pin 2) VCC is the power input connection to the IC. The VCC start-up current is 100uA. The no-load ICC current is 2mA. VCC quiescent current will include both the IC biasing currents and the PFC and PWM output currents. Given the operating frequency and the MOSFET gate charge (Qg), average PFC and PWM output currents can be calculated as IOUT = Qg x F. The average magnetizing current required for any gate drive transformers must also be included. The VCC pin is also assumed to be proportional to the PFC output voltage. Internally it is tied to the VCC OVP comparator (17.9V) providing redundant high-speed over-voltage protection (OVP) of the PFC stage. VCC also ties internally to the UVLO circuitry and VREFOK comparator, enabling the IC at 15V and disabling it at 10V. VCC must be bypassed with a high quality ceramic bypass capacitor placed as close as possible to the IC. Good bypassing is critical to the proper operation of the CM6903/4. VCC is typically produced by an additional winding off the boost inductor or PFC Choke, providing a voltage that is proportional to the PFC output voltage. Since the VCC OVP max voltage is 17.9V, an internal shunt limits VCC overvoltage to an acceptable value. An external clamp, such as shown in Figure 1, is desirable but not necessary. VCC The CM6903 operates both PFC and PWM sections at 67kHz, while the CM6904 operates the PWM section at twice the frequency (134kHz) of the PFC. This allows the use of smaller PWM magnetic and output filter components, while minimizing switching losses in the PFC stage. Several protection features have been built into the CM6903/4. These include soft-start, redundant PFC overvoltage protection, Tri-Fault Detect, VINOK, peak current limiting, duty cycle limiting, under-voltage lockout, reference ok comparator and VCCOVP. 1N 5250B GND Fig ure 1. O ptional V C C C lam p This limits the maximum VCC that can be applied to the IC while allowing a VCC which is high enough to trip the VCC OVP. An RC filter at VCC is required between boost trap winding and VCC. 2002/12/16 Preliminary Rev. 0.4 Champion Microelectronic Corporation Page 6 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO PFC OUT (Pin 4) and PWM OUT (Pin3) PFC OUT and PWM OUT are the high-current power driver capable of directly driving the gate of a power MOSFET with peak currents up to -1A and +0.5A. Both outputs are actively held low when VCC is below the UVLO threshold level which is 15V or VREFOK comparator is low. GND (Pin 5) GND is the return point for all circuits associated with this part. Note: a high-quality, low impedance ground is critical to the proper operation of the IC. High frequency grounding techniques should be used. ISENSE (Pin 6) This pin ties to a resistor which senses the PFC input current. This signal should be negative with respect to the IC ground. It internally feeds the pulse-by-pulse current limit comparator and the current sense feedback signal. The ILIMIT trip level is –1V. The ISENSE feedback is internally multiplied by a gain of four and compared against the internal programmed ramp to set the PFC duty cycle. The intersection of the boost inductor current downslope with the internal programming ramp determines the boost off-time. It requires a RC filter between ISENSE and PFC boost sensing resistor. VEAO (Pin 7) This is the PFC slew rate enhanced transconductance amplifier output which needs to connected with a compensation network. VFB (Pin 8) Besides this is the PFC slew rate enhanced transconductance input, it also tie to a couple of protection comparators, PFCOVP, and Tri-Fault Detect IAC (pin 9) Typically, it has a feedforward resistor, RAC, 100K~200K ohm resistor connected between this pin and rectified line input voltage. This pin serves 2 purposes: 1.) During the startup condition, it supplies the startup current; therefore, the system does not requires additional bleed resistor to start up the chip. 2.) The current of RAC will program the automatic slope compensation for the system. This feedforward signal can increase the signal to noise ratio for the light load condition or the high input line voltage condition. Power Factor Correction Power factor correction makes a nonlinear load look like a resistive load to the AC line. For a resistor, the current drawn from the line is in phase with and proportional to the line voltage, so the power factor is unity (one). A common class of nonlinear load is the input of most power supplies, which use a bridge rectifier and capacitive input filter fed from the line. The peak-charging effect, which occurs on 2002/12/16 Preliminary Rev. 0.4 the input filter capacitor in these supplies, causes brief high-amplitude pulses of current to flow from the power line, rather than a sinusoidal current in phase with the line voltage. Such supplies present a power factor to the line of less than one (i.e. they cause significant current harmonics of the power line frequency to appear at their input). If the input current drawn by such a supply (or any other nonlinear load) can be made to follow the input voltage in instantaneous amplitude, it will appear resistive to the AC line and a unity power factor will be achieved. To hold the input current draw of a device drawing power from the AC line in phase with and proportional to the input voltage, a way must be found to prevent that device from loading the line except in proportion to the instantaneous line voltage. The PFC section of the CM6903/4 uses a boost-mode DC-DC converter to accomplish this. The input to the converter is the full wave rectified AC line voltage. No bulk filtering is applied following the bridge rectifier, so the input voltage to the boost converter ranges (at twice line frequency) from zero volts to the peak value of the AC input and back to zero. By forcing the boost converter to meet two simultaneous conditions, it is possible to ensure that the current draws from the power line matches the instantaneous line voltage. One of these conditions is that the output voltage of the boost converter must be set higher than the peak value of the line voltage. A commonly used value is 385VFB, to allow for a high line of 270VACrms. The other condition is that the current that the converter is allowed to draw from the line at any given instant must be proportional to the line voltage. PFC Control: Leading Edge Modulation with Input Current Shaping Technique (I.C.S.T.) The only differences between the conventional PFC control topology and I.C.S.T. is: the current loop of the conventional control method is a close loop method and it requires a detail understanding about the system loop gain to design. With I.C.S.T., since the current loop is an open loop, it is very straightforward to implement it. The end result of the any PFC system, the power supply is like a pure resistor at low frequency. Therefore, current is in phase with voltage. In the conventional control, it forces the input current to follow the input voltage. In CM6903, the chip thinks if a boost converter needs to behave like a low frequency resistor, what the duty cycle should be. The following equations is CM6903 try to achieve: Re = Vin I in I l = I in Champion Microelectronic Corporation (1) (2) Page 7 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO Equation 2 means: average boost inductor current equals to input current. ∴Vin × I l ≈ Vout × I d (3) Id × d ' = Therefore, input instantaneous power is about to equal to the output instantaneous power. ∴ Id = d For steady state and for the each phase angle, boost converter DC equation at continuous conduction mode is: ∴ Id = Vout Vin = 1 (4) (1 − d ) Rearrange above equations, (1), (2),(3), and (4) in term of Vout and d, boost converter duty cycle and we can get average boost diode current equation (5): 2 I d = (1 − d ) × Vout Re (5) Also, the average diode current can be expressed as: Id = 1 Tsw ∫ Toff 0 I d (t ) ⋅ dt (6) If the value of the boost inductor is large enough, we can assume I d (t ) ~ I d . It means during each cycle or we can say during the sampling, the diode current is a constant. Therefore, equation (6) becomes: Id = I d × toff Tsw = I d × d ' = I d × (1 − d ) (7) ' ( d ' ) 2 × Vout × Vout Re Re (8) Vout toff × Re Tsw From this simple equation (8), we implement the PFC control section of the CM6903. Leading/Trailing Modulation Conventional Pulse Width Modulation (PWM) techniques employ trailing edge modulation in which the switch will turn ON right after the trailing edge of the system clock. The error amplifier output is then compared with the modulating ramp. When the modulating ramp reaches the level of the error amplifier output voltage, the switch will be turned OFF. When the switch is ON, the inductor current will ramp up. The effective duty cycle of the trailing edge modulation is determined during the ON time of the switch. Figure 2 shows a typical trailing edge control scheme. In case of leading edge modulation, the switch is turned OFF right at the leading edge of the system clock. When the modulating ramp reaches the level of the error amplifier output voltage, the switch will be turned ON. The effective duty-cycle of the leading edge modulation is determined during OFF time of the switch. Figure 3 shows a leading edge control scheme. Combine equation (7) and equation (5), and we get: 2002/12/16 Preliminary Rev. 0.4 Champion Microelectronic Corporation Page 8 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO One of the advantages of this control technique is that it required only one system clock. Switch 1(SW1) turns OFF and switch 2 (SW2) turns ON at the same instant to minimize the momentary “no-load” period, thus lowering ripple voltage generated by the switching action. With such synchronized switching, the ripple voltage of the first stage is reduced. Calculation and evaluation have shown that the 120Hz component of the PFC’s output ripple voltage can be reduced by as much as 30% using this method, substantially reducing dissipation in the high-voltage PFC capacitor. Typical Applications PFC Section: PFC Voltage Loop Error Amp, VEAO The ML4803 utilizes an one pin voltage error amplifier in the PFC section (VEAO). In the CM6903/4, it is using the slew rate enhanced transconductance amplifier, which is the same as error amplifier in the CM6800. The unique transconductance profile can speed up the conventional transient response by 10 times. The internal reference of the VEAO is 2.5V. The input of the VEAO is VFB pin. PFC Voltage Loop Compensation The voltage-loop bandwidth must be set to less than 120Hz to limit the amount of line current harmonic distortion. A typical crossover frequency is 30Hz. The Voltage Loop Gain (S) ∆VOUT ∆VFB ∆VEAO * * ∆VEAO ∆VOUT ∆VFB PIN * 2.5V ≈ * GMV * ZCV 2 VOUTDC * ∆VEAO * S * CDC = 2002/12/16 Preliminary Rev. 0.4 ZCV: Compensation Net Work for the Voltage Loop GMv: Transconductance of VEAO PIN: Average PFC Input Power VOUTDC: PFC Boost Output Voltage; typical designed value is 380V. CDC: PFC Boost Output Capacitor ∆VEAO: This is the necessary change of the VEAO to deliver the designed average input power. The average value is 6V-3V=3V since when the input line voltage increases, the delta VEAO will be reduced to deliver the same to the output. To over compensate, we choose the delta VEAO is 3V. Internal Voltage Ramp The internal ramp current source is programmed by way of VEAO pin voltage. When VEAO increases the ramp current source is also increase. This current source is used to develop the internal ramp by charging the internal 30pF +12/ -10% capacitor. The frequency of the internal programming ramp is set internally to 67kHz. Design PFC ISENSE Filtering ISENSE Filter, the RC filter between Rs and ISENSE: There are 2 purposes to add a filter at ISENSE pin: 1.) Protection: During start up or inrush current conditions, it will have a large voltage cross Rs, which is the sensing resistor of the PFC boost converter. It requires the ISENSE Filter to attenuate the energy. 2.) Reduce L, the Boost Inductor: The ISENSE Filter also can reduce the Boost Inductor value since the ISENSE Filter behaves like an integrator before going ISENSE which is the input of the current error amplifier, IEAO. Champion Microelectronic Corporation Page 9 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO The ISENSE Filter is a RC filter. The resistor value of the ISENSE Filter is between 100 ohm and 50 ohm. By selecting RFILTER equal to 50 ohm will keep the offset of the IEAO less than 5mV. Usually, we design the pole of ISENSE Filter at fpfc/6, one sixth of the PFC switching frequency. Therefore, the boost inductor can be reduced 6 times without disturbing the stability. Therefore, the capacitor of the ISENSE Filter, CFILTER, will be around 283nF. IAC, RAC, Automatic Slope Compensation, DCM at high line and light load, and Startup current There are 4 purposes for IAC pin: 1.) For the leading edge modulation, when the duty cycle is less than 50%, it requires the similar slope compensation, as the duty cycle of the trailing edge modulation is greater than 50%. In the CM6903/4, it is a relatively easy thing to design. Use an less than 500K ohm resistor, RAC to connect IAC pin and the rectified line voltage. It will do the automatic slope compensation. If the input boost inductor is too small, the RAC may need to be reduced more. 2.) During the startup period, Rac also provides the initial startup current, 100uA;therefore, the bleed resistor is not needed. 3.) Since IAC pin with RAC behaves as a feedforward signal, it also enhances the signal to noise ratio and the THD of the input current. 4.) It also will try to keep the maximum input power to be constant. However, the maximum input power will still go up when the input line voltage goes up. Start Up of the system, UVLO, and VREFOK During the Start-up period, RAC resistor will provide the start up current~100uA from the rectified line voltage to IAC pin. Inside of CM6903/4 during the start-up period, IAC is connected to VCC until the VCC reaches UVLO voltage which is 15V and internal reference voltage is stable, it will disconnect itself from VCC. PFC section wakes up after Start up period After Start up period, PFC section will softly start since VEAO is zero before the start-up period. Since VEAO is a slew rate enhanced transconductance amplifier (see figure 3), VEAO has a high impedance output like a current source and it will slowly charge the compensation net work which needs to be designed by using the voltage loop gain equation. Before PFC boost output reaches its design voltage, it is around 380V and VFB reaches 2.5V, PWM section is off. 2002/12/16 Preliminary Rev. 0.4 PWM section wakes up after PFC reaches steady state PWM section is off all the time before PFC VFB reaches 2.45V. Then internal 10mS digital PWM soft start circuit slowly ramps up the soft-start voltage. PFC OVP Comparator PFC OVP Comparator sense VFB pin which is the same the voltage loop input. The good thing is the compensation network is connected to VEAO. The PFC OVP function is a relative fast OVP. It is not like the conventional error amplifier which is an operational amplifier and it requires a local feedback and it make the OVP action becomes very slow. The threshold of the PFC OVP is 2.5V+10% =2.75V with 250mV hysteresis. Tri-Fault Detect Comparator To improve power supply reliability, reduce system component count, and simplify compliance to UL1950 safety standards, the CM6903/4 includes Tri-Fault Detect. This feature monitors VFB (Pin 8) for certain PFC fault conditions. In case of a feedback path failure, the output of the PFC could go out of safe operating limits. With such a failure, VFB will go outside of its normal operating area. Should VFB go too low, too high, or open, Tri-Fault Detect senses the error and terminates the PFC output drive. Tri-Fault detect is an entirely internal circuit. It requires no external components to serve its protective function. VCC OVP and generate VCC For the CM6903/4 system, if VCC is generated from a source that is proportional to the PFC output voltage and once that source reaches 17.9V, PFCOUT, PFC driver will be off. The VCC OVP resets once the VCC discharges below 16.4V, PFC output driver is enabled. It serves as redundant PFC OVP function. Typically, there is a bootstrap winding off the boost inductor. The VCC OVP comparator senses when this voltage exceeds 17.9V, and terminates the PFC output drive. Once the VCC rail has decreased to below 16.4V the PFC output drive be enabled. Given that 16V on VCC corresponds to 380V on the PFC output, 17.9V on VCC corresponds to an OVP level of 460V. It is a necessary to put RC filter between bootstrap winding and VCC. For VCC=15V, it is sufficient to drive either a power MOSFET or a IGBT. Champion Microelectronic Corporation Page 10 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO UVLO The UVLO threshold is 15V providing 5V hysteresis. Therefore, DCILIMIT actually is a summing node from voltage information which is from photo couple and CM431 and current information which is from one end of PWM sensing resistor and the signal goes through a single pole, RC filter then enter the DCILIMIT pin. PFCOUT and PWMOUT Both PFCOUT and PWMOUT are CMOS drivers. They both have adaptive anti-shoot through to reduce the switching loss. Its pull-up is a 30ohm PMOS driver and its pull-down is a 15ohm NMOS driver. It can source 0.5A and sink 1A if the VCC is above 15V. PWM Section After 10mS digital soft start, CM6903/4’s PWM is operating as a typical current mode. It requires a secondary feedback, typically, it is configured with CM431, and photo couple. Since PWM Section is different from CM6800 family, it needs the emitter of the photo couple to connected with DCILIMIT instead of the collector. The PWM current information also goes into DCILIMIT. Usually, the PWM current information requires a RC filter before goes into the DCILIMIT. 2002/12/16 Preliminary Rev. 0.4 This RC filter at DCILMIT also serves several functions: 1.) It protects IC. 2.) It provides level shift for voltage information. 3.) It filters the switching noise from current information. The pole location of the RC filter should be greater than one sixth of the PWM switching frequency which is 67Khz for CM6903 and which is 134Khz for CM6904. Since the typical photo couple should be biased around 1mA, the resistor of the RC filter should be around 1.5V/1mA~1.5K ohm and we suggest R is 1K ohm. Therefore, for CM6903, C should be around 14nF and for CM6904, C should be around 1.2nF. The maximum input voltage of the DCILIMIT pin is 1.5V. Component Reduction Components associated with the VRMS and IEAO pins of a typical PFC controller such as the CM6800 have been eliminated. The PFC power limit and bandwidth does vary with line voltage. Double the power can be delivered from a 220V AC line versus a 110V AC line. Since this is a combination PFC/PWM, the power to the load is limited by the PWM stage. Champion Microelectronic Corporation Page 11 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO APPLICATION CIRCUIT (CM6903/4) VOUT D1 R13 L1 R8 R7 Z1 AC IN C9 C4 R5 L2 D13 R2 R20 D7 T2 R17 C21 U2 C17 C19 R12 RAC F1 D12 Q2 C10 D2 C1 R9 R14 T1 D5 R16 C18 SR1 R15 C5 Q1 VCC_CIRCLE Q3 R10 R4 C16 D6 R22 D10 D3 R3 R19 D8 Q4 D11 R11 D9 C13 C14 C11 T1 C15 C7 C8 D14 R23 9 IAC 2 VCC VREFOK R1C 4K ohm R1B RFIlter 100K ohm . 400K ohm + + 6 D15 + U1 R1A - ISENSE . . OUT - CFilter S . ISENSEAMP PFCCMP R VREF OK R D8 . 2.5V . RAMP UVLO . + VCC 7 . . UVLO FAULTB VEAO VCC OVP VCC + 17.9V . - 16.4V R21 PFCOUT Q gmv VFB 8 C8 Q 4 + SUM D16 C9 OSC Tri-Fault Detect PFCCLKB PFCCLKB . PWMCLK . - PWMCLK . 0.5V 3 VIN OK + PFC OVP 2.5V + 2.75V VFB - 1.5V + + S . VREF OK Q PWMOUT R R R Q . - 2.5V 1.5V . 10mS . -1V + PWMCMP . PFC ILIMIT . D10 + . CM6903 fpfc= 67KHz fpwm=67KHz SS PWM CLK 1V 1 DCILIMIT 2002/12/16 Preliminary Rev. 0.4 CM6904 fpfc= 67KHz fpwm=134KHz 5 GND Champion Microelectronic Corporation Page 12 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO PACKAGE DIMENSION 9-PIN SIP (Z09) 16-PIN SOP (S16) PIN 1 ID θ θ 2002/12/16 Preliminary Rev. 0.4 Champion Microelectronic Corporation Page 13 CM6903/4 Low Pin Count PFC/PWM CONTROLLER COMBO IMPORTANT NOTICE Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. understood to be fully at the risk of the customer. Use of CMC products in such applications is In order to minimize risks associated with the customer’s applications, the customer should provide adequate design and operating safeguards. HsinChu Headquarter Sales & Marketing 5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan 11F, No. 306-3, Sec. 1, Ta Tung Rd., Hsichih, Taipei Hsien 221 Taiwan, R.O.C. T E L : +886-3-567 9979 F A X : +886-3-567 9909 http://www.champion-micro.com T E L : +886-2-8692 1591 F A X : +886-2-8692 1596 2002/12/16 Preliminary Rev. 0.4 Champion Microelectronic Corporation Page 14