19-5867; Rev 0; 6/11 备有评估板 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 概述 MAX7049高性能、单芯片、超低功耗ASK/FSK UHF发送 器工作在288MHz至945MHz工业、科学和医学(ISM)载波 频段。IC还包括一个低相位噪声N分频合成器,支持高精 度调谐、快速变频,并可有效降低带外功率。为支持窄带 应用,该IC还具有幅度整形和频率整形功能,方便用户优 化频谱效率。IC提供高达+15dBm的Tx功率,非常适合远 距离通信应用。 这款IC的其它系统级功能包括:内置数字温度传感器和多 个灵活的GPO,可方便监测射频通信状态、控制外部功能。 该IC配合一个低成本的微处理器控制单元(MCU)、一个晶 体和少数无源元件,即可构成完整的发送器系统。 IC采用小尺寸5mm x 5mm、28引脚、带有裸焊盘的TQFN 封装,工作在-40℃至+125℃汽车级温度范围。 应用 优势和特性 S发送器(Tx) 功率高达+15dBm,支持远距离传输 Tx功率为+10dBm时,Tx电流为21mA* Tx功率为+15dBm时,Tx电流为41mA* ASK、FSK调制 S通用特性 延长电池寿命 关断电流< 50nA 休眠电流< 350nA 减少了IC与MCU串行外设接口(SPITM)之间所需的I/O 数量 满足以下规范 FCC Part 15跳频 ETSI EN300-220 内置温度传感器 带有用户自定义外部环路滤波器的快速N分频合成器 自动抄表(AMR) RF模块 远程、单向遥控钥匙(RKE) *VDD = 3.0V,包括匹配网络和谐波滤波器的功耗。 无线传感器网络 TPMS 家庭安全监控 定购信息在数据资料的最后给出。 家庭自动化 RFID 相关型号以及配合该器件使用的推荐产品,请参见:china.maxim-ic.com/ MAX7049.related。 远端控制 SPI是Motorola, Inc.的商标。 ����������������������������������������������������������������� Maxim Integrated Products 1 本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。 有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站:china.maxim-ic.com。 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 目录 Absolute Maximum Ratings................................................................................................................................................. 5 DC Electrical Characteristics................................................................................................................................................ 5 AC Electrical Characteristics................................................................................................................................................. 6 典型工作特性........................................................................................................................................................................ 9 引脚配置............................................................................................................................................................................. 13 引脚说明............................................................................................................................................................................. 13 功能框图............................................................................................................................................................................. 15 详细说明............................................................................................................................................................................. 15 架构概述和应用电路...................................................................................................................................................... 15 数字输入和输出............................................................................................................................................................. 17 数字输入................................................................................................................................................................... 17 数字输出................................................................................................................................................................... 17 串行外设接口(SPI).................................................................................................................................................... 19 SPI命令..................................................................................................................................................................... 20 工作模式概述............................................................................................................................................................ 21 休眠模式................................................................................................................................................................... 22 温度检测模式............................................................................................................................................................ 23 Tx模式...................................................................................................................................................................... 23 跳频扩谱(FHSS)工作原理......................................................................................................................................... 24 功能说明........................................................................................................................................................................ 24 晶振.......................................................................................................................................................................... 24 N分频合成器............................................................................................................................................................. 26 Tx ASK模式.............................................................................................................................................................. 26 频率整形Tx FSK模式................................................................................................................................................ 27 Tx脉冲FSK模式......................................................................................................................................................... 29 环路带宽................................................................................................................................................................... 29 锁定检测器............................................................................................................................................................... 30 功率放大器............................................................................................................................................................... 31 幅度整形Tx ASK模式................................................................................................................................................ 33 Tx FSK模式下的幅度缓变控制.................................................................................................................................. 34 寄存器详细说明.................................................................................................................................................................. 35 寄存器详细说明............................................................................................................................................................. 37 布局考虑............................................................................................................................................................................. 49 定购信息............................................................................................................................................................................. 50 芯片信息............................................................................................................................................................................. 50 封装信息............................................................................................................................................................................. 50 修订历史............................................................................................................................................................................. 51 ����������������������������������������������������������������� Maxim Integrated Products 2 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 图目录 图1. SPI时序图...................................................................................................................................................................... 8 图2. 典型工作电路.............................................................................................................................................................. 16 图3. 数字输入..................................................................................................................................................................... 17 图4. 数字输出..................................................................................................................................................................... 18 图5. 数字输出选项.............................................................................................................................................................. 18 图6. SPI格式....................................................................................................................................................................... 20 图7. SPI写命令格式............................................................................................................................................................ 20 图8. SPI读命令格式............................................................................................................................................................ 21 图9. SPI全读命令格式.........................................................................................................................................................21 图10. SPI复位命令格式.......................................................................................................................................................21 图11. 工作模式................................................................................................................................................................... 21 图12. Tx预热时序图............................................................................................................................................................23 图13. 跳频扩谱(FHSS)流程图..............................................................................................................................................24 图14. 推荐的晶振与IC连接..................................................................................................................................................25 图15. N分频合成器配置Tx ASK模式................................................................................................................................... 27 图16. Tx FSK模式设置........................................................................................................................................................ 28 图17. Tx FSK频率整形时序图............................................................................................................................................. 28 图18. 合成器环路滤波器拓扑..............................................................................................................................................30 图19. 锁定检测器延迟功能.................................................................................................................................................30 图20. 功率放大器拓扑和信号摆幅优化...............................................................................................................................31 图21. Tx ASK模式设置........................................................................................................................................................ 32 图22. ASK整形时序图.........................................................................................................................................................33 图23. Tx FSK幅度缓变控制................................................................................................................................................. 34 图24. Tx FSK幅度缓变控制时序图...................................................................................................................................... 35 表目录 表1. 数字输入控制选项.......................................................................................................................................................17 表2. 模式控制逻辑.............................................................................................................................................................. 22 表3. 模式选项逻辑.............................................................................................................................................................. 22 表4. 休眠模式汇总.............................................................................................................................................................. 22 表5. 温度检测模式汇总.......................................................................................................................................................23 表6. 晶振分频器设置...........................................................................................................................................................25 表7. LO分频器模式............................................................................................................................................................. 26 表8. Tx FSK脉冲模式下的倍频器....................................................................................................................................... 29 表9. PA设计示例................................................................................................................................................................. 32 ����������������������������������������������������������������� Maxim Integrated Products 3 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表目录(续) 表10. 配置寄存器映射.........................................................................................................................................................35 表11. 第0组:标识寄存器(Ident).........................................................................................................................................37 表12. Ident寄存器(0x00).....................................................................................................................................................37 表13. 第1组:通用配置寄存器(Conf0、Conf1)...................................................................................................................37 表14. Conf0寄存器(0x01)....................................................................................................................................................37 表15. Conf1寄存器(0x02)....................................................................................................................................................38 表16. 第2组:GPO、数据输出和时钟输出寄存器(IOConf0、IOConf1、IOConf2)............................................................. 38 表17. IOConf0寄存器(0x03)................................................................................................................................................39 表18. IOConf1寄存器(0x04)................................................................................................................................................40 表19. IOConf2寄存器(0x05)................................................................................................................................................41 表20. 第3组:合成器频率设置(FBase0、FBase1、FBase2、FLoad)................................................................................. 41 表21. 合成器分频器设置.....................................................................................................................................................41 表22. 合成器设置................................................................................................................................................................ 42 表23. 频率范围................................................................................................................................................................... 42 表24. FBase0寄存器(0x08).................................................................................................................................................42 表25. FBase1寄存器(0x09).................................................................................................................................................42 表26. FBase2寄存器(0x0A).................................................................................................................................................42 表27. FLoad (0x0B)............................................................................................................................................................. 42 表28. 第4组:发送器幅度和定时参数(TxConf0、TxConf1、TxTstep)................................................................................ 43 表29. TxConf0寄存器(0x0C)...............................................................................................................................................43 表30. TxConf1寄存器(0x0D)...............................................................................................................................................43 表31. TxTstep寄存器(0x0E)................................................................................................................................................43 表32. 第5组:发送器整形寄存器(Shape00-Shape18)........................................................................................................44 表33. Shape00寄存器(0x0F)...............................................................................................................................................44 表34. Shape01-Shape18寄存器(0x10-0x21).....................................................................................................................45 表35. 第6组:控制寄存器(TestMux、Datain、EnableReg)................................................................................................ 45 表36. TestMux寄存器(0x3C)...............................................................................................................................................45 表37. Datain寄存器(0x3D)..................................................................................................................................................46 表38. EnableReg寄存器(0x3E)............................................................................................................................................46 表39. 第7组:只读状态寄存器(TestBus0、TestBus1、Status0、Status1)........................................................................ 46 表40. TestBus0寄存器(0x40)..............................................................................................................................................46 表41. 测试总线信号(tbus[15:8])..........................................................................................................................................47 表42. TestBus1寄存器(0x41)..............................................................................................................................................47 表43. 测试总线信号(tbus[7:0])............................................................................................................................................48 表44. Status0寄存器(0x42).................................................................................................................................................49 表45. Status1寄存器(0x43).................................................................................................................................................49 ����������������������������������������������������������������� Maxim Integrated Products 4 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 ABSOLUTE MAXIMUM RATINGS PAVDD, LOVDD, VCOVDD, CPVDD, PLLVDD, XOVDD, DVDD, and AVDD to EP.....................-0.3V to +3.6V ENABLE, DATAIN, SDI, SDO, CS, SCLK, GPO1, GPO2, HOP, and SHDN to EP.. -0.3V to (VDD + 0.3V) All Other Pins to EP................................... -0.3V to (VDD + 0.3V) Continuous Power Dissipation (TA = +70NC) TQFN (single-layer board) (derate 21.3mW/NC above +70NC)..........................1702.1mW Operating Temperature Range......................... -40NC to +125NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. CAUTION! ESD SENSITIVE DEVICE DC ELECTRICAL CHARACTERISTICS (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER Supply Voltage SYMBOL VDD CONDITIONS PAVDD, LOVDD, VCOVDD, CPVDD, PLLVDD, XOVDD, DVDD, and AVDD connected to power supply PA off Operating Current IDD Shutdown Current Input Low Voltage VIL Input High Voltage VIH PA off, PA predriver at high current setting MIN TYP MAX UNITS 2.1 3.0 3.6 V fRF = 315MHz 11.2 fRF = 434MHz 10.4 fRF = 863MHz to 945MHz 10.2 fRF = 315MHz 13.2 fRF = 434MHz 12.4 fRF = 863MHz to 945MHz 12.2 868MHz +15dBm POUT = +15dBm matching network with harmonic filter 41 868MHz +10dBm POUT = +10dBm matching network with harmonic filter 21 TA = +25NC, Sleep mode 350 TA = +85NC, Sleep mode 600 TA = +125NC, Sleep mode 1700 TA = +25NC, Shutdown mode (registers reset) 50 TA = +85NC, Shutdown mode (registers reset) 200 TA = +125NC, Shutdown mode (registers reset) 1300 mA 4000 nA 3500 0.2 x VDD 0.8 x VDD V ����������������������������������������������������������������� Maxim Integrated Products 5 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 DC ELECTRICAL CHARACTERISTICS (continued) (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP Pulldown Sink Current 12.5 Pullup Source Current 12.5 Output Low Voltage Output High Voltage VOL In buffer mode, GPO1 250FA sink current, SDO 1mA sink current, and GPO2 4mA sink current VOH In buffer mode, GPO1 250FA source current, SDO 1mA source current, and GPO2 4mA source current MAX UNITS FA 0.225 V VDD - 0.225 AC ELECTRICAL CHARACTERISTICS (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS GENERAL CHARACTERISTICS Operating Frequency Maximum Data Rate Maximum Frequency Deviation Frequency Settling Time Divide-by-1 LO divider setting 863 945 Divide-by-2 LO divider setting 431.5 472.5 Divide-by-3 LO divider setting 287.7 315 Manchester encoded 100 NRZ encoded 200 100kHz synthesizer loop bandwidth tON From Enable low-to-high transition to LO within 5kHz of final value, 100kHz synthesizer loop bandwidth Q150 MHz kbps kHz 330 Fs From Enable low-to-high transition to LO within 1kHz of final value, 100kHz synthesizer loop bandwidth 400 Match to 50I, including harmonic filter +15 dBm Programmable PA Bias Current Step With Q1% 56.2kI external PA reference current setting resistor 0.5 mA Programmable PA Power Dynamic Range Power range from decimal 1 to decimal 63 on digital PA bias current 36 dB Modulation Depth With respect to +10dBm output power 57 dB Maximum Carrier Harmonics With output matching network -50 dBc POWER AMPLIFIER Maximum Output Power PMAX ����������������������������������������������������������������� Maxim Integrated Products 6 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 AC ELECTRICAL CHARACTERISTICS (continued) (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS FRACTIONAL-N SYNTHESIZER VCO Gain KVCO Referenced to 863MHz to 945MHz LO 108 MHz/V Close-In Phase Noise 10kHz offset, 100kHz loop BW -101 dBc/Hz VCO Phase Noise 1MHz offset, 863MHz to 945MHz -126 dBc/Hz VOUT = VCPVDD/2, low setting (icont bit = 0) 204 FA VOUT = VCPVDD/2, high setting (icont bit = 1) 407 FA Charge-Pump Current ICP 1 LO Divider Settings 2 3 Minimum Synthesizer Frequency Step Referenced to 863MHz to 945MHz LO or carrier frequency band fXTAL/216 Hz -71 dBc 48 Fs 1 VP-P 7 Bits 7.25 mV 16 to 22.4 MHz Frequency Pulling by VDD 0.5 ppm/V Recommended Crystal Load Capacitance 10 Maximum Crystal Load Capacitance 20 Reference Spur 26MHz frequency step, 902MHz to 928MHz band, 100kHz synthesizer loop bandwidth Frequency Switching Time Reference Frequency Input Level ADC Resolution LSB Bit Width CRYSTAL OSCILLATOR Crystal Frequency fXTAL pF TEMPERATURE SENSOR Range Digital Code Slope -40 to +125 NC 2 NC/LSB SPI TIMING CHARACTERISTICS (Figure 1) Minimum SCLK Low to Falling Edge of CS Setup Time tSC 20 ns Minimum CS Low to Rising Edge of SCLK Setup Time tCSS 30 ns ����������������������������������������������������������������� Maxim Integrated Products 7 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 AC ELECTRICAL CHARACTERISTICS (continued) (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER SYMBOL Minimum SCLK Low to Rising Edge of CS Setup Time CONDITIONS MIN TYP MAX UNITS tHCS 30 ns Minimum SCLK Low after Rising Edge of CS Hold Time tHS 20 ns Minimum Data Valid to SCLK Rising-Edge Setup Time tDS 15 ns Minimum Data Valid to SCLK Rising-Edge Hold Time tDH 10 ns Minimum SCLK High Pulse Width tCH 30 ns tCL 30 ns Minimum CS High Pulse Width tCSH 30 ns Maximum Transition Time from Falling Edge of CS to Valid SDO tCSG CL = 10pF load capacitance from SDO to GND 20 ns Maximum Transition Time from Falling Edge of SCLK to Valid SDO tCG CL = 10pF load capacitance from SDO to GND 20 ns Minimum SCLK Low Pulse Width CS tCSH tCSS tHCS tSC tCH SCLK tCL tDH tHS tDS SDI tCSG tCG SDO 图1. SPI时序图 ����������������������������������������������������������������� Maxim Integrated Products 8 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 典型工作特性 (Figure 2, 50Ω system impedance, VDD = +2.1V to +3.6V, fRF = 288MHz to 945MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted.) 1.0 VDD = 3.6V 0.8 VDD = 3.0V 0.6 VDD = 2.7V 0.4 VDD = 2.1V 0.2 0 -50 -25 0 25 50 75 100 125 VDD = 3.6V 1.6 1.4 1.2 1.0 0.8 VDD = 3.0V VDD = 2.7V VDD = 2.1V 0.6 0.4 0.2 0 -25 940 0 25 50 75 100 MAX7049 toc03 -50 -25 0 TA = +85˚C 25 50 75 100 125 CHARGE-PUMP CURRENT vs. CONTROL VOLTAGE (LOW CURRENT SETTING, 2.1V SUPPLY) FREQUENCY SETTLING AFTER POWER-UP MAX7049 toc05 868.62MHz 868.60MHz 880 860 20 TEMPERATURE (°C) 920 900 40 125 TA = +25˚C TA = +125˚C 840 250 -40˚C 200 +25˚C +85˚C 150 100 -40˚C +125˚C DOWN UP 50 820 868.58MHz 800 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 TRANSMIT FREQUENCY (MHz) 960 MAX7049 toc04 TA = -40˚C 60 TEMPERATURE (°C) VCO TUNING CHARACTERISTIC (IN 900MHz BAND) vs. CONTROL VOLTAGE 980 80 0 -50 TEMPERATURE (°C) 1000 100 MAX7049 toc06 1.2 1.8 120 TEMPERATURE SENSOR CODE (DECIMAL) 1.4 2.2 2.0 CHARGE-PUMP CURRENT (µA) 1.6 MAX7049 toc02 SHUTDOWN MODE CURRENT (µA) 1.8 2.4 SLEEP MODE CURRENT (µA) MAX7049 toc01 2.0 TEMPERATURE SENSOR CODE vs. TEMPERATURE SLEEP MODE CURRENT vs. TEMPERATURE SHUTDOWN MODE CURRENT vs. TEMPERATURE CONTROL VOLTAGE WITH RESPECT TO SUPPLY (V) 0.00s 500.0µs 100.0µs/div 1.000ms 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 CONTROL VOLTAGE WITH RESPECT TO GROUND (V) ����������������������������������������������������������������� Maxim Integrated Products 9 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 典型工作特性(续) (Figure 2, 50Ω system impedance, VDD = +2.1V to +3.6V, fRF = 288MHz to 945MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted.) 927MHz, ibsel = 1 -130 -140 10 100 1000 10,000 OFFSET FREQUENCY (kHz) -30 -40 -50 -80 -80 -90 -90 868.590 868.594 868.598 868.602 868.606 868.610 926.990 926.994 926.998 927.002 927.006 927.010 868.592 868.596 868.600 868.604 868.608 FREQUENCY (MHz) 926.992 926.996 927.000 927.004 927.008 FREQUENCY (MHz) 0 ASK MODULATION SPECTRUM (3kHz RBW, 4kHz SQUARE-WAVE MODULATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) 0 -20 -10 -20 -50 -40 -50 -60 -60 -70 -70 -80 -80 -90 -90 -100 926.990 926.994 926.998 927.002 927.006 927.010 926.992 926.996 927.000 927.004 927.008 FREQUENCY (MHz) POWER (dBc) -40 -50 -70 -30 -30 -40 -60 -10 POWER (dBc) POWER (dBc) -20 -30 -70 UNMODULATED SPECTRUM (palopwr = 0, 100% DUTY CYCLE, +10dBm, 868MHz, WITH +10dBm AT 3V MATCH) MAX7049 toc10 -10 -20 -60 UNMODULATED CLOSE-IN SPECTRUM (100Hz RBW, 100 SAMPLE AVERAGE, 16MHz CRYSTAL, ibsel = 0, icont = 0) 0 -10 MAX7049 toc12 -110 MAX7049 toc08 -20 POWER (dBc) 927MHz, ibsel = 0 -120 -10 POWER (dBc) 868MHz, ibsel = 0 -100 0 MAX7049 toc11 -80 PHASE NOISE (dBc/Hz) 0 MAX7049 toc07 -70 -90 UNMODULATED CLOSE-IN SPECTRUM (100Hz RBW, 100 SAMPLE AVERAGE, 22.4MHz CRYSTAL, ibsel = 0, icont = 0) UNMODULATED CLOSE-IN SPECTRUM (100Hz RBW, 100 SAMPLE AVERAGE, 22.4MHz CRYSTAL, ibsel = 0, icont = 0) MAX7049 toc09 PHASE NOISE (VCO DOMINATED) vs. OFFSET FREQUENCY (CL = 0.1µF, CS = 0.01µF, R = 200I, RP = CP = 0) UNSHAPED -30 -40 -50 -60 GAUSSIAN -70 848 853 858 863 868 873 878 883 888 FREQUENCY (MHz) -80 867.75 867.85 867.80 867.95 868.05 868.15 867.90 868.00 868.10 FREQUENCY (MHz) 868.25 868.20 ���������������������������������������������������������������� Maxim Integrated Products 10 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 典型工作特性(续) (Figure 2, 50Ω system impedance, VDD = +2.1V to +3.6V, fRF = 288MHz to 945MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted.) -10 -40 -50 -60 -70 GAUSSIAN -80 867.85 867.80 867.95 -20 -20 -30 -30 -40 -50 868.15 867.90 868.00 868.10 FREQUENCY (MHz) 868.25 -70 -70 867.95 868.20 867.97 867.96 867.99 868.01 868.03 867.98 868.00 868.02 FREQUENCY (MHz) -10 GAUSSIAN -20 -40 -50 -10 868.05 UNSHAPED -50 -80 -80 FREQUENCY (MHz) 868.03 -40 -70 868.6 868.01 -30 -60 868.2 868.4 867.99 FREQUENCY (MHz) -20 -70 867.8 868.0 867.97 0 -60 -90 867.4 867.6 -80 867.95 FSK MODULATION SPECTRUM (3kHz RBW, 4kHz SQUARE-WAVE MODULATION, Q100kHz DEVIATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) POWER (dBc) -30 868.05 868.04 FSK MODULATION SPECTRUM (3kHz RBW, 4kHz SQUARE-WAVE MODULATION, Q100kHz DEVIATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) 0 -50 -60 -80 868.05 UNSHAPED -40 -60 MAX7049 toc16 867.75 -10 MAX7049 toc17 -30 POWER (dBc) UNSHAPED POWER (dBc) POWER (dBc) -20 GAUSSIAN POWER (dBc) -10 0 MAX7049 toc14 0 MAX7049 toc13 0 FSK MODULATION SPECTRUM (1kHz RBW, 4kHz SQUARE-WAVEMODULATION, ±4kHz DEVIATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) FSK MODULATION SPECTRUM (1kHz RBW, 4kHz SQUARE-WAVE MODULATION, ±4kHz DEVIATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) MAX7049 toc15 ASK MODULATION SPECTRUM (3kHz RBW, 4kHz SQUARE-WAVE MODULATION, +9dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) -90 867.4 867.6 867.8 868.0 868.2 868.4 868.6 FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 11 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 典型工作特性(续) (Figure 2, 50Ω system impedance, VDD = +2.1V to +3.6V, fRF = 288MHz to 945MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted.) PA POWER vs. PA CODE (palopwr = 0, 100% DUTY CYCLE, 915MHz, WITH +15dBm AT 3V MATCH) 15 VDD = 3.0V 10 POUT (dBm) VDD = 3.6V 3.6V 10.30 10.20 10.10 VDD = 2.1V 10 3.0V 2.1V 5 3.6V 15 POUT (dBm) 10.40 20 MAX7049 toc19 10.50 9.90 0 -5 -5 0 25 50 75 100 -10 125 0 TEMPERATURE (°C) 8 16 24 32 40 48 56 64 0 10 12 POUT (dBm) 0 40 48 56 64 PA CODE 39 8 6 4 PA CODE 19 2 -5 32 14 10 2.4V 2.7V 3.0V 3.3V 3.6V 24 PA POWER vs. PA CODE (palopwr = 0, 100% DUTY CYCLE, 868MHz, WITH +15dBm AT 3V MATCH) MAX7049 toc21 15 2.1V 16 PA CODE (DECIMAL) PA POWER vs. PA CODE (palopwr = 1, 100% DUTY CYCLE, 868MHz, WITH +10dBm AT 3V MATCH) 5 8 PA CODE (DECIMAL) MAX7049 toc22 -25 5 0 -10 -50 3.0V 2.1V VDD = 2.7V 10.00 POUT (dBm) Tx CURRENT (mA) 20 MAX7049 toc18 10.60 PA POWER vs. PA CODE (palopwr = 0, 100% DUTY CYCLE, 868MHz, WITH +15dBm AT 3V MATCH) MAX7049 toc20 Tx CURRENT vs. TEMPERATURE (PA OFF, 900MHz BAND, palopwr = 1) PA CODE 10 0 -2 -10 0 8 16 24 32 40 PA CODE (DECIMAL) 48 56 64 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 ���������������������������������������������������������������� Maxim Integrated Products 12 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 CS SDI SCLK ENABLE DATAIN SDO TOP VIEW GPO2 引脚配置 21 20 19 18 17 16 15 DVDD 22 14 N.C. HOP 23 13 XTALB GPO1 24 12 XTALC SHDN 25 11 XOVDD 10 N.C. 9 PLLVDD 8 CPOUT MAX7049 AVDD 26 PA+ 27 EP 4 5 6 7 CTRL CPVDD PAVDD REXTPA 3 VCOVDD 2 N.C. 1 LOVDD + PA- 28 TQFN (5mm x 5mm) 引脚说明 引脚 名称 1 PAVDD 2 REXTPA 3, 10, 14 N.C. 4 LOVDD 5 6 功能 功率放大器电源输入。利用33pF电容旁路至地,电容尽量靠近引脚放置。 外部PA偏置电流设置电阻的连接端。通过±1%容限、低温度系数电阻耦合至地。建议采用56.2kΩ电阻,将PA偏 置电流DAC的LSB标称值设置在0.5mA。 无连接,保持浮空。 本地振荡器(LO)电源输入。利用33pF电容旁路至地,电容尽量靠近引脚放置。 VCOVDD 压控振荡器(VCO)电源。利用1μF电容旁路至地,电容尽量靠近引脚放置。 CTRL VCO输入控制(调谐)电压,以VCOVDD引脚为参考。通过无源环路滤波器连接至CPOUT。 7 CPVDD 电荷泵电源输入。利用0.01μF电容旁路至地,电容尽量靠近引脚放置。 8 CPOUT 电荷泵输出。通过无源环路滤波器连接至CTRL。 9 PLLVDD 合成器电源输入。利用33pF电容旁路至地,电容尽量靠近引脚放置。 11 XOVDD 晶振电源输入。利用0.1μF电容旁路至地,电容尽量靠近引脚放置。 ���������������������������������������������������������������� Maxim Integrated Products 13 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 引脚说明(续) 引脚 名称 功能 12 XTALC 集电极晶振输入,直接或通过交流耦合电容连接到晶体。该引脚可能需要与地之间连接电容,具体取决于晶振负 载电容和PCB杂散电容。也可以由信号摆幅为0.8VP-P至1.2VP-P、交流耦合的外部参考时钟驱动。 13 XTALB 基极晶振输入,直接或通过交流耦合电容连接到晶体。该引脚可能需要与地之间连接电容,具体取决于晶振负载 电容和PCB杂散电容。如果XTALC由外部参考时钟驱动,该引脚必须直流短路至地。 15 SDO 16 DATAIN 发送器数据输入,也可由SPI控制数据输入功能。内部下拉至地。 17 ENABLE 使能控制。驱动为高电平时正常工作;驱动为低电平或浮空时,器件置于休眠模式。使能控制也可以由SPI控制, 内部下拉至地。 18 SCLK 19 SDI 20 SPI低电平有效片选,内部上拉至电源。 21 CS GPO2 22 DVDD 数字电源输入,利用0.1μF电容旁路至地,电容尽量靠近引脚放置。 23 HOP 24 GPO1 通用输出1,低驱动数字通用输出。 25 SHDN 关断控制数字输入。驱动为高电平时,关断内部上电复位(POR)电路,寄存器内容保持在初始状态。正常工作时 必须将该引脚驱动至低电平。内部没有拉至电源或地。 26 AVDD 模拟电源输入,利用1μF电容旁路至地,电容尽量靠近引脚放置。 27 PA+ 功率放大器(PA)输出正端。需要通过电感通路提供直流供电回路,直流电流通路也是输出阻抗匹配和谐波滤波器 网络的一部分。 28 PA- 功率放大器(PA)输出负端。需要通过电感通路提供直流供电回路,直流电流通路也是输出阻抗匹配和谐波滤波器 网络的一部分。 — EP 裸焊盘,这是唯一的接地点。为了保证器件正常工作,将该焊盘牢固地焊接到PCB的接地区域。建议在焊盘与 PCB接地区域之间采用多个过孔。 串行外设接口(SPI)数据输出,也可配置为通用数字输出。 SPI时钟,内部下拉至地。 SPI数据输入,内部下拉至地。 通用输出2,具有高驱动能力的数字通用输出。 跳频引脚,将base[20:0]位传送到N分频器,参见N分频合成器 部分。跳频功能也可由SPI控制,内部下拉至地。 ���������������������������������������������������������������� Maxim Integrated Products 14 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 功能框图 27 28 PA+ PASHDN* 25 MAX7049 2 REXTPA 6 PA GPO1* 24 ADC 7 HOP* 23 TEMPERATURE SENSOR GPO2* 21 /1, /2, OR /3 8 CPOUT CS 20 DIGITAL CONTROL AND MCU INTERFACE CHARGE PUMP SDI 19 SCLK 18 6 CTRL FRACTIONAL-N DIVIDER PFD ENABLE* 17 VCO 21 GROUNDED PAD (EP) DATAIN* 16 SDO* 15 XTAL OSCILLATOR XTALC XTALB 12 13 详细说明 架构概述和应用电路 MAX7049内部集成了一个高精度本振N分频合成器,包括 VCO、N分频器、鉴相/鉴频器、电荷泵、LO驱动器和锁 定检测器。环路滤波器位于片外,允许用户针对具体应用 优化合成器的噪声和瞬态特性。FSK发送模式下,合成器 根据DATAIN引脚或datain位(Datain寄存器,0x3D,第6位) 的状态发送高电平信号(mark)频率和低电平信号(space)频 率。用户可编程的频率整形功能帮助用户精确定义从高电 平信号频率到低电平信号频率(或反方向)的转换,使得调 制后的Tx波形占用最小带宽。 * OPTIONAL I/Os FROM/TO MCU. IC采用差分发射极耦合、双集电极开路功率放大器发送输 出信号。输出级偏置电流由外部电阻和内部幅度整形电路 共同设置。可编程整形功能使得用户能够根据DATAIN引 脚或datain位的状态精确定义载波信号的开、启(或反方向) 转换过程,从而将调制后的Tx信号占用带宽降至最小。当 PA开启突发数据或结束突发数据关闭时,FSK模式采用线 性调节幅度缓变功能,以限制频谱范围。 IC配合低端MCU、晶振和少数用于电源旁路、射频匹配的 无源元件即可构成完整的发送器,如图2所示。 MCU与IC之间的通信通过4引脚SPI总线和可以选择的数字 输入、输出实现。 ���������������������������������������������������������������� Maxim Integrated Products 15 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 C13 L1 DASHED LINES DENOTE OPTIONAL CONNECTIONS C20 J1 C14 L3 L4 C12 L2 C11 50I + VDD PAVDD 28 27 26 25 24 23 DVDD HOP GPO1 SHDN AVDD PA- C15 PA+ C16 C17 22 1 21 2 20 3 19 4 18 C1 REXTPA R1 N.C. LOVDD C2 C3 VCOVDD CTRL CPVDD R2 MAX7049 5 17 GROUNDED PAD (EP) 6 16 7 15 GPO2 CS SDI µP SCLK ENABLE DATAIN SDO C4 C7 C8 14 N.C. 13 XTALB 12 11 XTALC 10 XOVDD 9 N.C. 8 PLLVDD C5 CPOUT C6 Y1 C9 C10 图2. 典型工作电路 ���������������������������������������������������������������� Maxim Integrated Products 16 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 数字输入和输出 数字输入 IC的SPI输入包括:CS、SCLK和SDI引脚。CS引脚为低电 平有效,该引脚带有内部上拉;SCLK和SDI引脚带有内部 下拉。除SPI输入外,还提供多个IC数字输入选项,包括: DATAIN、ENABLE和HOP。这些可选输入在内部下拉至 地电位,用户在控制内部信号时,可以选择把引脚驱动到 相应的逻辑电平或将控制位设置到相应状态,如图3所示。 数字输出 IC具有两路专用的通用输出(GPO1和GPO2)、一路SPI输 出(SDO),CS为 高 电 平 时,SPI输 出 还 可 作 为 通 用 输 出。 GPO1、GPO2和SDO引脚可配置输出不同的内部状态信号 和时钟,如图4所示。 输出(GPO1和GPO2)引脚既可作为数字缓冲器,也可作为 源出/吸入的限流输出,如图5所示。 SPI控制将IC和MCU之间所需的I/O数量降至最少,引脚控 制位可以节省与SPI通信有关的配置任务。 22 DVDD 22 DVDD 22 DVDD INTERNAL CSB SIGNAL 20 CS INTERNAL INPUT SIGNAL INPUT ‘OR’ INPUT INPUT GROUNDED PAD (EP) GROUNDED PAD (EP) INTERNAL INPUT SIGNAL PROGRAMMABLE CONTROL BIT GROUNDED PAD (EP) INPUT = SCLK AND SDI INPUT = DATAIN, ENABLE, AND HOP SPI INPUTS 图3. 数字输入 表1. 数字输入控制选项 PIN BIT NAME REGISTER NAME REGISTER ADDRESS (hex) BIT LOCATION (7:0) DATAIN datain Datain 0x3D 6 Data input to transmitter. ENABLE enable EnableReg 0x3E 0 Enable input for transmitter. HOP hop FLoad 0x0B 0 Initiates the transition to the next frequency as defined by base[20:0]. FUNCTION ���������������������������������������������������������������� Maxim Integrated Products 17 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 sdos[3:0] SPI READ-ONLY REGISTERS TestBus0 AND TestBus1 (0x40 AND 0x41) tmux[3:0] INTERNAL SIGNALS MUX SDO 15 MUX gp1s[3:0] tbus[15:0] gp1md[1:0] GPO1 24 MUX gp2s[3:0] gp1isht [15:4] MAX7049 plllock xtal /16 ckdiv[1:0] /1, /2, /4, OR /8 gp2md[2:0] GPO2 21 MUX /1, /2, /4, OR /8 gp2isht /5, /6, mclk /1, /2, /7, OR /8 /4, OR /8 clksht XTALC 12 XTALB xtal[1:0] 13 图4. 数字输出 BUFFER MODE CURRENT MODE DVDD 22 DVDD 22 ISOURCE INTERNAL SIGNAL OUTPUT GROUNDED PAD (EP) OUTPUT INTERNAL SIGNAL ISINK GROUNDED PAD (EP) 图5. 数字输出选项 ���������������������������������������������������������������� Maxim Integrated Products 18 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 电流工作模式能够降低与电源电流尖峰相关的数字噪声, GPO1引脚的电流驱动能力相对较弱(80μA或160μA),由 IOConf2寄存器(0x05) (gp1md[1:0]位)控制电流设置: xtal为晶振频率,mclk为主控制器数字时钟。主控制器数 字时钟是由xtal[1:0]位(Conf0寄存器,0x01)设置分频的晶 振频率,设置如下: gp1md[1:0] 模式 xtal[1:0] 分频比 0x 缓冲模式 00 5 10 80μA吸入/源出电流 01 6 11 160μA吸入/源出电流 10 7 11 8 GPO2具有较大的电流驱动(高达4mA),该GPO可用作输出 时钟信号源。IOConf2寄存器(0x05) (gp2md[2:0]位)控制电 流设置: gp2md[2:0] 模式 0xx 缓冲模式 100 1.0mA吸入/源出电流 101 2.0mA吸入/源出电流 110 3.0mA吸入/源出电流 111 4.0mA吸入/源出电流 如果在IC处于休眠模式(ENABLE引脚和使能位复位至0)时 仍需保持有效的GPO2时钟输出,则将SHDN引脚复位至0, clksht位(IOConf2寄存器,0x05,第3位)必须置1。 GPO非常有用的一个功能是输出状态指示,可及时反映特 定条件下的发送器状态。关于TestBus0和TestBus1寄存器 的状态信号说明,请参考寄存器详细说明 部分。 串行外设接口(SPI) IC按照4线SPI协议设置寄存器,配置、控制整个发送器的 工作。 其它2位也用于控制GPO1和GPO2,IOConf0寄存器(0x03) (gp1isht和gp2isht位)允许继续工作在电流模式,即使关闭 IC (休眠模式)。 以下数字引脚控制SPI工作: CS: 低电平有效的SPI片选 GPO2引脚设计用于时钟驱动的主输出,具有最强的缓冲 能力,可输出最大电流。 SDI: SPI数据输入 GPO2时钟信号可由gp2s[3:0]和ckdiv[1:0]位(IOConf0寄存 器,0x03)选择。 SDO: gp2s[3:0] GPO2输出 0000 plllock 0001 mclk/(ckdiv分频器) 在一个CS低电平周期内,可发送任意数量的8位数据(Data 1、 Data 2、... Data N),允许进行突发写操作和突发读操作。 CS引脚为高电平时,SDO引脚用作通用输出(GPO)。 0010 xtal/(ckdiv分频器) 0011 xtal/16/(ckdiv分频器) SCLK: SPI串行时钟 SPI数据输出 SPI采用字节格式通信,如图6所示。 其中ckdiv分频器为: ckdiv[1:0] 分频比 00 1 01 2 10 4 11 8 ���������������������������������������������������������������� Maxim Integrated Products 19 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 CS SCLK SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DATA 1 DATA N 图6. SPI格式 SPI命令 IC支持以下命令: Write:在同一CS周期内,写命令操作如下: SDI: <0x01> <Initial Address> <Data 1> <Data 2> ... <Data N> 利用该命令,将Data 1写入<Initial Address>指定的地址,Data 2写入<Initial Address + 1>指定的地址,依此类推。 Read:在同一CS周期内,读命令操作如下: SDI: <0x02> <Address 1> <Address 2> <Address 3> ... <Address N> SDO:<0xXX> <0xXX> <Data 1> <Data 2> <0x00> ... <Data N - 1> <Data N> 利用该命令,可在同一CS周期内读取所有寄存器。能够以任意顺序指定地址。 Read All:需要两个CS周期,Read All命令操作如下: CS周期1 SDI: <0x03> <Address N> SDO: <0x00> CS周期2 <0x00> <0x00> ... <0x00> <Data N> <Data N + 1> <Data N + 2> ... <Data N + n> Reset:SPI复位命令操作如下: SDI: <0x04> 内部产生一个低电平有效的主控制器复位信号,从上一个SCLK信号的下降沿到下一个CS信号的下降沿(tHCS + tCSH)。 CS SCLK SDI A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 WRITE COMMAND (0x01) INITIAL ADDRESS (A[7:0]) DATA 1 D7 D0 DATA N 图7. SPI写命令格式 ���������������������������������������������������������������� Maxim Integrated Products 20 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 CS SCLK SDI A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0 A7 READ COMMAND (0x02) ADDRESS 1 ADDRESS 2 SDO ADDRESS N D7 D6 D5 D4 D3 D2 D1 D0 D7 DATA 1 A0 0x00 D0 D7 DATA 2 D0 DATA N 图8. SPI读命令格式 CS SCLK A7 A6 A5 A4 A3 A2 A1 A0 SDI READ-ALL COMMAND (0x03) ADDRESS N SDO D7 D6 D5 D4 D3 D2 D1 D0 D7 DATA N D0 D7 D0 DATA N + 1 DATA N + n 图9. SPI全读命令格式 INITIAL CS SHUTDOWN SCLK SLEEP SLEEP XTAL ON SDI SPI CONFIGURATION TEMPERATURE SENSOR RESET COMMAND (0x04) resetb Tx FSK ASK 图10. SPI复位命令格式 图11. 工作模式 工作模式概述 IC提供多种工作模式,用户可根据具体应用将发送器的功 耗降至最小。主要工作模式包括:初始化、休眠、温度检 测和Tx模式,如图11所示。 SHDN引脚为高电平时,IC处于关断模式。关断模式下, IC内部的POR电路禁用,不消耗电流。关断模式下,所有 内部数据寄存器复位到初始状态,只有在SHDN引脚驱动 至低电平后,重新配置寄存器才能进入相应的发送器工作 状态。 ���������������������������������������������������������������� Maxim Integrated Products 21 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 SHDN引脚为低电平时,POR电路有效,内部数据寄存器 保持在初始状态,直到电源高于2.1V,IC进入初始化模式。 在初始化模式下,IC可以配置进入休眠模式、温度检测 模式或Tx模式。休眠模式下提供两个选择:休眠和XTAL ON。休眠状态下,消耗电流的典型值为350nA,保留所有 寄存器状态;XTAL ON模式下,由clksht位(IOConf2寄存 器,0x05,第3位)控制,使能晶振,晶振信号经过分频(/1、 /2、/4、/8,由ckdiv[1:0]位(IOConf0寄存器,0x03,[5:4]位) 设置)后通过GPO2输出。设计XTAL ON模式的目的是保证 始终提供一路精确的高速时钟输出,供MCU使用。 温度检测模式下,可使用内部温度传感器。 Tx模式下,发送器配置为发送ASK数据或FSK数据。 引脚驱动为低电平,ENABLE引脚驱动为高电平或使能位 置位,则开启发送器模式,参见表2逻辑汇总。 模式选项由SPI模式控制位(Conf0寄存器,0x01,第4位)选 择,参见表3选项汇总。 休眠模式 从初始化模式,发送器直接进入休眠模式。XTAL ON模式 下,晶振保持有效,晶振时钟经过分频后通过GPO2输出。 禁用RF功能且clksht位置位时,进入该模式。该模式下, 电流消耗与输出信号的频率、GPO2引脚的负载电容有关。 输出信号为3.2MHz、负载电容为10pF时,电流损耗典型 值为750μA。详细信息请参考数字输出 部分,表4汇总了 休眠模式功能。 Tx模式由SHDN引脚、ENABLE引脚和使能位(EnableReg 寄存器,0x3E,第0位)的逻辑状态共同确定。如果SHDN 表2. 模式控制逻辑 表4. 休眠模式汇总 SHDN PIN ENABLE PIN enable BIT TRANSMITTER MODE 0 0 0 Sleep 0 0 1 Tx 0 1 0 Tx 0 1 1 Tx 1 0 0 Shutdown 1 0 1 Shutdown 1 1 0 Shutdown 1 1 1 Shutdown SLEEP MODE SETTINGS TYPICAL CURRENT DRAIN Sleep Enable = 0 350nA All register contents are retained. XTAL ON clksht = 1 750FA* Divided XTAL oscillator signal can be directed to GPO2. COMMENTS *与GPO2负载电容和输出时钟频率有关。 表3. 模式选项逻辑 mode BIT MODE OPTION 0 ASK 1 FSK ���������������������������������������������������������������� Maxim Integrated Products 22 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 温度检测模式 用户必须从休眠模式启动温度检测模式,而且,发送器完 成温度测量后自动返回休眠模式。 当tsensor位(EnableReg寄 存 器,0x3E, 第3位)置 位 时, 使 能 片 上 温 度 传 感 器。 一 旦 内 部 温 度 传 感 器 电 路 达 到 稳 定,A/D转 换 器 进 行 温 度 转 换,ADC转 换 结 果 储 存 在 tsadc[6:0],当数字测试复用位tmux[3:0] (TestMux寄存器, 0x3C,3:0位)置0时,可通过TestBus1寄存器(0x41,6:0位) 访问温度测试结果。tsensor位为自复位,完成温度测量后 自动返回至零状态。完成测量后,tsdone状态位(Status1 寄存器,0x43,第4位)也会复位。温度检测模式下,电流 损耗小于1mA,传感器稳定建立时间和ADC转换时间共计 小于2ms。温度检测模式相关特性汇总于表5。 Tx模式 2) ASK模式下,内部txready信号转变到高电平之后,功 率放大器在DATAIN引脚的上升沿或datain置位时开始 缓慢升高;FSK模式下,功率放大器则在txready信号 的上升沿开始缓慢上升的过程。 图12所示为预热过程。 ASK应用中,合成器输出固定在载频。输出功率在完全关 闭(DATAIN引脚为逻辑0或datain位清零时)和所设置的输出 功率电平(DATAIN引脚为逻辑1或datain置位时)之间交替切 换。可以对输出信号幅度整形,以降低占用的传输频宽。 关于幅度整形的详细信息,请参考功率放大器 部分。PA 输出功率由线性控制PA输出偏置电流的6位幅值字决定, LSB电流幅值由REXTPA引脚与地之间的片外电阻设置。 电阻为56.2kΩ时,LSB电流标称值为0.5mA,利用低温度 系数、±1%容限的电阻可以严格控制发送器功率。 Tx模式包含两个子单元:FSK和ASK。 发送器输出信号由N分频合成器产生,经过缓冲后,由功 率放大器(PA)放大到所设置的输出功率电平。发送器需要 有限的预热时间,从休眠模式进入Tx模式后,按照以下过 程工作: 1) 使能晶振,并建立到稳定状态。内部ckalive状态信号 的上升沿表示晶振已经稳定工作,提供精确的时基。 除PA外,使能其它所有Tx模块。在其它模块稳定到相 应的工作点的同时,合成器也稳定到相应的LO频率。 lockdet状态信号的上升沿表示合成器已锁定频率。有 些窄带应用中,lockdet信号可利用plldl[2:0]位(Conf1寄 存器,0x02,5:3位)设置有效延时,确保合成器稳定在 规定的精度内,延迟信号称为plllock。txready状态信 号的上升沿与plllock信号的上升沿一致。 tsensor EXECUTION TIME (ms) <2 105µs (typ) ckalive 95µs (typ) lockdet plldel INTERVAL plllock txready datain ‘OR’ DATAIN 表5. 温度检测模式汇总 BIT enable ‘OR’ ENABLE TYPICAL CURRENT DRAIN (mA) COMMENTS <1 The tsdone status bit is set when the measurement is completed. The results are stored in tsadc[6:0]. PAQ* USER-DEFINED PA RAMP (*PA RAMP BEGINS ON THE RISING EDGE OF DATAIN IN ASK MODE AND ON THE RISING EDGE OF txready IN FSK MODE.) 图12. Tx预热时序图 ���������������������������������������������������������������� Maxim Integrated Products 23 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 FSK应用中,合成器输出在低电平信号(DATAIN引脚为逻 辑0、datain清零时)频率和高电平信号(DATAIN引脚为逻辑 1、datain置位时)频率之间交替切换。可以对输出信号进 行频率整形,以降低发送信号占用的频宽。关于频率整形 的更多信息,请参见N分频合成器 部分。PA功率由6位幅 值字决定,发送器使能或禁用时,PA输出功率在完全关闭 和所设置的功率之间缓慢变化,还可以设置变化斜率。为 了以所要求的功率发送信息,用户需等待PA完成缓变过程, 然后发送数据序列。 Tx模式下,典型电流损耗为10.2mA (低功率缓冲模式)或 12.2mA (大功率缓冲模式)加上所设置的PA输出电流。缓 冲器功率模式由palopwr位(TxConf0寄存器,0x0C,第7位) 控制,置位时处于低功率模式。 INITIAL STATE CONFIGURE SET fska TO ZERO HOP LOAD FIRST CHANNEL (FBase) ENABLE **CAN BE COMPLETED IN A SINGLE SPI BURST** NO 跳频扩谱(FHSS)工作原理 IC支持FHSS工作模式,快速建立N分频合成器和幅度整形 PA协同工作,能够在低端MCU的控制下实现严谨、高效、 便捷的跳频工作。 图13所示为工作在FHSS模式下的推荐流程。 初始配置期间,首选使用hop位配置;发送器工作期间, 最好使用HOP引脚配置(优于hop位控制),有助于避免发送 器工作期间激活SPI的可能,以严格控制发送器时序。 LOAD SECOND CHANNEL (FBase) SET fska TO DESIRED VALUE IF FSK MODE DISABLE SLEEP STATE ENABLE HOP TRANSMITTER ACTIVITY WARMUP SYNTHESIZER FORCED OUT OF LOCK FSK MODE ckalive TRANSITIONS HIGH YES YES PA RAMPED DOWN NO YES END TRANSMITTER ACTIVITY SYNTHESIZER FREQUENCY CHANGED LOAD NEXT CHANNEL (FBase) NO YES SYNTHESIZER ACQUIRES LOCK HOP PIN HELD LOGIC 1 NO FSK TRANSMITTER MODE YES PA RAMPED UP NO 图13. 跳频扩谱(FHSS)流程图 ���������������������������������������������������������������� Maxim Integrated Products 24 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 功能说明 式中: 晶振 IC的晶振电路设计用于配合并联谐振晶体,为数字控制模 块产生N分频合成器参考时钟频率和信号。通常只需在引 脚XTALB和XTALC之间连接晶体,以及两个可选择的负载 调整电容。 fP为牵引晶体频率总量,单位为ppm。 考虑到PCB的杂散电容,振荡器通常在晶体连接引脚之间 存在大约8pF的等效负载电容。必须在XTALC与地之间、 XTALB与地之间增加相同的电容,使晶振工作在规定的晶 体负载电容下。如果晶体的负载电容不符合规定的负载电 容,振荡器频率会偏离规定的工作频率,在N分频合成器 时钟上引入误差。晶振规定的负载电容高于实际作用的负 载电容时,振荡频率高于规定频率。 CLOAD为负载电容。 已知晶体的电气参数,可计算出相对于规定工作频率的频 率牵引。频率牵引由下式给出: fP CM 2 1 + C CASE C LOAD − 1 6 × 10 C CASE + C SPEC OPTIONAL BLOCKING CAPACITORS SHORT IF NOT REQUIRED XTALB 12 13 CBLOCK CBLOCK CLOAD CLOAD CCASE为外壳电容(包括封装电容和晶体外壳电容)。 CSPEC为规定的负载电容。 当晶体负载电容符合技术指标时(即CLOAD = CSPEC),频率 牵引为零。 振荡器电路设计的晶振负载电容介于8pF和20pF之间。建 议工作在10pF负载电容,以优化启动时间。当施加的负载 电容大于20pF时,振荡器不能启动。 晶振工作频率范围为16.0MHz至22.4MHz。为了维持内 部3.2MHz时基mclk,xtal[1:0] (Conf0寄存器,0x01,1:0 位)必须按照表6所示设置。对于80kbps (曼彻斯特码)或 160kbps (NRZ码)以下的所有数据率,推荐使用3.2MHz内 部时基。对于更高的数据率(高达100kbps (曼彻斯特码)或 200kbps (NRZ码)),需采用4MHz内部时基,如表6所示。 晶体的初始误差、温度系数和老化必须满足要求,从而使 发送器和接收器的频率累积误差保持在规定的范围内。发 射信号必须由配套的接收器进行下变频,使整个必要的调 制边带位于预解调滤波器的通带内,确保正常工作。对于 信道化工作,发射信号(包括调制边带)必须包含在给定的 频率范围内,由此限制了晶体的初始误差、温度系数和老 化指标。 MAX7049 XTALC CM为晶体动态电容。 LOADING CAPACITORS (USED ALONG WITH THE IC INTERNAL CAPACITANCE AND PCB STRAY CAPACITANCE TO APPLY SPECIFIED LOAD CAPACITANCE TO THE CRYSTAL.) 图14. 推荐的晶振与IC连接 表6. 晶振分频器设置 CRYSTAL FREQUENCY (MHz) CRYSTAL DIVIDER RATIO xtal[1:0] Conf0 REGISTER, ADDRESS 0x01, BITS 1:0 mclk (MHz) 16.0 5 00 3.2 19.2 6 01 3.2 22.4 7 10 3.2 20.0 5 00 4.0 注:本表中晶振频率和分频比的组合为推荐设置,并未包括全部设置。 ���������������������������������������������������������������� Maxim Integrated Products 25 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 IC提供温度传感器和小步进N分频合成器,以改善晶振频 率的稳定度。系统MCU可利用传感器及晶振温度系数计算 必要的频率修正,并可按照fXTAL/216Hz步长调节N分频合 成器。 电荷泵工作在0.4V至电源电压以下0.4V的范围。icont位 (Conf1寄存器,0x02,第7位)复位时,电荷泵电流典型值 为204μA,icont置位时,几乎倍增到407μA。CPOUT引脚 为电荷泵输出。 IC允许采用外部参考时钟信号代替晶振。外部参考时钟应 通过交流耦合电容连接到引脚XTALC,幅度介于0.8VP-P 和1.2VP-P之间,引脚XTALB DC接地。 Tx ASK模式 N分频器可通过21位分频字设置,分频字由5为整数部分和 16位小数部分组成,如图15所示。 N分频合成器 除外部无源环路滤波器外,IC包含了完全集成的N分频合 成器,用于产生发射信号频率。器件包括:压控振荡器 (VCO)、电荷泵、鉴相鉴频器(PFD)、N分频器、LO分频器 及所有必要的支持电路。片上晶振为N分频合成器产生参 考时钟。 参数D为N分频比: N分频合成器的工作频率为:863MHz至945MHz。LO分 频器具有三种模式:1分频、2分频和3分频。从而允许分 别 工 作 在863MHz至945MHz、431.5MHz至472.5MHz和 287.7MHz至315MHz。863MHz至945MHz范 围 内, 频 率 分辨率为fXTAL/216,LO分频后,LO分频器输出的分辨率更 小。LO分频器的分频比由fsel[1:0]位(Conf0寄存器,0x01, 3:2位)设置,分频比如表7所示。 21位分频字由FBase0、FBase1和FBase2寄存器定义,在 Hop信号的上升沿锁存至N分频器,Hop信号是IC使能时 HOP输入引脚电平与hop位(FLoad寄存器,0x0B,第0位) 的逻辑或。 D = 32 + base[20:0]/216 因此,合成器输出频率由下式给出: fSYNTH = D x fXTAL 式中,fXTAL为晶振产生的参考时钟频率。 VCO工 作 于 整 个 规 定 的 频 率 范 围, 无 需 校 准。 典 型 的 VCO增 益 为108MHz/V,1MHz频 偏 下 的 典 型 相 位 噪 声 为-126dBc/Hz。 工 作 在2分 频LO分 频 器 时, 相 位 噪 声 改善20 x log10(2);工作在3分频LO分频器时,改善20 x log10(3)。VCO控制电压作用在CTRL引脚,以VCOVDD引 脚为参考。ibsel位(Conf1寄存器,0x02,第6位)设置VCO 偏置电流,ibsel位置位时,VCO电流增大1mA。1MHz时, VCO相位噪声可以达到-128dBc/Hz,电流损耗增大。 表7. LO分频器模式 fsel[1:0] Conf0 REGISTER, ADDRESS 0x01, BITS 3:2 LO DIVISION RATIO TRANSMITTER OPERATING FREQUENCIES (MHz) 00 3 287.7 to 315 01 2 431.5 to 472.5 10 Not used N/A 11 1 863 to 945 ���������������������������������������������������������������� Maxim Integrated Products 26 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 图15所示合成器工作在Tx ASK模式,Tx载频为静态。对 于Tx FSK应用,载波频率根据Datain输入在高电平信号频 率和低电平信号频率之间交替切换,IC具有频率整形功能, 允许用户限制发送信号的频宽。 频率整形Tx FSK模式 整形功能的输入如图16所示。该模式下,wsoff位(TxConf0 寄存器,0x0C,第6位)清零,wsmlt[1:0]位(TxConf1寄存器, 0x0D,7:6位)清 零。base[20:0]位 设 置 最 低 频 率(对 应 于 低电平)的分频比,base1[20:0]设置最高频率(对应于高电 平)的分频比。在Datain信号的上升沿,N分频器输入按照 tstep[7:0]位(TxTstep寄 存 器,0x0E,7:0位)和shpnn[7:0] 位(Shape00-Shape18寄存器,0x0F-0x21,7:0位,其中 nn = 00至18)的定义,在base[20:0]和base1[20:0]之间以 20级步长转换,如图17所示。 icont = 0 → CP CURRENT = 204µA icont = 1 → CP CURRENT = 407µA MAX7049 fTX icont REGISTER Conf1, ADDRESS 0x02, BIT 7 fsel[1:0] REGISTER Conf0, ADDRESS 0x01, BITS 3:2 /1, /2, OR /3 fsel[1:0] = 00 → /3 fsel[1:0] = 01 → /2 fsel[1:0] = 11 → /1 fSYNTH CHARGE PUMP 8 CPOUT PROGRAMMABLE CONTROL BITS hop REGISTER FLoad, ADDRESS 0x0B, BIT 0 FRACTIONAL-N DIVIDER D /(32 + base[20:0]/216) PFD VCO 108MHz/V 6 CTRL Hop 21-BIT LATCH ibsel REGISTER Conf1, ADDRESS 0x02, BIT 6 base[20:16] REGISTER FBase0, ADDRESS 0x08, BITS 4:0 base[15:8] REGISTER FBase1, ADDRESS 0x09, BITS 7:0 HOP 23 base[7:0] REGISTER FBase2, ADDRESS 0x0A, BITS 7:0 XTAL OSCILLATOR fXTAL XTALC 12 XTALB 13 图15. N分频合成器配置Tx ASK模式 ���������������������������������������������������������������� Maxim Integrated Products 27 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 PROGRAMMABLE CONTROL BITS FROM VCO TO PFD 21 datain 16 DATAIN FRACTIONAL-N DIVIDER D MAX7049 Datain FREQUENCY WAVESHAPING FUNCTION wsoff shpnn[7:0] : nn = 00:18 wsmlt[1:0] tstep[7:0] base[20:0] → SPACE FREQUENCY base1[20:0] → MARK FREQUENCY base[20:0] 图16. Tx FSK模式设置 Datain base1[20:0] base[20:0] shp05[7:0] shp04[7:0] tSTEP tSTEP 图17. Tx FSK频率整形时序图 ���������������������������������������������������������������� Maxim Integrated Products 28 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 21位分频字以tstep[7:0]规定的速率更新,步长更新时间有 下式给出: tSTEP = tstep[7:0]/mclk 用shpnn[7:0]表示,base1[20:0]为: base1[20:0] = base[20:0] + nn = 18 ∑ shpnn[7:0] nn = 00 如图17所示,频率缓降波形与频率缓升波形反相,而非镜 像。频率偏差,即高电平信号频率和低电平信号频率之差, 也可以用shpnn[7:0]表示: frequency = deviation 频率偏差 = fXTAL /2 16 × nn = 18 ∑ shpnn[7:0] nn = 00 整 形 功 能 可 以 逼 近 任 何 单 调 波 形 特 性。 作 为 整 形 功 能 的 一 个 例 子, 我 们 利 用 持 续 时 间 为1/2位 间 隔、 频 偏 为 50kHz的线性缓变波形逼近2kbps NRZ。缓变持续时间为 250μs,采用3.2MHz mclk,由于每个步长时间为12.5μs, 而40 x 0.3125μs得到12.5μs,所以tstep[7:0] SPI位需要 设置为十进制40 (0x28)。如果采用16MHz晶振,则要求 shpnn[7:0]位的值为十进制值11 (0xB)。本例中,频偏为 19 (频率步长数) x 11 (每步频率变化) x 16,000,000/216 或51.03kHz。如果以牺牲线性度为代价,得到更接近于 50kHz的数值,Shape00-Shape18四个寄存器可以设置为 十进制10 (0xA)。这样得到的频偏为205 x 16,000,000/216 或50.05kHz。该模式下,采用16.0MHz晶振时,最大可设 置频偏为(并非配套接收器考虑到带宽限制而使用的典型 值):19 x 255 x 16,000,000/216或1.18MHz。 Tx脉冲FSK模式 该 模 式 下,wsoff位(TxConf0寄 存 器,0x0C, 第6位)置 位,wsmlt[1:0]位(TxConf1寄 存 器,0x0D,7:6位)用 于 配 置从低电平频率直接转换到高电平频率,不采用整形功能。 base1[20:0]表示为: base1[20:0] = base[20:0] + wsm × shp00[7:0] 式中,wsm为表8给出的倍频器 脉冲FSK模式相对于整形FSK而言工作范围略宽,占用的 频带也更宽。Tx ASK模式下同样可以使用整形功能,功率 放大器 部分介绍这一功能。 环路带宽 N分频合成器的环路带宽取决于对发射载波信号的相位噪 声、频率建立时间、FSK调制率以及电流损耗的要求。 N分频合成器输出相位噪声的三个主要来源是:近载波相 位噪声、VCO相位噪声和分频量化相位噪声。可以设置环 路带宽和滤波器阶数,来满足不同应用对低载波相位噪声 (为了在较宽的环路带宽下获得优异性能)和低VCO相位噪 声(为了在窄带环路带宽下获得优异性能)的要求。必要时, 可增大环路滤波器阶数,以减小分频量化相位噪声的影响, 支持更宽的环路频带要求。 表8. Tx FSK脉冲模式下的倍频器 wsmlt[1:0] TxConf1 REGISTER, ADDRESS 0x0D, BITS 7:6 wsm 00 1 01 2 10 4 11 8 ���������������������������������������������������������������� Maxim Integrated Products 29 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 通常情况下,100kHz环路带宽即可适用于大多数应用, 提供较快的建立时间。在902MHz至928MHz ISM频带, 26MHz步长,频偏小于5kHz时,建立时间典型值在48μs 以 内。 该 环 路 带 宽 优 化 于 最 小 载 波 相 位 噪 声 和VCO噪 声。此外,这种设置下,能够支持大多数FSK调制率高达 160kbps的NRZ和80kbps的曼彻斯特编码应用。如果在更 高的频偏下需要进一步降低相位噪声,可适当降低环路带 宽,此时VCO噪声将占相位噪声的主导地位。 环路滤波元件计算如下: R = (2 x G x D x BW)/(ICP x KVCO)I 其中: R为环路滤波器电阻,单位为Ω。 D为N分频合成器的反馈分频比。 BW为相应的N分频合成器环路带宽,单位为Hz。 ICP为电荷泵电流,单位为A。 KVCO为合成器输出频率(863MHz至945MHz)下的VCO 增益,单位为Hz/V。 CS = 1/(2 x G x R x BW x (√10) ),单位为F 其中: CS为与R和CL串联组合相并联的小环路滤波电容。 R为环路滤波器电阻,单位为Ω。 BW为所要求的N分频合成器环路带宽,单位为Hz。 10为近似值。 可向环路滤波器增加一个RC极点,以消除宽环路带宽内 更多的分频量化相位噪声。该极点增加在CPOUT引脚和 CTRL引脚之间。RC极点的阻抗值应为环路滤波电阻的1.5 倍,从而在限制负载的同时限制热噪声对相位噪声的影响。 极点频率应大于环路带宽的10倍,图18所示为环路滤波器 配置。 锁定检测器 N分频合成器的主要支持电路为锁定检测器,内部锁定检 测信号为发送器工作的一个门控信号,如工作模式概述 部 分所示。锁定检测信号本身满足大多数工作条件,但是如 果该信号触发太快则会增加额外的延迟,使得合成器不能 够稳定建立在对应的频率精度内,如图19所示。 CL = (√10)/(2 x G x R x BW),单位为F 其中, CL为与R串联的大环路滤波电容。 R为环路滤波器电阻,单位为Ω。 BW为所要求的N分频合成器环路带宽,单位为Hz。 10为近似值。 VDD 5 CP 6 CL RP R CTRL MAX7049 lockdet VDD 7 CS VCOVDD CPVDD plldel INTERVAL CPOUT 8 plllock SHORT RP AND CP IF EXTRA POLE IS NOT USED. BYPASS VCOVDD AND CPVDD TO GROUND. 图18. 合成器环路滤波器拓扑 图19. 锁定检测器延迟功能 ���������������������������������������������������������������� Maxim Integrated Products 30 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 附加延迟间隔由plldl[2:0]位(Conf1寄存器,0x02,5:3位)设 置,该延迟由下式给出: REXTPA引脚和地之间有一个外部电阻(REXT)。该电阻与片 上1.13V基准电压共同设置参考电流(IR)。电阻应尽量靠近 IC放置,以降低该节点的电容。建议采用具有稳定温度特 性的±1%高精度电阻,使输出功率波动降至最小。片上电 流放大器25 x IR决定PA偏置DAC的LSB。例如,56.2kΩ 电 阻 将LSB设 置 为0.5mA。palopwr位(TxConf0寄 存 器, 0x0C,第7位)控制PA缓冲放大器的偏置电流。该位置1时, 将缓冲偏置电流降低2mA,用于低功率应用。缓冲放大器 设置基底电压(VP),提供足够的PA偏置DAC裕量。 plldel 间隔 = plldl[2:0] x (64/mclk)s 式 中,plldl[2:0]为 十 进 制 等 效 值, 产 生 的 标 称(3.2MHz mclk) plldel间隔为0至140μs。SDO、GPO1和GPO2可指 示lockdet和plllock的状态,参见寄存器详细说明 部分的 TestBus0和TestBus1寄存器。 功率放大器 IC提供可编程电流损耗和高效率功率放大器(PA)。PA为差 分输出级,能够为50Ω负载提供大于+15dBm的功率驱动, 包括匹配网络和谐波滤波器损耗。PA偏置电流(IPA)能够以 64级步长线性配置,如图20所示。 匹配网络的功能是将负载电阻(RL)转换为最佳的PA差分负 载电阻(ROPT)。ROPT由相应的输出功率(PD)、匹配网络损 耗(Lm)、电源电压(VDD)和基底电压(VP)决定。表9所示为 确定ROPT和IPA_peak的设计示例,其中IPA_peak为直流 电流的峰值。 VDD L J INSERTION LOSS = Lm SIGNAL SWINGS FOR OPTIMAL LOAD IMPEDANCE MATCHING NETWORK FROM FREQUENCY SYNTHESIZER BUFFER AMP vi RL 27 28 PA- 1.13V REXT 2 REXTPA IR 25x I_lsb = 25 x IR 0 PA+ ROPT MAX7049 PA+ VDD VP VP palopwr CURRENT MIRROR vi PA- VP PA BIAS DAC IPA = (0:63) DIGITAL CONTROL x I_lsb 6 VDD 2 x (VDD - VP) (PA+) - (PA-) 0 图20. 功率放大器拓扑和信号摆幅优化 ���������������������������������������������������������������� Maxim Integrated Products 31 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 理想的差分输出级最大效率为2/π,必需通过(VDD - VP)/ VDD调节,以满足PA偏置DAC电流源所要求的裕量。注意, 非平衡差分阻抗,PA输出端等效阻抗,会造成PA+引脚和 PA-引脚钳位电平不一致,从而影响效率。此外,如果匹 配网络不能将负载电阻转换成严格等于ROPT + j0的差分阻 抗,失配损耗会进一步降低效率。在这里的PA设计示例中, 如果在ASK模式下PA偏置电流从零切换至IPA_peak,调制 信号占用较宽频带。IC的幅度整形功能可以减小ASK调制 占用的带宽。 表9. PA设计示例 PARAMETER SYMBOL AND/OR EQUATION EXAMPLE VALUE VDD 3V VP 0.5V REXT 56.2kI I_lsb = 25 x 1.13/REXT 0.5mA Desired Peak RF Output Power PD 14dBm Harmonic Filter and Composite Matching/Combiner Network Loss Lm 2dB Supply Voltage Pedestal Voltage External PA Bias Resistance PA Bias DAC LSB Actual PA RF Output Power PPA = PL + Lm Actual PA RF Output Power PPA_mW = 10(P 16dBm /10) 40mW PA Required PA DC Power PDC = PPA_mW x G/2 x VDD/(VDD -VP) 75mW Maximum PA Efficiency Maximum efficiency = 100 x 2/G x (VDD - VP)/VDD 53% Efficiency = 100 x 10(PD/10)/PDC 33% Required Peak DC Current IPA_peak = PDC/VDD 25mA PA Code for Desired Power idac_peak[5:0] 50 decimal (0x32) Composite PA Efficiency (includes Matching Network Loss) FROM FREQUENCY SYNTHESIZER 28 27 PA- PA+ BUFFER AMP vi idac[5:0] datain 16 DATAIN MAX7049 Datain PROGRAMMABLE CONTROL BITS IPA = idac[5:0] x I_lsb 6 wsoff AMPLITUDE WAVESHAPING FUNCTION shpnn[7:0] : nn = 00:18 wsmlt[1:0] tstep[7:0] 图21. Tx ASK模式设置 ���������������������������������������������������������������� Maxim Integrated Products 32 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 幅度整形Tx ASK模式 ASK整形功能如图21所示。 该 模 式 下,wsoff位(TxConf0寄 存 器,0x0C, 第6位)清 零,wsmlt[1:0]位(TxConf1寄 存 器,0x0D,7:6位)清 零。 txready为高电平后,PA在Datain信号的上升沿从零偏置电 流转换到IPA_peak。这种转换经过20个步长变化实现,由 tstep[7:0]位(TxTstep寄 存 器、0x0E,7:0位)和shpnn[7:0] 位(Shape00-Shape18寄存器,0x0F-0x21,7:0位,其中 nn = 00至18)确定,如图22所示。 PA DAC字按照tstep[7:0]位规定的速率更新,更新时间步 长由下式给出: tSTEP = tstep[7:0]/mclk 用shpnn[7:0]位表示,idac_peak[5:0]值为: . idac_peak[5:0] = nn = 18 ∑ ASK模式下,shpnn[7:0]的两个最高有效位始终为零。如 图22所示,缓降波形与缓升波形的变化规律为反方向。整 形功能能够逼近任何单调波形。由于shpnn寄存器为8位字 宽,必要时,PA可一次从零增大到最大偏置电流。 我 们 可 以 考 虑 一 个 设 计 示 例, 利 用 持 续 时 间 为1/2位 间 隔、PA偏置电流峰值为10mA (REXT = 56.2kΩ)的线性缓 变波形逼近4kbps NRZ。缓变时间为125μs,采用3.2MHz mclk, 由 于20个 步 长 均 为6.25μs,20 x 0.3125μs得 到 6.25μs,所以tstep[7:0]的十进制值设置为20 (0x14)。这要 求Shape00-Shape18中每个寄存器为十进制值1 (0x1)。此 时,PA峰值偏置电流为19 x 25 x 1.13/56,200或9.55mA。 如果以牺牲线性度为的情况下得到更接近于10mA的值, Shape00-Shape18其中一个寄存器的值可设置为十进制 2 (0x2)。得到峰值PA偏置电流为20 x 25 x 1.13/56,200或 10.05mA。 shpnn[7:0] nn = 00 Datain idac_peak[5:0] 0 shp05[7:0] shp04[7:0] tSTEP tSTEP 图22. ASK整形时序图 ���������������������������������������������������������������� Maxim Integrated Products 33 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 Tx FSK模式下的幅度缓变控制 Tx FSK模式下,载频信号由整形函数调制,参见N分频合 成器 部分。频率整形的作用是将Tx FSK模式下发射信号占 用的带宽降至最小。然而,如果PA在突发数据开始、结束 时被瞬间打开或关闭,所占用的带宽将展宽。Tx FSK模式 下可以采用PA幅度缓变控制功能,避免占用更宽频带,功 能介绍如图23所示。 类似地,PA偏置电流在使能信号的下降沿线性缓降。注意, 从某个信道跳至另一信道时,也自动激活PA缓变过程,参 见N分频合成器 部分。 IC使能、txready信号变为高电平后,PA偏置电流线性缓 升至fska[5:0] (TxConf0寄存器,0x0C,5:0位) x I_lsb,增 量为fskas[5:0] (TxConf1寄存器,0x0D,5:0位) x I_lsb, 如图24所示。 为了按照所要求的功率发送整个消息,用户应等待PA完成 缓变过程,然后再启动数据序列。 PA DAC字以tstep[7:0]位规定的速率更新,步长更新时间 由下式给出: tSTEP = tstep[7:0]/mclk FROM FREQUENCY SYNTHESIZER 28 27 PA- PA+ BUFFER AMP vi idac[5:0] enable 17 ENABLE MAX7049 Enable PROGRAMMABLE CONTROL BITS IPA = idac[5:0] x I_lsb 6 fska[5:0] AMPLITUDE RAMP FUNCTION fskas[5:0] tstep[7:0] 图23. Tx FSK幅度缓变控制 ���������������������������������������������������������������� Maxim Integrated Products 34 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 enable AND txready fska[5:0] 0 fskas[5:0] fskas[5:0] tSTEP tSTEP 图24. Tx FSK幅度缓变控制时序图 寄存器详细说明 表10. 配置寄存器映射 GROUP/FUNCTION HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 Ident 0x00 1 0 1 0 0 1 1 1 Conf0 0x01 — — — mode fsel_1 fsel_0 xtal_1 xtal_0 Conf1 0x02 icont ibsel plldl_2 plldl_1 plldl_0 — — — IOConf0 0x03 gp1isht gp2isht ckdiv_1 ckdiv_0 gp2s_3 gp2s_2 gp2s_1 gp2s_0 IOConf1 0x04 sdos_3 sdos_2 sdos_1 sdos_0 gp1s_3 gp1s_2 gp1s_1 gp1s_0 IOConf2 0x05 — — gp1md_1 gp1md_0 clksht gp2md_2 gp2md_1 gp2md_0 FBase0 0x08 — — — base_20 base_19 base_18 base_17 base_16 FBase1 0x09 base_15 base_14 base_13 base_12 base_11 base_10 base_9 base_8 FBase2 0x0A base_7 base_6 base_5 base_4 base_3 base_2 base_1 base_0 1 2 3 4 FLoad 0x0B — — — — — — — hop TxConf0 0x0C palopwr wsoff fska_5 fska_4 fska_3 fska_2 fska_1 fska_0 TxConf1 0x0D wsmlt_1 wsmlt_0 fskas_5 fskas_4 fskas_3 fskas_2 fskas_1 fskas_0 TxTstep 0x0E tstep_7 tstep_6 tstep_5 tstep_4 tstep_3 tstep_2 tstep_1 tstep_0 ���������������������������������������������������������������� Maxim Integrated Products 35 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表10. 配置寄存器映射(续) GROUP/FUNCTION 5 6 7 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Shape00 0x0F shp00_7 shp00_6 shp00_5 shp00_4 shp00_3 shp00_2 shp00_1 shp00_0 Shape01 0x10 shp01_7 shp01_6 shp01_5 shp01_4 shp01_3 shp01_2 shp01_1 shp01_0 Shape02 0x11 shp02_7 shp02_6 shp02_5 shp02_4 shp02_3 shp02_2 shp02_1 shp02_0 Shape03 0x12 shp03_7 shp03_6 shp03_5 shp03_4 shp03_3 shp03_2 shp03_1 shp03_0 Shape04 0x13 shp04_7 shp04_6 shp04_5 shp04_4 shp04_3 shp04_2 shp04_1 shp04_0 Shape05 0x14 shp05_7 shp05_6 shp05_5 shp05_4 shp05_3 shp05_2 shp05_1 shp05_0 Shape06 0x15 shp06_7 shp06_6 shp06_5 shp06_4 shp06_3 shp06_2 shp06_1 shp06_0 Shape07 0x16 shp07_7 shp07_6 shp07_5 shp07_4 shp07_3 shp07_2 shp07_1 shp07_0 Shape08 0x17 shp08_7 shp08_6 shp08_5 shp08_4 shp08_3 shp08_2 shp08_1 shp08_0 Shape09 0x18 shp09_7 shp09_6 shp09_5 shp09_4 shp09_3 shp09_2 shp09_1 shp09_0 Shape10 0x19 shp10_7 shp10_6 shp10_5 shp10_4 shp10_3 shp10_2 shp10_1 shp10_0 Shape11 0x1A shp11_7 shp11_6 shp11_5 shp11_4 shp11_3 shp11_2 shp11_1 shp11_0 Shape12 0x1B shp12_7 shp12_6 shp12_5 shp12_4 shp12_3 shp12_2 shp12_1 shp12_0 Shape13 0x1C shp13_7 shp13_6 shp13_5 shp13_4 shp13_3 shp13_2 shp13_1 shp13_0 Shape14 0x1D shp14_7 shp14_6 shp14_5 shp14_4 shp14_3 shp14_2 shp14_1 shp14_0 Shape15 0x1E shp15_7 shp15_6 shp15_5 shp15_4 shp15_3 shp15_2 shp15_1 shp15_0 Shape16 0x1F shp16_7 shp16_6 shp16_5 shp16_4 shp16_3 shp16_2 shp16_1 shp16_0 Shape17 0x20 shp17_7 shp17_6 shp17_5 shp17_4 shp17_3 shp17_2 shp17_1 shp17_0 Shape18 0x21 shp18_7 shp18_6 shp18_5 shp18_4 shp18_3 shp18_2 shp18_1 shp18_0 TestMux 0x3C — — — — tmux_3 tmux_2 tmux_1 tmux_0 Datain 0x3D — datain — — — — — — EnableReg 0x3E — — — — tsensor — — enable TestBus0 0x40 tbus_15 tbus_14 tbus_13 tbus_12 tbus_11 tbus_10 tbus_9 tbus_8 TestBus1 0x41 tbus_7 tbus_6 tbus_5 tbus_4 tbus_3 tbus_2 tbus_1 tbus_0 Status0 0x42 txready — adcrdy — gpo1out plllock lockdet ckalive Status1 0x43 — — — tsdone — — — — “—”表示保留位。如果寄存器含有保留位,写0至保留位。 寄存器0x00始终为0xA7,可用于识别SPI总线上的IC。 寄存器0x40至0x43为只读寄存器,包含各种状态,可通过SPI读取状态。 ���������������������������������������������������������������� Maxim Integrated Products 36 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 寄存器详细说明 表11. 第0组:标识寄存器(Ident) GROUP/FUNCTION HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 0x00 1 0 1 0 0 1 1 1 Ident 表12. Ident寄存器(0x00) BIT NAME 7:0 ident[7:0] FUNCTION Read-only register used for identification purposes. The content of this register is always 0xA7. 表13. 第1组:通用配置寄存器(Conf0、Conf1) GROUP/FUNCTION 1 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Conf0 0x01 — — — mode fsel_1 fsel_0 xtal_1 xtal_0 Conf1 0x02 icont ibsel plldl_2 plldl_1 plldl_0 — — — 表14. Conf0寄存器(0x01) BIT NAME 4 mode FUNCTION 1-bit configuration for transmit mode: 0 = ASK 1 = FSK 2-bit configuration for LO division ratio: 3:2 fsel[1:0] 003 012 10 Not used 111 2-bit crystal divider configuration. Based on a typical crystal selection of 16.0MHz, 19.2MHz, or 22.4MHz, these bits are usually configured to yield a constant 3.2MHz mclk frequency for timing control and driving characteristics of the digital section of the IC. For data rates up to 200kbps, an mclk frequency of up to 4.0MHz is needed. The typical settings are: 1:0 xtal[1:0] Crystal 16.0MHz 19.2MHz 22.4MHz 20.0MHz xtal[1:0] 00 01 10 00 11 Divide Divide Divide Divide Divide by by by by by 5 6 7 5 8 (16.0/5 (19.2/6 (22.4/7 (20.0/5 = = = = 3.2MHz) 3.2MHz) 3.2MHz) 4.0MHz) ���������������������������������������������������������������� Maxim Integrated Products 37 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表15. Conf1寄存器(0x02) BIT NAME FUNCTION 7 icont Selects between low current (0 = 204FA) and high current (1 = 407FA) modes for the synthesizer charge pump, allowing for lower noise operation with the expense of extra current. 6 ibsel Selects between low VCO core current and high VCO core current (1 = additional 1mA) in the synthesizer. 3-bit configuration for extra delay after lock-detect flag (lockdet) from the synthesizer is asserted (assuming mclk = 3.2MHz): 5-3 plldl[2:0] plldl[2:0] delay(Fs) 000 0 001 20 010 40 011 60 100 80 101 100 110 120 111 140 After this delay, an internal signal called plllock is asserted high to determine the digital lock flag for the synthesizer. 表16. 第2组:GPO、数据输出和时钟输出寄存器(IOConf0、IOConf1、IOConf2) GROUP/FUNCTION 2 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 IOConf0 0x03 gp1isht gp2isht ckdiv_1 ckdiv_0 gp2s_3 gp2s_2 gps2_1 gps2_0 IOConf1 0x04 sdos_3 sdos_2 sdos_1 sdos_0 gp1s_3 gp1s_2 gp1s_1 gp1s_0 IOConf2 0x05 — — gp1md_1 gp1md_0 clksht gp2md_2 gp2md_1 gp2md_0 ���������������������������������������������������������������� Maxim Integrated Products 38 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表17. IOConf0寄存器(0x03) BIT NAME FUNCTION 7 gp1isht GPO1 current mode during sleep. If the IC GPO1 is configured to current drive mode (IOConf2 register, 0x05), writing 1 to this bit allows for the current mode operation even if the IC is in Sleep mode or disabled. If this bit is 0, current mode operation is only active when the IC is enabled. 6 gp2isht GPO2 current mode during sleep. If the IC GPO2 is configured to current drive mode (IOConf2 register, 0x05), writing 1 to this bit allows for the current mode operation even if the IC is in Sleep mode or disabled. If this bit is 0, current mode operation is only active when the IC is enabled. 2-bit configuration for clock output divider setting. A clock source selected by gp2s[3:0] is divided by the settings in these bits, according to the following: 5:4 ckdiv[1:0] ckdiv[1:0] 00 01 10 11 Divide by 1 2 4 8 4-bit configuration for GPO2 signal selection: 3:0 gp2s[3:0] gp2s[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100 1101 1110 1111 Output plllock mclk/(ckdiv divider) xtal/(ckdiv divider) xtal/16/(ckdiv divider) tbus[4] tbus[5] tbus[6] tbus[7] tbus[8] tbus[9] tbus[10] tbus[11] tbus[12] tbus[14] tbus[15] where: mclk is the master digital clock generated from the crystal divider block (xtal[1:0]); xtal is the crystal oscillator output clock; xtal/16 is a divided-by-16 version of the crystal oscillator frequency; tbus[15:0] is the 16-bit bus selected by tmux[3:0] (TestMux register, 0x3C, bits 3:0). ���������������������������������������������������������������� Maxim Integrated Products 39 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表18. IOConf1寄存器(0x04) BIT NAME FUNCTION 4-bit SPI data output GPO mode selection. When CS is low, the SDO pin outputs the SPI data output, as described in the Serial Peripheral Interface (SPI) section. When CS is high, the SDO acts as a third GPO, according to: 7:4 sdos[3:0] CS sdos[3] sdos[2] sdos[1] sdos[0] output 0 x x x x SPI_Dout 1 0 0 0 0 tbus[ 0] 1 0 0 0 1 tbus[ 1] 1 0 0 1 0 tbus[ 2] 1 0 0 1 1 tbus[ 3] 1 0 1 0 0 tbus[ 4] 1 0 1 0 1 tbus[ 5] 1 0 1 1 0 tbus[ 6] 1 0 1 1 1 tbus[ 7] 1 1 0 0 0 tbus[ 8] 1 1 0 0 1 tbus[ 9] 11 0 1 0tbus[10] 11 0 1 1tbus[11] 11 1 0 0tbus[12] 11 1 0 1tbus[13] 11 1 1 0tbus[14] 11 1 1 1tbus[15] tbus[15:0] is the 16-bit bus selected by tmux[3:0] (TestMux register, 0x3C, bits 3:0). 4-bit configuration for GPO1 signal selection: 3:0 gp1s[3:0] gp1s[3] gp1s[2] gp1s[1] gp1s[0] output 0 0 0 0 tbus[ 0] 0 0 0 1 tbus[ 1] 0 0 1 0 tbus[ 2] 0 0 1 1 tbus[ 3] 0 1 0 0 tbus[ 4] 0 1 0 1 tbus[ 5] 0 1 1 0 tbus[ 6] 0 1 1 1 tbus[ 7] 1 0 0 0 tbus[ 8] 1 0 0 1 tbus[ 9] 1 0 1 0tbus[10] 1 0 1 1tbus[11] 1 1 0 0tbus[12] 1 1 0 1tbus[13] 1 1 1 0tbus[14] 1 1 1 1tbus[15] tbus[15:0] is the 16-bit bus selected by tmux[3:0] (TestMux register, 0x3C, bits 3:0). ���������������������������������������������������������������� Maxim Integrated Products 40 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表19. IOConf2寄存器(0x05) BIT NAME FUNCTION 2-bit 5:4 gp1md[1:0] 3 clksht GPO1 mode selection: 0x buffer mode 1080FA current mode 11160FA current mode Enable (1) or disable (0) clock output on GPO2 during sleep. 3-bit GPO2 mode selection. The GPO2 can provide a high-frequency clock output, and therefore its current capability is higher. 2:0 gp2md[2:0] 0xx 100 101 110 111 buffer mode 1.0mA 2.0mA 3.0mA 4.0mA 表20. 第3组:合成器频率设置(FBase0、FBase1、FBase2、FLoad) GROUP/FUNCTION HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0x08 — — — base_20 base_19 base_18 base_17 base_16 FBase1 0x09 base_15 base_14 base_13 base_12 base_11 base_10 base_9 base_8 FBase2 0x0A base_7 base_6 base_5 base_4 base_3 base_2 base_1 base_0 FLoad 0x0B — — — — — — — hop FBase0 3 寄存器0x08、0x09和0x0A设置21位base值,用于控制合成器频率。20:16位为5位整数部分(base[20:16]),15:0位为16位 小数部分(base[15:0])。 所以,合成器频率可由下式给出: fSYNTH = fXTAL x (32 + base[20:0]/65,536) 式中,fXTAL为晶振频率,单位为MHz。然后按照fsel[1:0]设置(Conf0寄存器,0x01,3:2位)对合成器频率分频,产生LO频率。 表21. 合成器分频器设置 fsel[1:0] LO DIVIDER 00 3 01 2 11 1 ���������������������������������������������������������������� Maxim Integrated Products 41 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 合成器频率范围从863MHz至945MHz,转换至base[20:0],如表22所示。 表22. 合成器设置 CRYSTAL (MHz) SYNTHF (MHz) MULTIPLIER FACTOR (dec) 863 21.9375 0x15F000 945 27.0625 0x1B1000 863 12.9479 0x0CF2AB 945 17.2188 0x113800 863 6.5268 0x0686DB 945 10.1875 0x0A3000 863 11.1500 0x0B2666 945 15.2500 0x0F4000 16.0 19.2 22.4 20 base[20:0] 每个频带的最低和最高工作频率列于表23。 表23. 频率范围 SYNTHF (MHz) 300MHz (fsel = 00) 450MHz (fsel = 01) 900MHz (fsel = 11) 863 287.70 431.50 863.00 945 315.00 472.50 945.00 hop位允许三个FBase寄存器设置的并联负载,操作完成后自复位返回0。该功能也可使用外部HOP引脚实现,关于跳频操 作的详细说明,请参考发送器详细工作原理部分。 表24. FBase0寄存器(0x08) BIT NAME 4:0 base[20:16] FUNCTION 5-bit integer value for synthesizer. 表25. FBase1寄存器(0x09) BIT NAME 7:0 base[15:8] FUNCTION 8 MSBs of fractional value for synthesizer. 表26. FBase2寄存器(0x0A) BIT NAME 7:0 base[7:0] FUNCTION 8 LSBs of fractional value for synthesizer. 表27. FLoad (0x0B) BIT NAME 0 hop FUNCTION Hop bit. Loads the synthesizer fractional-N divider base value to base[20:0] written in registers 8 through 10. This is a self-reset bit, and is reset to zero after the operation is completed. ���������������������������������������������������������������� Maxim Integrated Products 42 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表28. 第4组:发送器幅度和定时参数(TxConf0、TxConf1、TxTstep) GROUP/FUNCTION 4 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 TxConf0 0x0C palopwr wsoff fska_5 fska_4 fska_3 fska_2 fska_1 fska_0 TxConf1 0x0D wsmlt_1 wsmlt_0 fskas_5 fskas_4 fskas_3 fskas_2 fskas_1 fskas_0 TxTstep 0x0E tstep_7 tstep_6 tstep_5 tstep_4 tstep_3 tstep_2 tstep_1 tstep_0 这些寄存器设置通用FSK/ASK参数,用于PA幅度和速率控制(FSK)、整形控制,以及调幅或频移键控整形的步进控制。 表29. TxConf0寄存器(0x0C) BIT NAME 7 palopwr 6 wsoff 5:0 fska[5:0] FUNCTION Reduces the PA input buffer current by 2mA when set to 1. Useful at low output power levels. Disables (1) or enables (0) waveshaping. If waveshaping is disabled, only shp00[7:0] (Shape00 register, 0x0F) and wsmlt[1:0] (TxConf1 register, 0x0D) are used to set the amplitude (ASK) or frequency (FSK) deviation. 6-bit final value for FSK PA amplitude (bias current) control. 表30. TxConf1寄存器(0x0D) BIT NAME FUNCTION 2-bit scaler for shp00[7:0] (Shape00 register, 0x0F), effectively multiplying the value of Shape00 by: 7:6 wsmlt[1:0] 5:0 fskas[5:0] wsmlt[1:0] multiplier 00 1 01 2 10 4 11 8 6-bit FSK amplitude (bias current) step for ramp-up and ramp-down operations. The PA amplitude increases/decreases by this amount for every 1/20th of the data rate time elapsed (TxTstep register, 0x0E), until it reaches the final fska[5:0] value when ramping up, or reaches 0 when ramping down. 表31. TxTstep寄存器(0x0E) BIT NAME FUNCTION 8-bit update value for waveshaping. This setting corresponds to 1/20th of the data rate, given in periods of the master digital clock (312.5ns for 3.2 MHz). tstep[7:0] = INT (mclk/(20 x DataRate)) 7:0 tstep[7:0] For 80kbps < DataRate P 160kbps, tstep[7:0] = 1, mclk = 3.2MHz For 40kbps < DataRate P 80kbps, tstep[7:0] = 2, mclk = 3.2MHz For 160kbps < DataRate P 200kbps, tstep[7:0] = 1, mclk = 4.0MHz For 4kbps, tstep = INT (3.2 x106/(20 x 4000)) = 40 (0x28), mclk = 3.2MHz The maximum value for tstep[7:0] is 255, which allows for a minimum shaped data rate of 627bps. These values assume shaping during the entire bit interval. The tstep value can be set lower if possible for shaping during a portion of the bit interval. 该设置允许每个发送数据符号按照20级顺序步进,完成调幅(ASK)或频移键控(FSK)整形。 ���������������������������������������������������������������� Maxim Integrated Products 43 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表32. 第5组:发送器整形寄存器(Shape00-Shape18) GROUP/FUNCTION 5 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Shape00 0x0F shp00_7 shp00_6 shp00_5 shp00_4 shp00_3 shp00_2 shp00_1 shp00_0 Shape01 0x10 shp01_7 shp01_6 shp01_5 shp01_4 shp01_3 shp01_2 shp01_1 shp01_0 Shape02 0x11 shp02_7 shp02_6 shp02_5 shp02_4 shp02_3 shp02_2 shp02_1 shp02_0 Shape03 0x12 shp03_7 shp03_6 shp03_5 shp03_4 shp03_3 shp03_2 shp03_1 shp03_0 Shape04 0x13 shp04_7 shp04_6 shp04_5 shp04_4 shp04_3 shp04_2 shp04_1 shp04_0 Shape05 0x14 shp05_7 shp05_6 shp05_5 shp05_4 shp05_3 shp05_2 shp05_1 shp05_0 Shape06 0x15 shp06_7 shp06_6 shp06_5 shp06_4 shp06_3 shp06_2 shp06_1 shp06_0 Shape07 0x16 shp07_7 shp07_6 shp07_5 shp07_4 shp07_3 shp07_2 shp07_1 shp07_0 Shape08 0x17 shp08_7 shp08_6 shp08_5 shp08_4 shp08_3 shp08_2 shp08_1 shp08_0 Shape09 0x18 shp09_7 shp09_6 shp09_5 shp09_4 shp09_3 shp09_2 shp09_1 shp09_0 Shape10 0x19 shp10_7 shp10_6 shp10_5 shp10_4 shp10_3 shp10_2 shp10_1 shp10_0 Shape11 0x1A shp11_7 shp11_6 shp11_5 shp11_4 shp11_3 shp11_2 shp11_1 shp11_0 Shape12 0x1B shp12_7 shp12_6 shp12_5 shp12_4 shp12_3 shp12_2 shp12_1 shp12_0 Shape13 0x1C shp13_7 shp13_6 shp13_5 shp13_4 shp13_3 shp13_2 shp13_1 shp13_0 Shape14 0x1D shp14_7 shp14_6 shp14_5 shp14_4 shp14_3 shp14_2 shp14_1 shp14_0 Shape15 0x1E shp15_7 shp15_6 shp15_5 shp15_4 shp15_3 shp15_2 shp15_1 shp15_0 Shape16 0x1F shp16_7 shp16_6 shp16_5 shp16_4 shp16_3 shp16_2 shp16_1 shp16_0 Shape17 0x20 shp17_7 shp17_6 shp17_5 shp17_4 shp17_3 shp17_2 shp17_1 shp17_0 Shape18 0x21 shp18_7 shp18_6 shp18_5 shp18_4 shp18_3 shp18_2 shp18_1 shp18_0 这些寄存器设置发送数据的幅度调制(ASK)或频移键控(FSK)调制。tstep[7:0]定义1/20码率,在之前的累积结果上增加波形 整形值。所有整形值为差值,最终ASK幅度或FSK频偏由所有整形寄存器累加和决定。 ASK模式下,初始值为0;FSK模式时,初始值由base[20:0]给出。通过20级间隔(所以有19个波形成形寄存器)建立发送数 据从0至1所需的频率转换,或从1至0所需的频率转换。 表33. Shape00寄存器(0x0F) BIT 7:0 NAME shp00[7:0] FUNCTION First 8-bit value for waveshaping. This value is effectively multiplied by the wsmlt[1:0] setting (TxConf1 register, 0x0D). If the wsoff bit is high, this is the only value that is added or subtracted to perform either amplitude (ASK) or frequency (FSK) modulation. ���������������������������������������������������������������� Maxim Integrated Products 44 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表34. Shape01-Shape18寄存器(0x10-0x21) BIT NAME 7:0 shp01[7:0] shp02[7:0] shp03[7:0] shp04[7:0] shp05[7:0] shp06[7:0] shp07[7:0] shp08[7:0] shp09[7:0] shp10[7:0] shp11[7:0] shp12[7:0] shp13[7:0] shp14[7:0] shp15[7:0] shp16[7:0] shp17[7:0] shp18[7:0] FUNCTION 18 8-bit values for waveshaping. These values, along with shp00[7:0], yield the 19 different values (20 intervals) used for waveshaping, one for each of the 20 updates occurring during each 0-1 or 1-0 transmitted data transition. 表35. 第6组:控制寄存器(TestMux、Datain、EnableReg) GROUP/FUNCTION 6 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 TestMux 0x3C — — — — tmux_3 tmux_2 tmux_1 tmux_0 Datain 0x3D — datain — — — — — — EnableReg 0x3E — — — — tsensor — — enable 该寄存器组组合了状态总线控制(tbus[15:0])、GPO控制、温度传感器控制、引脚功能(txdata)寄存器控制,以及使能控制。 表36. TestMux寄存器(0x3C) BIT NAME 3:0 tmux[3:0] FUNCTION 4-bit selection of tbus[15:0] (TestBus0 and TestBus1 registers, 0x40 and 0x41) contents. See the TestBus0 and TestBus1 register descriptions for a complete description of what can be observed through this 16-bit bus. ���������������������������������������������������������������� Maxim Integrated Products 45 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表37. Datain寄存器(0x3D) BIT NAME 6 datain FUNCTION Transmit datain bit. This is a register equivalent of the DATAIN pin. When either the DATAIN pin or datain bit is 1, the transmit data is 1. Only when both are 0 the transmit data is 0 (logical OR function). Keep 0 if only the external DATAIN pin is used, and keep DATAIN pin 0 if the internal datain bit is used. 表38. EnableReg寄存器(0x3E) BIT 3 0 NAME FUNCTION tsensor Writing a 1 to this bit starts the temperature sensor A/D conversion. This is a self-reset bit, where the bit is automatically reset when the conversion is finished. The result can then be read through the TestBus1 register (0x41). This function is available only in Sleep mode. enable Enables (1) or disables (0) the IC’s transmitter operations. To enable the IC, SHDN must be driven low. This is a register equivalent of the ENABLE pin. When either the ENABLE pin or enable bit is 1, the IC transmit operation is enabled. Only when both are 0 the transmitter is disabled (logical-OR function). Keep 0 if only the external ENABLE pin is used, and keep ENABLE pin 0 if the internal enable is used. 表39. 第7组:只读状态寄存器(TestBus0、TestBus1、Status0、Status1) GROUP/FUNCTION 7 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 TestBus0 0x40 tbus_15 tbus_14 tbus_13 tbus_12 tbus_11 tbus_10 tbus_9 tbus_8 TestBus1 0x41 tbus_7 tbus_6 tbus_5 tbus_4 tbus_3 tbus_2 tbus_1 tbus_0 Status0 0x42 txready — adcrdy — gpo1out plllock lockdet ckalive Status1 0x43 — — — tsdone — — — — 寄存器0x3F-0x43为只读寄存器,用于存储A/D转换结果、状态和测试。 表40. TestBus0寄存器(0x40) BIT NAME FUNCTION 7:0 tbus[15:8] 8 MSBs of the internal 16-bit bus tbus[15:0], selected by tmux[3:0] (TextMux register, 0x3C, bits 3:0). ���������������������������������������������������������������� Maxim Integrated Products 46 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表41. 测试总线信号(tbus[15:8]) tmux[3:0] tbus[15] tbus[14] tbus[13] tbus[12] tbus[11] tbus[10] tbus[9] tbus[8] 0x0 — — — — — — — — 0x1 — — — — — — — — 0x2 — — — — — — — — 0x3 — — — — — — — — 0x4 — — — — — — — — 0x5 — — pabia[5] pabia[4] pabia[3] pabia[2] pabia[1] pabia[0] 0x6 frac[15] frac[14] frac[13] frac[12] frac[11] frac[10] frac[9] frac[8] 0x7 — — — — — — — — 0x8 — — — — — — — — 0x9 — — — — — — — — 0xA — — — — — — — — 0xB — — — — — — — mclk 0xC — — — — — — — plllock 0xD — — — — — — — — 0xE — — — — — — — — 0xF — — — — — — — — 其中: tmux[3:0] 信号 说明 0x0–0x4 — 保留信号,用于测试 0x5 pabia[5:0] PA幅值控制总线 0x6 frac[15:8] 发送至频率合成器的小数MSB 0x7–0xA — 保留信号,用于测试 0xB mclk 主控制器数字时钟 0xC plllock 合成器锁定信号 0xD–0xF — 保留信号,用于测试 表42. TestBus1寄存器(0x41) BIT NAME FUNCTION 7:0 tbus[7:0] 8 LSBs of the internal 16-bit bus tbus[15:0], selected by tmux[3:0] (TestMux register, 0x3C, bits 3:0). ���������������������������������������������������������������� Maxim Integrated Products 47 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表43. 测试总线信号(tbus[7:0]) tmux[3:0] tbus[7] tbus[6] tbus[5] tbus[4] tbus[3] tbus[2] tbus[1] tbus[0] 0x0 tsdonef tsadc[6] tsadc[5] tsadc[4] tsadc[3] tsadc[2] tsadc[1] tsadc[0] 0x1 — — — — — — — — 0x2 — — — — — — — — 0x3 — — — — — — — — 0x4 — — — — — — — — 0x5 palopwr — — integ[4] integ[3] integ[2] integ[1] integ[0] 0x6 frac[7] frac[6] frac[5] frac[4] frac[3] frac[2] frac[1] frac[0] — 0x7 — — — — — — — 0x8 — — — — — — — — 0x9 — — — ents — — — tsdonef 0xA — — — — — — — — 0xB — — — — — — — — 0xC — lockdet ckalive — — — txready — 0xD — — — — — — — — 0xE — — — — — — — — 0xF — — — — mclk — — — 其中: tmux[3:0] 信号 说明 0x0 tsdonef 温度传感器转换完成标志。 tsadc[6:0] 温度传感器A/D结果 0x1–0x4 — 保留信号,用于测试 0x5 palopwr PA低功率模式标记 integ[4:0]发送至频率合成器的整数值 0x6 frac[7:0] 发送至频率合成器的小数LSB 0x7, 0x8 — 保留信号,用于测试 0x9 ents 使能温度传感器转换信号。 tsdonef温度传感器完成标志 0xA, 0xB — 保留信号,用于测试 0xC lockdet 合成器锁定检测信号 ckalive晶振时钟有效标志 txreadyTx就绪标志 0xD, 0xE — 保留信号,用于测试 0xF mclk 主控制器数字时钟 注意,数字测试总线的每个信号均可在GPO1、GPO2或SDO观察到,如数字输出 部分所述。 ���������������������������������������������������������������� Maxim Integrated Products 48 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 表44. Status0寄存器(0x42) BIT NAME FUNCTION 7 txready Transmit ready flag. After this bit goes to 1, the IC is ready to accept transitions on the DATAIN pin or on the datain bit inputs. Both these bits should be 0 before the txready flag is 1. 5 adcrdy Internal test flag that signals the end of the A/D warmup time. 3 gpo1out Register copy of the GPO1 pin logical state. 2 plllock Synthesizer lock flag, after programmable plldl[2:0] expires. 1 lockdet Synthesizer lock detect flag. 0 ckalive Crystal oscillator clock alive flag, indicating clock activity from the crystal oscillator. 表45. Status1寄存器(0x43) BIT 4 NAME tsdone FUNCTION Temperature sensor conversion done flag. When 1, the A/D conversion of the internal temperature sensor is completed. 布局考虑 对于任何RF/微波电路,合理设计PCB都至关重要。对高频、 高阻抗输入和输出,采用最小宽度并尽可能短的走线,将 杂散电容降至最小。使用短的走线还有助于降低寄生电感。 一般来说,1in的PCB走线大约增加20nH的寄生电感。寄 生电感对无源器件的等效电感影响非常大。例如,连接至 100nH电感的0.5in走线会增加额外10nH的电感,或者说 10%。 为了降低寄生电感,在信号走线下方采用稳固的接地区域。 匹配元件和旁路元件应通过尽可能地的寄生电感连接到接 地区域,旁路电容尽量靠近电源引脚。所有匹配元件和旁 路元件应通过独立过孔连接至接地区域,以减小不希望的 阻抗耦合。 ���������������������������������������������������������������� Maxim Integrated Products 49 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 定购信息 PART MAX7049ATI+ TEMP RANGE PIN-PACKAGE -40NC to +125NC 28 TQFN-EP* +表示无铅(Pb)/符合RoHS标准的封装。 *EP = 裸焊盘。 芯片信息 PROCESS: BiCMOS 封装信息 如需最近的封装外形信息和焊盘布局(占位面积),请查询china. maxim-ic.com/packages。 请 注 意, 封 装 编 码 中 的“+”、“#” 或“-”仅表示RoHS状态。封装图中可能包含不同的尾缀字符, 但封装图只与封装有关,与RoHS状态无关。 封装类型 封装编码 外形编号 焊盘布局编号 28 TQFN-EP T2855+3 21-0140 90-0023 ���������������������������������������������������������������� Maxim Integrated Products 50 MAX7049 高性能、288MHz至945MHz ASK/FSK ISM发送器 修订历史 修订号 修订日期 0 6/11 说明 修改页 — 最初版本。 Maxim北京办事处 北京8328信箱 邮政编码100083 免费电话:800 810 0310 电话:010-6211 5199 传真:010-6211 5299 Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。电 气特性表中列出的参数值(最小值和最大值)均经过设计验证,数据资料其它章节引用的参数值供设计人员参考。 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2011 Maxim Integrated Products 51 Maxim是Maxim Integrated Products,Inc.的注册商标。 19-5867; Rev 0; 6/11 EVALUATION KIT AVAILABLE MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter General Description The MAX7049 high-performance, single-chip, ultralow-power ASK /FSK UHF transmitter operates in the industrial, scientific, medical (ISM) band at 288MHz to 945MHz carrier frequencies. The IC also includes a low phase noise fractional-N synthesizer for precise tuning, fast frequency agility, and low out-of-band power. To support narrow-band applications, the IC has both amplitude-shaping and frequency-shaping functions that enable the user to optimize spectral efficiency. The IC offers Tx power up to +15dBm. These features make the transmitter ideally suited for long-range applications. Additional system-level features of the IC include a digital temperature sensor and a number of flexible GPOs for monitoring radio status and for the control of external functions. A complete transmitter system can be built using a low-end microprocessor control unit (MCU), the IC, a crystal, and a small number of passive components. The IC is available in a small, 5mm x 5mm, 28-pin TQFN package with an exposed pad. It is specified to operate in the -40°C to +125°C automotive temperature range. Applications Automatic Meter Reading (AMR) RF Modules Benefits and Features STransmitter (Tx) Provides Long Transmit Range Up to +15dBm 21mA Tx Current for +10dBm Tx Power* 41mA Tx Current for +15dBm Tx Power* Modulation Shaping, ASK, FSK SGeneral Delivers Long Battery Life < 50nA Shutdown Current < 350nA Sleep Current Minimizes the Number of I/Os Required Between the IC and the MCU Serial Peripheral Interface (SPI™) Regulatory Compliant FCC Part 15 Frequency Hopping ETSI EN300-220 Compatible On-Chip Temperature Sensor Fast Fractional-N Synthesizer with a User-Defined External Loop Filter *VDD = 3.0V. Includes losses for the matching network and regulatory-compliant harmonic filter. Ordering Information appears at end of data sheet. Long-Range, One-Way Remote Keyless Entry (RKE) Wireless Sensor Networks TPMS For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX7049.related. Home Security Home Automation RFID Remote Controls SPI is a trademark of Motorola, Inc. ����������������������������������������������������������������� Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter TABLE OF CONTENTS Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Architectural Overview and Applications Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Digital Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Operating Mode Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Temperature Sensor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Tx Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Frequency-Hopping Spread-Spectrum (FHSS) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Fractional-N Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Tx ASK Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Tx FSK Mode Using Frequency Waveshaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Tx Pulse FSK Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Loop Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Lock Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Tx ASK Mode Using Amplitude Waveshaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Tx FSK Mode Amplitude Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Detailed Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ����������������������������������������������������������������� Maxim Integrated Products 2 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter LIST OF FIGURES Figure 1. SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 2. Typical Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 3. Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 4. Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 5. Digital Output Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 6. SPI Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 7. SPI Write Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 8. SPI Read Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 9. SPI Read-All Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 10. SPI Reset Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 11. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 12. Tx Warmup Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 13. Frequency-Hopping Spread-Spectrum (FHSS) Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 14. Recommended Crystal Connection to the IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 15. Fractional-N Synthesizer Configuration Tx ASK Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 16. Tx FSK Mode Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 17. Tx FSK Frequency Waveshaping Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 18. Synthesizer Loop Filter Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 19. Lock Detector Delay Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 20. Power Amplifier Topology and Optimum Signal Swings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 21. Tx ASK Mode Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 22. ASK Waveshaping Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 23. Tx FSK Amplitude Ramp Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 24. Tx FSK Amplitude Ramp Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 LIST OF TABLES Table 1. Optional Digital Input Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 2. Mode Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 3. Mode Option Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 4. Sleep Mode Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 5. Temperature Sensor Mode Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 6. Crystal Divider Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 7. LO Frequency-Divider Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 8. Tx FSK Pulse Mode Frequency Multiplier Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 9. PA Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ����������������������������������������������������������������� Maxim Integrated Products 3 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter LIST OF TABLES (continued) Table 10. Configuration Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 11. Group 0: Identification Register (Ident) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 12. Ident Register (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 13. Group 1: General Configuration Registers (Conf0, Conf1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 14. Conf0 Register (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 15. Conf1 Register (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 16. Group 2: GPO, Data Output, and Clock Output Registers (IOConf0, IOConf1, IOConf2) . . . . . . . . . . . . . . 38 Table 17. IOConf0 Register (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 18. Register IOConf1 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 19. Register IOConf2 (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 20. Group 3: Synthesizer Frequency Settings (FBase0, FBase1, FBase2, FLoad) . . . . . . . . . . . . . . . . . . . . . . . 41 Table 21. Synthesizer Divider Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 22. Synthesizer Programming Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 23. Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 24. FBase0 Register (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 25. FBase1 Register (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 26. FBase2 Register (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 27. FLoad (0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 28. Group 4: Transmiter Amplitude and Timing Parameters (TxConf0, TxConf1, TxTstep) . . . . . . . . . . . . . . . . . 43 Table 29. TxConf0 Register (0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 30. TxConf1 Register (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 31. TxTstep Register (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 32. Group 5: Transmitter Shaping Registers (Shape00–Shape18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 33. Shape00 Register (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 34. Shape01–Shape18 Registers (0x10–0x21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 35. Group 6: Control Registers (TestMux, Datain, EnableReg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 36. TestMux Register (0x3C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 37. Datain Register (0x3D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 38. EnableReg Register (0x3E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 39. Group 7: Read-Only Status Registers (TestBus0, TestBus1, Status0, Status1) . . . . . . . . . . . . . . . . . . . . . . . 46 Table 40. TestBus0 Register (0x40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 41. Test Bus Signals (tbus[15:8]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 42. TestBus1 Register (0x41) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 43. Test Bus Signals (tbus[7:0]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 44. Status0 Register (0x42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 45. Status1 Register (0x43) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ����������������������������������������������������������������� Maxim Integrated Products 4 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter ABSOLUTE MAXIMUM RATINGS PAVDD, LOVDD, VCOVDD, CPVDD, PLLVDD, XOVDD, DVDD, and AVDD to EP.....................-0.3V to +3.6V ENABLE, DATAIN, SDI, SDO, CS, SCLK, GPO1, GPO2, HOP, and SHDN to EP.. -0.3V to (VDD + 0.3V) All Other Pins to EP................................... -0.3V to (VDD + 0.3V) Continuous Power Dissipation (TA = +70NC) TQFN (single-layer board) (derate 21.3mW/NC above +70NC)..........................1702.1mW Operating Temperature Range......................... -40NC to +125NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. CAUTION! ESD SENSITIVE DEVICE DC ELECTRICAL CHARACTERISTICS (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER Supply Voltage SYMBOL VDD CONDITIONS PAVDD, LOVDD, VCOVDD, CPVDD, PLLVDD, XOVDD, DVDD, and AVDD connected to power supply PA off Operating Current IDD Shutdown Current Input Low Voltage VIL Input High Voltage VIH PA off, PA predriver at high current setting MIN TYP MAX UNITS 2.1 3.0 3.6 V fRF = 315MHz 11.2 fRF = 434MHz 10.4 fRF = 863MHz to 945MHz 10.2 fRF = 315MHz 13.2 fRF = 434MHz 12.4 fRF = 863MHz to 945MHz 12.2 868MHz +15dBm POUT = +15dBm matching network with harmonic filter 41 868MHz +10dBm POUT = +10dBm matching network with harmonic filter 21 TA = +25NC, Sleep mode 350 TA = +85NC, Sleep mode 600 TA = +125NC, Sleep mode 1700 TA = +25NC, Shutdown mode (registers reset) 50 TA = +85NC, Shutdown mode (registers reset) 200 TA = +125NC, Shutdown mode (registers reset) 1300 mA 4000 nA 3500 0.2 x VDD 0.8 x VDD V ����������������������������������������������������������������� Maxim Integrated Products 5 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter DC ELECTRICAL CHARACTERISTICS (continued) (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP Pulldown Sink Current 12.5 Pullup Source Current 12.5 Output Low Voltage Output High Voltage VOL In buffer mode, GPO1 250FA sink current, SDO 1mA sink current, and GPO2 4mA sink current VOH In buffer mode, GPO1 250FA source current, SDO 1mA source current, and GPO2 4mA source current MAX UNITS FA 0.225 V VDD - 0.225 AC ELECTRICAL CHARACTERISTICS (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX Divide-by-1 LO divider setting 863 945 Divide-by-2 LO divider setting 431.5 472.5 Divide-by-3 LO divider setting 287.7 315 UNITS GENERAL CHARACTERISTICS Operating Frequency Maximum Data Rate Maximum Frequency Deviation Frequency Settling Time Manchester encoded 100 NRZ encoded 200 100kHz synthesizer loop bandwidth tON From Enable low-to-high transition to LO within 5kHz of final value, 100kHz synthesizer loop bandwidth Q150 MHz kbps kHz 330 Fs From Enable low-to-high transition to LO within 1kHz of final value, 100kHz synthesizer loop bandwidth 400 Match to 50I, including harmonic filter +15 dBm Programmable PA Bias Current Step With Q1% 56.2kI external PA reference current setting resistor 0.5 mA Programmable PA Power Dynamic Range Power range from decimal 1 to decimal 63 on digital PA bias current 36 dB Modulation Depth With respect to +10dBm output power 57 dB Maximum Carrier Harmonics With output matching network -50 dBc POWER AMPLIFIER Maximum Output Power PMAX ����������������������������������������������������������������� Maxim Integrated Products 6 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter AC ELECTRICAL CHARACTERISTICS (continued) (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS FRACTIONAL-N SYNTHESIZER VCO Gain KVCO Referenced to 863MHz to 945MHz LO 108 MHz/V Close-In Phase Noise 10kHz offset, 100kHz loop BW -101 dBc/Hz VCO Phase Noise 1MHz offset, 863MHz to 945MHz -126 dBc/Hz VOUT = VCPVDD/2, low setting (icont bit = 0) 204 FA VOUT = VCPVDD/2, high setting (icont bit = 1) 407 FA Charge-Pump Current ICP 1 LO Divider Settings 2 3 Minimum Synthesizer Frequency Step Referenced to 863MHz to 945MHz LO or carrier frequency band fXTAL/216 Hz -71 dBc 48 Fs 1 VP-P 7 Bits 7.25 mV 16 to 22.4 MHz Frequency Pulling by VDD 0.5 ppm/V Recommended Crystal Load Capacitance 10 Maximum Crystal Load Capacitance 20 Reference Spur 26MHz frequency step, 902MHz to 928MHz band, 100kHz synthesizer loop bandwidth Frequency Switching Time Reference Frequency Input Level ADC Resolution LSB Bit Width CRYSTAL OSCILLATOR Crystal Frequency fXTAL pF TEMPERATURE SENSOR Range Digital Code Slope -40 to +125 NC 2 NC/LSB SPI TIMING CHARACTERISTICS (Figure 1) Minimum SCLK Low to Falling Edge of CS Setup Time tSC 20 ns Minimum CS Low to Rising Edge of SCLK Setup Time tCSS 30 ns ����������������������������������������������������������������� Maxim Integrated Products 7 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter AC ELECTRICAL CHARACTERISTICS (continued) (Figure 2, 50I system impedance, VDD = +2.1V to +3.6V, fRF = 868MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted. All min and max values are 100% tested at TA = +125°C and are guaranteed by design and characterization over temperature, unless otherwise noted.) PARAMETER SYMBOL Minimum SCLK Low to Rising Edge of CS Setup Time CONDITIONS MIN TYP MAX UNITS tHCS 30 ns Minimum SCLK Low after Rising Edge of CS Hold Time tHS 20 ns Minimum Data Valid to SCLK Rising-Edge Setup Time tDS 15 ns Minimum Data Valid to SCLK Rising-Edge Hold Time tDH 10 ns Minimum SCLK High Pulse Width tCH 30 ns Minimum SCLK Low Pulse Width tCL 30 ns Minimum CS High Pulse Width tCSH 30 ns Maximum Transition Time from Falling Edge of CS to Valid SDO tCSG CL = 10pF load capacitance from SDO to GND 20 ns Maximum Transition Time from Falling Edge of SCLK to Valid SDO tCG CL = 10pF load capacitance from SDO to GND 20 ns CS tCSH tCSS tHCS tSC tCH SCLK tCL tDH tHS tDS SDI tCSG tCG SDO Figure 1. SPI Timing Diagram ����������������������������������������������������������������� Maxim Integrated Products 8 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Typical Operating Characteristics (Figure 2, 50Ω system impedance, VDD = +2.1V to +3.6V, fRF = 288MHz to 945MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted.) 1.0 VDD = 3.6V 0.8 VDD = 3.0V 0.6 VDD = 2.7V 0.4 VDD = 2.1V 0.2 0 -50 -25 0 25 50 75 100 125 VDD = 3.6V 1.6 1.4 1.2 1.0 0.8 VDD = 3.0V VDD = 2.7V VDD = 2.1V 0.6 0.4 0.2 0 -25 940 0 25 50 75 100 MAX7049 toc03 -50 -25 0 TA = +85˚C 25 50 75 100 125 CHARGE-PUMP CURRENT vs. CONTROL VOLTAGE (LOW CURRENT SETTING, 2.1V SUPPLY) FREQUENCY SETTLING AFTER POWER-UP MAX7049 toc05 868.62MHz 868.60MHz 880 860 20 TEMPERATURE (°C) 920 900 40 125 TA = +25˚C TA = +125˚C 840 250 -40˚C 200 +25˚C +85˚C 150 100 -40˚C +125˚C DOWN UP 50 820 868.58MHz 800 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 TRANSMIT FREQUENCY (MHz) 960 MAX7049 toc04 TA = -40˚C 60 TEMPERATURE (°C) VCO TUNING CHARACTERISTIC (IN 900MHz BAND) vs. CONTROL VOLTAGE 980 80 0 -50 TEMPERATURE (°C) 1000 100 MAX7049 toc06 1.2 1.8 120 TEMPERATURE SENSOR CODE (DECIMAL) 1.4 2.2 2.0 CHARGE-PUMP CURRENT (µA) 1.6 MAX7049 toc02 SHUTDOWN MODE CURRENT (µA) 1.8 2.4 SLEEP MODE CURRENT (µA) MAX7049 toc01 2.0 TEMPERATURE SENSOR CODE vs. TEMPERATURE SLEEP MODE CURRENT vs. TEMPERATURE SHUTDOWN MODE CURRENT vs. TEMPERATURE CONTROL VOLTAGE WITH RESPECT TO SUPPLY (V) 0.00s 500.0µs 100.0µs/div 1.000ms 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 CONTROL VOLTAGE WITH RESPECT TO GROUND (V) ����������������������������������������������������������������� Maxim Integrated Products 9 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Typical Operating Characteristics (continued) (Figure 2, 50Ω system impedance, VDD = +2.1V to +3.6V, fRF = 288MHz to 945MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted.) 927MHz, ibsel = 1 -130 -140 10 100 1000 10,000 OFFSET FREQUENCY (kHz) -30 -40 -50 -80 -80 -90 -90 868.590 868.594 868.598 868.602 868.606 868.610 926.990 926.994 926.998 927.002 927.006 927.010 868.592 868.596 868.600 868.604 868.608 FREQUENCY (MHz) 926.992 926.996 927.000 927.004 927.008 FREQUENCY (MHz) 0 ASK MODULATION SPECTRUM (3kHz RBW, 4kHz SQUARE-WAVE MODULATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) 0 -20 -10 -20 -50 -40 -50 -60 -60 -70 -70 -80 -80 -90 -90 -100 926.990 926.994 926.998 927.002 927.006 927.010 926.992 926.996 927.000 927.004 927.008 FREQUENCY (MHz) POWER (dBc) -40 -50 -70 -30 -30 -40 -60 -10 POWER (dBc) POWER (dBc) -20 -30 -70 UNMODULATED SPECTRUM (palopwr = 0, 100% DUTY CYCLE, +10dBm, 868MHz, WITH +10dBm AT 3V MATCH) MAX7049 toc10 -10 -20 -60 UNMODULATED CLOSE-IN SPECTRUM (100Hz RBW, 100 SAMPLE AVERAGE, 16MHz CRYSTAL, ibsel = 0, icont = 0) 0 -10 MAX7049 toc12 -110 MAX7049 toc08 -20 POWER (dBc) 927MHz, ibsel = 0 -120 -10 POWER (dBc) 868MHz, ibsel = 0 -100 0 MAX7049 toc11 -80 PHASE NOISE (dBc/Hz) 0 MAX7049 toc07 -70 -90 UNMODULATED CLOSE-IN SPECTRUM (100Hz RBW, 100 SAMPLE AVERAGE, 22.4MHz CRYSTAL, ibsel = 0, icont = 0) UNMODULATED CLOSE-IN SPECTRUM (100Hz RBW, 100 SAMPLE AVERAGE, 22.4MHz CRYSTAL, ibsel = 0, icont = 0) MAX7049 toc09 PHASE NOISE (VCO DOMINATED) vs. OFFSET FREQUENCY (CL = 0.1µF, CS = 0.01µF, R = 200I, RP = CP = 0) UNSHAPED -30 -40 -50 -60 GAUSSIAN -70 848 853 858 863 868 873 878 883 888 FREQUENCY (MHz) -80 867.75 867.85 867.80 867.95 868.05 868.15 867.90 868.00 868.10 FREQUENCY (MHz) 868.25 868.20 ���������������������������������������������������������������� Maxim Integrated Products 10 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Typical Operating Characteristics (continued) (Figure 2, 50Ω system impedance, VDD = +2.1V to +3.6V, fRF = 288MHz to 945MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted.) -10 -40 -50 -60 -70 GAUSSIAN -80 867.85 867.80 867.95 -20 -20 -30 -30 -40 -50 868.15 867.90 868.00 868.10 FREQUENCY (MHz) 868.25 -70 -70 867.95 868.20 867.97 867.96 867.99 868.01 868.03 867.98 868.00 868.02 FREQUENCY (MHz) -10 GAUSSIAN -20 -40 -50 -10 868.05 UNSHAPED -50 -80 -80 FREQUENCY (MHz) 868.03 -40 -70 868.6 868.01 -30 -60 868.2 868.4 867.99 FREQUENCY (MHz) -20 -70 867.8 868.0 867.97 0 -60 -90 867.4 867.6 -80 867.95 FSK MODULATION SPECTRUM (3kHz RBW, 4kHz SQUARE-WAVE MODULATION, Q100kHz DEVIATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) POWER (dBc) -30 868.05 868.04 FSK MODULATION SPECTRUM (3kHz RBW, 4kHz SQUARE-WAVE MODULATION, Q100kHz DEVIATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) 0 -50 -60 -80 868.05 UNSHAPED -40 -60 MAX7049 toc16 867.75 -10 MAX7049 toc17 -30 POWER (dBc) UNSHAPED POWER (dBc) POWER (dBc) -20 GAUSSIAN POWER (dBc) -10 0 MAX7049 toc14 0 MAX7049 toc13 0 FSK MODULATION SPECTRUM (1kHz RBW, 4kHz SQUARE-WAVEMODULATION, ±4kHz DEVIATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) FSK MODULATION SPECTRUM (1kHz RBW, 4kHz SQUARE-WAVE MODULATION, ±4kHz DEVIATION, +10dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) MAX7049 toc15 ASK MODULATION SPECTRUM (3kHz RBW, 4kHz SQUARE-WAVE MODULATION, +9dBm OUTPUT POWER, WITH +10dBm AT 3V MATCH) -90 867.4 867.6 867.8 868.0 868.2 868.4 868.6 FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 11 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Typical Operating Characteristics (continued) (Figure 2, 50Ω system impedance, VDD = +2.1V to +3.6V, fRF = 288MHz to 945MHz, TA = -40°C to +125°C, unless otherwise noted. Typical values are at VDD = +3.0V, TA = +25°C, unless otherwise noted.) PA POWER vs. PA CODE (palopwr = 0, 100% DUTY CYCLE, 915MHz, WITH +15dBm AT 3V MATCH) 15 VDD = 3.0V 10 POUT (dBm) VDD = 3.6V 3.6V 10.30 10.20 10.10 VDD = 2.1V 10 3.0V 2.1V 5 3.6V 15 POUT (dBm) 10.40 20 MAX7049 toc19 10.50 9.90 0 -5 -5 0 25 50 75 100 -10 125 0 TEMPERATURE (°C) 8 16 24 32 40 48 56 64 0 10 12 POUT (dBm) 0 40 48 56 64 PA CODE 39 8 6 4 PA CODE 19 2 -5 32 14 10 2.4V 2.7V 3.0V 3.3V 3.6V 24 PA POWER vs. PA CODE (palopwr = 0, 100% DUTY CYCLE, 868MHz, WITH +15dBm AT 3V MATCH) MAX7049 toc21 15 2.1V 16 PA CODE (DECIMAL) PA POWER vs. PA CODE (palopwr = 1, 100% DUTY CYCLE, 868MHz, WITH +10dBm AT 3V MATCH) 5 8 PA CODE (DECIMAL) MAX7049 toc22 -25 5 0 -10 -50 3.0V 2.1V VDD = 2.7V 10.00 POUT (dBm) Tx CURRENT (mA) 20 MAX7049 toc18 10.60 PA POWER vs. PA CODE (palopwr = 0, 100% DUTY CYCLE, 868MHz, WITH +15dBm AT 3V MATCH) MAX7049 toc20 Tx CURRENT vs. TEMPERATURE (PA OFF, 900MHz BAND, palopwr = 1) PA CODE 10 0 -2 -10 0 8 16 24 32 40 PA CODE (DECIMAL) 48 56 64 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 ���������������������������������������������������������������� Maxim Integrated Products 12 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter CS SDI SCLK ENABLE DATAIN SDO TOP VIEW GPO2 Pin Configuration 21 20 19 18 17 16 15 DVDD 22 14 N.C. HOP 23 13 XTALB GPO1 24 12 XTALC SHDN 25 11 XOVDD 10 N.C. 9 PLLVDD 8 CPOUT MAX7049 AVDD 26 PA+ 27 EP 4 5 6 7 CTRL CPVDD PAVDD REXTPA 3 VCOVDD 2 N.C. 1 LOVDD + PA- 28 TQFN (5mm x 5mm) Pin Description PIN NAME 1 PAVDD Power Amplifier Supply Voltage Input. Bypass to ground with 33pF capacitor as close as possible to the pin. FUNCTION 2 REXTPA External PA Bias Current Setting Resistor Connection. Couple to ground through a Q1% tolerance lowtemperature coefficient resistor. A resistor of 56.2kI is recommended for a 0.5mA nominal PA bias current DAC LSB value. 3, 10, 14 N.C. 4 LOVDD 5 VCOVDD 6 CTRL No Connection. Leave unconnected. Local Oscillator (LO) Supply Voltage Input. Bypass to ground with 33pF capacitor as close as possible to the pin. Voltage-Controlled Oscillator (VCO) Supply Voltage. Bypass to ground with 1FF capacitor as close as possible to the pin. Control (Tuning) Voltage for VCO Input. Referenced to VCOVDD pin. Connect through passive loop filter to CPOUT. 7 CPVDD Charge-Pump Supply Voltage Input. Bypass to ground with 0.01FF capacitor as close as possible to the pin. 8 CPOUT Charge-Pump Output. Connect through passive loop filter to CTRL. 9 PLLVDD Synthesizer Supply Voltage Input. Bypass to ground with 33pF capacitor as close as possible to the pin. 11 XOVDD Crystal Oscillator Supply Voltage Input. Bypass to ground with 0.1FF capacitor as close as possible to the pin. ���������������������������������������������������������������� Maxim Integrated Products 13 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Pin Description (continued) PIN NAME FUNCTION 12 XTALC Collector Crystal Input. Connect to crystal either directly or through an AC-coupling capacitor. A shunt capacitance to ground might be needed depending on the specified load capacitance of the crystal and PCB stray capacitances. Can be driven by an AC-coupled external reference with a signal swing of 0.8VP-P to 1.2VP-P. 13 XTALB Base Crystal Input. Connect to crystal either directly or through an AC-coupling capacitor. A shunt capacitance to ground might be needed depending on the specified load capacitance of the crystal and PCB stray capacitances. Must be DC shorted to ground if XTALC is driven by external reference. 15 SDO 16 DATAIN Transmitter Data Input. The Datain function can also be controlled by SPI. Internally pulled to ground. 17 ENABLE Enable. Drive high for active operation. Drive low or leave unconnected to put the device into Sleep mode. The enable function can also be controlled by SPI. Internally pulled to ground. 18 SCLK 19 SDI 20 SPI Active-Low Chip Select. Internally pulled to supply. 21 CS GPO2 22 DVDD Digital Supply Voltage Input. Bypass to ground with 0.1FF capacitor as close as possible to the pin. 23 HOP 24 GPO1 General-Purpose Output 1. Low drive strength digital general-purpose output. 25 SHDN Shutdown Digital Input. Turns off internal power-on-reset (POR) circuit when driven high. Register contents are set to the initial state when driven high. Must be driven low for normal operation. Not internally pulled to supply or ground. 26 AVDD Analog Supply Voltage Input. Bypass to ground with a 1FF capacitor as close as possible to the pin. 27 PA+ Power Amplifier (PA) Positive Output. Requires DC current path to supply voltage through an inductive path. The DC current path can be part of the output impedance matching and harmonic filter network. 28 PA- Power Amplifier (PA) Negative Output. Requires DC current path to supply voltage through an inductive path. The DC current path can be part of the output impedance matching and harmonic filter network. — EP Exposed Pad. This is the only ground connection. Solder evenly to the PCB ground plane for proper operation. Multiple vias from the solder pad to the PCB ground plane are recommended. Serial Peripheral Interface (SPI) Data Output. It can also be configured as a general-purpose digital output. SPI Clock. Internally pulled to ground. SPI Data Input. Internally pulled to ground. General-Purpose Output 2. High drive strength digital general-purpose output. Frequency Hop Pin. Transfers the base[20:0] bits to the fractional-N divider. See the Fractional-N Synthesizer section. The hop function can also be controlled by SPI. Internally pulled to ground. ���������������������������������������������������������������� Maxim Integrated Products 14 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Functional Diagram 27 28 PA+ PASHDN* 25 MAX7049 2 REXTPA 6 PA GPO1* 24 ADC 7 HOP* 23 TEMPERATURE SENSOR GPO2* 21 /1, /2, OR /3 8 CPOUT CS 20 DIGITAL CONTROL AND MCU INTERFACE CHARGE PUMP SDI 19 SCLK 18 6 CTRL FRACTIONAL-N DIVIDER PFD ENABLE* 17 VCO 21 GROUNDED PAD (EP) DATAIN* 16 SDO* 15 XTAL OSCILLATOR XTALC XTALB 12 13 Detailed Description Architectural Overview and Applications Circuit The MAX7049 includes a single precision local oscillator fractional-N synthesizer with an integrated VCO, fractional-N divider, phase/frequency detector, charge pump, LO divider, and lock detector. The loop filter is located off-chip to allow the user to optimize the synthesizer noise and transient characteristics for a particular application. In FSK transmit mode, the synthesizer transitions between the mark and the space frequency based on the state of the DATAIN pin or datain bit (Datain register, 0x3D, bit 6). A user-programmable frequency-shaping function enables the user to precisely define the transition from the mark frequency to the space frequency and vice versa to minimize spectral width of the modulated Tx waveform. * OPTIONAL I/Os FROM/TO MCU. The bias current of the output stage is set with a combination of an external resistor and an internal amplitudeshaping function. The programmable shaping function enables the user to precisely define the transition between carrier on and carrier off and vice versa based on the state of the DATAIN pin or datain bit so as to minimize the spectral width of the modulated Tx signal. Linear amplitude ramping is used in FSK mode as the PA is enabled at the beginning of a data burst and disabled at the end of a data burst for spectral control. A complete transmitter system can be built using a low-end MCU, the IC, a crystal, and a small number of passive components for power-supply bypassing and for RF matching, as illustrated in Figure 2. Communication between the MCU and the IC is accomplished through a 4-pin SPI bus and a number of optional digital inputs and outputs. The IC utilizes a differential emitter-coupled, dual-opencollector power amplifier for the transmitter output. ���������������������������������������������������������������� Maxim Integrated Products 15 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter C13 L1 DASHED LINES DENOTE OPTIONAL CONNECTIONS C20 J1 C14 L3 L4 C12 L2 C11 50I + VDD PAVDD 28 27 26 25 24 23 DVDD HOP GPO1 SHDN AVDD PA- C15 PA+ C16 C17 22 1 21 2 20 3 19 4 18 C1 REXTPA R1 N.C. LOVDD C2 C3 VCOVDD CTRL CPVDD R2 MAX7049 5 17 GROUNDED PAD (EP) 6 16 7 15 GPO2 CS SDI µP SCLK ENABLE DATAIN SDO C4 C7 C8 14 N.C. 13 XTALB 12 11 XTALC 10 XOVDD 9 N.C. 8 PLLVDD C5 CPOUT C6 Y1 C9 C10 Figure 2. Typical Operating Circuit ���������������������������������������������������������������� Maxim Integrated Products 16 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Digital Inputs and Outputs Digital Inputs The IC’s SPI inputs are the CS, SCLK, and SDI pins. The CS pin is active low, so this pin has an internal pullup. The SCLK and SDI pins have internal pulldowns. In addition to the SPI inputs, there are also a number of optional digital inputs to the IC. These inputs are DATAIN, ENABLE, and HOP. These optional inputs, which have internal pulldowns, give the user the option to control an internal signal by either driving the pin to the appropriate logic level or by setting a control bit to the appropriate state. This is illustrated in Figure 3. Digital Outputs The IC has two dedicated general-purpose outputs (GPO1 and GPO2), one SPI output (SDO) that can also serve as a general-purpose output when CS is high. The GPO1, GPO2, and SDO pins can be configured to output various internal status signals and clocks, as illustrated in Figure 4. The outputs (GPO1 and GPO2) offer a feature where the pin can operate either as a digital buffer or as a currentlimited source/sink output, as illustrated in Figure 5. SPI control minimizes the number of I/Os required between the IC and the MCU, whereas the pin control eliminates the configuration overhead associated with SPI communication. 22 DVDD 22 DVDD 22 DVDD INTERNAL CSB SIGNAL 20 CS INTERNAL INPUT SIGNAL INPUT ‘OR’ INPUT INPUT GROUNDED PAD (EP) GROUNDED PAD (EP) INTERNAL INPUT SIGNAL PROGRAMMABLE CONTROL BIT GROUNDED PAD (EP) INPUT = SCLK AND SDI INPUT = DATAIN, ENABLE, AND HOP SPI INPUTS Figure 3. Digital Inputs Table 1. Optional Digital Input Controls PIN BIT NAME REGISTER NAME REGISTER ADDRESS (hex) BIT LOCATION (7:0) FUNCTION DATAIN datain Datain 0x3D 6 Data input to transmitter. ENABLE enable EnableReg 0x3E 0 Enable input for transmitter. HOP hop FLoad 0x0B 0 Initiates the transition to the next frequency as defined by base[20:0]. ���������������������������������������������������������������� Maxim Integrated Products 17 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter sdos[3:0] SPI READ-ONLY REGISTERS TestBus0 AND TestBus1 (0x40 AND 0x41) tmux[3:0] INTERNAL SIGNALS MUX SDO 15 MUX gp1s[3:0] tbus[15:0] gp1md[1:0] GPO1 24 MUX gp2s[3:0] gp1isht [15:4] MAX7049 plllock xtal /16 ckdiv[1:0] /1, /2, /4, OR /8 gp2md[2:0] GPO2 21 MUX /1, /2, /4, OR /8 gp2isht /5, /6, mclk /1, /2, /7, OR /8 /4, OR /8 clksht XTALC 12 XTALB xtal[1:0] 13 Figure 4. Digital Outputs BUFFER MODE CURRENT MODE DVDD 22 DVDD 22 ISOURCE INTERNAL SIGNAL OUTPUT GROUNDED PAD (EP) OUTPUT INTERNAL SIGNAL ISINK GROUNDED PAD (EP) Figure 5. Digital Output Options ���������������������������������������������������������������� Maxim Integrated Products 18 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter The current mode of operation can reduce digital noise associated with large supply current spikes. The GPO1 pin has a relatively small current drive capability (80µA or 160µA). The IOConf2 register (0x05) (gp1md[1:0] bits) control the current settings: and xtal is the crystal frequency, and mclk is the master digital clock. The master digital clock is the divided crystal frequency given by the xtal[1:0] bits (Conf0 register, 0x01), according to: xtal[1:0] Divide by gp1md[1:0] Mode 00 5 0x Buffer mode 01 6 10 80µA sink/source capability 10 7 11 160µA sink/source capability 11 8 GPO2 has a much larger current drive capability (up to 4mA), as this GPO can be the source of output clock signals. The IOConf2 register (0x05) (gp2md[2:0] bits) control the current settings: If a clock output on GPO2 is required even when the IC is in Sleep mode (ENABLE pin and enable bit reset to 0), the SHDN pin is reset to 0, and the clksht bit (IOConf2 register, 0x05, bit 3) must be set to 1. gp2md[2:0] Mode 0xx Buffer mode 100 1.0mA sink/source capability 101 2.0mA sink/source capability A very useful function of the GPOs is to output status signals that reflect the state of the transmitter at any particular instance in time. See the Register Details section for an in-depth description of the status signals available for the TestBus0 and TestBus1 registers. 110 3.0mA sink/source capability 111 4.0mA sink/source capability Two other bits also control the operation of GPO1 and GPO2. The IOConf0 register (0x03) (gp1isht and gp2isht bits) allows the current mode operation to continue even if the IC is disabled (Sleep mode). The GPO2 pin is designated as the primary output for driving a clock, as it has the strongest buffer and highest current output capabilities. Serial Peripheral Interface (SPI) The IC utilizes a 4-wire SPI protocol for programming its registers, configuring and controlling the operation of the whole transmitter. The following digital pins control the operation of the SPI: CS: Active-low SPI chip select SDI: SPI data input SCLK: SPI serial clock The GPO2 clock signal can be selected by the gp2s[3:0] and ckdiv[1:0] bits (IOConf0 register, 0x03). SDO: SPI data output gp2s[3:0] GPO2 Output 0000 plllock 0001 mclk /(ckdiv divider) 0010 xtal/(ckdiv divider) Any number of 8-bit data bursts (Data 1, Data 2, … Data N) can be sent within one low cycle of CS, to allow for burst-write or burst-read operations. The SDO pin acts as another general-purpose output (GPO) when the CS pin is high. 0011 xtal/16/(ckdiv divider) The SPI operates on a byte format, as shown in Figure 6. where the ckdiv divider is given by: ckdiv[1:0] Divide by 00 1 01 2 10 4 11 8 ���������������������������������������������������������������� Maxim Integrated Products 19 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter CS SCLK SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DATA 1 DATA N Figure 6. SPI Format SPI Commands The following commands are implemented in the IC: Write: Within the same CS cycle, a write command is implemented as follows: SDI: <0x01> <Initial Address> <Data 1> <Data 2> … <Data N> With this command, Data 1 is written to the address given by <Initial Address>, Data 2 is written to <Initial Address + 1>, and so on. Read: Within the same CS cycle, a read command is implemented as follows: SDI: <0x02> <Address 1> <Address 2> <Address 3> … <Address N> SDO: <0xXX> <0xXX> <Data 1> <Data 2> <0x00> … <Data N - 1> <Data N> With this command, all the registers can be read within the same cycle of CS. The addresses can be given in any order. Read All: With two CS cycles, the Read All command is implemented as follows: SDI: CS Cycle 1 <0x03> <Address N> CS Cycle 2 SDO: <0x00> <0x00> <0x00> … <0x00> <Data N> <Data N + 1> <Data N + 2> … <Data N + n> Reset: A SPI reset command is implemented as follows: SDI: <0x04> An internal active-low master resetb signal is generated, from the falling edge of the last SCLK signal to the falling edge of the following CS signal (tHCS + tCSH). CS SCLK SDI A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 WRITE COMMAND (0x01) INITIAL ADDRESS (A[7:0]) DATA 1 D7 D0 DATA N Figure 7. SPI Write Command Format ���������������������������������������������������������������� Maxim Integrated Products 20 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter CS SCLK SDI A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0 A7 READ COMMAND (0x02) ADDRESS 1 ADDRESS 2 SDO A0 ADDRESS N D7 D6 D5 D4 D3 D2 D1 D0 D7 DATA 1 0x00 D0 D7 DATA 2 D0 DATA N Figure 8. SPI Read Command Format CS SCLK A7 A6 A5 A4 A3 A2 A1 A0 SDI READ-ALL COMMAND (0x03) ADDRESS N SDO D7 D6 D5 D4 D3 D2 D1 D0 D7 DATA N D0 D7 D0 DATA N + 1 DATA N + n Figure 9. SPI Read-All Command Format INITIAL CS SHUTDOWN SCLK SLEEP SLEEP XTAL ON SDI SPI CONFIGURATION TEMPERATURE SENSOR RESET COMMAND (0x04) resetb Tx FSK ASK Figure 10. SPI Reset Command Format Figure 11. Operating Modes Operating Mode Overview The IC offers several modes of operation that allow the user to optimize the transmitter’s power consumption for a particular application. The primary operating modes are Initial, Sleep, Temperature Sensor, and Tx, as illustrated in Figure 11. When the SHDN pin is high, the IC is in Shutdown mode. In Shutdown mode, the POR circuit internal to the IC is disabled and draws virtually no current. In Shutdown mode, all internal data registers are reset to the initial states and must be rewritten for desired transmitter operation after the SHDN pin is driven low. ���������������������������������������������������������������� Maxim Integrated Products 21 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter When the SHDN pin is low, the POR circuit is active and holds the internal data registers in the initial state until the power supply is above 2.1V and the IC enters the Initial mode. From the Initial mode, the IC can be configured for operation in Sleep mode, Temperature Sensor mode, or Tx mode. In Sleep mode, there are two options available: Sleep and XTAL ON. In Sleep mode, the current drain is typically 350nA. All register states are retained in Sleep mode. In XTAL ON mode, controlled by the clksht bit (IOConf2 register, 0x05, bit 3), the crystal oscillator is enabled and the divided output of the crystal oscillator (/1, /2, /4, /8, as set by the ckdiv[1:0] bits (IOConf0 register, 0x03, bits [5:4]) can be directed to GPO2. The XTAL ON mode is designed so an accurate high-speed clock is always available to the MCU. In Temperature Sensor mode, the internal temperature sensor function can be executed. In Tx mode, the transmitter can be configured to transmit ASK data or FSK data. Table 2. Mode Control Logic The Tx mode is determined by the logic states of the SHDN pin, ENABLE pin, and the enable bit (EnableReg register, 0x3E, bit 0). The transmitter is enabled if the SHDN pin is driven low and the ENABLE pin is driven high, or the enable bit is set. This logic is summarized in Table 2. The mode options are selected by the mode SPI bit (Conf0 register, 0x01, bit 4) and these options are summarized in Table 3. Sleep Mode From the Initial mode, the transmitter directly enters Sleep mode. In XTAL ON mode, the crystal oscillator is enabled and the divided output of the crystal oscillator can be directed to GPO2. This mode is enabled when the RF functions are disabled and the clksht bit is set. The current drain in this mode is highly dependent on the frequency of the output signal and the load capacitance on the GPO2 pin. The current drain is typically 750µA when the output signal is 3.2MHz and the load capacitance is 10pF. See the Digital Outputs section for more details. Table 4 summarizes the Sleep mode functions. Table 4. Sleep Mode Summary SHDN PIN ENABLE PIN enable BIT TRANSMITTER MODE 0 0 0 Sleep 0 0 1 Tx 0 1 0 Tx 0 1 1 Tx 1 0 0 Shutdown 1 0 1 Shutdown 1 1 0 Shutdown 1 1 1 Shutdown SLEEP MODE SETTINGS TYPICAL CURRENT DRAIN Sleep Enable = 0 350nA All register contents are retained. XTAL ON clksht = 1 750FA* Divided XTAL oscillator signal can be directed to GPO2. COMMENTS *Dependent on GPO2 load capacitance and output clock frequency. Table 3. Mode Option Logic mode BIT MODE OPTION 0 ASK 1 FSK ���������������������������������������������������������������� Maxim Integrated Products 22 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Temperature Sensor Mode The user must initiate the temperature sensor from Sleep mode, and the transmitter automatically returns to sleep when the measurement sequence is completed. The on-chip temperature sensor is enabled when the tsensor bit (EnableReg register, 0x3E, bit 3) is set. Once the internal analog temperature sensor circuit has settled, an A/D conversion is performed and the resultant ADC value is stored in the tsadc[6:0] bits that are accessed through the TestBus1 register (0x41, bits 6:0) when the digital test mux bits tmux[3:0] (TestMux register, 0x3C, bits 3:0) are set to 0. The tsensor bit is a self-reset bit, so it returns to a zero state once the temperature sensor measurement is completed. The tsdone status bit (Status1 register, 0x43, bit 4) is also set when the measurement is completed. The current drain in Temperature Sensor mode is less than 1mA and the sensor settling time plus the ADC conversion time is less than 2ms. The pertinent features of the Temperature Sensor mode are summarized in Table 5. Tx Mode There are two subsets of the Tx mode. These subsets include FSK and ASK. The transmitter output signal is generated by the fractional-N synthesizer, then buffered, and amplified by the power amplifier (PA) to the programmed output power level. There is a finite warmup time for the transmitter. Upon entering Tx mode from Sleep mode, the following sequence occurs: 1) The crystal oscillator is enabled and settles to a steady state. The rising edge of the internal ckalive status signal indicates that the crystal oscillator has settled and an accurate time base is available. All other Tx modules are enabled except the PA. The synthesizer settles to the desired LO frequency at the same time the other Table 5. Temperature Sensor Mode Summary BIT tsensor EXECUTION TIME (ms) <2 TYPICAL CURRENT DRAIN (mA) COMMENTS <1 The tsdone status bit is set when the measurement is completed. The results are stored in tsadc[6:0]. modules settle to their desired operating points. A rising edge of the lockdet status signal indicates that the synthesizer has locked. In some narrowband applications, the lockdet signal can effectively be delayed with the plldl[2:0] bits (Conf1 register, 0x02, bits 5:3) to ensure that the synthesizer has settled to within the desired accuracy. This delayed signal is called plllock. The rising edge of the txready status signal is coincident with the rising edge of the plllock signal. 2) In ASK mode, the power amplifier ramp-up sequence begins on the rising edge of either the DATAIN pin or the datain bit after the internal txready signal transitions high. In FSK mode, the power amplifier linear ramp-up sequence begins on the rising edge of the txready signal. Figure 12 illustrates this warmup sequence. In an ASK application, the output of the synthesizer is fixed at the carrier frequency. The output power is alternated between fully off when both the DATAIN pin is logic 0 and the datain bit is cleared, and the programmed output power level when either the DATAIN enable ‘OR’ ENABLE ckalive 105µs (typ) 95µs (typ) lockdet plldel INTERVAL plllock txready datain ‘OR’ DATAIN PAQ* USER-DEFINED PA RAMP (*PA RAMP BEGINS ON THE RISING EDGE OF DATAIN IN ASK MODE AND ON THE RISING EDGE OF txready IN FSK MODE.) Figure 12. Tx Warmup Timing Diagram ���������������������������������������������������������������� Maxim Integrated Products 23 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter pin is logic 1 or the datain bit is set. The output signal can be waveshaped in amplitude to reduce the spectral width of the transmission. See the Power Amplifier section for more information regarding amplitude waveshaping. The PA power is determined by the 6-bit amplitude word that linearly controls the PA output bias current. The LSB current amplitude is set by an off-chip resistor placed between the REXTPA pin and ground. The LSB current is nominally 0.5mA for a 56.2kI resistor and allows for very tight transmitter power control with a low-temperature coefficient ±1% tolerance resistor. In an FSK application, the output of the synthesizer alternates between the space frequency when both the DATAIN pin is logic 0 and the datain bit is cleared, and the mark frequency when either the DATAIN pin is logic 1 or the datain bit is set. The output signal can be waveshaped in frequency to reduce the spectral width of the transmission. See the Fractional-N Synthesizer section for more information regarding frequency waveshaping. The PA power is determined by the 6-bit amplitude word. The PA output power linearly ramps between fully off and the programmed power when the transmitter is enabled or disabled. The ramp slope is also programmable. To transmit the entire message at the desired power level, the user should wait until the PA ramp is completed before initiating the data sequence. INITIAL STATE ENABLE Figure 13 shows the recommended sequence during FHSS operation. Use of the hop bit is preferred during initial configuration. Use of the HOP pin is preferred over the hop bit during active transmitter operation. This eliminates the possibility of SPI activity during active transmitter operation and allows for exact control of transmitter timing. SET fska TO ZERO HOP LOAD FIRST CHANNEL (FBase) **CAN BE COMPLETED IN A SINGLE SPI BURST** NO The typical current drain in Tx mode is 10.2mA (low-power buffer mode) or 12.2mA (high-power buffer mode) plus the programmable PA output current. The buffer power mode is controlled by the palopwr bit (TxConf0 register, 0x0C, bit 7) and is in low-power mode when the bit is set. Frequency-Hopping SpreadSpectrum (FHSS) Operation The IC is fully capable of FHSS operation. The fastsettling fractional-N synthesizer and amplitude-shaping PA work in concert to allow clean, time efficient, and easy-to-implement frequency hopping under the control of a low-end MCU. CONFIGURE LOAD SECOND CHANNEL (FBase) SET fska TO DESIRED VALUE IF FSK MODE DISABLE SLEEP STATE ENABLE HOP TRANSMITTER ACTIVITY WARMUP SYNTHESIZER FORCED OUT OF LOCK FSK MODE ckalive TRANSITIONS HIGH YES YES PA RAMPED DOWN NO YES END TRANSMITTER ACTIVITY SYNTHESIZER FREQUENCY CHANGED LOAD NEXT CHANNEL (FBase) NO YES SYNTHESIZER ACQUIRES LOCK HOP PIN HELD LOGIC 1 NO FSK TRANSMITTER MODE YES PA RAMPED UP NO Figure 13. Frequency-Hopping Spread-Spectrum (FHSS) Flowchart ���������������������������������������������������������������� Maxim Integrated Products 24 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Functional Descriptions Crystal Oscillator The IC’s crystal oscillator circuitry is designed to operate in conjunction with a parallel resonant crystal to generate the fractional-N synthesizer reference frequency and the clock signal for the digital control block. Only the crystal, attached between pins XTALB and XTALC, and two optional loading capacitors are typically required. The oscillator typically presents a load capacitance of approximately 8pF between the pins of the crystal when PCB stray capacitance is considered. Capacitance must be added equally from pin XTALC to ground and pin XTALB to ground to operate the crystal at the specified crystal load capacitance. If the crystal is operated at a load capacitance different from the specified load capacitance, the oscillation frequency is pulled away from the specified operating frequency, introducing an error in the fractional-N synthesizer reference frequency. Crystals specified to operate with higher load capacitance than the applied load capacitance oscillate at a higher than specified frequency. XTALC XTALB 12 13 CBLOCK CBLOCK CLOAD CLOAD fP = CM 1 2 C CASE + C LOAD − 1 6 × 10 C CASE + C SPEC where: fP is the amount the crystal frequency is pulled in ppm. CM is the motional capacitance of the crystal. CCASE is the case capacitance (includes package capacitance and crystal blank capacitance). CSPEC is the specified load capacitance. CLOAD is the applied load capacitance. When the crystal is loaded as specified (i.e., CLOAD = CSPEC), the frequency pulling equals zero. The oscillator circuitry is designed to operate with crystal load capacitances between 8pF and 20pF. Operation at an applied load capacitance of 10pF is recommended for optimal startup times. Operation with applied load capacitances greater than 20pF can prevent oscillator startup. The operating range of the crystal oscillator is 16.0MHz to 22.4MHz. To maintain an internal 3.2MHz time base mclk, the xtal[1:0] (Conf0 register, 0x01, bits 1:0), must be programmed as shown in Table 6. The 3.2MHz internal time base is recommended for all data rates below 80kbps (Manchester coded) or 160kbps (NRZ coded). For higher data rates (up to 100kbps (Manchester coded) or 200kbps (NRZ coded)), a 4MHz internal time base is needed, as shown in Table 6. MAX7049 OPTIONAL BLOCKING CAPACITORS SHORT IF NOT REQUIRED Frequency pulling from the specified operating frequency can be calculated if the electrical parameters of the crystal are known. The frequency pulling is given by: LOADING CAPACITORS (USED ALONG WITH THE IC INTERNAL CAPACITANCE AND PCB STRAY CAPACITANCE TO APPLY SPECIFIED LOAD CAPACITANCE TO THE CRYSTAL.) Figure 14. Recommended Crystal Connection to the IC The crystal initial tolerance, temperature coefficient, and aging must be specified so that the cumulative error between the transmitter and companion receiver frequencies allows proper operation. The transmitted signal must be downconverted by the companion receiver so that all necessary modulation sidebands are within the Table 6. Crystal Divider Programming CRYSTAL FREQUENCY (MHz) CRYSTAL DIVIDER RATIO xtal[1:0] Conf0 REGISTER, ADDRESS 0x01, BITS 1:0 mclk (MHz) 16.0 5 00 3.2 19.2 6 01 3.2 22.4 7 10 3.2 20.0 5 00 4.0 Note: The combinations of crystal frequency and divide ratio in this table are recommended, but not all inclusive. ���������������������������������������������������������������� Maxim Integrated Products 25 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter passband of the predemodulation filter to operate properly. For channelized operation, the transmitted signal, including modulation sidebands, must be contained within a given frequency range, placing limits on the crystal initial tolerance, temperature coefficient, and aging. The VCO operates over the entire specified frequency range with no calibration required. The typical VCO gain is 108MHz/V and the typical phase noise is -126dBc/ Hz at 1MHz offset. The phase noise improves by 20 x log10(2) for divide-by-2 LO frequency-divider operation, and improves by 20 x log10(3) for divideby-3 LO frequency divider operation. The VCO control voltage is applied at the CTRL pin and is referenced to the VCOVDD pin. The ibsel bit (Conf1 register, 0x02, bit 6) sets the VCO bias current. The VCO current increases by 1mA with the ibsel bit set. The VCO phase noise improves to -128dBc/Hz at 1MHz offset with the additional current drain. The IC provides a temperature sensor and a fine-step fractional-N synthesizer to ease crystal frequency stability requirements. This sensor can be used by the system MCU along with the crystal temperature coefficient to calculate the necessary frequency correction and adjust the fractional-N synthesizer in fXTAL/216Hz steps. The IC allows for an external reference signal to be applied in place of a crystal. The external reference signal should be applied to pin XTALC through an AC-coupling capacitor at an amplitude between 0.8VP-P and 1.2VP-P with pin XTALB DC grounded. The charge pump operates within a typical compliance range of 0.4V to 0.4V below the supply voltage. The typical charge-pump current is 204FA with the icont bit (Conf1 register, 0x02, bit 7) reset. It nearly doubles to 407FA with icont set. The CPOUT pin is the charge-pump output. Fractional-N Synthesizer The IC contains a fully integrated fractional-N synthesizer with the exception of a passive off-chip loop filter for generating the transmitted signal frequency. This includes an on-chip voltage-controlled oscillator (VCO), charge pump, phase-frequency detector (PFD), fractional-N frequency divider, LO frequency divider, and all necessary support circuitry. The on-chip crystal oscillator generates the reference frequency for the fractional-N synthesizer. Tx ASK Mode The fractional-N frequency divider is programmed with a 21-bit divider word. The divider word consists of a 5-bit integer portion and a 16-bit fractional portion as illustrated in Figure 15. The parameter D is the fractional-N divider ratio, where: D = 32 + base[20:0]/216 and therefore, the synthesizer output frequency is given by: The operating range of the fractional-N synthesizer is 863MHz to 945MHz. The LO frequency divider has three modes: divide by 1, divide by 2, and divide by 3. This allows for operation at frequencies of 863MHz to 945MHz, 431.5MHz to 472.5MHz, and 287.7MHz to 315MHz, respectively. The frequency resolution is fXTAL/216 in the 863MHz to 945MHz range, and is smaller at the LO frequency-divider output by the LO division ratio. The division ratio of the LO frequency divider is set by the fsel[1:0] bits (Conf0 register, 0x01, bits 3:2). These division ratios are shown in Table 7. fSYNTH = D x fXTAL where fXTAL is the reference frequency generated by the crystal oscillator. The 21-bit divider word as defined by the contents of the FBase0, FBase1, and FBase2 registers is latched into the fractional-N divider on the rising edge of the Hop signal, which is the logical OR of the HOP input pin and the hop bit (FLoad register, 0x0B, bit 0), when the IC is enabled. Table 7. LO Frequency-Divider Modes fsel[1:0] Conf0 REGISTER, ADDRESS 0x01, BITS 3:2 LO DIVISION RATIO TRANSMITTER OPERATING FREQUENCIES (MHz) 00 3 287.7 to 315 01 2 431.5 to 472.5 10 Not used N/A 11 1 863 to 945 ���������������������������������������������������������������� Maxim Integrated Products 26 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Figure 15 illustrates the synthesizer operation in Tx ASK mode, where the Tx carrier frequency is static. For Tx FSK applications, where the frequency of the carrier alternates between the space frequency and the mark frequency based on the Datain input, the IC includes a frequency waveshaping function that allows the user to control the spectral width of the transmit signal. Tx FSK Mode Using Frequency Waveshaping The inputs to the waveshaping function are illustrated in Figure 16. In this mode, the wsoff bit (TxConf0 register, 0x0C, bit 6) is cleared and the wsmlt[1:0] bits (TxConf1 register, 0x0D, bits 7:6) are cleared. The base[20:0] bits set the divider ratio for the lowest (space) frequency and base1[20:0] corresponds to the divider ratio for the highest (mark) frequency. On the rising edge of the Datain signal, the input to the fractional-N divider transitions between base[20:0] and base1[20:0] in 20 discrete steps, as defined by the tstep[7:0] bits (TxTstep register, 0x0E, bits 7:0) and the shpnn[7:0] bits (Shape00–Shape18 registers, 0x0F–0x21, bits 7:0, where nn = 00 to 18), as shown in Figure 17. icont = 0 → CP CURRENT = 204µA icont = 1 → CP CURRENT = 407µA MAX7049 fTX icont REGISTER Conf1, ADDRESS 0x02, BIT 7 fsel[1:0] REGISTER Conf0, ADDRESS 0x01, BITS 3:2 /1, /2, OR /3 fsel[1:0] = 00 → /3 fsel[1:0] = 01 → /2 fsel[1:0] = 11 → /1 fSYNTH 8 CPOUT PROGRAMMABLE CONTROL BITS CHARGE PUMP hop REGISTER FLoad, ADDRESS 0x0B, BIT 0 FRACTIONAL-N DIVIDER D /(32 + base[20:0]/216) PFD VCO 108MHz/V 6 CTRL Hop 21-BIT LATCH ibsel REGISTER Conf1, ADDRESS 0x02, BIT 6 base[20:16] REGISTER FBase0, ADDRESS 0x08, BITS 4:0 base[15:8] REGISTER FBase1, ADDRESS 0x09, BITS 7:0 HOP 23 base[7:0] REGISTER FBase2, ADDRESS 0x0A, BITS 7:0 XTAL OSCILLATOR fXTAL XTALC 12 XTALB 13 Figure 15. Fractional-N Synthesizer Configuration Tx ASK Mode ���������������������������������������������������������������� Maxim Integrated Products 27 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter PROGRAMMABLE CONTROL BITS FROM VCO TO PFD 21 datain 16 DATAIN FRACTIONAL-N DIVIDER D MAX7049 Datain FREQUENCY WAVESHAPING FUNCTION wsoff shpnn[7:0] : nn = 00:18 wsmlt[1:0] tstep[7:0] base[20:0] → SPACE FREQUENCY base1[20:0] → MARK FREQUENCY base[20:0] Figure 16. Tx FSK Mode Programming Datain base1[20:0] base[20:0] shp05[7:0] shp04[7:0] tSTEP tSTEP Figure 17. Tx FSK Frequency Waveshaping Timing Diagram ���������������������������������������������������������������� Maxim Integrated Products 28 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter The 21-bit divider word is updated at a rate defined by the tstep[7:0] bits, and this update time step is given by: tSTEP = tstep[7:0]/mclk In terms of the shpnn[7:0] bits, the value of base1[20:0] is therefore: base1[20:0] = base[20:0] + nn = 18 ∑ shpnn[7:0] nn = 00 As Figure 17 illustrates, the frequency ramp-down shape is the inverse, not the mirror image, of the frequency ramp-up shape. The frequency deviation, which is the difference between the mark frequency and the space frequency, can also be expressed in terms of the shpnn[7:0] bits: frequency deviation = fXTAL /2 16 × nn = 18 ∑ shpnn[7:0] nn = 00 The waveshaping function allows for the approximation of any monotonic-shape characteristic. An example of the waveshaping function is the approximation of a 2kbps NRZ with linear ramp shaping of duration at a 1/2 bit interval and deviation of 50kHz. The length of the ramp time is 250Fs. With a 3.2MHz mclk, a decimal value of 40 (0x28) is required for the tstep[7:0] SPI bits because each of the time steps would need to be 12.5Fs, and 40 x 0.3125Fs yields 12.5Fs. This requires a decimal value of 11 (0xB) for the shpnn[7:0] bits if used with a 16MHz crystal. In this case the deviation is 19 (# of frequency steps) x 11 (frequency change per step) x 16,000,000/216 or 51.03kHz. To attain a value closer to 50kHz at the expense of linearity, four of the Shape00–Shape18 register values could have been set to decimal 10 (0xA). This results in a deviation of 205 x 16,000,000/216 or 50.05kHz. The maximum programmable deviation (not typically used with companion receivers due to bandwidth limitations) in this mode with a 16.0MHz crystal is 19 x 255 x 16,000,000/216 or 1.18MHz. Tx Pulse FSK Mode In this mode, the wsoff bit (TxConf0 register, 0x0C, bit 6) is set and the wsmlt[1:0] bits (TxConf1 register, 0x0D, bits 7:6) are used to transition directly from the space frequency to the mark frequency without the use of shaping. The value of base1[20:0] is expressed as: base1[20:0] = base[20:0] + wsm × shp00[7:0] where wsm is a multiplier whose value is given in Table 8. This mode of pulsed FSK might offer slightly better range when compared to shaped FSK at the expense of a higher occupied bandwidth. A waveshaping function is also available in Tx ASK mode. This feature is documented in the Power Amplifier section. Loop Bandwidth The required loop bandwidth of the fractional-N synthesizer is dependent on the required phase noise characteristics of the transmitted carrier signals, the required frequency settling times, the FSK modulation rates, and the current consumption. Three components dominate the phase noise of the fractional-N synthesizer output: close-in phase noise, VCO phase noise, and fractional quantization phase noise. The loop bandwidth and filter order can be set to meet the requirements for a wide range of applications due to the low close-in phase noise (for excellent performance at wide-loop bandwidths) and low VCO phase noise (for excellent performance at narrow-loop bandwidths). The loop filter order can be increased to lessen the effect of fractional quantization phase noise for wide-loop bandwidths if necessary. Table 8. Tx FSK Pulse Mode Frequency Multiplier Values wsmlt[1:0] TxConf1 REGISTER, ADDRESS 0x0D, BITS 7:6 wsm 00 1 01 2 10 4 11 8 ���������������������������������������������������������������� Maxim Integrated Products 29 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Generally, a 100kHz loop bandwidth works for most applications. This choice allows for fast settling times, within typically 48Fs for less than 5kHz offset during a 26MHz step in the 902MHz to 928MHz ISM band. This loop bandwidth is near the optimum for minimizing the contributions of both close-in phase noise and VCO phase noise. In addition, this choice allows for FSK modulation rates up to 160kbps NRZ and 80kbps Manchester for most applications. If the phase noise at higher offset frequencies needs to be reduced, the loop bandwidth can be lowered to allow for the VCO noise to dominate the phase-noise profile completely. The loop filter components can be calculated as follows: R = (2 x G x D x BW)/(ICP x KVCO)I where: R is the loop filter resistor in I. D is the frequency division ratio of the feedback divider of the fractional-N synthesizer. BW is the desired fractional-N synthesizer loop bandwidth in Hz. ICP is the charge-pump current in A. KVCO is the VCO gain at the synthesizer output frequency (863MHz to 945MHz) in Hz/V. CL = (√10)/(2 x G x R x BW) in F where: CL is the large-loop filter capacitor in series with R. The value of 10 is approximate. CS = 1/(2 x G x R x BW x (√10) ) in F where: CS is the small-loop filter capacitor in parallel with the series combination of R and CL. R is the loop filter resistor in I. BW is the desired fractional-N synthesizer loop bandwidth in Hz. The value of 10 is approximate. An additional RC pole can be added to the loop filter to remove more fractional quantization phase noise at wide-loop bandwidths. This pole is added between the CPOUT pin and the CTRL pin. The resistance of the RC pole should be 1.5x the value of the loop filter resistor to limit loading while minimizing thermal noise as a phasenoise contributor. The pole frequency should be greater than ten times the loop bandwidth. The loop filter configuration is shown in Figure 18. Lock Detector The primary support circuit for the fractional-N synthesizer is the lock detector. The internal lock-detect signal is a gate for transmitter operation as illustrated in the Operating Mode Overview section. The lock-detect signal itself is adequate for most operating conditions, but additional delay can be added if this signal is asserted too quickly, such that it does not allow the synthesizer to settle to within the desired frequency accuracy as illustrated in Figure 19. R is the loop filter resistor in I. BW is the desired fractional-N synthesizer loop bandwidth in Hz. VDD 5 CP 6 CL RP R CTRL MAX7049 lockdet VDD 7 CS VCOVDD CPVDD plldel INTERVAL CPOUT 8 plllock SHORT RP AND CP IF EXTRA POLE IS NOT USED. BYPASS VCOVDD AND CPVDD TO GROUND. Figure 18. Synthesizer Loop Filter Topology Figure 19. Lock Detector Delay Function ���������������������������������������������������������������� Maxim Integrated Products 30 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter The additional delay interval is set by the plldl[2:0] bits (Conf1 register, 0x02, bits 5:3), and this delay is given by: possible to the IC to minimize the capacitance on this node. A temperature-stable, high-tolerance ±1% resistor is recommended to minimize variations in output power. An on-chip current multiplier of 25 x IR determines the LSB of the PA bias DAC. For example, a 56.2kI resistor sets the LSB to 0.5mA. The palopwr bit (TxConf0 register, 0x0C, bit 7) controls the bias current in the PA buffer amplifier. When this bit is set, it lowers the buffer bias current by 2mA for low-power applications. The buffer amplifier sets the pedestal voltage (VP), which is required for sufficient PA bias DAC headroom. plldel interval = plldl[2:0] x (64/mclk)s where plldl[2:0] is the decimal equivalent of the bits, yielding a norminal (3.2MHz mclk) plldel interval from 0 to 140Fs. Both the lockdet and plllock status signals are available on SDO, GPO1, and GPO2, as described in the Register Details section for the TestBus0 and TestBus1 registers. Power Amplifier The IC contains a programmable current-drain, highefficiency power amplifier (PA). The PA is a differential output stage capable of delivering more than +15dBm to a 50I load including the losses of the matching network and harmonic filter. The bias current for the PA (IPA) is configurable in 64 linear steps, as illustrated in Figure 20. The function of the matching network is to transform the load resistance (RL) to the differential optimal PA load resistance (ROPT). The value of ROPT is determined by the desired output power (PD), the loss of the matching network (Lm), the supply voltage (VDD), and the pedestal voltage (VP). Table 9 illustrates a design example for determining ROPT and IPA_peak, where IPA_peak is the peak value of the DC current. An external resistor (REXT) is placed between the REXTPA pin and ground. This resistor, along with an on-chip reference voltage of 1.13V, sets the reference current (IR). This resistor should be placed as close as VDD L J INSERTION LOSS = Lm SIGNAL SWINGS FOR OPTIMAL LOAD IMPEDANCE MATCHING NETWORK FROM FREQUENCY SYNTHESIZER vi BUFFER AMP RL 27 28 PA- 1.13V REXT 2 REXTPA IR 25x I_lsb = 25 x IR 0 PA+ ROPT MAX7049 PA+ VDD VP VP palopwr CURRENT MIRROR vi PA- VP PA BIAS DAC IPA = (0:63) DIGITAL CONTROL x I_lsb 6 VDD 2 x (VDD - VP) (PA+) - (PA-) 0 Figure 20. Power Amplifier Topology and Optimum Signal Swings ���������������������������������������������������������������� Maxim Integrated Products 31 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter The maximum efficiency of an ideal differential output stage is 2/G and this must also be adjusted by the factor (VDD - VP)/VDD to account for the headroom required for the PA bias DAC current source. Note that an unbalanced differential impedance, as seen by the PA output pins, causes different clipping levels for the PA+ pin vs. the PA- pin. This degrades efficiency. In addition, if the matching network does not transform the load resis- tance to a differential impedance whose value is exactly ROPT + j0, then this mismatch loss further degrades the efficiency. In this PA design example, if the PA bias current switched from zero to IPA_peak with the data input in ASK mode, the occupied bandwidth of the modulated signal would be significant. The IC includes an amplitude waveshaping function to reduce the occupied bandwidth of ASK modulation. Table 9. PA Design Example PARAMETER SYMBOL AND/OR EQUATION EXAMPLE VALUE VDD 3V VP 0.5V Supply Voltage Pedestal Voltage External PA Bias Resistance REXT 56.2kI I_lsb = 25 x 1.13/REXT 0.5mA Desired Peak RF Output Power PD 14dBm Harmonic Filter and Composite Matching/Combiner Network Loss Lm 2dB Actual PA RF Output Power PPA = PL + Lm 16dBm Actual PA RF Output Power PPA_mW = 10(PPA/10) 40mW Required PA DC Power PDC = PPA_mW x G/2 x VDD/(VDD -VP) 75mW Maximum PA Efficiency Maximum efficiency = 100 x 2/G x (VDD - VP)/VDD 53% Efficiency = 100 x 10(PD/10)/PDC 33% Required Peak DC Current IPA_peak = PDC/VDD 25mA PA Code for Desired Power idac_peak[5:0] 50 decimal (0x32) PA Bias DAC LSB Composite PA Efficiency (includes Matching Network Loss) FROM FREQUENCY SYNTHESIZER 28 27 PA- PA+ BUFFER AMP vi idac[5:0] datain 16 DATAIN MAX7049 Datain PROGRAMMABLE CONTROL BITS IPA = idac[5:0] x I_lsb 6 wsoff AMPLITUDE WAVESHAPING FUNCTION shpnn[7:0] : nn = 00:18 wsmlt[1:0] tstep[7:0] Figure 21. Tx ASK Mode Programming ���������������������������������������������������������������� Maxim Integrated Products 32 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Tx ASK Mode Using Amplitude Waveshaping The ASK waveshaping function is illustrated in Figure 21. In this mode, the wsoff bit (TxConf0 register, 0x0C, bit 6) is cleared and the wsmlt[1:0] bits (TxConf1 register, 0x0D, bits 7:6) are cleared. After txready is high, the PA transitions from zero bias current to IPA_peak, on the rising edge of the Datain signal. This transition occurs in 20 discrete steps, determined by the tstep[7:0] bits (TxTstep register, 0x0E, bits 7:0) and the shpnn[7:0] bits (Shape00–Shape18 registers, 0x0F–0x21, bits 7:0, where nn = 00 to 18), as shown in Figure 22. The PA DAC word is updated at a rate defined by the tstep[7:0] bits, and this update time step is given by: tSTEP = tstep[7:0]/mclk In terms of the shpnn[7:0] bits, the value of idac_peak[5:0] is therefore: . idac_peak[5:0] = nn = 18 ∑ shpnn[7:0] nn = 00 The two most-significant bits of shpnn[7:0] should always be zero in ASK mode. As Figure 22 illustrates, the rampdown shape is the inverse of the ramp-up shape. The waveshaping function allows for the approximation of any monotonic shape characteristic. Since the shpnn registers are 8 bits wide, the PA can be pulsed from zero current to the maximum bias current in one time step if desired. An example is the approximation of a 4kbps NRZ with linear ramp shaping of 1/2 bit interval duration and peak PA bias current of 10mA using REXT = 56.2kI. The length of the ramp time is 125Fs. With a 3.2MHz mclk, this requires a decimal value of 20 (0x14) for the tstep[7:0] because each of the 20 time steps would need to be 6.25Fs, and 20 x 0.3125Fs yields 6.25Fs. This requires a decimal value of 1 (0x1) for each Shape00– Shape18 register. In this case, the peak PA bias current is 19 x 25 x 1.13/56,200, or 9.55mA. To attain a value closer to 10mA at the expense of linearity, one of the Shape00–Shape18 register values could have been set to decimal 2 (0x2). This results in a peak PA bias current of 20 x 25 x 1.13/56,200, or 10.05mA. Datain idac_peak[5:0] 0 shp05[7:0] shp04[7:0] tSTEP tSTEP Figure 22. ASK Waveshaping Timing Diagram ���������������������������������������������������������������� Maxim Integrated Products 33 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Tx FSK Mode Amplitude Ramp In Tx FSK mode, the carrier is modulated by the frequency-shaping function, as defined in the Fractional-N Synthesizer section. This frequency waveshaping is designed to minimize the occupied bandwidth of the transmit signal in Tx FSK mode. However, the occupied bandwidth might degrade if the PA turns on and off abruptly at the beginning and end of a burst. A PA amplitude ramp feature is available in Tx FSK mode to prevent the degradation of the occupied bandwidth. This feature is illustrated in Figure 23. After the IC is enabled and the txready signal transitions high, the PA bias current ramps up linearly to the value fska[5:0] (TxConf0 register, 0x0C, bits 5:0) x I_lsb in increments of fskas[5:0] (TxConf1 register, 0x0D, bits 5:0) x I_lsb, as illustrated in Figure 24. Similarly, the PA bias current ramps down linearly on the falling edge of the enable signal. Note that this PA ramp feature is also automatically invoked when hopping from one channel to another channel, as defined in the Fractional-N Synthesizer section. The PA DAC word is updated at a rate defined by the tstep[7:0] bits, and this update time step is given by: tSTEP = tstep[7:0]/mclk To transmit the entire message at the desired power level, the user should wait until the PA ramp is completed before initiating the data sequence. FROM FREQUENCY SYNTHESIZER 28 27 PA- PA+ BUFFER AMP vi idac[5:0] enable 17 ENABLE MAX7049 Enable PROGRAMMABLE CONTROL BITS IPA = idac[5:0] x I_lsb 6 fska[5:0] AMPLITUDE RAMP FUNCTION fskas[5:0] tstep[7:0] Figure 23. Tx FSK Amplitude Ramp Feature ���������������������������������������������������������������� Maxim Integrated Products 34 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter enable AND txready fska[5:0] 0 fskas[5:0] fskas[5:0] tSTEP tSTEP Figure 24. Tx FSK Amplitude Ramp Timing Diagram Register Details Table 10. Configuration Register Map GROUP/FUNCTION HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 Ident 0x00 1 0 1 0 0 1 1 1 Conf0 0x01 — — — mode fsel_1 fsel_0 xtal_1 xtal_0 Conf1 0x02 icont ibsel plldl_2 plldl_1 plldl_0 — — — IOConf0 0x03 gp1isht gp2isht ckdiv_1 ckdiv_0 gp2s_3 gp2s_2 gp2s_1 gp2s_0 IOConf1 0x04 sdos_3 sdos_2 sdos_1 sdos_0 gp1s_3 gp1s_2 gp1s_1 gp1s_0 IOConf2 0x05 — — gp1md_1 gp1md_0 clksht gp2md_2 gp2md_1 gp2md_0 FBase0 0x08 — — — base_20 base_19 base_18 base_17 base_16 FBase1 0x09 base_15 base_14 base_13 base_12 base_11 base_10 base_9 base_8 FBase2 0x0A base_7 base_6 base_5 base_4 base_3 base_2 base_1 base_0 FLoad 0x0B — — — — — — — hop TxConf0 0x0C palopwr wsoff fska_5 fska_4 fska_3 fska_2 fska_1 fska_0 TxConf1 0x0D wsmlt_1 wsmlt_0 fskas_5 fskas_4 fskas_3 fskas_2 fskas_1 fskas_0 TxTstep 0x0E tstep_7 tstep_6 tstep_5 tstep_4 tstep_3 tstep_2 tstep_1 tstep_0 1 2 3 4 ���������������������������������������������������������������� Maxim Integrated Products 35 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 10. Configuration Register Map (continued) GROUP/FUNCTION 5 6 7 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Shape00 0x0F shp00_7 shp00_6 shp00_5 shp00_4 shp00_3 shp00_2 shp00_1 shp00_0 Shape01 0x10 shp01_7 shp01_6 shp01_5 shp01_4 shp01_3 shp01_2 shp01_1 shp01_0 Shape02 0x11 shp02_7 shp02_6 shp02_5 shp02_4 shp02_3 shp02_2 shp02_1 shp02_0 Shape03 0x12 shp03_7 shp03_6 shp03_5 shp03_4 shp03_3 shp03_2 shp03_1 shp03_0 Shape04 0x13 shp04_7 shp04_6 shp04_5 shp04_4 shp04_3 shp04_2 shp04_1 shp04_0 Shape05 0x14 shp05_7 shp05_6 shp05_5 shp05_4 shp05_3 shp05_2 shp05_1 shp05_0 Shape06 0x15 shp06_7 shp06_6 shp06_5 shp06_4 shp06_3 shp06_2 shp06_1 shp06_0 Shape07 0x16 shp07_7 shp07_6 shp07_5 shp07_4 shp07_3 shp07_2 shp07_1 shp07_0 Shape08 0x17 shp08_7 shp08_6 shp08_5 shp08_4 shp08_3 shp08_2 shp08_1 shp08_0 Shape09 0x18 shp09_7 shp09_6 shp09_5 shp09_4 shp09_3 shp09_2 shp09_1 shp09_0 Shape10 0x19 shp10_7 shp10_6 shp10_5 shp10_4 shp10_3 shp10_2 shp10_1 shp10_0 Shape11 0x1A shp11_7 shp11_6 shp11_5 shp11_4 shp11_3 shp11_2 shp11_1 shp11_0 Shape12 0x1B shp12_7 shp12_6 shp12_5 shp12_4 shp12_3 shp12_2 shp12_1 shp12_0 Shape13 0x1C shp13_7 shp13_6 shp13_5 shp13_4 shp13_3 shp13_2 shp13_1 shp13_0 Shape14 0x1D shp14_7 shp14_6 shp14_5 shp14_4 shp14_3 shp14_2 shp14_1 shp14_0 Shape15 0x1E shp15_7 shp15_6 shp15_5 shp15_4 shp15_3 shp15_2 shp15_1 shp15_0 Shape16 0x1F shp16_7 shp16_6 shp16_5 shp16_4 shp16_3 shp16_2 shp16_1 shp16_0 Shape17 0x20 shp17_7 shp17_6 shp17_5 shp17_4 shp17_3 shp17_2 shp17_1 shp17_0 Shape18 0x21 shp18_7 shp18_6 shp18_5 shp18_4 shp18_3 shp18_2 shp18_1 shp18_0 TestMux 0x3C — — — — tmux_3 tmux_2 tmux_1 tmux_0 Datain 0x3D — datain — — — — — — EnableReg 0x3E — — — — tsensor — — enable TestBus0 0x40 tbus_15 tbus_14 tbus_13 tbus_12 tbus_11 tbus_10 tbus_9 tbus_8 TestBus1 0x41 tbus_7 tbus_6 tbus_5 tbus_4 tbus_3 tbus_2 tbus_1 tbus_0 Status0 0x42 txready — adcrdy — gpo1out plllock lockdet ckalive Status1 0x43 — — — tsdone — — — — “—” Denotes a reserved bit. If a register contains reserved bits, write 0 to the reserved bit content. Register 0x00 contents are always 0xA7, and can be used to identify the IC on the SPI bus. Registers 0x40 through 0x43 are read-only registers, containing various states and status that can be read through the SPI. ���������������������������������������������������������������� Maxim Integrated Products 36 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Detailed Register Descriptions Table 11. Group 0: Identification Register (Ident) GROUP/FUNCTION HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 0x00 1 0 1 0 0 1 1 1 Ident Table 12. Ident Register (0x00) BIT NAME 7:0 ident[7:0] FUNCTION Read-only register used for identification purposes. The content of this register is always 0xA7. Table 13. Group 1: General Configuration Registers (Conf0, Conf1) GROUP/FUNCTION 1 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Conf0 0x01 — — — mode fsel_1 fsel_0 xtal_1 xtal_0 Conf1 0x02 icont ibsel plldl_2 plldl_1 plldl_0 — — — Table 14. Conf0 Register (0x01) BIT NAME 4 mode FUNCTION 1-bit configuration for transmit mode: 0 = ASK 1 = FSK 2-bit configuration for LO division ratio: 3:2 fsel[1:0] 00 01 10 11 3 2 Not used 1 2-bit crystal divider configuration. Based on a typical crystal selection of 16.0MHz, 19.2MHz, or 22.4MHz, these bits are usually configured to yield a constant 3.2MHz mclk frequency for timing control and driving characteristics of the digital section of the IC. For data rates up to 200kbps, an mclk frequency of up to 4.0MHz is needed. The typical settings are: 1:0 xtal[1:0] Crystal 16.0MHz 19.2MHz 22.4MHz 20.0MHz xtal[1:0] 00 01 10 00 11 Divide Divide Divide Divide Divide by by by by by 5 6 7 5 8 (16.0/5 (19.2/6 (22.4/7 (20.0/5 = = = = 3.2MHz) 3.2MHz) 3.2MHz) 4.0MHz) ���������������������������������������������������������������� Maxim Integrated Products 37 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 15. Conf1 Register (0x02) BIT NAME FUNCTION 7 icont Selects between low current (0 = 204FA) and high current (1 = 407FA) modes for the synthesizer charge pump, allowing for lower noise operation with the expense of extra current. 6 ibsel Selects between low VCO core current and high VCO core current (1 = additional 1mA) in the synthesizer. 3-bit configuration for extra delay after lock-detect flag (lockdet) from the synthesizer is asserted (assuming mclk = 3.2MHz): 5-3 plldl[2:0] plldl[2:0] delay(Fs) 000 0 001 20 010 40 011 60 100 80 101 100 110 120 111 140 After this delay, an internal signal called plllock is asserted high to determine the digital lock flag for the synthesizer. Table 16. Group 2: GPO, Data Output, and Clock Output Registers (IOConf0, IOConf1, IOConf2) GROUP/FUNCTION 2 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 IOConf0 0x03 gp1isht gp2isht ckdiv_1 ckdiv_0 gp2s_3 gp2s_2 gps2_1 gps2_0 IOConf1 0x04 sdos_3 sdos_2 sdos_1 sdos_0 gp1s_3 gp1s_2 gp1s_1 gp1s_0 IOConf2 0x05 — — gp1md_1 gp1md_0 clksht gp2md_2 gp2md_1 gp2md_0 ���������������������������������������������������������������� Maxim Integrated Products 38 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 17. IOConf0 Register (0x03) BIT NAME FUNCTION 7 gp1isht GPO1 current mode during sleep. If the IC GPO1 is configured to current drive mode (IOConf2 register, 0x05), writing 1 to this bit allows for the current mode operation even if the IC is in Sleep mode or disabled. If this bit is 0, current mode operation is only active when the IC is enabled. 6 gp2isht GPO2 current mode during sleep. If the IC GPO2 is configured to current drive mode (IOConf2 register, 0x05), writing 1 to this bit allows for the current mode operation even if the IC is in Sleep mode or disabled. If this bit is 0, current mode operation is only active when the IC is enabled. 2-bit configuration for clock output divider setting. A clock source selected by gp2s[3:0] is divided by the settings in these bits, according to the following: 5:4 ckdiv[1:0] ckdiv[1:0] 00 01 10 11 Divide by 1 2 4 8 4-bit configuration for GPO2 signal selection: 3:0 gp2s[3:0] gp2s[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100 1101 1110 1111 Output plllock mclk/(ckdiv divider) xtal/(ckdiv divider) xtal/16/(ckdiv divider) tbus[4] tbus[5] tbus[6] tbus[7] tbus[8] tbus[9] tbus[10] tbus[11] tbus[12] tbus[14] tbus[15] where: mclk is the master digital clock generated from the crystal divider block (xtal[1:0]); xtal is the crystal oscillator output clock; xtal/16 is a divided-by-16 version of the crystal oscillator frequency; tbus[15:0] is the 16-bit bus selected by tmux[3:0] (TestMux register, 0x3C, bits 3:0). ���������������������������������������������������������������� Maxim Integrated Products 39 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 18. Register IOConf1 (0x04) BIT NAME FUNCTION 4-bit SPI data output GPO mode selection. When CS is low, the SDO pin outputs the SPI data output, as described in the Serial Peripheral Interface (SPI) section. When CS is high, the SDO acts as a third GPO, according to: 7:4 sdos[3:0] CS sdos[3] sdos[2] sdos[1] 0 x x x 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 sdos[0] output x SPI_Dout 0 tbus[ 0] 1 tbus[ 1] 0 tbus[ 2] 1 tbus[ 3] 0 tbus[ 4] 1 tbus[ 5] 0 tbus[ 6] 1 tbus[ 7] 0 tbus[ 8] 1 tbus[ 9] 0 tbus[10] 1 tbus[11] 0 tbus[12] 1 tbus[13] 0 tbus[14] 1 tbus[15] tbus[15:0] is the 16-bit bus selected by tmux[3:0] (TestMux register, 0x3C, bits 3:0). 4-bit configuration for GPO1 signal selection: 3:0 gp1s[3:0] gp1s[3] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 gp1s[2] 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 gp1s[1] 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 gp1s[0] 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 output tbus[ 0] tbus[ 1] tbus[ 2] tbus[ 3] tbus[ 4] tbus[ 5] tbus[ 6] tbus[ 7] tbus[ 8] tbus[ 9] tbus[10] tbus[11] tbus[12] tbus[13] tbus[14] tbus[15] tbus[15:0] is the 16-bit bus selected by tmux[3:0] (TestMux register, 0x3C, bits 3:0). ���������������������������������������������������������������� Maxim Integrated Products 40 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 19. Register IOConf2 (0x05) BIT NAME FUNCTION 2-bit 5:4 gp1md[1:0] 3 clksht 0x 10 11 GPO1 mode selection: buffer mode 80FA current mode 160FA current mode Enable (1) or disable (0) clock output on GPO2 during sleep. 3-bit GPO2 mode selection. The GPO2 can provide a high-frequency clock output, and therefore its current capability is higher. 2:0 gp2md[2:0] 0xx 100 101 110 111 buffer mode 1.0mA 2.0mA 3.0mA 4.0mA Table 20. Group 3: Synthesizer Frequency Settings (FBase0, FBase1, FBase2, FLoad) GROUP/FUNCTION 3 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 FBase0 0x08 — — — base_20 base_19 base_18 base_17 base_16 FBase1 0x09 base_15 base_14 base_13 base_12 base_11 base_10 base_9 base_8 FBase2 0x0A base_7 base_6 base_5 base_4 base_3 base_2 base_1 base_0 FLoad 0x0B — — — — — — — hop Registers 0x08, 0x09, and 0x0A set the 21-bit base value for the control of the synthesizer frequency. Bits 20:16 form the 5-bit integer part (base[20:16]), and bits 15:0 form the 16-bit fractional part (base[15:0]). The synthesizer frequency is then given by: fSYNTH = fXTAL x (32 + base[20:0]/65,536) where fXTAL is the crystal frequency in MHz. The synthesizer frequency is then divided according to the fsel[1:0] settings (Conf0 register, 0x01, bits 3:2) to generate the LO frequency: Table 21. Synthesizer Divider Settings fsel[1:0] LO DIVIDER 00 3 01 2 11 1 ���������������������������������������������������������������� Maxim Integrated Products 41 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter The synthesizer frequency range is from 863MHz to 945MHz, which translates to the base[20:0] values shown in Table 22. Table 22. Synthesizer Programming Values CRYSTAL (MHz) 16.0 19.2 22.4 20 SYNTHF (MHz) MULTIPLIER FACTOR (dec) base[20:0] 863 21.9375 0x15F000 945 27.0625 0x1B1000 863 12.9479 0x0CF2AB 945 17.2188 0x113800 863 6.5268 0x0686DB 945 10.1875 0x0A3000 863 11.1500 0x0B2666 945 15.2500 0x0F4000 The minimum and maximum frequency for each band is shown in Table 23. Table 23. Frequency Ranges SYNTHF (MHz) 300MHz (fsel = 00) 450MHz (fsel = 01) 900MHz (fsel = 11) 863 287.70 431.50 863.00 945 315.00 472.50 945.00 The hop bit allows for a parallel load of the three FBase registers. This is a self-reset bit that reverts to 0 when the operation is completed. This function can also be accomplished by use of the external HOP pin. A detailed description of the hop operation can be found in the appropriate sections of the transmitter detailed operations descriptions. Table 24. FBase0 Register (0x08) BIT NAME 4:0 base[20:16] FUNCTION 5-bit integer value for synthesizer. Table 25. FBase1 Register (0x09) BIT NAME 7:0 base[15:8] FUNCTION 8 MSBs of fractional value for synthesizer. Table 26. FBase2 Register (0x0A) BIT NAME 7:0 base[7:0] FUNCTION 8 LSBs of fractional value for synthesizer. Table 27. FLoad (0x0B) BIT NAME 0 hop FUNCTION Hop bit. Loads the synthesizer fractional-N divider base value to base[20:0] written in registers 8 through 10. This is a self-reset bit, and is reset to zero after the operation is completed. ���������������������������������������������������������������� Maxim Integrated Products 42 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 28. Group 4: Transmiter Amplitude and Timing Parameters (TxConf0, TxConf1, TxTstep) GROUP/FUNCTION 4 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 TxConf0 0x0C palopwr wsoff fska_5 fska_4 fska_3 fska_2 fska_1 fska_0 TxConf1 0x0D wsmlt_1 wsmlt_0 fskas_5 fskas_4 fskas_3 fskas_2 fskas_1 fskas_0 TxTstep 0x0E tstep_7 tstep_6 tstep_5 tstep_4 tstep_3 tstep_2 tstep_1 tstep_0 These registers set general FSK/ASK parameters for PA amplitude and rate control (FSK), shaping control, and the step control used for amplitude or frequency shaping. Table 29. TxConf0 Register (0x0C) BIT NAME 7 palopwr 6 wsoff 5:0 fska[5:0] FUNCTION Reduces the PA input buffer current by 2mA when set to 1. Useful at low output power levels. Disables (1) or enables (0) waveshaping. If waveshaping is disabled, only shp00[7:0] (Shape00 register, 0x0F) and wsmlt[1:0] (TxConf1 register, 0x0D) are used to set the amplitude (ASK) or frequency (FSK) deviation. 6-bit final value for FSK PA amplitude (bias current) control. Table 30. TxConf1 Register (0x0D) BIT NAME FUNCTION 2-bit scaler for shp00[7:0] (Shape00 register, 0x0F), effectively multiplying the value of Shape00 by: 7:6 wsmlt[1:0] 5:0 fskas[5:0] wsmlt[1:0] multiplier 00 1 01 2 10 4 11 8 6-bit FSK amplitude (bias current) step for ramp-up and ramp-down operations. The PA amplitude increases/decreases by this amount for every 1/20th of the data rate time elapsed (TxTstep register, 0x0E), until it reaches the final fska[5:0] value when ramping up, or reaches 0 when ramping down. Table 31. TxTstep Register (0x0E) BIT NAME FUNCTION 8-bit update value for waveshaping. This setting corresponds to 1/20th of the data rate, given in periods of the master digital clock (312.5ns for 3.2 MHz). tstep[7:0] = INT (mclk/(20 x DataRate)) 7:0 tstep[7:0] For 80kbps < DataRate P 160kbps, tstep[7:0] = 1, mclk = 3.2MHz For 40kbps < DataRate P 80kbps, tstep[7:0] = 2, mclk = 3.2MHz For 160kbps < DataRate P 200kbps, tstep[7:0] = 1, mclk = 4.0MHz For 4kbps, tstep = INT (3.2 x106/(20 x 4000)) = 40 (0x28), mclk = 3.2MHz The maximum value for tstep[7:0] is 255, which allows for a minimum shaped data rate of 627bps. These values assume shaping during the entire bit interval. The tstep value can be set lower if possible for shaping during a portion of the bit interval. This setting allows for the 20 sequential steps in either the amplitude (ASK) or frequency (FSK) waveshaping process, for each symbol of the transmitted data. ���������������������������������������������������������������� Maxim Integrated Products 43 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 32. Group 5: Transmitter Shaping Registers (Shape00–Shape18) GROUP/FUNCTION 5 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Shape00 0x0F shp00_7 shp00_6 shp00_5 shp00_4 shp00_3 shp00_2 shp00_1 shp00_0 Shape01 0x10 shp01_7 shp01_6 shp01_5 shp01_4 shp01_3 shp01_2 shp01_1 shp01_0 Shape02 0x11 shp02_7 shp02_6 shp02_5 shp02_4 shp02_3 shp02_2 shp02_1 shp02_0 Shape03 0x12 shp03_7 shp03_6 shp03_5 shp03_4 shp03_3 shp03_2 shp03_1 shp03_0 Shape04 0x13 shp04_7 shp04_6 shp04_5 shp04_4 shp04_3 shp04_2 shp04_1 shp04_0 Shape05 0x14 shp05_7 shp05_6 shp05_5 shp05_4 shp05_3 shp05_2 shp05_1 shp05_0 Shape06 0x15 shp06_7 shp06_6 shp06_5 shp06_4 shp06_3 shp06_2 shp06_1 shp06_0 Shape07 0x16 shp07_7 shp07_6 shp07_5 shp07_4 shp07_3 shp07_2 shp07_1 shp07_0 Shape08 0x17 shp08_7 shp08_6 shp08_5 shp08_4 shp08_3 shp08_2 shp08_1 shp08_0 Shape09 0x18 shp09_7 shp09_6 shp09_5 shp09_4 shp09_3 shp09_2 shp09_1 shp09_0 Shape10 0x19 shp10_7 shp10_6 shp10_5 shp10_4 shp10_3 shp10_2 shp10_1 shp10_0 Shape11 0x1A shp11_7 shp11_6 shp11_5 shp11_4 shp11_3 shp11_2 shp11_1 shp11_0 Shape12 0x1B shp12_7 shp12_6 shp12_5 shp12_4 shp12_3 shp12_2 shp12_1 shp12_0 Shape13 0x1C shp13_7 shp13_6 shp13_5 shp13_4 shp13_3 shp13_2 shp13_1 shp13_0 Shape14 0x1D shp14_7 shp14_6 shp14_5 shp14_4 shp14_3 shp14_2 shp14_1 shp14_0 Shape15 0x1E shp15_7 shp15_6 shp15_5 shp15_4 shp15_3 shp15_2 shp15_1 shp15_0 Shape16 0x1F shp16_7 shp16_6 shp16_5 shp16_4 shp16_3 shp16_2 shp16_1 shp16_0 Shape17 0x20 shp17_7 shp17_6 shp17_5 shp17_4 shp17_3 shp17_2 shp17_1 shp17_0 Shape18 0x21 shp18_7 shp18_6 shp18_5 shp18_4 shp18_3 shp18_2 shp18_1 shp18_0 These registers set the amplitude (ASK) or frequency deviation (FSK) modulated by the incoming transmitted data. For every 1/20th of the bit rate defined by tstep[7:0], the following shape value is added to the previous accumulated result. All the shape values are deltas, and the final ASK amplitude or FSK deviation is given by the cumulative sum of all the shape registers. In ASK, the initial value is 0. For FSK, the initial value is given by base[20:0]. There are 20 intervals (hence 19 shape registers) that are added on the 0-1 transition of the transmitted data or subtracted from on the 1-0 transition. Table 33. Shape00 Register (0x0F) BIT 7:0 NAME shp00[7:0] FUNCTION First 8-bit value for waveshaping. This value is effectively multiplied by the wsmlt[1:0] setting (TxConf1 register, 0x0D). If the wsoff bit is high, this is the only value that is added or subtracted to perform either amplitude (ASK) or frequency (FSK) modulation. ���������������������������������������������������������������� Maxim Integrated Products 44 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 34. Shape01–Shape18 Registers (0x10–0x21) BIT NAME 7:0 shp01[7:0] shp02[7:0] shp03[7:0] shp04[7:0] shp05[7:0] shp06[7:0] shp07[7:0] shp08[7:0] shp09[7:0] shp10[7:0] shp11[7:0] shp12[7:0] shp13[7:0] shp14[7:0] shp15[7:0] shp16[7:0] shp17[7:0] shp18[7:0] FUNCTION 18 8-bit values for waveshaping. These values, along with shp00[7:0], yield the 19 different values (20 intervals) used for waveshaping, one for each of the 20 updates occurring during each 0-1 or 1-0 transmitted data transition. Table 35. Group 6: Control Registers (TestMux, Datain, EnableReg) GROUP/FUNCTION 6 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 TestMux 0x3C — — — — tmux_3 tmux_2 tmux_1 tmux_0 Datain 0x3D — datain — — — — — — EnableReg 0x3E — — — — tsensor — — enable This register group combines status bus control (tbus[15:0]), GPO controls, temperature sensor control, register control of pin function (txdata), and enable controls. Table 36. TestMux Register (0x3C) BIT NAME 3:0 tmux[3:0] FUNCTION 4-bit selection of tbus[15:0] (TestBus0 and TestBus1 registers, 0x40 and 0x41) contents. See the TestBus0 and TestBus1 register descriptions for a complete description of what can be observed through this 16-bit bus. ���������������������������������������������������������������� Maxim Integrated Products 45 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 37. Datain Register (0x3D) BIT 6 NAME FUNCTION datain Transmit datain bit. This is a register equivalent of the DATAIN pin. When either the DATAIN pin or datain bit is 1, the transmit data is 1. Only when both are 0 the transmit data is 0 (logical OR function). Keep 0 if only the external DATAIN pin is used, and keep DATAIN pin 0 if the internal datain bit is used. Table 38. EnableReg Register (0x3E) BIT 3 0 NAME FUNCTION tsensor Writing a 1 to this bit starts the temperature sensor A/D conversion. This is a self-reset bit, where the bit is automatically reset when the conversion is finished. The result can then be read through the TestBus1 register (0x41). This function is available only in Sleep mode. enable Enables (1) or disables (0) the IC’s transmitter operations. To enable the IC, SHDN must be driven low. This is a register equivalent of the ENABLE pin. When either the ENABLE pin or enable bit is 1, the IC transmit operation is enabled. Only when both are 0 the transmitter is disabled (logical-OR function). Keep 0 if only the external ENABLE pin is used, and keep ENABLE pin 0 if the internal enable is used. Table 39. Group 7: Read-Only Status Registers (TestBus0, TestBus1, Status0, Status1) GROUP/FUNCTION 7 HEX BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 TestBus0 0x40 tbus_15 tbus_14 tbus_13 tbus_12 tbus_11 tbus_10 tbus_9 tbus_8 TestBus1 0x41 tbus_7 tbus_6 tbus_5 tbus_4 tbus_3 tbus_2 tbus_1 tbus_0 Status0 0x42 txready — adcrdy — gpo1out plllock lockdet ckalive Status1 0x43 — — — tsdone — — — — Registers 0x3F–0x43 are read-only registers used for A/D results, status, and test. Table 40. TestBus0 Register (0x40) BIT NAME FUNCTION 7:0 tbus[15:8] 8 MSBs of the internal 16-bit bus tbus[15:0], selected by tmux[3:0] (TextMux register, 0x3C, bits 3:0). ���������������������������������������������������������������� Maxim Integrated Products 46 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 41. Test Bus Signals (tbus[15:8]) tmux[3:0] tbus[15] tbus[14] tbus[13] tbus[12] tbus[11] tbus[10] tbus[9] tbus[8] 0x0 — — — — — — — — 0x1 — — — — — — — — 0x2 — — — — — — — — 0x3 — — — — — — — — 0x4 — — — — — — — — 0x5 — — pabia[5] pabia[4] pabia[3] pabia[2] pabia[1] pabia[0] 0x6 frac[15] frac[14] frac[13] frac[12] frac[11] frac[10] frac[9] frac[8] 0x7 — — — — — — — — 0x8 — — — — — — — — 0x9 — — — — — — — — 0xA — — — — — — — — 0xB — — — — — — — mclk 0xC — — — — — — — plllock 0xD — — — — — — — — 0xE — — — — — — — — 0xF — — — — — — — — where: tmux[3:0] Signal Description 0x0–0x4 — Reserved signals for test purposes 0x5 pabia[5:0] PA amplitude control bus 0x6 frac[15:8] MSBs of fractional value sent to frequency synthesizer 0x7–0xA — Reserved signals for test purposes 0xB mclk Master digital clock 0xC plllock Synthesizer lock signal 0xD–0xF — Reserved signals for test purposes Table 42. TestBus1 Register (0x41) BIT NAME FUNCTION 7:0 tbus[7:0] 8 LSBs of the internal 16-bit bus tbus[15:0], selected by tmux[3:0] (TestMux register, 0x3C, bits 3:0). ���������������������������������������������������������������� Maxim Integrated Products 47 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 43. Test Bus Signals (tbus[7:0]) tmux[3:0] tbus[7] tbus[6] tbus[5] tbus[4] tbus[3] tbus[2] tbus[1] tbus[0] 0x0 tsdonef tsadc[6] tsadc[5] tsadc[4] tsadc[3] tsadc[2] tsadc[1] tsadc[0] 0x1 — — — — — — — — 0x2 — — — — — — — — 0x3 — — — — — — — — 0x4 — — — — — — — — 0x5 palopwr — — integ[4] integ[3] integ[2] integ[1] integ[0] 0x6 frac[7] frac[6] frac[5] frac[4] frac[3] frac[2] frac[1] frac[0] — 0x7 — — — — — — — 0x8 — — — — — — — — 0x9 — — — ents — — — tsdonef 0xA — — — — — — — — 0xB — — — — — — — — 0xC — lockdet ckalive — — — txready — 0xD — — — — — — — — 0xE — — — — — — — — 0xF — — — — mclk — — — where: tmux[3:0] Signal Description 0x0 tsdonef Temperature sensor conversion done flag tsadc[6:0] Temperature sensor A/D result 0x1–0x4 — Reserved signals for test purposes 0x5 palopwr PA low-power mode flag integ[4:0] Integer value sent to frequency synthesizer 0x6 frac[7:0] LSBs of fractional value sent to frequency synthesizer 0x7, 0x8 — Reserved signals for test purposes 0x9 ents Enable temperature sensor conversion signal tsdonef Temperature sensor done flag 0xA, 0xB — Reserved signals for test purposes 0xC lockdet Synthesizer lock-detect signal ckalive Crystal oscillator clock alive flag txready Tx ready flag 0xD, 0xE — Reserved signals for test purposes 0xF mclk Master digital clock Note that each of the signals available on the digital test bus can be observed on GPO1, GPO2, or SDO, as discussed in the Digital Outputs section. ���������������������������������������������������������������� Maxim Integrated Products 48 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Table 44. Status0 Register (0x42) BIT NAME FUNCTION 7 txready Transmit ready flag. After this bit goes to 1, the IC is ready to accept transitions on the DATAIN pin or on the datain bit inputs. Both these bits should be 0 before the txready flag is 1. 5 adcrdy Internal test flag that signals the end of the A/D warmup time. 3 gpo1out Register copy of the GPO1 pin logical state. 2 plllock Synthesizer lock flag, after programmable plldl[2:0] expires. 1 lockdet Synthesizer lock detect flag. 0 ckalive Crystal oscillator clock alive flag, indicating clock activity from the crystal oscillator. Table 45. Status1 Register (0x43) BIT 4 NAME tsdone FUNCTION Temperature sensor conversion done flag. When 1, the A/D conversion of the internal temperature sensor is completed. Layout Considerations A properly designed PCB is an essential part of any RF/ microwave circuit. On high-frequency, high-impedance inputs and outputs, use minimum width lines and keep them as short as possible to minimize stray capacitance. Keeping the traces short also reduces parasitic inductance. Generally, 1in of PCB trace adds approximately 20nH of parasitic inductance. The parasitic inductance can have a dramatic effect on the effective inductance of a passive component. For example, a 0.5in trace connecting to a 100nH inductor adds an extra 10nH of inductance, or 10%. To reduce parasitic inductance, use a solid ground plane below the signal traces. Also, use low-inductance connections to the ground plane for shunt matching and bypassing components, and place bypassing capacitors as close as possible to all power-supply pins. Use separate vias to the ground plane for all shunt matching and bypassing components to reduce unwanted common impedance coupling. ���������������������������������������������������������������� Maxim Integrated Products 49 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Ordering Information PART MAX7049ATI+ TEMP RANGE PIN-PACKAGE -40NC to +125NC 28 TQFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. Chip Information PROCESS: BiCMOS Package Information For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 28 TQFN-EP T2855+3 21-0140 90-0023 ���������������������������������������������������������������� Maxim Integrated Products 50 MAX7049 High-Performance, 288MHz to 945MHz ASK /FSK ISM Transmitter Revision History REVISION NUMBER REVISION DATE 0 6/11 DESCRIPTION Initial release PAGES CHANGED — Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2011 Maxim Integrated Products 51 Maxim is a registered trademark of Maxim Integrated Products, Inc.