ETC TL431

TECHNICAL DATA
TL431
Programmable Precision Reference
FEATURES
PIN CONNECTIONS
Programmable Output Voltage to 40V
Low Dynamic Output Impedance 0.2
Sink Current Capability of 0.1 mA to 100 mA
Equivalent Full-Range Temperature
Coefficient of 50 ppm/oC
Temperature Compensated for Operation over
Full Rated Operating Temperature Range
Low Output Noise Voltage
Fast Turn on Response
ANODE
TO-92, SOP- 8, SOT-23, SOT-89 packages
REFERENCE
CATHODE
DESCRIPTION
The TL431 is a three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges.
The output voltage may be set to any value between Vref (approximately 2.5 volts) and 40 volts with two external resistors. These
devices have a typical dynamic output impedance of 0.2. Active output circuitry provides a very sharp turn-on characteristic,
making these devices excellent replacement for zener diodes in many applications.
o
o
The TL431 is characterized for operation from -25 C to +85 C.
SYMBOL
FUNCTIONAL BLOCK DIAGRAM
ABSOLUTE MAXIMUM RATINGS
(Operating temperature range applies unless otherwise specified)
Characteristic
Cathode Voltage
Cathode Current Range (Continuous)
Reference Input Current Range
o
Symbol
Value
Unit
VKA
40
V
IK
-100 ~ 150
mA
IREF
0.05 ~ 10
mA
0.7
0.2
W
W
Power Dissipation at 25 C:
o
SOP, TO – 92 Package (R‰JA = 178 C/W)
o
SOT Package (R‰JA = 625 C/W)
PD
Junction Temperature Range
TJ
-40 ~ 150
o
Operating Temperature Range
Tg
-40 ~ +85
o
-65 ~ +150
o
Storage Temperature Range
Tstg
C
C
C
Rev. 00
TL431
RECOMMENDED OPERATING CONDITIONS
Characteristic
Symbol
Test Condition
Min
Typ
Max
Unit
Cathode Voltage
VKA
VREF
40
V
Cathode Current
IK
0.5
100
mA
ELECTRICAL CHARACTERISTICS
(Ta = 25oC, VKA = VREF, IK = 10mA unless otherwise specified)
Characteristic
Min
Typ
Max
2.440
2.495
2.550
2.470
2.495
2.520
2.482
2.495
2.508
3
17
VKA = 10V-VREF
-1.4
-2.7
VKA = 36V- 10V
-1.0
-2.0
IREF
R1 = 10K, R2 = 1.8
4
໡
Deviation of Reference Input
Current Over Full Temperature
Range
IREF(dev)
R1 = 10K, R2 = 0.4
1.2
໡
Minimum Cathode Current for
Regulation
IK(min)
0.25
0.5
mA
Off-State Cathode Current
IK(off)
VKA = 40 V, VREF = 0
0.26
0.9
໡
Dynamic Impedance
ZKA
IK = 10mA to 100 mA , f 1.0KHz
0.22
0.5
Reference Input Voltage
Symbol
Test Condition
VREF
VKA = VREF, IK = 10mA
TL431 (2%)
TL431-A (1%)
Unit
V
TL431-C (0.5%)
Deviation of Reference Input
Voltage Over Full Temperature
Range
VREF(dev)
Ratio of Change in Reference Input
Voltage to the Change in Cathode
Voltage
V REF
V K A
Reference Input Current
Tmin Ta Tmax
MV
mV/V
TEST CIRCUITS
Figure 1. Test Circuit for V KA = VREF
Figure 2. Test Circuit for V KA VREF
Figure 3. Test Circuit for I off
INPUT
VK A
I K (OFF)
TL431
TL431
BT432
TL431
Rev. 00
TL431
Electrical Characteristics
(Continued)
The average temperature coefficient of the reference input voltage, ∝VREF, is defined as:
Where:
T2 − T1 = full temperature change (0-70˚C).
∝VREF can be positive or negative depending on whether the slope is positive or negative.
Example: VDEV = 8.0 mV, VREF = 2495 mV, T2 − T1 = 70˚C, slope is positive.
Note 6: The dynamic output impedance, rZ, is defined as:
When the device is programmed with two external resistors, R1 and R2, (see Figure 2 ), the dynamic output impedance of the overall circuit, rZ, is defined as:
Rev. 00
TL431
Equivalent Circuit
Typical Performance Characteristics
Input Current vs VZ
Thermal Information
Input Current vs VZ
Dynamic Impedance vs Frequency
Rev. 00
TL431
Typical Performance Characteristics
(Continued)
Stability Boundary Conditions
Note: The areas under the curves represent conditions that may cause the
device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to
establish the initial VZ and IZ conditions with CL = 0. V+ and CL were then
adjusted to determine the ranges of stability.
Test Circuit for Curve A Above
Typical Applications
Shunt Regulator
Test Circuit for Curves B, C and D Above
Single Supply Comparator with
Temperature Compensated Threshold
Rev. 00
TL431
Typical Applications
(Continued)
Higher Current Shunt Regulator
Series Regulator
Crow Bar
Output Control of a Three
Terminal Fixed Regulator
Rev. 00
TL431
Typical Applications
(Continued)
Over Voltage/Under Voltage
Protection Circuit
Voltage Monitor
Rev. 00
TL431
Typical Applications
(Continued)
Current Limiter or Current Source
Delay Timer
Constant Current Sink
Rev. 00
TL431
Ordering Information
Reference Input
Voltage
Product Number
TL431CLF
TL431CLS
TL431CD
TL431CS
TL431CP
TL431ALF
TL431ALS
TL431AD
TL431AS
TL431AP
TL431LF
TL431LS
TL431D
TL431S
TL431P
Package
TO-92
8-SOP
SOT-23
SOT-89
0.5%
TO-92
1%
8-SOP
SOT-23
SOT-89
TO-92
2%
8-SOP
SOT-23
SOT-89
Package Dimensions
D SUFFIX SOIC
(MS - 012AA)
Dimension, mm
A
8
5
B
H
1
G
P
4
D
K
MIN
MAX
A
4.80
5.00
B
3.80
4.00
C
1.35
1.75
D
0.33
0.51
F
0.40
1.27
R x 45
C
-T-
Symbol
SEATING
PLANE
J
F
0.25 (0.010) M T C M
M
G
1.27
H
5.72
J
0°
8°
K
0.10
0.25
1. Dimensions A and B do not include mold flash or protrusion.
M
0.19
0.25
2. Maximum mold flash or protrusion 0.15 mm (0.006) per side
for A; for B ̂ 0.25 mm (0.010) per side.
P
5.80
6.20
R
0.25
0.50
NOTES:
Rev. 00
TL431
TO-92
Rev. 00
TL431
Rev. 00
TL431
Rev. 00
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Description
Pin Assignments
TL431
(Top View)
NEW PRODUCT
The TL431 and TL432 are three terminal adjustable shunt
regulators offering excellent temperature stability and output
current handling capability up to 100mA. The output voltage
may be set to any chosen voltage between 2.5 and 36 volts
by selection of two external divider resistors.
The devices can be used as a replacement for zener diodes
in many applications requiring an improvement in zener
performance. Diodes’ TL431 has the same electrical
specifications as the industry standard ‘431 and is available
in 2 grades with initial tolerances of 1% and 0.5% for the
A and B grades respectively.
Features
Temperature range -40 to 125ºC
Reference Voltage Tolerance at 25°C
TL431A: 2.495V ̈́ 1.0%.
ANODE
3
REF
2
CATHODE
1
SOT23
(Top View )
NC
1
NC
2
CATHODE
3
5
ANODE
4
REF
SOT25
TL431B: 2.495V ̈́ 0.5%
Low Output Noise
0.2 Typical Output Impedance
Sink Current Capability: 1mA to 100mA
Adjustable Output Voltage: VREF to 36V
SOT23 and SOT25: Available in “Green” Molding
Compound (No Br, Sb) and Lead Free Finish/ RoHS
Compliant (Note 1)
TL432
(Top View)
ANODE
3
CATHODE
2
REF
1
Applications
SOT23
Opto-Coupler Linearisers
Shunt Regulators
Improved Zener
Variable Reference
Notes:
1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied. Please visit our website at
http://www.diodes.com/products/lead_free.html.
TL431/432
Document number: DS35050 Rev. 2 - 2
1 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Absolute Maximum Ratings (Note 2)
Symbol
Unit
Cathode Voltage
40
V
IKA
Continuous Cathode Current
150
mA
-0.050 to +10
mA
TJ
TST
NEW PRODUCT
Rating
VKA
IREF
PD
Notes:
Parameter
Reference Input Current
+150
°
-55 to +150
°
Operating Junction Temperature
Storage Temperature
Power Dissipation (Notes 3, 4)
C
C
SOT23
330
mW
SOT25
500
mW
2. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for
extended periods, may reduce device reliability. Unless otherwise stated voltages specified are relative to the ANODE pin.
3. TJ, max =150°C.
4. Ratings apply to ambient temperature at 25°C.
Recommended Operating Conditions
Symbol
Min
Max
VKA
Cathode Voltage
Parameter
VREF
36
V
IKA
Cathode Current
1
100
mA
TA
Operating Ambient Temperature
-40
125
°C
TL431/432
Document number: DS35050 Rev. 2 - 2
2 of 14
www.diodes.com
Unit
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Electrical Characteristics (TA = +25°C, unless otherwise noted)
Symbol
Parameter
VREF
Test Conditions
Min
Typ.
Max
Unit
TL431A
2.470
2.495
2.520
V
TL431B
2.482
2.495
2.507
V
6
16
mV
TA = -40 to 85 oC
14
34
mV
o
TA = -40 to 125 C
14
34
mV
VKA = 10V to VREF
-1.4
-2.7
mV/V
VKA = 36V to 10V
-1
-2
mV/V
1
4
A
TA = 0 to 70 C
IKA = 10mA, R1 =
o
TA = -40 to 85 C
10K, R2 = TA = -40 to 125 oC
0.8
1.2
A
0.8
2.5
A
0.8
2.5
A
VKA = VREF,
IKA = 10mA
Reference voltage
TA = 0 to 70 oC
NEW PRODUCT
VKA = VREF,
IKA = 10mA
Deviation of reference voltage over
full temperature range (Note 5)
VDEV
VREF
VKA
IREF
Ratio of the change in reference
voltage to the change in cathode
voltage
IKA = 10mA
Reference input current
IKA = 10mA, R1 = 10K, R2 = o
IREF
IREF deviation over full temperature
range (Note 5)
IKA(MIN)
Minimum cathode current for
regulation
VKA = VREF
0.4
0.7
mA
IKA(OFF)
Off-state current
VKA = 36V, VREF = 0V
0.05
0.5
A
0.2
0.5
ZKA
Dynamic output impedance (Note 6) VKA = VREF, f = 0Hz
Notes:
SOT23
Thermal Resistance Junction to
Ambient
JA
SOT25
380
o
C/W
250
o
C/W
5. Deviation of VDEV, and IREF are defined as the maximum variation of the values over the full temperature range.
The average temperature coefficient of the reference input voltage VREF is defined as:
Vmax
VDEV
X 106
VREF @ 25ºC
VREF =
ppm/ºC
T2 – T1
Vmin
Where:
T2 – T1 = full temperature change.
VDEV = Vmax - Vmin
˞VREF can be positive or negative depending on whether the slope is
positive or negative.
Notes: 6. The dynamic output impedance, RZ, is defined as:
ZKA =
VKA
IKA
T1
Temperature
T2
When the device is programmed with two external resistors R1 and R2, the dynamic output
impedance of the overall circuit, is defined as:
Z’ =
V
I
TL431/432
Document number: DS35050 Rev. 2 - 2
ZKA
1+
R1
R2
3 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
NEW PRODUCT
Test Circuits
Figure 1. Test circuit for VKA = VREF
Figure 2. Test circuit for VKA > VREF
Figure 3. Test circuit for IOFF
TL431/432
Document number: DS35050 Rev. 2 - 2
4 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Typical Performance Characteristics
2600
0.2
IKA = 10mA
V KA = VREF
2560
IREF Reference Current ( A)
V REF Reference Voltage (mV)
R1 = 10K
R2 = IKA = 10mA
TA = 25 C
2540
2520
2500
2480
2460
0.15
0.1
0.05
2440
2420
2400
-55 -35
0
-55
-15
5
25 45
65 85 105 125
TA Free Air Temperature ( C)
Reference Voltage vs. Free Air Temperature
-35
-15
5
25 45 65
85 105 125
TA Free Air Temperature ( C)
Reference Current vs. Free Air Temperature
200
150
V KA = VREF
V KA = VREF
TA = 25 C
TA = 25 C
IKA Cathode Current ( A)
100
IKA Cathode Current (mA)
NEW PRODUCT
2580
50
0
100
IKMIN
0
-50
-100
-2
0
1
2
V KA Cathode Voltage (V)
Cathode Current vs. Cathode Voltage
-1
TL431/432
Document number: DS35050 Rev. 2 - 2
3
-100
-2
5 of 14
www.diodes.com
0
1
2
V KA Cathode Voltage
Cathode Current vs. Cathode Voltage
-1
3
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Typical Performance Characteristics (Continued)
0.50
-0.2
V KA = 36V
-0.3
0.40
-0.4
0.35
dV REF/dV KA (mV/V)
IKOFF Off-State Cathode Current ( A)
V KA = 3V t o 36V
V REF = 0
0.30
0.25
0.20
0.15
-0.5
-0.6
-0.7
-0.8
0.10
-0.9
0.05
0.00
-75
-25
0
25
50
75
100 125
TA Free Air Temperature (C)
Off-State Cathode Current vs. Free Air Temperature
-50
-1.0
-50
75
0
25
50
100 125
TA Free Air Temperature (C)
Ratio of Delta Reference Voltage to Delta Cathode
Voltage vs. Free Air Temperature
-25
400
V N = Equivalent Input Noise Voltage nV/Hz
NEW PRODUCT
0.45
380
IKA = 10mA
V KA = VREF
TA = 25°C
360
340
320
300
280
260
240
220
200
10
100
1K
10K
100K
f- Frequency (Hz)
Equivalent Input Noise Voltage vs. Frequency
TL431/432
Document number: DS35050 Rev. 2 - 2
6 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Typical Performance Characteristics (Continued)
15
Vn - Equivalent Input Noise Voltage - V
NEW PRODUCT
IKA = 10mA
V KA = VREF
10
TA = 25 C
5
0
-5
-10
-15
0
1
2
3
4
5
6
7
8
9 10
Time (Seconds)
Equivalent Input Noise Voltage Over A 10-S Period
Figure 4. Test circuit for noise input voltage
TL431/432
Document number: DS35050 Rev. 2 - 2
7 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Typical Performance Characteristics (Continued)
A V Small-Signal Voltage Amplification (dB)
IKA = 10mA
TA = 25 C
60
50
40
30
20
10
0
100
10M
10K
100K
1M
f Frequency (Hz)
Small-Signal Voltage Amplification vs. Frequency
1K
Test circuit for voltage amplification
100.0
IKA = 10mA
TA = 25 C
ZKA Reference Impedance ( )
NEW PRODUCT
70
10.0
1.0
0.1
Test circuit for reference impedance
0.0
1K
100K
1M
f Frequency (Hz)
Reference Impedance vs. Frequency
10K
TL431/432
Document number: DS35050 Rev. 2 - 2
10M
8 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Typical Performance Characteristics (Continued)
6
TA = 25 C
Input
Input and Output Voltage (V)
4
3
Out put
2
Test Circuit for Pulse Response
1
0
0
1
2
3
4
5
6
7
t Time (s)
Pulse Response
8
9
10
100
90
TA = 25 C
D
D
80
IKA - Cathode Current - mA
NEW PRODUCT
5
C
C
A
B
70
Stable
Stable
Stable
60
50
B
Test Circuit for Curve A
40
30
20
10
A VKA = V REF
B V KA = 5V
C V KA = 10V
D V KA = 15V
0
0.00001 0.0001 0.001 0.01
0.1
1
C L -Load Capacitance - uF
Stability Boundary Conditions
10
Test circuit for curves B, C, D
Test Circuit for Curves B, C, D
The device is stable under all conditions with a load capacitance not exceeding 50pF. The device is stable under all conditions with a load
capacitance between 5nF and 20nF. The device is stable under all conditions with a load capacitance exceeding 300nF. With a cathode
current not exceeding 5mA, the device is stable with any load capacitance.
TL431/432
Document number: DS35050 Rev. 2 - 2
9 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Applications Information
NEW PRODUCT
Higher Current
Shunt Regulator
Shunt Regulator
Output Control of a Three
Terminal Fixed Regulator
Series Regulator
Single Supply Comparator
with Temperature
Compensated Threshold
TL431/432
Document number: DS35050 Rev. 2 - 2
Over Voltage / Under
Voltage Protection Circuit
10 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Ordering Information
TL43 X X XX - 7
NEW PRODUCT
Pinout variation
Tolerance
Package
1: Standard pinout
A: s1.0%
SA: SOT23
2: Reversed pinout in SOT23
B: s0.5%
W5: SOT25
Device
(Note 7)
Package
Code
Packaging
(Note 5)
TL431A(B)SA-7
TL431A(B)W5-7
TL432A(B)SA-7
SA
W5
SA
SOT23
SOT25
SOT23
Notes:
7” Tape and Reel
Part Number
Quantity
Suffix
3000/Tape & Reel
-7
3000/Tape & Reel
-7
3000/Tape & Reel
-7
Packing
7: Tape & Reel
Ammo Box
Quantity
Part Number Suffix
NA
NA
NA
NA
NA
NA
7. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at
http://www.diodes.com/datasheets/ap02001.pdf.
8. Suffix “B” denotes TL431B device.
TL431/432
Document number: DS35050 Rev. 2 - 2
11 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Marking Information
(1) SOT23
( Top View )
3
NEW PRODUCT
XX Y W X
1
2
XX : Identification code
Y : Year 0~9
W : Week : A~Z : 1~26 week;
a~z : 27~52 week; z represents
52 and 53 week
X : A~Z : Green
ʳ
Device
Package
Identification Code
TL431ASA
TL431BSA
TL432ASA
TL432BSA
SOT23
SOT23
SOT23
SOT23
AA
AB
BA
BB
(2) SOT25
( Top View )
4
7
5
XX Y W X
1
2
3
XX : Identification code
Y : Year 0~9
W : Week : A~Z : 1~26 week;
a~z : 27~52 week; z represents
52 and 53 week
X : A~Z : Green
ʳ
ʳ
Device
TL431AW5
TL431BW5
Package
SOT25
SOT25
ʳ
Identification Code
AA
AB
ʳ
TL431/432
Document number: DS35050 Rev. 2 - 2
12 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
Package Outline Dimensions (All Dimensions in mm)
NEW PRODUCT
(1) Package type: SOT25
(2) Package Types: SOT23
TL431/432
Document number: DS35050 Rev. 2 - 2
13 of 14
www.diodes.com
September 2010
© Diodes Incorporated
TL431/TL432
ADJUSTABLE PRECISION SHUNT REGULATOR
IMPORTANT NOTICE
DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS
DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
NEW PRODUCT
Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other
changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability
arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any
license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described
herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies
whose products are represented on Diodes Incorporated website, harmless against all damages.
Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized
sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall
indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.
Products described herein may be covered by one or more United States, international or foreign patents pending. Product names
and markings noted herein may also be covered by one or more United States, international or foreign trademarks.
LIFE SUPPORT
Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without
the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:
1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided
in the labeling can be reasonably expected to result in significant injury to the user.
B.
A critical component is any component in a life support device or system whose failure to perform can be reasonably expected
to cause the failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or
systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements
concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems,
notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further,
Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes
Incorporated products in such safety-critical, life support devices or systems.
Copyright © 2010, Diodes Incorporated
www.diodes.com
TL431/432
Document number: DS35050 Rev. 2 - 2
14 of 14
www.diodes.com
September 2010
© Diodes Incorporated
UNISONIC TECHNOLOGIES CO., LTD
TL431
LINEAR INTEGRATED CIRCUIT
PROGRAMMABLE PRECISION
REFERENCE
„
DESCRIPTION
The UTC TL431 is a three-terminal adjustable regulator with a
guaranteed thermal stability over applicable temperature ranges.
The output voltage may be set to any value between VREF
(approximately 2.5V) and 36V with two external resistors. It provides
very wide applications, including shunt regulator, series regulator,
switching regulator, voltage reference and others.
„
*
*
*
*
„
FEATURES
Programmable output Voltage to 36V.
Low dynamic output impedance 0.2.
Sink current capability of 1.0 to 100mA.
Equivalent full-range temperature coefficient of 50ppm/ C
typical for operation over full rated operating temperature range.
ORDERING INFORMATION
Ordering Number
Normal
Lead Free
Halogen Free
TL431-AB3-R
TL431K-AB3-R
TL431G-AB3-R
TL431-AE2-R
TL431K-AE2-R
TL431G-AE2-R
TL431-AE3-R
TL431K-AE3-R
TL431G-AE3-R
TL431NS-AE3-R TL431NSL-AE3-R TL431NSG-AE3-R
TL431NS-AE2-R TL431NSL-AE2-R TL431NSG-AE2-R
TL431-AF5-R
TL431K-AF5-R
TL431G-AF5-R
TL431-S08-R
TL431K-S08-R
TL431G-S08-R
TL431-T92-B
TL431K-T92-B
TL431G-T92-B
TL431-T92-K
TL431K-T92-K
TL431G-T92-G
Note: Pin Code: K: Cathode
A: Anode
R: Reference
Pin Assignment
1 2 3 4 5 6 7 8
R A K - - - - K R A - - - - K R A - - - - R K A - - - - R K A - - - - X X K R A - - K A A X X A A R
R A K - - - - R A K - - - - X: No Connection
Package
Packing
SOT-89
SOT-23-3
SOT-23
SOT-23
SOT-23-3
SOT-25
SOP-8
TO-92
TO-92
Tape Reel
Tape Reel
Tape Reel
Tape Reel
Tape Reel
Tape Reel
Tape Reel
Tape Box
Bulk
www.unisonic.com.tw
Copyright © 2011 Unisonic Technologies Co., Ltd
1 of 7
QW-R103-003,AC
TL431
„
LINEAR INTEGRATED CIRCUIT
MARKING
PACKAGE
MARKING
3
SOT-23-3
SOT-23
431.
2
K: Lead Free
G: Halogen Free
1
3
SOT-23-3
SOT-23
(TL431NS)
431N
2
3
L: Lead Free
G: Halogen Free
1
2
1
431
SOT-25
4
K: Lead Free
G: Halogen Free
5
UNISONIC TECHNOLOGIES CO., LTD
www.unisonic.com.tw
2 of 7
QW-R103-003,AC
TL431
LINEAR INTEGRATED CIRCUIT
BLOCK DIAGRAM
CATHODE
REFERENCE
CATHODE (K)
REFERENCE (R)
2.5V VREF
ANODE(A)
ANODE
UNISONIC TECHNOLOGIES CO., LTD
www.unisonic.com.tw
3 of 7
QW-R103-003,AC
TL431
„
LINEAR INTEGRATED CIRCUIT
ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)
PARAMETER
RATINGS
UNIT
Cathode Voltage
37
V
Cathode Current Range(Continuous)
-100 ~ +150
mA
Reference Input Current Range
-0.05 ~ +10
mA
TO-92
770
mW
Power Dissipation
PD
SOT-89
800
mW
SOT-23/SOT-23-3/SOT-25
300
mW
Operating Junction
TJ
+150
°C
Operating Ambient
TOPR
-40 ~ +85
°C
Storage Temperature
TSTG
-65 ~ +150
°C
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged
Absolute maximum ratings are stress ratings only and functional device operation is not implied.
„
SYMBOL
VKA
IKA
IREF
RECOMMENDED OPERATING CONDITIONS
PARAMETER
SYMBOL
VKA
IKA
Cathode Voltage
Cathode Current
„
MIN
VREF
1
TYP
MAX
36
100
UNIT
V
mA
ELECTRICAL CHARACTERISTICS (TC= 25°C, unless otherwise specified.)
PARAMETER
Reference Input Voltage
Deviation of reference Input Voltage Over
temperature
Ratio of Change in Reference Input
Voltage to the Change in Cathode Voltage
Reference Input Current
Deviation of Reference Input Current Over
Full Temperature Range
Minimum Cathode Current for Regulation
Off-State Cathode Current
Dynamic Impedance
SYMBOL
VREF
VREF
T
VREF
VKA
IREF
IREF
T
IKA(MIN)
IKA(OFF)
ZKA
TEST CONDITIONS
TL431-A
TL431-1
VKA=VREF,IKA=10mA
TL431-2
TL431-3
VKA=VREF,IKA=10mA
0°C Ta70°C
VKA=10V~VREF
IKA=10mA
VKA=36V~10V
IKA=10mA, R1=10k, R2=
IKA=10mA, R1=10k, R2=
Ta =full Temperature
VKA=VREF
VKA=36V, VREF=0
VKA=VREF, IKA=1 to 100mA
f1.0kHz
UNISONIC TECHNOLOGIES CO., LTD
www.unisonic.com.tw
MIN TYP MAX UNIT
2.483 2.495 2.507 V
2.470 2.495 2.520 V
2.520
2.545 V
2.445
2.470 V
4.5
17
mV
-1.0
-0.5
1.5
-2.7 mV/V
-2.0 mV/V
4
μA
0.4
1.2
μA
0.3
0.05
0.5
1.0
mA
μA
0.15
0.5
4 of 7
QW-R103-003,AC
TL431
„
LINEAR INTEGRATED CIRCUIT
TEST CIRCUIT
VKA
INPUT
IKA(OFF)
UTC TL431
VKA=VREF×(1+R1/R2)+IREF×R1
For VKAVREF
For VKA=VREF
„
For IKA(OFF)
APPLICATION CIRCUIT
VOUT=(1+R1/R2)×VREF
Shutdown Regulator
VOUT=(1+R1/R2)×VREF
Minimum VOUT=VREF+5V
Output Control of a Three
-Terminal Fixed Regulator
VOUT=(1+R1/R2)×VREF
Higher-current Shunt Regulator
IOUT=VREF/RS
IOUT =VREF/RCL
Constant-current Sink
Current Limiting or Current Source
UNISONIC TECHNOLOGIES CO., LTD
www.unisonic.com.tw
5 of 7
QW-R103-003,AC
TL431
LINEAR INTEGRATED CIRCUIT
Ƶʳ TYPICAL CHARACTERISTICS
Cathode Current vs. Cathode Voltage
Cathode Current vs. Cathode Voltage
150
800
Ta=25°C
100
600
Cathode Current (A)
Cathode Current (mA)
125 V =V
KA
REF
Ta=25°C
VKA=VREF
75
50
25
0
-25
-50
400
IKA(MIN)
200
0
-75
-100
-2
-1
0
1
2
-200
-2
3
-1
0
Cathode Voltage (V)
Change in Reference Input Voltage vs.
Cathode Voltage
2
3
Pulse Response
7
IKA=10mA
Ta=25°C
-5
Ta=25°C
6
Input and Output Voltage (V)
Change In Reference Input Voltage (mV)
0
1
Cathode Voltage (V)
-10
-15
-20
-25
-30
-35
5
4
3
2
1
0
-40
-1
0
5
10
15
20
25
30
35
40
-1
0
1
2
3.0
Deviation of Reference Voltage
over Temperature
IKA=10mA
3
4
5
6
7
Time (μs)
Cathode Voltage (V)
Frequency Response
60
50
2.4
40
1.6
30
20
0.8
10
0
0
-40 -20
0
25 50 75 100 125 150
Temperature, ( )
UNISONIC TECHNOLOGIES CO., LTD
www.unisonic.com.tw
1K
10K
100K
1M
10M
Frequency, f (Hz)
6 of 7
QW-R103-003,AC
TL431
LINEAR INTEGRATED CIRCUIT
UTC assumes no responsibility for equipment failures that result from using products at values that
exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or
other parameters) listed in products specifications of any and all UTC products described or contained
herein. UTC products are not designed for use in life support appliances, devices or systems where
malfunction of these products can be reasonably expected to result in personal injury. Reproduction in
whole or in part is prohibited without the prior written consent of the copyright owner. The information
presented in this document does not form part of any quotation or contract, is believed to be accurate
and reliable and may be changed without notice.
UNISONIC TECHNOLOGIES CO., LTD
www.unisonic.com.tw
7 of 7
QW-R103-003,AC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
G
FEATURES
TO-92 PKG
z Programmable Output Voltage to 40V
z Guaranteed 0.5% Reference Voltage Tolerance
z Low (0.2˟ Typ.) Dynamic Output Impedance
3
T
O
P
z Cathode Current Range(Continuous) – 100 ~ 150 mA
z Equivalent Full Range Temperature Coefficient of
2
1
50PPM/ଇ
z Temperature Compensated For Operation Over
Full Rate Operating Temperature Range
z Low Output Noise Voltage
z Fast Turn-on Response
z TO-92, SOT-89 or SOT-23 3L Package
SOT-23 PKG
͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͣ͑ ͑ ͑ ͑ ͑ ͑
͑
TOP
͑
APPLICATION
z
z
z
z
z
z
z
͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑͢ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͤ͑
Shunt Regulator
Precision High-Current Series Regulator
High-Current Shunt Regulator
Crowbar Circuit
PWM Converter With Reference
Voltage Monitor
Precision Current Limiter
SOT-89 PKG
͑
͑
TOP
͑
͑
͑͢ ͑ ͑ ͑ ͣ͑ ͑ ͑ ͑ ͤ͑
DESCRIPSION
The TL431 is a three-terminal adjustable shunt regulator
with specified thermal stability over applicable
temperature VREF (Approx. 2.5V) and 40V with two
external resistors. This device has a typical dynamic
output impedance of 0.2. Active output circuitry provides
a very sharp turn-on characteristic, making this device
excellent replacement for zener diodes in many
applications. The TL431 is characterized for operation
from -40ଇ to +125ଇ.
PIN 1. Reference
2. Anode
3. Cathode
ORDERING INFORMATION
Device
Package
TL431
TO-92(Bulk)
TL431TA
TO-92(Taping)
TL431SF
SOT-23 3L
TL431F
SOT-89 3L
* Refer to the page 2 for detailed ordering Information,
Absolute Maximum Ratings
(Operating temperature range applies unless otherwise specified)
CHARACTERISTIC
SYMBOL
MIN.
MAX.
UNIT
VKA
-
42
V
IK
-100
150
mA
IREF
-0.05
10
mA
TJ
-40
150
ଇ
Operating Temperature Range
TOPR
-40
125
ଇ
Storage Temperature Range
TSTG
-65
150
ଇ
Cathode Voltage
Cathode Current Range(Continuous)
Reference Input Current Range
Junction Temperature Range
Dec. 2010 – Rev.1.5
-1-
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC
SYMBOL
MIN.
MAX.
UNIT
Cathode Voltage
VKA
VREF
40
V
Cathode Current
IK
0.5
100
mA
Ordering Information
VREF
Package
Tolerance
Order No.
Package Marking
Supplied As
TL431C
TL431-C
TL431GC
TL431GC
TL431CTA
TL431-C
TL431GCTA
TL431GC
TL431A
TL431-A
TL431GA
TL431GA
TL431ATA
TL431-A
TL431GATA
TL431GA
TL431
TL431
TL431G
TL431G
TL431TA
TL431
TL431GTA
TL431G
TL431CSF
431
TL431GCSF
431
TL431ASF
431
TL431GASF
431
TL431SF
431
TL431GSF
431
0.5%
TL431CF
431
Reel
1%
TL431AF
431
Reel
2%
TL431F
431
Reel
Bulk
0.5%
Tape
Bulk
TO-92
1%
Tape
Bulk
2%
2.495V
Tape
0.5%
SOT-23
Reel
1%
Reel
2%
SOT-89
Reel
G
G
G
G
G
G
Dec. 2010 – Rev.1.5
-2-
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
Ordering Information (continued)
GGG
Dec. 2010 – Rev.1.5
G
-3-
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
PIN CONFIGURATION
2
Marking
Side
TOP
TOP
1
3
1
2
3
1 2 3
TO-92 PKG
SOT-23 PKG
SOT-89 PKG
PIN DESCRIPTION
TO-92 / SOT-23 / SOT-89
Pin No.
Name
Function
1
Reference
Reference Voltage
2
Anode
Ground
3
Cathode
Input Supply Voltage
TL431 ELECTRICAL CHARACTERISTICS
(TA=25ଇ, unless otherwise specified)
CHARACTERISTIC
Reference Input Voltage
Deviation of
Reference Input Voltage
Ratio of Change in Reference
Input Voltage to the Change in
Cathode Voltage
Reference Input Current
Deviation of Reference Input
Current
SYMBOL
VREF
VREF/T
VREF/VKA
TEST CONDITION
MIN.
TYP.
MAX.
TL431C
2.483
2.495
2.507
TL431A
2.470
2.495
2.520
TL431
2.440
2.495
2.550
8
20
VKA=10V -VREF
-1.4
-2.7
VKA=36V-10V
-1.0
-2.0
VKA =VREF,
IK =10mA
VKA = VREF, IK =10mA
TA =Full Range
UNIT
V
mV
mV/V
IK =10mA
IREF
IKA=10mA, R1=10໰, R2=
1.8
4.0
uA
IREF/T
IK =10mA, R1=10໰, R2=
TA =Full Range
0.4
1.2
uA
0.5
mA
Minimum Cathode Current
for Regulation
IK(MIN)
VKA= VREF
Off-State Cathode Current
IK(OFF)
VKA=36V, VREF=0
0.17
0.90
uA
VKA= VREF, IK =1mA~100mA
f 1kHz
0.27
0.50
Dynamic Impedance
Dec. 2010 – Rev.1.5
ZKA
-4-
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
TEST CIRCUITS
< Fig 2. Test circuit for VKA ˻ VREF >
< Fig 1. Test circuit for VKA = VREF >
< Fig 3. Test circuit for IKA(OFF) >
Dec. 2010 – Rev.1.5
-5-
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
The deviation parameters VREF/T and IREF/T are defined as the differences between the maximum and
minimum values obtained over the recommended temperature range. The average full-range temperature
coefficient of the reference voltage, VREF, is defined as :
VI(dev)
) × 10 6
VREF at 25㷄
VREF (ppm/ 㷄) =
TA
(
Where :
TA is the recommended operating free-air temperature range of the device.
VREF can be positive or negative, depending on whether minimum VREF or maximum VREF, respectively, occurs at
the lower temperature.
Example : Maximum VREF=2496mV at 30୅, maximum VREF=2492mV at 0୅, VREF=2495mV at 25୅,
TA=70୅ for TL431C.
4mV
) × 10 6
2495mV
=
Ĭ 23ppm/ 㷄
70㷄
(
VREF
Because minimum VREF occurs at the lower temperature, the coefficient is positive.
Calculating Dynamic Impedance
The dynamic impedance is defined as :
Z KA
=
VKA
IKA
When the device is operating with two external resistors, the total dynamic impedance of the circuit is given by:
Z' =
V
Z KA (1 + R1/R2 )
I
Dec. 2010 – Rev.1.5
-6-
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
TYPICAL OPERATING CHARACTERISTICS
G
Reference Voltage vs. Ambient Temperature
Pulse Response
GG
G
G
Cathode Current vs. Cathode Voltage
Cathode Current vs. Cathode Voltage
GG
G
AV-Small Signal Voltage Amplification
(dB)
Small Signal Voltage Amplification vs. Frequency
60
Output
IKA = 10mA
TA = 25°C
50
IKA
15kԽ
232Խ
40
10μF
30
20
8.25kԽ
10
0
1k
10k
100k
1000k
10000k
Frequency, f [Hz]
Dec. 2010 – Rev.1.5
< Fig 4. TEST Circuit for Voltage Amplification >
GG
-7-
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
TYPICAL OPERATING CHARACTERISTICS (continued)
Stability Boundary Conditions
G
GGGGGGGGG
100
G
150
90
R1
IKA-Cathode Current (mA)
80
C
70
CL
A B
60
R2
50
STABLE
STABLE
40
30
B
< Fig 5. TEST Circuit >
A
20
D
10
0
0
1
10
100
1000
10000
100000
A VKA = VREF, R1= 0, R2 = B VKA = 5.0V, R1=10k, R2 = 10k
C VKA = 10.0V, R1=10k, R2 = 3.3k
D VKA = 15.0V, R1=10k, R2 = 2K
CL-Load Capacitance (nF)
G
Dec. 2010 – Rev.1.5
-8-
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
APPLICATION INFORMATION
1. Shunt Regulator
Note A : R Should provide cathode current 1mA to the TL431 at minimum VI(BATT)
2. Precision High-Current Series Regulator
Note A : R Should provide cathode current˻1mA to the TL431 at minimum VI(BATT)
3. Output Control of a Three-Terminal Fixed Regulator
Dec. 2010 – Rev.1.5
-9-
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
4. High-Current Shunt Regulator
5. Precision 5-V 1.5A Regulator
6. Efficient 5-V Precision Regulator
NOTE A : RB Should provide cathode current1mA to the TL431.
Dec. 2010 – Rev.1.5
- 10 -
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
7. PWM Converter With Reference
8. Voltage Monitor
NOTE A : R3 and R4 are selected to provide the desired LED intensity and cathode current 1mA to the TL431 at the available VI(BATT).
9. Delay Timer
Dec. 2010 – Rev.1.5
- 11 -
HTC
G
G
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431/A/C
10. Precision Current Limiter
11. Precision Constant-Current Sink
Dec. 2010 – Rev.1.5
- 12 -
HTC
TL431
Programmable Voltage Reference
■
Adjustable output voltage: 2.5 to 36V
■
Sink current capability: 1 to 100mA
■
Typical output impedance: 0.22Ω
■
1% and 2% voltage precision
Z
TO92
(Plastic Package)
Description
The TL431 is a programmable shunt voltage
reference with guaranteed temperature stability
over the entire temperature range of operation.
The output voltage may be set to any value
between 2.5V and 36V with two external resistors.
D
SO-8
(Plastic Micropackage)
The TL431 operates with a wide current range
from 1 to 100mA with a typical dynamic
impedance of 0.22Ω.
Order Codes
Part Number
Temperature
Range
Package
Packing
TL431CD/CDT
Marking
431C
SO-8
TL431ACD/ACDT
431AC
0, +70°C
TL431CZ/CZT/CZ-AP
TL431C
TO92
TL431ACZ/ACZT/ACZ-AP
TL431AC
TL431ID/IDT
431I
SO-8
TL431AID/AIDT
Tube or Tape & Reel
431AI
TL431IZ/IZT/IZ-AP
TL431I
-40, + 105°C
TO92
TL431AIZ/AIZT/AIZ-AP
TL431AI
TL431IYD/IYDT
431IY
SO-8 (automotive grade level)
TL431AIYD/AIYDT
November 2005
431AIY
Rev 2
1/13
www.st.com
13
Pin Diagrams
1
TL431
Pin Diagrams
Figure 1.
TO92 pin connections (top view)
Cathode Anode Reference
1
Figure 2.
2
3
SO-8 pin connections (top view)
8
7
6
5
1 - Cathode
2 - Anode
3 - Anode
4 - N.C.
5 - N.C.
6 - Anode
7 - Anode
8 - Reference
1
2/13
2
3
4
TL431
2
Absolute Maximum Ratings
Absolute Maximum Ratings
Table 1.
Key parameters and their absolute maximum ratings
Symbol
VKA
Parameter
Cathode to Anode Voltage
Value
Unit
37
V
Ik
Continuous Cathode Current Range
-100 to +150
mA
Iref
Reference Input Current Range
-0.05 to +10
mA
625
960
mW
-65 to +150
°C
Value
Unit
Cathode to Anode Voltage
Vref to 36
V
Cathode Current
1 to 100
mA
0 to +70
-40 to +105
°C
Power Dissipation (1)
Pd
Tstg
TO92
SO-8 batwing
Storage Temperature Range
1. Pd is calculated with Tamb = +25°C, Tj = +150°C and
Rthja = 200°C/W for TO92 package
Rthja = 130°C/W for SO-8 batwing package
Table 2.
Operating conditions
Symbol
VKA
Ik
Parameter
Operating Free-air Temperature Range
Toper
TL431C/AC
TL431I/AI
3/13
Electrical Characteristics
3
TL431
Electrical Characteristics
Table 3.
Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
TL431C
TL431AC
Unit
Min.
Typ.
Max.
Min.
Typ.
Max.
Reference Input Voltage
Vref
2.44 2.495 2.55 2.47 2.495 2.52
2.423
2.567 2.453
2.537
VKA = Vref , Ik = 10 mA, Tamb = 25°C
Tmin ≤Tamb ≤ Tmax
V
Reference Input Voltage Deviation Over Temperature
ΔVref
Range (1)
mV
VKA = Vref, Ik = 10 mA, Tmin ≤Tamb ≤ Tmax
ΔVref
-----------ΔVka
Iref
ΔIref
Imin
Ioff
⏐ZKA⏐
3
17
3
15
-1.4
-1
-2.7
-2
-1.4
-1
-2.7
-2
1.8
4
5.2
1.8
4
5.2
Ratio of Change in Reference Input Voltage to Change
in Cathode to Anode Voltage
Ik = 10mA - ΔVKA = 10V to Vref
ΔVKA = 36V to 10V
Reference Input Current
Ik = 10mA, R1 = 10kΩ, R2 = ∞
Tamb = 25°C
Tmin ≤Tamb ≤Tmax
Reference Input Current Deviation Over Temperature
Range
0.4
1.2
0.4
1.2
0.5
1
0.5
0.6
2.6
1000
2.6
1000
0.22
0.5
0.22
0.5
Minimum Cathode Current for Regulation
VKA = Vref
Off-State Cathode Current
mA
nA
(2)
VKA = Vref , Δ Ik = 1 to100mA, f ≤1kHZ
1. ΔVref is defined as the difference between the maximum and minimum values obtained over the full temperature range.
ΔVref = Vref max. - Vref min.
V ref max.
V ref min.
T2
T1
2. The dynamic Impedance is definied as |ZKA| =
4/13
μA
μA
Ik = 10mA, R1 = 10kΩ, R2 =∞
Tmin ≤Tamb ≤ Tmax
Dynamic Impedance
mV/V
ΔVKA
----------------ΔIK
Temperature
Ω
TL431
Electrical Characteristics
Table 4.
Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
TL431I
Unit
Min.
Reference Input Voltage
Vref
ΔVref
2.44
2.41
VKA = V ref , Ik = 10 mA, T amb = 25°C
Tmin ≤Tamb ≤ Tmax
Typ.
2.49
5
Iref
ΔIref
Imin
Ioff
⏐ZKA⏐
Max.
Min.
2.55
2.58
2.47
2.44
Typ.
2.49
5
Max.
2.52
2.55
Reference Input Voltage Deviation Over Temperature
Range (1)
7
30
7
30
-1.4
-1
-2.7
-2
-1.4
-1
-2.7
-2
1.8
4
6.5
1.8
4
6.5
Ratio of Change in Reference Input Voltage to Change
in Cathode to Anode Voltage
Ik = 10mA, ΔVKA = 10V to Vref
ΔVKA = 36V to 10V
Reference Input Current
Ik = 10mA, R1 = 10kΩ, R2 = ∞
Tamb = 25°C
Tmin ≤Tamb ≤Tmax
Reference Input Current Deviation Over Temperature
Range
Ik = 10mA, R1 = 10kΩ, R2 =∞
Tmin ≤Tamb ≤ Tmax
Off-State Cathode Current
0.8
2.5
0.8
1.2
0.5
1
0.5
0.7
2.6
1000
2.6
1000
0.22
0.5
0.22
0.5
Dynamic Impedance (2)
VKA = V ref , Δ Ik = 1 to100mA, f ≤1kHZ
mV/V
μA
μA
Minimum Cathode Current for Regulation
VKA = V ref
V
mV
VKA = V ref , Ik =10 mA, Tmin ≤Tamb≤ Tmax
ΔVref
-----------ΔVka
TL431AI
mA
nA
Ω
1. ΔVref is defined as the difference between the maximum and minimum values obtained over the full temperature range.
ΔVref = Vref max. - Vref min.
V ref max.
V ref min.
T2
T1
2. The dynamic Impedance is definied as |ZKA| =
Temperature
ΔVKA
----------------ΔIK
5/13
Electrical Characteristics
Figure 3.
TL431
Test circuit for VKA = VREF
Figure 4.
Test circuit for V KA = VREF
Input
Input
R
Output
R
Output
IK
R1
IK=10mA
VKA
IREF
R2
VKA
VREF
VREF
R1
VKA = VREF ( 1 + -------- ) + R1 x IREF
R2
Figure 5.
Test circuit for IOFF
Figure 6.
Test circuit for phase margin and
voltage gain
VKA=36V
10μF
10μF
Figure 7.
Block diagram of TL1431
Figure 8.
Output
8.25kΩ
Input
IK=10mA
15kΩ
IOFF
VREF
Test circuit for response time
Cathode
Vref
Anode
6/13
IK=1mA
+
1 mA
0 mA
Output
Vref
TL431
Electrical Characteristics
Figure 9.
Reference voltage vs. temp.
Figure 10. Reference voltage vs. cathode current
100
Cathode current IKA (mA)
Cathode voltage VKA (V)
2.54
VKA = VREF
IK = 10 mA
2.52
2.50
2.48
2.46
2.44
-40
TAMB=+25°C
75
50
25
0
-25
-20
0
20
40
60
80
-50
100
-1
0
Temperature (°C)
1
2
3
Cathode voltage VKA (V)
Figure 11. Reference voltage vs. cathode current Figure 12. Reference current vs. temp.
2.0
Reference current IREF (μA)
Cathode current IKA (mA)
2
TAMB = +25°C
1
0
IK=10 mA
R1=10kΩ
R2= + ∝
1.5
1.0
0.5
-1
-2
-1
0
1
2
0.0
−40
3
−20
0
Figure 13. Off-state cathode current vs. temp.
60
80
100
0.0
VKA = 36 V
VREF = 0 V
ΔVREF / ΔVKA (mV / V)
Off-state current IOFF (μA)
40
Figure 14. Ratio of change in VREF to change in
VKA vs. temp.
2.0
1.5
1.0
-0.5
IK = 10 mA
-1.0
-1.5
0.5
0.0
-40
20
Temperature °C
Cathode voltage VKA (V)
-20
0
20
40
Temperature (°C)
60
80
100
-2.0
-40
-20
0
20
40
60
80
100
Temperature (°C)
7/13
Electrical Characteristics
TL431
Figure 15. Static impedance RKA vs. temp.
Figure 16. Maximum operating current vs. temp.
0.6
Minimum cathode current IMIN (mA)
Static impedance RKA (Ω)
0.30
0.28
VKA=VREF
TAMB=+25°C
0.26
0.24
0.22
0.20
-40
-20
0
20
40
60
80
0.4
VKA = VREF
0.2
0.0
-40
100
-20
0
20
Figure 17. Gain & phase vs. frequency
60
0
-50
-100
Phase (°)
Gain (dB)
50
Phase
0
80
VKA=5 V
-150
1
10
100
-200
10000
1000
Instable
Area
60
-20
-40
100
VKA=VREF
100
20
80
100
150
Cathode current (mA)
40
60
Figure 18. Stability behaviour with capacitive
loads
200
IK=10 mA
See figure 4
Gain
40
Temperature (°C)
Temperature (°C)
40
VKA=12 V
20
VKA=24 V
0
1E-10
Frequency (kHz)
1E-9
1E-8
1E-7
1E-6
1E-5
Capacitive load (Farad)
Figure 19. Maximum power dissipation
Figure 20. Pulse response for IK = 1mA
6
Cathode current (mA)
TAMB= +25°C
SO8
Batwing
80
60
TO92
40
20
0
Safe
Area
Input
20
30
VKA=VREF
TAMB=+25°C
4
Output
2
0
10
Cathode voltage (V)
8/13
Input and Output voltage (V)
100
0
2
4
6
Time (μs)
8
10
TL431
4
Package Mechanical Data
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com.
4.1
SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
e
1.27
0.157
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
9/13
Package Mechanical Data
4.2
TL431
TO92 (Tape & Reel) Package
TO-92 MECHANICA DATA
mm.
mils
DIM.
MIN.
TYP
MAX.
MIN.
TYP.
MAX.
A
4.32
4.95
170.1
194.9
b
0.36
0.51
14.2
20.1
D
4.45
4.95
175.2
194.9
E
3.30
3.94
129.9
155.1
e
2.41
2.67
94.9
105.1
e1
1.14
1.40
44.9
55.1
L
12.7
15.49
500.0
609.8
R
2.16
2.41
85.0
94.9
S1
0.92
1.52
36.2
59.8
W
0.41
0.56
16.1
22.0
0102782/C
10/13
TL431
TO92 (Tape Ammo Pack) Package
A1
P
T
P
A
H
W2
W0
W
L1
W1
H
I1
H0
d
H1
4.3
Package Mechanical Data
D0
F1 F2
P2
P0
Millimeters
Inches
Dim.
Min
Typ.
Max.
Min.
Typ.
Max.
AL
5.0
0.197
A
5.0
0.197
T
4.0
0.157
d
0.45
0.018
I1
2.5
0.098
P
11.7
12.7
13.7
0.461
0.500
0.539
PO
12.4
12.7
13
0.488
0.500
0.512
P2
5.95
6.35
6.75
0.234
0.250
0.266
F1/F2
2.4
2.5
2.8
0.094
0.098
0.110
Δh
-1
0
1
-0.039
0
0.039
ΔP
-1
0
1
-0.039
0
0.039
W
17.5
18.0
19.0
0.689
0.709
0.748
W0
5.7
6
6.3
0.224
0.236
0.248
W1
8.5
9
9.75
0.335
0.354
0.384
W2
0.5
0.020
H
20
0.787
H0
15.5
16
H1
DO
L1
16.5
0.610
0.630
25
3.8
4.0
4.2
11
0.650
0.984
0.150
0.157
0.165
0.433
11/13
Package Mechanical Data
4.4
TL431
TO92 (Bulk) Package
Millimeters
Inches
Dim.
Min
L
12/13
Typ.
Max.
Min.
1.27
Typ.
Max.
0.05
B
3.2
3.7
4.2
0.126
0.1457
0.1654
O1
4.45
5.00
5.2
0.1752
0.1969
0.2047
C
4.58
5.03
5.33
0.1803
0.198
0.2098
K
12.7
O2
0.407
0.0197
0.02
a
0.35
0.5
0.5
0.508
0.016
0.0138
TL431
5
Revision History
Revision History
Date
Revision
Changes
March 2002
1
Initial release.
Nov. 2005
2
PPAP references inserted in the datasheet see Table : Order Codes on
page 1 .
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
13/13
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
D Operation From −40°C to 125°C
D
− 0.5% . . . B Grade
− 1% . . . A Grade
− 2% . . . Standard Grade
Typical Temperature Drift (TL431B)
− 6 mV (C Temp)
− 14 mV (I Temp, Q Temp)
TL431, TL431A, TL431B . . . D (SOIC) PACKAGE
(TOP VIEW)
CATHODE
ANODE
ANODE
NC
1
8
2
7
3
6
4
5
REF
ANODE
ANODE
NC
D
D
D
D
Low Output Noise
0.2-Ω Typical Output Impedance
Sink-Current Capability . . . 1 mA to 100 mA
Adjustable Output Voltage . . . Vref to 36 V
TL431, TL431A, TL431B . . . P (PDIP), PS (SOP),
OR PW (TSSOP) PACKAGE
(TOP VIEW)
CATHODE
NC
NC
NC
1
8
2
7
3
6
4
5
REF
NC
ANODE
NC
NC − No internal connection
NC − No internal connection
TL431, TL431A, TL431B . . . PK (SOT-89) PACKAGE
(TOP VIEW)
TL431, TL431A, TL431B . . . LP (TO-92/TO-226) PACKAGE
(TOP VIEW)
CATHODE
CATHODE
ANODE
ANODE
REF
REF
TL431, TL431A, TL431B . . . DBV (SOT23-5) PACKAGE
(TOP VIEW)
NC
1
NU
2
CATHODE
3
5
ANODE
4
REF
TL431, TL431A, TL431B . . . DBZ (SOT23-3) PACKAGE
(TOP VIEW)
1
3
REF
1
ANODE
2
NC
3
5
REF
4
CATHODE
TL432, TL432A, TL432B . . . DBZ (SOT23-3) PACKAGE
(TOP VIEW)
REF
1
CATHODE
2
ANODE
3
2
TL431 . . . KTP (PowerFLEXE/TO-252) PACKAGE
(TOP VIEW)
ANODE
NC
NC − No internal connection
NC − No internal connection
NU − Make no external connection
CATHODE
TL432, TL432A, TL432B . . . DBV (SOT23-5) PACKAGE
(TOP VIEW)
CATHODE
ANODE
REF
ANODE
TL431A, TL431B . . . DCK (SC-70) PACKAGE
(TOP VIEW)
CATHODE
NC
REF
1
6
2
5
3
4
ANODE
NC
NC
NC − No internal connection
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PowerFLEX is a trademark of Texas Instruments.
Copyright © 2004, Texas Instruments Incorporated
! "#$ ! %#&'" ($)
(#"! " !%$""! %$ *$ $! $+! !#$!
!(( ,-) (#" %"$!!. ($! $"$!!'- "'#($
$!. '' %$$!)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
description/ordering information
The TL431 and TL432 are three-terminal adjustable shunt regulators, with specified thermal stability over
applicable automotive, commercial, and military temperature ranges. The output voltage can be set to any value
between Vref (approximately 2.5 V) and 36 V, with two external resistors (see Figure 17). These devices have
a typical output impedance of 0.2 Ω. Active output circuitry provides a very sharp turn-on characteristic, making
these devices excellent replacements for Zener diodes in many applications, such as onboard regulation,
adjustable power supplies, and switching power supplies. The TL432 has exactly the same functionality and
electrical specifications as the TL431, but has different pinouts for the DBV and DBZ packages.
Both the TL431 and TL432 devices are offered in three grades, with initial tolerances (at 25°C) of 0.5%, 1%,
and 2%, for the B, A, and standard grade, respectively. In addition, low output drift vs temperature ensures good
stability over the entire temperature range.
The TL43xxC devices are characterized for operation from 0°C to 70°C, the TL43xxI devices are characterized
for operation from −40°C to 85°C, and the TL43xxQ devices are characterized for operation from −40°C to
125°C.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
description/ordering information (continued)
Vref TOLERANCE (25°C) = 2%
TL431, TL432 ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
PDIP (P)
SOIC (D)
SOP (PS)
SOT 23 5 (DBV)
SOT-23-5
0°C to 70°C
SOT 23 3 (DBZ)
SOT-23-3
SOT-89 (PK)
TO-226/TO-92
TO
226/TO 92 (LP)
TSSOP (PW)
PDIP (P)
SOIC (D)
SOT 23 5 (DBV)
SOT-23-5
−40°C
40°C to 85°C
SOT 23 3 (DBZ)
SOT-23-3
SOT-89 (PK)
TO 226/TO 92 (LP)
TO-226/TO-92
Tube of 50
TL431CP
Tube of 75
TL431CD
Reel of 2500
TL431CDR
Reel of 2000
TL431CPSR
Reel of 3000
TL431CDBVR
Reel of 250
TL431CDBVT
Reel of 3000
TL432CDBVR
Reel of 250
TL432CDBVT
Reel of 3000
TL431CDBZR
Reel of 250
TL431CDBZT
Reel of 3000
TL432CDBZR
Reel of 250
TL432CDBZT
Reel of 1000
TL431CPK
Bulk of 1000
TL431CLP
Ammo of 2000
TL431CLPM
Reel of 2000
TL431CLPR
Tube of 150
TL431CPW
Reel of 2000
TL431CPWR
Tube of 50
TL431IP
Tube of 75
TL431ID
Reel of 2500
TL431IDR
Reel of 3000
TL431IDBVR
Reel of 250
TL431IDBVT
Reel of 3000
TL432IDBVR
Reel of 250
TL432IDBVT
Reel of 3000
TL431IDBZR
Reel of 250
TL431IDBZT
Reel of 3000
TL432IDBZR
Reel of 250
TL432IDBZT
Reel of 1000
TL431IPK
Bulk of 1000
TL431ILP
Reel of 2000
TL431ILPR
TOP-SIDE
MARKING‡
TL431CP
TL431C
T431
T3C
T3C_
TAB
TAB_
TAC
TAC_
TAB
TAB_
43
TL431C
T431
TL431IP
TL431I
T3I
T3I_
T4A
T4A_
TAI
TAI_
T4A
T4A_
3I
TL431I
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
description/ordering information (continued)
Vref TOLERANCE (25°C) = 2%
TL431, TL432 ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOT 23 5 (DBV)
SOT-23-5
−40°C
40°C to 125°C
SOT 23 3 (DBZ)
SOT-23-3
Reel of 3000
TL431QDBVR
Reel of 250
TL431QDBVT
Reel of 3000
TL432QDBVR
Reel of 250
TL432QDBVT
Reel of 3000
TL431QDBZR
Reel of 250
TL431QDBZT
Reel of 3000
TL432QDBZR
Reel of 250
TL432QDBZT
TOP-SIDE
MARKING‡
TBD
TBD
TBD
TBD
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site.
Vref TOLERANCE (25°C) = 1%
TL431A, TL432A ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
PDIP (P)
SC 70 (DCK)
SC-70
SOIC (D)
SOP (PS)
SOT 23 5 (DBV)
SOT-23-5
0°C to 70°C
SOT 23 3 (DBZ)
SOT-23-3
SOT-89 (PK)
TO-226/TO-92
TO
226/TO 92 (LP)
TSSOP (PW)
TOP-SIDE
MARKING‡
Tube of 50
TL431ACP
Reel of 3000
TL431ACDCKR
TL431ACP
Reel of 250
TL431ACDCKT
Tube of 75
TL431ACD
Reel of 2500
TL431ACDR
Reel of 2000
TL431ACPSR
Reel of 3000
TL431ACDBVR
Reel of 250
TL431ACDBVT
Reel of 3000
TL432ACDBVR
Reel of 250
TL432ACDBVT
Reel of 3000
TL431ACDBZR
Reel of 250
TL431ACDBZT
Reel of 3000
TL432ACDBZR
Reel of 250
TL432ACDBZT
Reel of 1000
TL431ACPK
4A
Bulk of 1000
TL431ACLP
TL431AC
Ammo of 2000
TL431ACLPM
Reel of 2000
TL431ACLPR
Tube of 150
TL431ACPW
Reel of 2000
TL431ACPWR
TBD
431AC
T431A
TAC
TAC_
TAB
TAB_
TAC
TAC_
TAB
TAB_
TL431AC
T431A
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
description/ordering information (continued)
Vref TOLERANCE (25°C) = 1%
TL431A, TL432A ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
PDIP (P)
SC 70 (DCK)
SC-70
SOIC (D)
SOT 23 5 (DBV)
SOT-23-5
−40°C to 85°C
SOT 23 3 (DBZ)
SOT-23-3
SOT-89 (PK)
TO-226/TO-92 ((LP))
SOT 23 5 (DBV)
SOT-23-5
40°C to 125°C
−40°C
SOT 23 3 (DBZ)
SOT-23-3
Tube of 50
TL431AIP
Reel of 3000
TL431AIDCKR
Reel of 250
TL431AIDCKT
Tube of 75
TL431AID
Reel of 2500
TL431AIDR
Reel of 3000
TL431AIDBVR
Reel of 250
TL431AIDBVT
Reel of 3000
TL432AIDBVR
Reel of 250
TL432AIDBVT
Reel of 3000
TL431AIDBZR
Reel of 250
TL431AIDBZT
Reel of 3000
TL432AIDBZR
Reel of 250
TL432AIDBZT
Reel of 1000
TL431AIPK
Bulk of 1000
TL431AILP
Ammo of 2000
TL431AILPM
Reel of 2000
TL431AILPR
Reel of 3000
TL431AQDBVR
Reel of 250
TL431AQDBVR
Reel of 3000
TL432AQDBVR
Reel of 250
TL432AQDBVT
Reel of 3000
TL431AQDBZR
Reel of 250
TL431AQDBZT
Reel of 3000
TL432AQDBZR
Reel of 250
TL432AQDBZT
TOP-SIDE
MARKING‡
TL431AIP
TBD
431AI
TAI
TAI_
T4A
T4A_
TAI
TAI_
T4A
T4A_
4B
TL431AI
TBD
TBD
TBD
TBD
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
description/ordering information (continued)
Vref TOLERANCE (25°C) = 0.5%
TL431B, TL432B ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
PDIP (P)
SC 70 (DCK)
SC-70
SOIC (D)
SOP (PS)
SOT 23 5 (DBV)
SOT-23-5
0°C to 70°C
SOT 23 3 (DBZ)
SOT-23-3
SOT-89 (PK)
TO-226/TO-92
TO
226/TO 92 (LP)
TSSOP (PW)
PDIP (P)
SC 70 (DCK)
SC-70
SOIC (D)
SOT 23 5 (DBV)
SOT-23-5
−40°C
40°C to 85°C
SOT 23 3 (DBZ)
SOT-23-3
SOT-89 (PK)
TO 226/TO 92 (LP)
TO-226/TO-92
Tube of 50
TL431BCP
Reel of 3000
TL431BCDCKR
Reel of 250
TL431BCDCKT
Tube of 75
TL431BCD
Reel of 2500
TL431BCDR
Reel of 2000
TL431BCPSR
Reel of 3000
TL431BCDBVR
Reel of 250
TL431BCDBVT
Reel of 3000
TL432BCDBVR
Reel of 250
TL432BCDBVT
Reel of 3000
TL431BCDBZR
Reel of 250
TL431BCDBZT
Reel of 3000
TL432BCDBZR
Reel of 250
TL432BCDBZT
Reel of 1000
TL431BCPK
Bulk of 1000
TL431BCLP
Ammo of 2000
TL431BCLPM
Reel of 2000
TL431BCLPR
Tube of 150
TL431BCPW
Reel of 2000
TL431BCPWR
Tube of 50
TL431BIP
Reel of 3000
TL431BIDCKR
Reel of 250
TL431BIDCKT
Tube of 75
TL431BID
Reel of 2500
TL431BIDR
Reel of 3000
TL431BIDBVR
Reel of 250
TL431BIDBVT
Reel of 3000
TL432BIDBVR
Reel of 250
TL432BIDBVT
Reel of 3000
TL431BIDBZR
Reel of 250
TL431BIDBZT
Reel of 3000
TL432BIDBZR
Reel of 250
TL432IBDBZT
Reel of 1000
TL431BIPK
Bulk of 1000
TL431BILP
Reel of 2000
TL431BILPR
TOP-SIDE
MARKING‡
TL431BCP
TBD
T431B
TL431B
T3G
T3G_
TBC
TBC_
T3G
T3G_
TBC
TBC_
4C
TL431B
T431B
TL431BIP
TBD
Z431B
T3F
T3F_
T4F
T4F_
T3F
T3F_
T4F
T4F_
4I
Z431B
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
description/ordering information (continued)
Vref TOLERANCE (25°C) = 0.5%
TL431B, TL432B ORDERING INFORMATION (CONTINUED)
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOIC (D)
SOT 23 5 (DBV)
SOT-23-5
−40°C
40°C to 125°C
SOT 23 3 (DBZ)
SOT-23-3
SOT-89 (PK)
TO-226/TO-92 ((LP))
Tube of 75
TL431BQD
Reel of 2500
TL431BQDR
Reel of 3000
TL431BQDBVR
Reel of 250
TL431BQDBVT
Reel of 3000
TL432BQDBVR
Reel of 250
TL432BQDBVT
Reel of 3000
TL431BQDBZR
Reel of 250
TL431BQDBZT
Reel of 3000
TL432BQDBZR
Reel of 250
TL432BQDBZT
Reel of 1000
TL431BQPK
Bulk of 1000
TL431BQLP
Ammo of 2000
TL431BQLPM
Reel of 2000
TL431BQLPR
TOP-SIDE
MARKING‡
T431BQ
T3H
T3H_
T4H
T4H_
T3H
T3H_
T4H
T4H_
3H
T431BQ
Q
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site.
symbol
REF
ANODE
CATHODE
functional block diagram
CATHODE
+
REF
_
Vref
ANODE
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
equivalent schematic†
CATHODE
800 Ω
800 Ω
20 pF
REF
150 Ω
3.28 kΩ
2.4 kΩ
4 kΩ
10 kΩ
20 pF
7.2 kΩ
1 kΩ
800 Ω
ANODE
† All component values are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡
Cathode voltage, VKA (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 V
Continuous cathode current range, IKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −100 mA to 150 mA
Reference input current range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 μA to 10 mA
Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: Voltage values are with respect to the ANODE terminal, unless otherwise noted.
package thermal data (see Note 2)
PDIP (P)
High K, JESD 51-7
θJC
57°C/W
SOIC (D)
High K, JESD 51-7
39°C/W
97°C/W
SOP (PS)
High K, JESD 51-7
46°C/W
95°C/W
SOT-89 (PK)
High K, JESD 51-7
9°C/W
52°C/W
SOT-23-5 (DBV)
High K, JESD 51-7
131°C/W
206°C/W
SOT-23-3 (DBZ)
High K, JESD 51-7
TBD
TBD
TO-92 (LP)
High K, JESD 51-7
55°C/W
140°C/W
TSSOP (PW)
High K, JESD 51-7
65°C/W
149°C/W
PACKAGE
BOARD
θJA
85°C/W
NOTE 2: Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
recommended operating conditions
VKA
IKA
Cathode voltage
Cathode current
TL43xxC
TA
Operating
p
g free-air temperature
p
range
g
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIN
MAX
Vref
1
36
V
100
mA
0
70
TL43xxI
−40
85
TL43xxQ
−40
125
UNIT
°C
9
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TL431C, TL432C
TEST
CIRCUIT
PARAMETER
TEST CONDITIONS
IKA = 10 mA
SOT23-3 and TL432
devices
UNIT
MIN
TYP
MAX
2440
2495
2550
6
16
4
25
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref,
IKA = 10 mA,
TA = 0°C to 70°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = 0°C to 70°C
0.4
1.2
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
1
mA
Ioff
Off-state cathode current
4
0.1
1
μA
|zKA|
Dynamic impedance (see Figure 1)
1
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
All other devices
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
mV
mV
The deviation parameters Vref(dev) and Iref(dev) are defined as the differences between the maximum and minimum
values obtained over the recommended temperature range. The average full-range temperature coefficient of the
reference voltage, αVref, is defined as:
Ťa Ť ǒppmǓ +
V
ref
ǒ
V
I(dev)
V at 25°C
ref
Maximum Vref
Ǔ
10 6
VI(dev)
Minimum Vref
DT A
°C
ΔTA
where:
ΔTA is the recommended operating free-air temperature range of the device.
a can be positive or negative, depending on whether minimum Vref or maximum Vref, respectively, occurs at the
lower temperature.
Example: maximum Vref = 2496 mV at 30°C, minimum Vref = 2492 mV at 0°C, Vref = 2495 mV at 25°C,
ΔTA = 70°C for TL431C
Ťa Ť + ǒ
V
ref
4 mV
2495 mV
Ǔ
10 6
70°C
[
23 ppm
°C
Because minimum Vref occurs at the lower temperature, the coefficient is positive.
Calculating Dynamic Impedance
The dynamic impedance is defined as:
|z KA| +
DV KA
DI KA
When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit
is given by:
|zȀ| + DV [ |z KA| 1 ) R1
DI
R2
ǒ
Ǔ
Figure 1. Calculating Deviation Parameters and Dynamic Impedance
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
PARAMETER
Vref
Reference voltage
TL431I, TL432I
TEST
CIRCUIT
TEST CONDITIONS
IKA = 10 mA
SOT23-3 and TL432
devices
UNIT
MIN
TYP
MAX
2440
2495
2550
14
34
5
50
−1.4
−2.7
−1
−2
mV
V
2
VKA = Vref,
Deviation of reference voltage
VI(dev) over full temperature range
(see Figure 1)
2
VKA = Vref,
IKA = 10 mA,
TA = −40°C to 85°C All other devices
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 85°C
0.8
2.5
μA
Imin
Minimum cathode current for
regulation
2
VKA = Vref
0.4
1
mA
Ioff
Off-state cathode current
4
0.1
1
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
mV
mV
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
PARAMETER
TL431Q, TL432Q
TEST
CIRCUIT
TEST CONDITIONS
TYP
MAX
2440
2495
2550
mV
14
34
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = −40°C to 125°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 125°C
0.8
2.5
μA
Imin
Minimum cathode current for
regulation
2
VKA = Vref
0.4
1
mA
Ioff
Off-state cathode current
4
0.1
1
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
POST OFFICE BOX 655303
IKA = 10 mA
UNIT
MIN
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
• DALLAS, TEXAS 75265
11
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TL431AC, TL432AC
TEST
CIRCUIT
PARAMETER
TEST CONDITIONS
IKA = 10 mA
SOT23-3, SC-70,
and TL432 devices
UNIT
MIN
TYP
MAX
2470
2495
2520
6
16
4
25
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref,
IKA = 10 mA,
TA = 0°C to 70°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = 0°C to 70°C
0.8
1.2
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.6
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
1
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
All other devices
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
mV
mV
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TL431AI, TL432AI
TEST
CIRCUIT
PARAMETER
TEST CONDITIONS
TYP
MAX
2470
2495
2520
14
34
5
50
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref,
IKA = 10 mA,
TA = −40°C to 85°C All other packages
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 85°C
0.8
2.5
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.7
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
12
POST OFFICE BOX 655303
IKA = 10 mA
SOT23-3, SC-70,
and TL432 devices
UNIT
MIN
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
• DALLAS, TEXAS 75265
mV
mV
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
PARAMETER
TL431AQ, TL432AQ
TEST
CIRCUIT
TEST CONDITIONS
IKA = 10 mA
UNIT
MIN
TYP
MAX
2470
2495
2520
mV
14
34
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = −40°C to 125°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 125°C
0.8
2.5
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.7
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
PARAMETER
TL431BC, TL432BC
TEST
CIRCUIT
TEST CONDITIONS
TYP
MAX
2483
2495
2507
mV
6
16
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = 0°C to 70°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = 0°C to 70°C
0.8
1.2
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.6
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
1
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
POST OFFICE BOX 655303
IKA = 10 mA
UNIT
MIN
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
• DALLAS, TEXAS 75265
13
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TL431BI, TL432BI
TEST
CIRCUIT
PARAMETER
TEST CONDITIONS
IKA = 10 mA
UNIT
MIN
TYP
MAX
2483
2495
2507
mV
14
34
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = −40°C to 85°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 85°C
0.8
2.5
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.7
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TL431BQ, TL432BQ
TEST
CIRCUIT
PARAMETER
TEST CONDITIONS
TYP
MAX
2483
2495
2507
mV
14
34
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = −40°C to 125°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 125°C
0.8
2.5
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.7
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
1
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
14
POST OFFICE BOX 655303
IKA = 10 mA
UNIT
MIN
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
PARAMETER MEASUREMENT INFORMATION
Input
VKA
IKA
Vref
Figure 2. Test Circuit for VKA = Vref
VKA
Input
IKA
R1
Iref
R2
Vref
ǒ
Ǔ
V KA + V ref 1 ) R1 ) I ref
R2
R1
Figure 3. Test Circuit for VKA > Vref
Input
VKA
Ioff
Figure 4. Test Circuit for Ioff
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
TYPICAL CHARACTERISTICS
Table 1. Graphs
FIGURE
Reference voltage vs Free-air temperature
5
Reference current vs Free-air temperature
6
Cathode current vs Cathode voltage
7, 8
OFF-state cathode current vs Free-air temperature
9
Ratio of delta reference voltage to delta cathode voltage vs Free-air temperature
10
Equivalent input noise voltage vs Frequency
11
Equivalent input noise voltage over a 10-s period
12
Small-signal voltage amplification vs Frequency
13
Reference impedance vs Frequency
14
Pulse response
15
Stability boundary conditions
16
Table 2. Application Circuits
FIGURE
16
Shunt regulator
17
Single-supply comparator with temperature-compensated threshold
18
Precision high-current series regulator
19
Output control of a three-terminal fixed regulator
20
High-current shunt regulator
21
Crowbar circuit
22
Precision 5-V 1.5-A regulator
23
Efficient 5-V precision regulator
24
PWM converter with reference
25
Voltage monitor
26
Delay timer
27
Precision current limiter
28
Precision constant-current sink
29
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
TYPICAL CHARACTERISTICS†
REFERENCE CURRENT
vs
FREE-AIR TEMPERATURE
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
2600
R1 = 10 kΩ
R2 = ∞
IKA = 10 mA
Vref = 2550 mV‡
2560
I ref − Reference Current − μ A
V ref − Reference Voltage − mV
2580
5
VKA = Vref
IKA = 10 mA
2540
2520
Vref = 2495 mV‡
2500
2480
2460
Vref = 2440 mV‡
2440
4
3
2
1
2420
2400
−75
−50
−25
0
25
50
75
100
0
−75
125
−50
−25
‡ Data is for devices having the indicated value of Vref at IKA = 10 mA,
TA = 25°C.
Figure 5
50
75
100
125
CATHODE CURRENT
vs
CATHODE VOLTAGE
150
800
VKA = Vref
TA = 25°C
VKA = Vref
TA = 25°C
100
600
I KA − Cathode Current − μ A
I KA − Cathode Current − mA
25
Figure 6
CATHODE CURRENT
vs
CATHODE VOLTAGE
125
0
TA − Free-Air Temperature − °C
TA − Free-Air Temperature − °C
75
50
25
0
−25
−50
Imin
400
200
0
−75
−100
−2
−1
0
2
1
3
−200
−1
VKA − Cathode Voltage − V
0
1
2
3
VKA − Cathode Voltage − V
Figure 8
Figure 7
† Data at high and low temperatures is applicable only within the recommended operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
TYPICAL CHARACTERISTICS†
RATIO OF DELTA REFERENCE VOLTAGE TO
DELTA CATHODE VOLTAGE
vs
FREE-AIR TEMPERATURE
OFF-STATE CATHODE CURRENT
vs
FREE-AIR TEMPERATURE
− 0.85
2.5
VKA = 3 V to 36 V
− 0.95
2
ΔV ref / ΔV KA − mV/V
I off − Off-State Cathode Current − μ A
VKA = 36 V
Vref = 0
1.5
1
0.5
0
−75
−1.05
−1.15
−1.25
−1.35
−50
−25
0
25
50
75
100
−1.45
−75
125
−50
TA − Free-Air Temperature − °C
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
Figure 10
Figure 9
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
Vn − Equivalent Input Noise Voltage − nV/ Hz
260
IO = 10 mA
TA = 25°C
240
220
200
180
160
140
120
100
10
100
1k
10 k
100 k
f − Frequency − Hz
Figure 11
† Data at high and low temperatures is applicable only within the recommended operating free-air temperature ranges of the various devices.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
OVER A 10-S PERIOD
V n − Equivalent Input Noise Voltage − μV
6
5
4
3
2
1
0
−1
−2
−3
f = 0.1 to 10 Hz
IKA = 10 mA
TA = 25°C
−4
−5
−6
0
1
2
3
4
5
6
7
8
9
10
t − Time − s
19.1 V
1 kΩ
500 μF
910 Ω
2000 μF
VCC
TL431
(DUT)
820 Ω
+
VCC
1 μF
TLE2027
AV = 10 V/mV
+
−
16 Ω
160 kΩ
16 kΩ
16 kΩ
1 μF
TLE2027
−
22 μF
To
Oscilloscope
33 kΩ
AV = 2 V/V
0.1 μF
33 kΩ
VEE
VEE
Figure 12. Test Circuit for Equivalent Input Noise Voltage
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
TYPICAL CHARACTERISTICS
SMALL-SIGNAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
IKA = 10 mA
TA = 25°C
A V − Small-Signal Voltage Amplification − dB
60
IKA = 10 mA
TA = 25°C
50
Output
15 kΩ
IKA
232 Ω
40
9 μF
+
30
−
8.25 kΩ
20
GND
TEST CIRCUIT FOR VOLTAGE AMPLIFICATION
10
0
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 13
REFERENCE IMPEDANCE
vs
FREQUENCY
|z KA| − Reference Impedance − Ω
100
IKA = 10 mA
TA = 25°C
1 kΩ
10
IKA
50 Ω
−
+
GND
1
TEST CIRCUIT FOR REFERENCE IMPEDANCE
0.1
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 14
20
Output
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
PULSE RESPONSE
6
TA = 25°C
Input
Input and Output Voltage − V
5
220 Ω
Output
4
Pulse
Generator
f = 100 kHz
3
Output
GND
2
TEST CIRCUIT FOR PULSE RESPONSE
1
0
−1
50 Ω
0
1
2
3
4
5
6
7
t − Time − μs
Figure 15
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
TYPICAL CHARACTERISTICS
STABILITY BOUNDARY CONDITIONS†
FOR ALL TL431 AND TL431A DEVICES
(EXCEPT FOR SOT23-3, SC-70, AND Q-TEMP DEVICES)
100
90
I KA − Cathode Current − mA
80
A VKA = Vref
B VKA = 5 V
C VKA = 10 V
D VKA = 15 Vf
150 Ω
IKA
+
TA = 25°C
VBATT
CL
−
B
70
Stable
60
C
Stable
TEST CIRCUIT FOR CURVE A
50
A
40
IKA
150 Ω
R1 = 10 kΩ
30
D
20
CL
+
10
R2
0
0.001
VBATT
−
0.01
0.1
1
10
CL − Load Capacitance − μF
TEST CIRCUIT FOR CURVES B, C, AND D
STABILITY BOUNDARY CONDITIONS†
FOR ALL TL431B, TL432, SOT-23, SC-70, AND Q-TEMP DEVICES
100
90
I KA − Cathode Current − mA
80
150 Ω
A VKA = Vref
B VKA = 5 V
C VKA = 10 V
D VKA = 15 Vf
IKA
+
B
70
VBATT
CL
Stable
−
TA = 25°C
60
C
Stable
50
A
TEST CIRCUIT FOR CURVE A
40
A
30
D
IKA
20
150 Ω
R1 = 10 kΩ
B
10
0
0.001
CL
+
0.01
0.1
1
10
R2
CL − Load Capacitance − μF
−
† The areas under the curves represent conditions that may cause the
device to oscillate. For curves B, C, and D, R2 and V+ were adjusted
to establish the initial VKA and IKA conditions with CL = 0. VBATT and
CL then were adjusted to determine the ranges of stability.
TEST CIRCUIT FOR CURVES B, C, AND D
Figure 16
22
POST OFFICE BOX 655303
VBATT
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
APPLICATION INFORMATION
R
(see Note A)
VI(BATT)
VO
R1
0.1%
Vref
TL431
V
O
ǒ
Ǔ
+ 1 ) R1 V ref
R2
R2
0.1%
RETURN
NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum VI(BATT).
Figure 17. Shunt Regulator
VI(BATT)
VO
TL431
Von ≈2 V
Voff ≈VI(BATT)
Input
VIT ≈ 2.5 V
GND
Figure 18. Single-Supply Comparator With Temperature-Compensated Threshold
VI(BATT)
R
(see Note A)
2N222
2N222
30 Ω
V
0.01 μF
4.7 kΩ
TL431
O
ǒ
Ǔ
+ 1 ) R1 V ref
R2
VO
R2
0.1%
R1
0.1%
NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum VI(BATT).
Figure 19. Precision High-Current Series Regulator
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
APPLICATION INFORMATION
VI(BATT)
IN
OUT
uA7805
Common
VO
R1
TL431
V
O
ǒ
Ǔ
+ 1 ) R1 V ref
R2
Minimum V
O
+ V ref ) 5 V
R2
Figure 20. Output Control of a Three-Terminal Fixed Regulator
VI(BATT)
VO
R1
V
O
ǒ
Ǔ
+ 1 ) R1 V ref
R2
TL431
R2
Figure 21. High-Current Shunt Regulator
VI(BATT)
VO
R1
TL431
R2
C
(see Note A)
NOTE A: Refer to the stability boundary conditions in Figure 16 to determine allowable values for C.
Figure 22. Crowbar Circuit
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
APPLICATION INFORMATION
IN
VI(BATT)
LM317
8.2 kΩ
OUT
Adjust
VO ≈5 V, 1.5 A
243 Ω
0.1%
TL431
243 Ω
0.1%
Figure 23. Precision 5-V 1.5-A Regulator
VO ≈5 V
VI(BATT)
Rb
(see Note A)
27.4 kΩ
0.1%
TL431
27.4 kΩ
0.1%
NOTE A: Rb should provide cathode current ≥1 mA to the TL431.
Figure 24. Efficient 5-V Precision Regulator
12 V
VCC
6.8 kΩ
5V
10 kΩ
10 kΩ
0.1%
TL431
10 kΩ
0.1%
−
+
X
Not
Used
TL598
Feedback
Figure 25. PWM Converter With Reference
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
APPLICATION INFORMATION
R3
(see Note A)
VI(BATT)
R4
(see Note A)
R1B
R1A
ǒ
ǒ
TL431
R2A
Ǔ
Ǔ
Low Limit + 1 ) R1B V ref
R2B
High Limit + 1 ) R1A V ref
R2A
LED on When Low Limit < VI(BATT) < High Limit
R2B
NOTE A: R3 and R4 are selected to provide the desired LED intensity and cathode current ≥1 mA to the TL431 at the available VI(BATT).
Figure 26. Voltage Monitor
650 Ω
12 V
2 kΩ
R
TL431
Delay + R
C
In
ǒ12 V12*VV Ǔ
ref
Off
C
On
Figure 27. Delay Timer
RCL
0.1%
VI(BATT)
IO
I out +
R1
TL431
R1 +
Figure 28. Precision Current Limiter
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V ref
) I KA
R CL
V I(BATT)
I
O
h FE
) I KA
SLVS543A – AUGUST 2004 − REVISED AUGUST 2004
APPLICATION INFORMATION
VI(BATT)
IO
I
TL431
O
+
V ref
RS
RS
0.1%
Figure 29. Precision Constant-Current Sink
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
B
A
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS108 – AUGUST 2001
DBZ (R-PDSO-G3)
PLASTIC SMALL-OUTLINE
3,04
2,80
2,05
1,78
0,60
0,45
1,03
0,89
1,40
1,20
2,64
2,10
0,51
0,37
1,12
0,89
0,100
0,013
0,55 REF
0,180
0,085
4203227/A 08/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Dimensions are inclusive of plating.
Dimensions are exclusive of mold flash and metal burr.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPSF001F – JANUARY 1996 – REVISED JANUARY 2002
KTP (R-PSFM-G2)
PowerFLEX™ PLASTIC FLANGE-MOUNT PACKAGE
0.080 (2,03)
0.070 (1,78)
0.243 (6,17)
0.233 (5,91)
0.228 (5,79)
0.218 (5,54)
0.050 (1,27)
0.040 (1,02)
0.130 (3,30) NOM
0.215 (5,46)
NOM
0.247 (6,27)
0.237 (6,02)
0.010 (0,25) NOM
Thermal Tab
(See Note C)
0.287 (7,29)
0.277 (7,03)
0.381 (9,68)
0.371 (9,42)
0.100 (2,54)
0.090 (2,29)
0.032 (0,81) MAX
Seating Plane
0.090 (2,29)
0.180 (4,57)
0.004 (0,10)
0.005 (0,13)
0.001 (0,02)
0.031 (0,79)
0.025 (0,63)
0.010 (0,25) M
0.010 (0,25) NOM
Gage Plane
0.047 (1,19)
0.037 (0,94)
0.010 (0,25)
2°–ā6°
4073388/M 01/02
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
The center lead is in electrical contact with the thermal tab.
Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).
Falls within JEDEC TO-252 variation AC.
PowerFLEX is a trademark of Texas Instruments.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
MECHANICAL DATA
MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001
LP (O-PBCY-W3)
PLASTIC CYLINDRICAL PACKAGE
0.205 (5,21)
0.175 (4,44)
0.165 (4,19)
0.125 (3,17)
DIA
0.210 (5,34)
0.170 (4,32)
Seating
Plane
0.157 (4,00) MAX
0.050 (1,27)
C
0.500 (12,70) MIN
0.104 (2,65)
FORMED LEAD OPTION
0.022 (0,56)
0.016 (0,41)
0.016 (0,41)
0.014 (0,35)
STRAIGHT LEAD OPTION
D
0.135 (3,43) MIN
0.105 (2,67)
0.095 (2,41)
0.055 (1,40)
0.045 (1,14)
1
2
3
0.105 (2,67)
0.080 (2,03)
0.105 (2,67)
0.080 (2,03)
4040001-2 /C 10/01
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Lead dimensions are not controlled within this area
D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)
E. Shipping Method:
Straight lead option available in bulk pack only.
Formed lead option available in tape & reel or ammo pack.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
MECHANICAL DATA
MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001
LP (O-PBCY-W3)
PLASTIC CYLINDRICAL PACKAGE
0.539 (13,70)
0.460 (11,70)
1.260 (32,00)
0.905 (23,00)
0.650 (16,50)
0.610 (15,50)
0.020 (0,50) MIN
0.098 (2,50)
0.384 (9,75)
0.335 (8,50)
0.748 (19,00)
0.217 (5,50)
0.433 (11,00)
0.335 (8,50)
0.748 (19,00)
0.689 (17,50)
0.114 (2,90)
0.094 (2,40)
0.114 (2,90)
0.094 (2,40)
0.169 (4,30)
0.146 (3,70)
DIA
0.266 (6,75)
0.234 (5,95)
0.512 (13,00)
0.488 (12,40)
TAPE & REEL
4040001-3 /C 10/01
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Tape and Reel information for the Format Lead Option package.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2004, Texas Instruments Incorporated
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
T
H E
I
N F I N I T E
P
O W E R
I
O F
P
N N O VA T I O N
R O D U C T I O N
DESCRIPTION
The TL431/TL431A/TL431B series
precision adjustable three terminal shunt
voltage regulators are pin-to-pin
compatible with the industry standard
TL431. The output voltage of this
reference is programmable by using two
external resistors from 2.5V to 36V.
These devices offer low output
D
A T A
S
H E E T
K E Y F E AT U R E S
impedance for improved load regulation.
The typical output impedance of these
devices is 200mΩ. These devices find
application in the feedback path of
switching power supplies, OVP
crowbar circuits, reference for A/D,
D/A, and as zener diodes with
improved turn-on characteristics.
NOTE: For current data & package dimensions, visit our web site: http://www.linfinity.com.
PRODUCT HIGHLIGHT
W INITIAL VOLTAGE REFERENCE ACCURACY OF
0.4% (TL431B)
W SINK CURRENT CAPABILITY 1mA to 100mA
W TYPICAL OUTPUT DYNAMIC IMPEDANCE
LESS THAN 200mΩ;
TYPICAL OUTPUT IMPEDANCE OF THE
TL431B LESS THAN 100mΩ
W ADJUSTABLE OUTPUT VOLTAGE FROM 2.5V
TO 36V
W AVAILABLE IN SURFACE-MOUNT PACKAGES
W LOW OUTPUT NOISE
W TYPICAL EQUIVALENT FULL RANGE
TEMPERATURE COEFFICIENT OF 30ppm/°C
W DIRECT PIN-TO-PIN REPLACEMENT FOR
INDUSTRY STANDARD TL431 AND TL1431
PRECISION PROGRAMMABLE REFERENCES
VIN
VOUT
R1
TL431/A
& TL431B
VO =
⎛1 +
⎝
R1
R2
⎞
⎠
* VREF
R2
PA C K A G E O R D E R I N F O R M AT I O N
TA (°C)
0 to 70
-40 to 85
Initial
Tolerance
2%
1%
0.4%
2%
1%
0.4%
SOIC
DM Plastic
8-pin
TL431CDM
TL431ACDM
TL431BCDM
TL431IDM
TL431AIDM
TL431BIDM
TO-92
LP Plastic
3-pin
TL431CLP
TL431ACLP
TL431BCLP
TL431ILP
TL431AILP
TL431BILP
Note: All surface-mount packages are available in Tape & Reel.
Append the letter "T" to part number. (i.e. TL431CDMT)
TO-92 (LP) package also available in ammo-pack.
Copyright © 1999
Rev. 1.3 9/99
LINFINITY MICROELECTRONICS INC.
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570
1
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
A B S O L U T E M A X I M U M R AT I N G S
D
A T A
S
H E E T
PACKAGE PIN OUTS
(Note 1)
Cathode to Anode Voltage (VKA) (Note 2) .................................................... -0.3V to 37V
Reference Input Current (IREF) ................................................................... -50μA to 10mA
Continuous Cathode Current (IK) ......................................................... -100mA to 150mA
Operating Junction Temperature
Plastic (DM, LP Packages) .................................................................................... 150°C
Storage Temperature Range ...................................................................... -65°C to 150°C
Lead Temperature ..................................................................................................... 300°C
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect
to Ground. Currents are positive into, negative out of the specified terminal. Pin
numbers refer to DIL packages only.
Note 2. Voltage values are with respect to the anode terminal unless otherwise noted.
CATHODE
1
8
REF
N.C.
ANODE
2
7
3
6
ANODE
ANODE
N.C.
4
5
N.C.
DM PACKAGE
(Top View)
1. CATHODE
2. ANODE
T H E R M A L D ATA
3. REF
DM PACKAGE:
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA
165°C/W
LP PACKAGE:
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA
LP PACKAGE
(Top View)
156°C/W
Junction Temperature Calculation: TJ = TA + (PD x θJA).
The θJA numbers are guidelines for the thermal performance of the device/pc-board system.
All of the above assume no ambient airflow
BLOCK DIAGRAM
Cathode (K)
Ref (R)
VREF
Anode (A)
2
Copyright © 1999
Rev. 1.3 9/99
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
D
A T A
S
H E E T
ELECTRICAL CHARACTERISTICS
(Note 3)
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for TL431C/TL431AC/TL431BC with 0°C ≤ TA ≤ 70°C,
TL431I/TL431AI/TL431BI with -40°C ≤ TA ≤ 85°C.)
Parameter
Reference Input Voltage
Reference Drift
Voltage Ratio, Ref to Cathode
(Note 4)
Reference Input Current
Symbol
TL431
TL431A
TL431B
TL431C
TL431I
TL431AC
TL431AI
TL431BC
TL431BI
TL431, TL431A
TL431B
TL431,TL431A
VREF
ΔVREF
ΔVKA
IREF
TL431B
Minimum Operating Current
Off-State Cathode Current
TL431
TL431A
IMIN
IOFF
TL431B
Dynamic Impedance
TL431
TL431B
| ZKA |
Test Conditions
IK = 10mA, VKA = VREF, TA = 25°C
IK = 10mA, VKA = VREF, TA = 25°C
IK = 10mA, VKA = VREF, TA = 25°C
IK = 10mA, VKA = VREF
IK = 10mA, VKA = VREF
IK = 10mA, VKA = VREF
IK = 10mA, VKA = VREF
IK = 10mA, VKA = VREF
IK = 10mA, VKA = VREF
IK = 10mA, VKA = 2.5V to 36V
IK = 10mA, VKA = 2.5V to 36V
VKA = VREF, TA = 25°C
VKA = VREF, TA = 25°C
VKA = VREF, TA = Operating Range
VKA = VREF to 36V
VKA = VREF to 36V, TA = 25°C
VKA = VREF to 36V, TA = 25°C
VKA = VREF to 36V, TA = Operating Range
VKA = 36V, VREF = 0V, TA = 25°C
VKA = VREF, IK = 1mA to 100mA, f ≤ 1kHz, TA = 25°C
VKA = VREF, IK = 1mA to 100mA, f ≤ 1kHz, TA = 25°C
TL431/431A/431B
Units
Min. Typ. Max.
2440 2495 2550
2470 2495 2520
2490 2500 2510
4
17
5
30
4
17
5
30
4
15
5
20
-1.4 -2.7
-1.1
-2
2
4
1.5 1.9
2.3
0.4
1
0.1
1
0.1
1
2
0.18 0.5
0.2 0.5
0.1 0.2
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV/V
mV/V
μA
μA
μA
mA
μA
μA
μA
μA
Ω
Ω
Note 3. These parameters are guaranteed by design.
Note 4.
ΔVREF
ΔVKA
Copyright © 1999
Rev. 1.3 9/99
Ratio of change in reference input voltage
to the change in cathode voltage.
3
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
D
A T A
S
H E E T
GRAPH / CURVE INDEX
FIGURE INDEX
Characteristic Curves
Parameter Measurement Information
FIGURE #
FIGURE #
1.
REFERENCE INPUT VOLTAGE vs. FREE-AIR TEMPERATURE
8.
TEST CIRCUIT FOR VKA = VREF
2.
REFERENCE INPUT CURRENT vs. FREE-AIR TEMPERATURE
9.
TEST CIRCUIT FOR VKA > VREF
3.
CATHODE CURRENT vs. CATHODE VOLTAGE
10. TEST CIRCUIT FOR IOFF
4.
CATHODE CURRENT vs. CATHODE VOLTAGE
5.
OFF-STATE CATHODE CURRENT vs. FREE-AIR TEMPERATURE
6.
RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE
VOLTAGE vs. FREE-AIR TEMPERATURE
7.
EQUIVALENT INPUT NOISE VOLTAGE vs. FREQUENCY
Typical Characteristics
FIGURE #
11. EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD
12. SMALL-SIGNAL VOLTAGE AMPLIFICATION vs. FREQUENCY
13. REFERENCE IMPEDANCE vs. FREQUENCY
14. PULSE RESPONSE
15. STABILITY BOUNDARY CONDITIONS
Application Information
FIGURE #
16. SHUNT REGULATOR
17. SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED
THRESHOLD
18. HIGH CURRENT SHUNT REGULATOR
19. CROWBAR CIRCUIT
20. VOLTAGE MONITOR
21. PRECISION CONSTANT-CURRENT SINK
4
Copyright © 1999
Rev. 1.3 9/99
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
D
A T A
S
H E E T
CHARACTERISTIC CURVES
FIGURE 1. — REFERENCE VOLTAGE
vs. FREE-AIR TEMPERATURE
FIGURE 2. — REFERENCE CURRENT
vs. FREE-AIR TEMPERATURE
5
VREF = VKA
IK = 10mA
2.58
(IREF) Reference Input Current - (μA)
(VREF) Reference Input Voltage - (V)
2.60
VREF = 2550mV
2.56
TL431/A
2.54
2.52
TL431B
2.50
2.48
VREF = 2495mV
TL431/A
2.46
2.44
VREF = 2440mV
TL431/A
2.42
2.4
-50
-25
25
0
50
75
100
IK = 10mA
R1 =
IK = 10mA
4
3
TL431/A
2
TL431B
1
0
-50
125
(TA) Ambient Temperature - (°C)
0
25
50
75
100
125
(TA) Ambient Temperature - (°C)
FIGURE 3. — CATHODE CURRENT vs. CATHODE VOLTAGE
FIGURE 4. — CATHODE CURRENT vs. CATHODE VOLTAGE
150
800
VKA = VREF
TA = 25°C
VKA = VREF
TA = 25°C
125
100
(IK) Cathode Current - (μA)
(IK) Cathode Current - (μA)
-25
75
50
25
0
TL431/A
-25
TL431B
-50
600
IMIN
400
200
0
-75
-100
-200
-2
-1
0
1
2
(VKA) Cathode Voltage - (V)
Copyright © 1999
Rev. 1.3 9/99
3
-1
0
1
2
3
(VKA) Cathode Voltage - (V)
5
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
D
A T A
S
H E E T
CHARACTERISTIC CURVES
FIGURE 5. — OFF-STATE CATHODE CURRENT
vs. FREE-AIR TEMPERATURE
FIGURE 6. — RATIO OF DELTA REFERENCE VOLTAGE TO DELTA
CATHODE VOLTAGE vs. FREE-AIR TEMPERATURE
-0.85
VKA = 36V
VREF = 0
TL431/A
& TL431B
VKA = 3V to 36V
-0.95
2
ΔVREF / ΔVKA - (mV/V)
(IOFF) Off-State Cathode Current - (μA)
2.5
1.5
1
0.5
0
-50
-1.05
-1.15
-1.25
-1.35
-25
0
25
50
75
100
125
-1.45
-50
-25
0
25
50
75
100
125
(TA) Ambient Temperature - (°C)
(TA) Ambient Temperature - (°C)
FIGURE 7. — EQUIVALENT INPUT NOISE VOLTAGE
vs. FREQUENCY
260
IO = 10mA
TA = 25°C
(VN) Noise Voltage - (nV/ Hz)
240
220
200
180
160
140
120
100
10
100
1k
10k
100k
(f) Frequency - (Hz)
6
Copyright © 1999
Rev. 1.3 9/99
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
D
A T A
S
H E E T
PA R A M E T E R M E A S U R E M E N T I N F O R M AT I O N
VKA
Input
VKA
Input
IK
IK
R1
IREF
R2
VREF
VREF
FIGURE 9 — TEST CIRCUIT FOR VKA > VREF
FIGURE 8 — TEST CIRCUIT FOR VKA = VREF
VKA
Input
IOFF
FIGURE 10 — TEST CIRCUIT FOR IOFF
Copyright © 1999
Rev. 1.3 9/99
7
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
D
R O D U C T I O N
S
A T A
H E E T
TYPICAL CHARACTERISTICS
6
f = 0.1 to 10Hz
IK = 10mA
TA = 25°C
(VN) Input Noise Voltage - (μV)
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
0
2
4
6
8
10
(t) Time - (s)
FIGURE 11. — EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD
19.1V
1k
500μF
VCC
910
2000μF
VCC
1μF
TL431/A
& TL431B (DUT)
TLE2027
AV = 10V/mV
820
TLE2027
16k
16
160k
1μF
0.1μF
VEE
2.2μF
16k
33k
AV = 2V/V
1M
CRO
33k
VEE
Test Circuit for 0.1Hz to 10Hz Equivalent Input Noise Voltage
8
Copyright © 1999
Rev. 1.3 9/99
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
D
A T A
S
H E E T
TYPICAL CHARACTERISTICS
FIGURE 12. —
SMALL-SIGNAL VOLTAGE AMPLIFICATION
vs. FREQUENCY
70
60
(AV) Voltage Amplification - (dB)
Output
IK = 10mA
TA = 25°C
IK
230
15k
50
9μF
40
30
8.25k
20
10
GND
0
Test Circuit for Voltage Amplification
-10
1k
10k
100k
1M
10M
(f) Frequency - (Hz)
FIGURE 13. — REFERENCE IMPEDANCE vs. FREQUENCY
(|zKA|) Reference Impedance - ( )
100
Output
IK = 1mA to 100mA
TA = 25°C
1k
IK
10
50
1
GND
Test Circuit for Reference Impedance
0.1
1k
10k
100k
1M
10M
(f) Frequency - (Hz)
Copyright © 1999
Rev. 1.3 9/99
9
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
D
A T A
S
H E E T
TYPICAL CHARACTERISTICS
FIGURE 14. — PULSE RESPONSE
6
Output
VIN - (V)
5
220
4
3
Pulse
Generator
f = 100kHz
2
50
(VKA)
Output Voltage - (V)
1
0
3
GND
2
1
Test Circuit for Pulse Response
0
1
0
2
3
4
5
6
(t) Time - (μs)
FIGURE 15. — STABILITY BOUNDARY CONDITIONS
(IK) Cathode Current - mA
90
80
IK
R1=10k
100
A
B
C
D
VKA = VREF
VKA = 5V
VKA = 10V
VKA = 15V
150
IK = 10mA
TA = 25°C
CL
B*
R2
70
60
50
VBATT
Stable
Stable
C*
A*
Test Circuit for Curve A
40
30
150
D*
20
IK
10
0
0.001
CL
0.01
0.1
1
10
VBATT
(CL) Load Capacitance - (μF)
* The areas under the curves represent conditions that may cause the
device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to
establish the initial VKA and IK conditions with CL = 0. VBATT and CL were
then adjusted to determine the ranges of stability.
10
Test Circuit for Curves B, C, and D
Copyright © 1999
Rev. 1.3 9/99
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
D
A T A
S
H E E T
A P P L I C AT I O N I N F O R M AT I O N
R (see Note)
VBATT
VBATT
VO
IK
R1 0.1%
TL431/A
& TL431B
TL431/A
& TL431B
VREF
VO
VON
VOFF
Input
R2 0.1%
2V
VBATT
GND
VO =
Note:
⎛1 +
⎝
R1
R2
⎞
⎠
* VREF
R should provide ≥ 1mA cathode current to
the TL431/A & TL1431 at minimum V BATT.
FIGURE 16 — SHUNT REGULATOR
VBATT
FIGURE 17 — SINGLE-SUPPLY COMPARATOR WITH
TEMPERATURE-COMPENSATED THRESHOLD
VO
VBATT
VO
R1
R1
TL431/A
& TL431B
C
TL431/A
& TL431B
R2
VO =
⎛1 +
⎝
R1
R2
⎞
⎠
Note:
* VREF
FIGURE 18 — HIGH CURRENT SHUNT REGULATOR
Copyright © 1999
Rev. 1.3 9/99
R2
(see Note)
Refer to the stability boundary conditions in
Figure 15 to determine allowable values for C.
FIGURE 19 — CROWBAR CIRCUIT
11
PRODUCT DATABOOK 1996/1997
TL431/TL431A/TL431B
PRECISION PROGRAMMABLE REFERENCES
P
R O D U C T I O N
D
A T A
S
H E E T
A P P L I C AT I O N I N F O R M AT I O N
R3 (see Note)
12V
VBATT
IO
R4
(Note)
R1A
TL431/A
& TL431B
TL431/A
& TL431B
R2A
RS
0.1%
R2B
⎛1 +
⎝
High Limit = ⎛1 +
⎝
Low Limit =
R1B ⎞
* VREF
R2B ⎠
R1B ⎞
* VREF
R2B ⎠
LED On when
Low Limit < VBATT < High Limit
IO =
⎛
⎝
VREF
RS
⎞
⎠
Note: R3 and R4 are selected to provide the desired LED intensity and ≥ 1mA
cathode current to the TL431/A & TL431B at the available V+.
FIGURE 20 — VOLTAGE MONITOR
FIGURE 21 — PRECISION CONTANT-CURRENT SINK
PRODUCTION DATA - Information contained in this document is proprietary to LinFinity, and is current as of publication date. This document
may not be modified in any way without the express written consent of LinFinity. Product processing does not necessarily include testing of
all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.
12
Copyright © 1999
Rev. 1.3 9/99
Precision Adjustable
Shunt Reference
CORPORATION
TL431
FEATURES
DESCRIPTION
•
•
•
•
•
•
The TL431 is an adjustable shunt regulator designed to act as
an open-loop error amplifier with a 2.5V temperature
compensated reference. Its highly accurate 1% bandgap
reference is perfect for applications requiring stability and
accuracy over temperature and life.
Trimmed 1% Bandgap Reference
Nominal Temperature Range Extended to 105oC
Temperature-Compensated: 30ppm/ oC
Internal Amplifier with 150mA Capability
Low Output Noise
Low Frequency Dynamic Output Impedance
Sharp turn-on characteristics and a low temperature coefficient
make the TL431 an excellent replacement for many zener
diode applications, programmable to any value greater than
2.5V and up to 36V by using two external resistors. As a
combination error amplifier and reference, it can be used to
manage control loops such as switching power supplies.
ORDERING INFORMATION
Part
Package
TL431LP
TL431D
TL431S
TO-92
8-Pin Plastc SOIC
SOT-89
Temperature Range
0 to 105oC
0 to 105oC
0 to 105oC
PIN CONFIGURATION (Top View)
SOIC (D)
TO-92 (LP)
SOT-89 (S)
CATHODE
1
8
REFERENCE
ANODE
2
7
ANODE
ANODE
3
6
ANODE
N/C
4
5
N/C
CATHODE
ANODE
REFERENCE
CATHODE
ANODE
REFERENCE
1G-34
1G-33
1G-35
CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025
TL431
CORPORATION
ABSOLUTE MAXIMUM RATINGS
SYMBOL
PARAMETER
RATING
UNITS
VKA
Cathode-Anode Reverse Breakdown
37
V
IAK
Anode-Cathode Forward Current
1
A
IKA
Operating Cathode Current
250
mA
IREF
Reference Input Current
10
mA
PD
Continuous Power at 25 oC
TO-92
8L SOIC
SOT-89
775
750
1000
mW
mW
mW
TJ
Junction Temperature
150
o
C
TSTG
Storage Temperature
–65 to 150
o
C
300
o
C
TL
Lead Temperature, Soldering 10 Seconds
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
RECOMMENDED CONDITIONS
SYMBOL
TYPICAL THERMAL RESISTANCE
PARAMETER
RATING
UNIT
PACKAGE
θJA
o
θJC
o
TYPICAL DERATING
VKA
Cathode Voltage
VREF to 20
V
TO-92
160 C/W
80 C/W
6.3mW/oC
IK
Cathode Current
10
mA
SOIC
175 oC/W
45 oC/W
5.7mW/oC
SOT-89
110oC/W
8oC/W
9.1mW/oC
FUNCTIONAL BLOCK DIAGRAM
CATHODE (K)
REFERENCE (R)
+
–
2.5V
ANODE (A)
1G-36
CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025
TL431
CORPORATION
ELECTRICAL CHARACTERISTICS
Electrical Characteristics are guaranteed over full junction temperature range (0 to 105oC). Ambient temperature must be derated based on
power dissipation and package thermal characteristics. The conditions are: VKA = VREF and IK = 10mA unless otherwise stated.
SYMBOL
PARAMETER
VREF
Reference Voltage
TC
ΔVREF with Temp.*
ΔVREF
ΔVK
Ratio of Change in VREF to
Cathode Voltage
IREF
MIN
TYP
MAX
UNIT
TEST CIRCUIT
2.470
2.495
2.520
V
1
TA = 25oC
2.541
V
1
Over Temp.
0.20
mV/ oC
1
mV/V
2
2.449
0.07
–2.7
–1.0
–2
–0.4
0.3
Reference Input Current
0.7
4
TEST CONDITION
VREF to 10V
10V to 36V
μA
2
ΔIREF
IREF Temp Deviation
0.4
1.2
μA
2
IK(MIN)
Min IK for Regulation
0.4
1
mA
1
IK(OFF)
Off State Leakage
0.04
250
nA
3
VREF = 0V, VKA = 36V
ZKA
Dynamic Output Impedance
0.15
0.5
Ω
1
f ≤ 1kHz, I K = 1 to 150mA
Over Temp.
mV
ppm
*CALCULATING AVERAGE TEMPERATURE COEFFICIENT (TC)
%
0
0
• TC in mV/oC =
0
ΔVREF
ΔVREF (mV)
ΔTA
ΔT
–10
5000
0.5
• TC in %/oC =
0
15
30
45
60
75
90
ΔVREF
⎛
⎞
⎜
o ⎟
⎝ VREF at 25 C ⎠
105
TEMPERATURE (˚C)
o
• TC in ppm/ C =
0.07 mV/˚C
x 100
ΔTA
ΔVREF
⎛
⎞
⎜
o ⎟
⎝ VREF at 25 C ⎠
x 106
ΔTA
0.003 %/˚C
27 ppm/˚C
1G-37
TEST CIRCUITS
V IN
V KA = V REF
V IN
V KA
IK
IK
I REF
R1
V IN
V KA
I K(OFF)
I REF
(V REF )
R2
1G-38
1G-39
TEST CIRCUIT 1
TEST CIRCUIT 2
1G-40
TEST CIRCUIT 3
CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025
TL431
CORPORATION
TYPICAL PERFORMANCE CURVES
TEMPERATURE RANGE: –55 to 125˚C
700
600
500
400
125˚C
300
25˚C
200
–55˚C
100
0
–100
–200
–1.0
0
1.0
2.0
3.0
VKA – CATHODE VOLTAGE (V)
1G-41
10
1
0.1
75
50
25
0
–25
–50
–75
–1
0
1
2
VKA – CATHODE VOLTAGE (V)
3
1G-42
VKA = VREF
2.53 I K = 10mA
2.52
2.51
2.50
VREF = 2.503V AT 25˚C
2.49
2.48
2.47
2.46
–60
1G-43
REFERENCE
INPUT CURRENT
2.0
1.5
1.0
0.5
–10
1G-44
–55˚C
0˚C
–20
25˚C
75˚C
–30
125˚C
–40
I K = 10mA
–50
TEMPERATURE RANGE: –55 to 125˚C
0
1G-45
–30
0
30
60
90 120
TA – AMBIENT TEMPERATURE
REFERENCE VOLTAGE
LINE REGULATION
0
R1 = 10kΩ
R2 = ∞
2.5 I K = 10mA
0
0
30
60
90 120
–60 –30
TA – AMBIENT TEMPERATURE (˚C)
100
2.54
VKA = 36V
VREF = 0V
3.0
VKA = VREF
TEMPERATURE RANGE: –55 to 125˚C
TEMPERATURE COEFFICIENT AS
A FUNCTION OF TRIM VALUE
OFF STATE LEAKAGE
0.01
0
30
60
90 120
–60 –30
TA – AMBIENT TEMPERATURE (˚C)
125
HIGH CURRENT OPERATING
CHARACTERISTICS
–100
–2
VREF – REFERENCE VOLTAGE (V)
I Z off – OFF STATE CATHODE
CURRENT (nA)
100
I REF – REFERENCE INPUT
CURRENT (μA)
150
VKA = VREF
I K – CATHODE CURRENT (mA)
800
VREF – CHANGE IN REFERENCE
VOLTAGE (mV)
I K – CATHODE CURRENT (μA)
900
LOW CURRENT OPERATING
CHARACTERISTICS
3 6 9 12 15 18 21 24 27 30
VKA – CATHODE VOLTAGE (V)
1G-46
CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025
TL431
CORPORATION
TYPICAL PERFORMANCE CURVES (continued)
NOISE VOLTAGE
0.150
Z KA – DYNAMIC IMPEDANCE (Ω)
NOISE VOLTAGE nV/ Hz
70
60
50
40
30
20
VKA = VREF
10 I K = 10mA
TA = 25˚C
0
100
1k
10k
10
f – FREQUENCY (Hz)
Z KA – DYNAMIC IMPEDANCE (Ω)
A V – SMALL SIGNAL VOLTAGE
GAIN (dB)
VKA = VREF
I KA = 1 TO 100mA
f ≤ 1kHz
0.100
0.075
0.050
0.025
0.0
–60
1G-47
–30
0
30
60
90 120
TA – FREE AIR TEMPERATURE
1G-48
DYNAMIC OUTPUT
IMPEDANCE
TA = 25˚C
I K = 1 TO 100mA
10
1.0
0.1
0.01
1k
70
0.125
100k
100
LOW FREQUENCY DYNAMIC
OUTPUT IMPEDANCE
10k
100k
1M
f – FREQUENCY (Hz)
10M
1G-49
SMALL SIGNAL GAIN
vs FREQUENCY
OUT
60
50
15k
TA = 25˚C
I K = 10mA
9μF
IK
230Ω
40
30
8.25k
GND
20
1H-01
10
0
1k
10k
100k
1M
f – FREQUENCY (Hz)
10M
1G-50
CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025
TL431
CORPORATION
INPUT AND OUTPUT VOLTAGES (V)
TYPICAL PERFORMANCE CURVES (continued)
6
PULSE RESPONSE
INPUT
INPUT
MONITOR
5
220Ω
OUT
4
3
OUTPUT
50Ω
f P = 100kHz
2
1
GND
0
1H-03
–1
0 1 2 3 4 5 6 7 8 9 10 11 12
t – TIME (μs)
1H-02
I K – CATHODE CURRENT (mA)
100
90
80
STABILITY BOUNDARY
CONDITIONS
A: VKA = VREF
150 Ω
B: VKA = 5V AT I K = 10mA
C: VKA = 10V AT I K = 10mA
D: VKA = 15V AT I K = 10mA
IK
70
60
50
STABILITY
REGION
C
40
10k
30
A
20
10
CL
B
TA = 25˚C
1H-05
D
0
100 101 102 103 104 105 106 107
C L – LOAD CAPACITANCE (pF)
1H-04
CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025
AIC431/TL431A/TL431
Adjustable Precision Shunt Regulators
FEATURES
DESCRIPTION
Unconditionally Stable.
Precision Reference Voltage.
AIC431
:2.495V ±0.5%
TL431A
:2.495V ±1.0%
TL431
:2.495V ±1.6%
Sink Current Capability: 200mA.
Minimum Cathode Current for Regulation: 250μA.
Equivalent Full-Range Temperature Coefficient:
50 ppm/°C.
Fast Turn-On Response.
Low Dynamic Output Impedance: 0.08Ω.
Adjustable Output Voltage.
Low Output Noise.
Space Saving SOT-89, SOT-23, TO-92 and SO8
packages.
TYPICAL APPLICATION CIRCUIT
V IN
V OUT
+
R1
The AIC431/TL431A/TL431 are 3-terminal adjustable precision shunt regulators with guaranteed temperature stability over the applicable extended commercial temperature range.
The output voltage may be set at any level
greater than 2.495V (V REF) up to 30V merely
by selecting two external resistors that act as
a voltage divider network. These devices have
a typical output impedance of 0.08Ω. Active
output circuitry provides a very sharp turn-on
characteristics, making these devices excellent improved replacements for zener diodes
in many applications.
The precise ±0.5% reference voltage tolerance of the AIC431 makes it possible in
many applications to avoid the use of a variable resistor, consequently saving cost and
eliminating drift and reliability problems associated with it.
+
AIC431
R2
VOUT=(1+R1/R2)VREF
Precision Regulator
Analog Integrations Corporation 4F, 9, Industry E. 9th Rd, Science Based Industrial Park, Hsinchu Taiwan, ROC
DS-431-06
May 31, 01
TEL: 886-3-5772500
FAX: 886-3-5772510
www.analog.com.tw
1
AIC431/TL431A/TL431
ORDERING INFORMATION
AIC431 CX
TL431A CX
TL431 CX
PACKAGING TYPE
S: SMALL OUTLINE
U: SOT-23
X: SOT-89
Z: TO-92
ORDER NUMBER
AIC431CS
TL431ACS
TL431CS
(SO-8)
AIC431CUN
TL431ACUN
TL431CUN
(SOT-23)
PIN CONFIGURATION
TOP VIEW
CATHOD
1
8 REF
ANODE
2
7 ANODE
ANODE
3
6 ANODE
NC
4
5 NC
3
FRONT VIEW
1: CATHODE
2: VREF
3: ANODE
1
AIC431CUS
TL431ACUS
TL431CUS
(SOT-23)
2
3
FRONT VIEW
1: VREF
2: CATHODE
3: ANODE
1
AIC431CX
TL431ACX
TL431CX
(SOT-89)
FRONT VIEW
1: VREF
2: ANODE
3: CATHODE
1
AIC431CZ
TL431ACZ
TL431CZ
(TO-92)
2
FRONT VIEW
1: VREF
2: ANODE
3: CATHODE
2
3
1
2
3
ABSOLUTE MAXIMUM RATINGS
Cathode Voltage ........……………...............……………..………...............................30V
Continuous Cathode Current ...................………….……...................... -10mA ~ 250mA
Reference Input Current Range
.......…………........……..........…………………… 10mA
Operating Temperature Range .......………….........……….........……………. -40°C ~ 85°C
Lead Temperature .......…………..................………………..………………………. 260°C
Storage Temperature .......…………..................……………..…………….. -65°C ~ 150°C
Power Dissipation (Notes 1, 2)
SOT-89 Package .........…………...... 0.80W
TO-92 Package ….......…………....... 0.78W
Note 1: TJ, max = 150°C.
Note 2: Ratings apply to ambient temperature at 25°C.
2
AIC431/TL431A/TL431
TEST CIRCUITS
IN
IL
IN
VZ
IL
R1
IREF
VZ
AIC431
IREF
IZ
IZ
VREF
R2
VREF
AIC431
Note: V Z=V REF(1+R1/R2)+IREFxR1
Fig. 1 Test Circuit for VZ=VREF
Fig. 2 Test circuit for VZ>VREF
IN
VZ
AIC431
IZ(OFF)
Fig. 3 Test circuit for off-state Current
ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified.)
PARAMETER
Reference Voltage
TEST CONDITIONS
VZ=VREF,
AIC431
IL =10mA (Fig. 1)
TL431A
SYMBOL
MIN.
TYP.
MAX.
2.482
2.495
2.508
2.470
2.495
2.520
2.455
2.495
2.535
9.0
20
mV
-0.5
-2.0
mV/V
ΔVZ
-0.35
-1.5
mV/V
IREF
0.8
3.5
μA
VREF
TL431
Deviation of Reference
Input Voltage Over
Temperature (Note 3)
VZ = VREF , IL =10mA,
Ratio of the Change in Reference Voltage to
the Change in Cathode voltage
IZ=10mA
ΔVZ=10V-VREF
(Fig. 2)
ΔVZ=30V-10V
Reference Input Current
R1 =10KΩ, R2=∞,
IL =10mA (Fig. 2)
Ta = 0°C~ +85°C (Fig. 1)
VDEV
ΔVREF
UNIT
V
3
AIC431/TL431A/TL431
Deviation of Reference Input
Current over Temperature
R1 =10KΩ, R2=∞,
IL =10mA
Ta =-20°C ~ +85°C (Fig. 2)
αIREF
0.3
1.2
μA
4
AIC431/TL431A/TL431
ELECTRICAL CHARACTERISTICS (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Minimum Cathode current for
Regulation
VZ=VREF (Fig. 1)
IZ(MIN)
0.25
0.5
mA
Off-State Current
VZ=20V, VREF =0V (Fig. 3)
IZ(OFF)
0.1
1.0
μA
Dynamic Output Impedance
(Note 4)
VZ=VREF
Frequency= 0Hz (Fig. 1)
RZ
0.08
0.3
Ω
Where:
T2−T1=full temperature change.
αVREF can be positive or negative depending on
whether the slope is positive or negative.
Example: VDEV= 9.0mV, VREF= 2495mV,
T2−T1= 70°C, slope is negative.
VMAX
VDEV = V MAX-V MIN
VMIN
⎡ 9.0mV ⎤ 106
⎢ 2495mV ⎥⎦
αVREF = ⎣
= −50ppm/ °C
T1
70°C
T2
TEMPERATURE
Note 3. Deviation of reference input voltage, VDEV, is defined as the maximum variation of the reference input
voltage over the full temperature range.
Note 4. The dynamic output impedance, Rz, is defined as:
The average temperature coefficient of the reference input voltage, αVREF is d efined as:
When the device is programmed with two external resistors, R1 and R2, (see Fig. 2), the dynamic output
impedance of the overall circuit, is defined as:
⎡ VMAX - VMIN ⎤ 6
⎡
⎤ 6
VDEV
±⎢
±⎢
⎥10
⎥10
ppm
VREF(at 25°C) ⎦
VREF(at 25°C) ⎦
ΔVREF
= ⎣
= ⎣
°C
T2 − T1
T2 − T1
TYPICAL
RZ =
rz =
Cathode Current vs Cathode Voltage
Reference Voltage vs Temperature
2.58
VZ =V REF
TA =25° C
VZ =VREF
2.56
IZ(MIN)
Reference Voltage (V)
Cathode Current (μA)
[ ]
ΔVz
R1
≅ Rz 1+
R2
ΔIz
PERFORMANCE CHARACTERISTICS
1000
800
ΔVZ
ΔIZ
600
400
200
0
-200
IZ =10mA
2.54
VREF =2.535V
2.52
2.50
VREF =2.495V
2.48
2.46
2.44
VREF=2.455V
-400
2.42
-600
-1.0
-0.5
0.0
0.5
1.0
1.5
Cathode Voltage (V)
2.0
2.5
3.0
2.40
-40
-20
0
20
40
60
80
100
120
Temperature (°C )
5
AIC431/TL431A/TL431
TYPICAL
PERFORMANCE CHARACTERISTICS (Continued)
Reference Input Current vs Temperature
0.28
Dynamic Impedance vs Temperature
R1=10KΩ
R2=∞
IZ =10mA
1.15
1.10
Dynamic Impedance (Ω)
Reference Input Current (μA)
1.20
1.05
1.00
0.95
0.90
0.85
0.80
0.24
V Z=VREF
IZ =1mA to100mA
0.20
F <1KHz
0.16
0.12
0.08
0.04
0.75
0.70
-40
0.00
-40
-20
0
20
40
60
80
100
-20
0
20
60
80
100
120
Temperature (° C)
Temperature (° C)
Off-State Cathode Current vs Temperature
Change in Reference Voltage vs Cathode Voltage
2.5
0
Off-State Cathode Current (μA)
Change in Reference Voltage (mV)
40
120
-1
IZ =10mA
-2
TA =25°C
-3
-4
-5
-6
0
5
10
15
20
25
30
35
40
2.0
VREF=0V
VZ =30V
1.5
1.0
0.5
0.0
-40
-20
0
20
40
60
80
100
120
Temperature (° C)
Cathode Voltage (V)
Small Signal Voltage Amplification
Small Signal Voltage Amplification vs Frequency
80
70
IZ =10mA
60
TA=25° C
Output
50
47μF
40
R1
10K
250
Av
30
+
CIN
V IN
20
R
AIC431
V1
10
0
-1010
100
1k
10k
100k
1M
10M
Frequency (Hz)
Test Circuit For Frequency Response
6
AIC431/TL431A/TL431
TYPICAL
PERFORMANCE CHARACTERISTICS (Continued)
Pulse Response
RB
Input
220
Pulse
Generator
f=100kHz
OUTPUT
RA
50
Output
AIC431
Test Circuit For Pulse Respnose
Stability Boundary Conditions
100
Cathode Current (mA)
VZ
80
V Z=VREF
Stable
R
60
150
AIC431
CL
40
VIN
Stable
20
0
1E-4
1E-3
0.01
0.1
1
10
Load Capacitance (μF)
The areas between the curves represent condition that
may cause the device oscillate
Test Circuit for Stability Boundary Conditions
Dynamic impedance vs. Frequency
Dynamic Impedance (Ω)
10
Iz=10mA
TA=25° C
R1
Output
50
1
AIC431
+
AC
R2
50
+
3V
0.1
GND
1K
10K
100K
1M
Frequency (Hz)
7
AIC431/TL431A/TL431
SYMBOL
BLOCK DIAGRAM
CATHODE (C)
REF (R)
REF (R)
CATHODE (C)
+
-
AIC431
2.495V
ANODE (A)
ANODE (A)
APPLICATION EXAMPLES
VIN
VIN
R1B
R
R1A
AIC431
R2A
R2B
AIC431
+
AIC431
ON
C
OFF
LED on when Low Limit<VIN< High Limit
Low Limit ≅ VREF (1+R1B/R2B)
Delay=R x C x
ln ( V V− V
IN
IN
High Limit ≅ VREF (1+R1A/R2A)
Fig. 4 Voltage Monitor
)
REF
Fig. 5 Delay Timer
VIN
R CL
IOUT
IOUT
VIN
AIC431
RS
AIC431
IOUT =VREF/ RCL
IOUT =VREF /RS
Fig. 6 Current Limiter or Current Source
Fig. 7 Constant-Current Sink
8
AIC431/TL431A/TL431
APPLICATION EXAMPLES (Continued)
VOUT
VIN
VIN
FUSE
VOUT
R1
R1
AIC431
AIC431
R2
R2
VOUT ≅ (1+R1/R2) x VREF
VLIMIT ≅ (1+R1/R2) x VREF
Fig 8. Higher-Current Shunt Regulator
Fig 9.
Crow Bar
VIN
R1A
R1B
AIC431
Output ON when
Low Limit <VIN < High Limit
+
AIC431
R2A
R2B
VBE
Low Limit≅ VREF ( 1+ R1B/ R2B )+ VBE
High Limit ≅ VREF ( 1+ R1A/ R2A )
Fig 10. Over-Voltage/Under-Voltage Protection Circuit
9
AIC431/TL431A/TL431
PHYSICAL DIMENSIONS
8 LEAD PLASTIC SO (unit: mm)
D
SYMBOL
MIN
MAX
A
1.35
1.75
A1
0.10
0.25
B
0.33
0.51
C
0.19
0.25
D
4.80
5.00
E
3.80
4.00
H
E
e
e
A
H
5.80
6.20
L
0.40
1.27
SYMBOL
MIN
MAX
A
1.00
1.30
A1
—
0.10
A2
0.70
0.90
b
0.35
0.50
C
0.10
0.25
D
2.70
3.10
E
1.40
1.80
A1
C
B
L
SOT-23 (unit: mm)
C
D
L
E
H
θ1
e
e
A
A2
A1
b
1.27(TYP)
1.90 (TYP)
H
2.60
3.00
L
0.37
—
θ1
1°
9°
SOT-23 MARKING
Part No.
AIC431CUN
TL431CUN
TL431ACUN
Marking
AC1N
AC2N
AC3N
Part No.
AIC431CUS
TL431CUS
TL431ACUS
Marking
AC1S
AC2S
AC3S
10
AIC431/TL431A/TL431
PHYSICAL DIMENSIONS (Continued)
SOT-89 (unit: mm)
D
A
SYMBOL
MIN
MAX
C
A
1.40
1.60
B
0.36
0.48
C
0.35
0.44
D
4.40
4.60
D1
1.62
1.83
E
2.29
2.60
D1
H
E
L
B
e
e1
1.50 (TYP.)
e1
3.00 (TYP.)
H
3.94
4.25
L
0.89
1.20
SYMBOL
MIN
MAX
A
4.32
5.33
SOT-89 MARKING
Part No.
AIC431CX
TL431CX
TL431ACX
e
Marking
AC01B
AC02B
AC03B
TO-92 (unit: mm)
A
E
L
C
C
e1
D
0.38 (TYP.)
D
4.40
5.20
E
3.17
4.20
e1
L
1.27 (TYP.)
12.7
-
11
www.fairchildsemi.com
TL431/TL431A
Programmable Shunt Regulator
Features
Description
•
•
•
•
The TL431/TL431Aare three-terminal adjustable regulator
series with a guaranteed thermal stability over applicable
temperature ranges. The output voltage may be set to any
value between VREF (approximately 2.5 volts) and 36 volts
with two external resistors These devices have a typical
dynamic output impedance of 0.2W Active output circuitry
provides a very sharp turn-on characteristic, making these
devices excel lent replacement for zener diodes in many
applications.
Programmable Output Voltage to 36 Volts
Low Dynamic Output Impedance 0.20 Typical
Sink Current Capability of 1.0 to 100mA
Equivalent Full-Range Temperature Coefficient of
50ppm/°C Typical
• Temperature Compensated For Operation Over Full Rated
Operating Temperature Range
• Low Output Noise Voltage
• Fast Turn-on Response
TO-92
1
1. Ref 2. Anode 3. Cathode
8-DIP
1
1.Cathode 2.3.4.5.7.NC
6.Anode 8.Ref
8-SOP
1
1. Cathode 2. 3. 6. 7. Anode
8. Ref 4. 5. NC
Rev. 1.0.3
©2003 Fairchild Semiconductor Corporation
TL431/TL431A
Internal Block Diagram
Absolute Maximum Ratings
(Operating temperature range applies unless otherwise specified.)
Parameter
Symbol
Value
Unit
Cathode Voltage
VKA
37
V
Cathode Current Range (Continuous)
IKA
-100 ~ +150
mA
IREF
-0.05 ~ +10
mA
PD
770
1000
mW
mW
TOPR
-25 ~ +85
°C
TJ
150
°C
TSTG
-65 ~ +150
°C
Reference Input Current Range
Power Dissipation
D, LP Suffix Package
P Suffix Package
Operating Temperature Range
Junction Temperature
Storage Temperature Range
Recommended Operating Conditions
Parameter
2
Symbol
Min
Typ
Max
Unit
Cathode Voltage
VKA
VREF
-
36
V
Cathode Current
IKA
1.0
-
100
mA
TL431/TL431A
Electrical Characteristics
(TA = +25°C, unless otherwise specified)
Parameter
Reference Input Voltage
Symbol
Conditions
VREF
VKA=VREF, IKA=10mA
Deviation of Reference
Input Voltage OverTemperature (Note 1)
ΔVREF/
ΔT
VKA=VREF, IKA=10mA
TMIN≤TA≤TMAX
Ratio of Change in
Reference Input Voltage
ΔVREF/
ΔVKA
to the Change in
Cathode Voltage
Reference Input Current
Deviation of Reference
Input Current Over Full
Temperature Range
IREF
ΔIREF/ΔT
TL431
Min.
Typ.
TL431A
Max. Min. Typ. Max.
2.440 2.495 2.550 2.470 2.495 2.520
-
4.5
17
-
4.5
17
Unit
V
mV
ΔVKA=10VVREF
-
- 10
-2.7
-
-1.0
-2.7
ΔVKA=36V10V
-
-0.5
-2.0
-
-0.5
-2.0
IKA=10mA,
R1=10KΩ,R2=∞
-
1.5
4
-
1.5
4
μA
IKA=10mA,
R1=10KΩ,R2=∞
TA =Full Range
-
0.4
1.2
0.4
1.2
μA
IKA
=10mA
mV/V
-
Minimum Cathode Current for Regulation
IKA(MIN)
VKA=VREF
-
0.45
1.0
-
0.45
1.0
mA
Off - Stage Cathode
Current
IKA(OFF)
VKA=36V,
VREF=0
-
0.05
1.0
-
0.05
1.0
μA
Dynamic Impedance
(Note 2)
ZKA
VKA=VREF,
IKA=1 to 100mA
f ≥1.0KHz
-
0.15
0.5
-
0.15
0.5
Ω
• TMIN= -25 °C, TMAX= +85 °C
3
TL431/TL431A
Test Circuits
TL431/A
Figure 1. Test Circuit for VKA=VREF
TL431/A
Figure 3. Test Circuit for lKA(OFF)
4
TL431/A
Figure 2. Test Circuit for VKA≥VREF
TL431/TL431A
Typical Perfomance Characteristics
Figure 1. Cathode Current vs. Cathode Voltage
Figure 2. Cathode Current vs. Cathode Voltage
Figure 3. Change In Reference Input Voltage vs.
Cathode Voltage
Figure 4. Dynamic Impedance Frequency
Figure 5. Small Signal Voltage Amplification vs. Frequency
Figure 6. Pulse Response
5
TL431/TL431A
Typical Application
R
V O = V ref § 1 + ------1-·
©
R 2¹
R
V O = § 1 + ------1-· V ref
©
R ¹
2
R
V O = § 1 + ------1-· V ref
©
R ¹
2
MC7805/LM7805
TL431/A
TL431/A
TL431/A
Figure 10. Shunt Regulator
Figure 11. Output Control for ThreeTermianl Fixed Regulator
TL431/A
Figure 13. Current Limit or Current Source
6
Figure 12. High Current Shunt Regulator
TL431/A
Figure 14. Constant-Current Sink
TL431/TL431A
Mechanical Dimensions
Package
TO-92
+0.25
4.58 ±0.20
4.58 –0.15
14.47 ±0.40
0.46 ±0.10
1.27TYP
[1.27 ±0.20]
1.27TYP
[1.27 ±0.20]
+0.10
0.38 –0.05
(0.25)
+0.10
0.38 –0.05
1.02 ±0.10
3.86MAX
3.60 ±0.20
(R2.29)
7
TL431/TL431A
Mechanical Dimensions (Continued)
Package
1.524 ±0.10
#5
2.54
0.100
5.08
MAX
0.200
7.62
0.300
3.40 ±0.20
0.134 ±0.008
+0.10
0.25 –0.05
+0.004
0~15°
8
0.010 –0.002
3.30 ±0.30
0.130 ±0.012
0.33
0.013 MIN
0.060 ±0.004
#4
0.018 ±0.004
#8
9.60
MAX
0.378
#1
9.20 ±0.20
0.362 ±0.008
(
6.40 ±0.20
0.252 ±0.008
0.46 ±0.10
0.79
)
0.031
8-DIP
TL431/TL431A
Mechanical Dimensions (Continued)
Package
8-SOP
MIN
#5
1.80
MAX
0.071
5.72
0.225
°
3.95 ±0.20
0.156 ±0.008
0~
8
+0.10
0.15 -0.05
+0.004
0.006 -0.002
MAX0.10
MAX0.004
6.00 ±0.30
0.236 ±0.012
0.41 ±0.10
0.016 ±0.004
#4
1.27
0.050
#8
5.13
MAX
0.202
#1
4.92 ±0.20
0.194 ±0.008
(
0.56
)
0.022
1.55 ±0.20
0.061 ±0.008
0.1~0.25
0.004~0.001
0.50 ±0.20
0.020 ±0.008
9
TL431/TL431A
Ordering Information
Product Number
TL431ACLP
TL431ACD
Output Voltage Tolerance
1%
TL431CLP
TL431CP
Package
TO-92
8-SOP
TO-92
2%
TL431CD
Operating Temperature
-25 ~ + 85oC
8-DIP
8-SOP
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
8/4/03 0.0m 001
Stock#DSxxxxxxxx
© 2003 Fairchild Semiconductor Corporation
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
D Operation From −40°C to 125°C
D Reference Voltage Tolerance at 25°C
D
− 0.5% . . . B Grade
− 1% . . . A Grade
− 2% . . . Standard Grade
Typical Temperature Drift (TL431B)
− 6 mV (C Temp)
− 14 mV (I Temp, Q Temp)
TL431, TL431A, TL431B . . . D (SOIC) PACKAGE
(TOP VIEW)
CATHODE
ANODE
ANODE
NC
1
8
2
7
3
6
4
5
REF
ANODE
ANODE
NC
D
D
D
D
Low Output Noise
0.2-Ω Typical Output Impedance
Sink-Current Capability . . . 1 mA to 100 mA
Adjustable Output Voltage . . . Vref to 36 V
TL431, TL431A, TL431B . . . P (PDIP), PS (SOP),
OR PW (TSSOP) PACKAGE
(TOP VIEW)
CATHODE
NC
NC
NC
NC − No internal connection
1
8
2
7
3
6
4
5
NC − No internal connection
TL431, TL431A, TL431B . . . PK (SOT-89) PACKAGE
(TOP VIEW)
TL432, TL432A, TL432B . . . PK (SOT-89) PACKAGE
(TOP VIEW)
REF
ANODE
ANODE
CATHODE
ANODE
ANODE
REF
CATHODE
TL431, TL431A, TL431B . . . DBV (SOT-23-5) PACKAGE
(TOP VIEW)
NC
1
NC†
2
CATHODE
3
5
ANODE
4
REF
NC − No internal connection
† Pin 2 is connected internally to ANODE
(die substrate) and should be floating or
connected to ANODE.
TL431, TL431A, TL431B . . . DBZ (SOT-23-3) PACKAGE
(TOP VIEW)
CATHODE
1
3
REF
REF
NC
ANODE
NC
TL432, TL432A, TL432B . . . DBV (SOT-23-5) PACKAGE
(TOP VIEW)
NC
1
ANODE
2
NC
3
5
REF
4
CATHODE
NC − No internal connection
TL432, TL432A, TL432B . . . DBZ (SOT-23-3) PACKAGE
(TOP VIEW)
REF
1
CATHODE
2
ANODE
3
2
ANODE
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PowerFLEX is a trademark of Texas Instruments.
Copyright © 2005, Texas Instruments Incorporated
! "#$ ! %#&'" ($)
(#"! " !%$""! %$ *$ $! $+! !#$!
!(( ,-) (#" %"$!!. ($! $"$!!'- "'#($
$!. '' %$$!)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
TL431, TL431A, TL431B . . . LP (TO-92/TO-226) PACKAGE
(TOP VIEW)
TL431A, TL431B . . . DCK (SC-70) PACKAGE
(TOP VIEW)
CATHODE
CATHODE
NC
REF
ANODE
REF
1
6
2
5
3
4
ANODE
NC
NC
NC − No internal connection
TL431 . . . KTP (PowerFLEXE/TO-252) PACKAGE
(TOP VIEW)
ANODE
CATHODE
ANODE
REF
description/ordering information
The TL431 and TL432 are three-terminal adjustable shunt regulators, with specified thermal stability over
applicable automotive, commercial, and military temperature ranges. The output voltage can be set to any value
between Vref (approximately 2.5 V) and 36 V, with two external resistors (see Figure 17). These devices have
a typical output impedance of 0.2 Ω. Active output circuitry provides a very sharp turn-on characteristic, making
these devices excellent replacements for Zener diodes in many applications, such as onboard regulation,
adjustable power supplies, and switching power supplies. The TL432 has exactly the same functionality and
electrical specifications as the TL431, but has different pinouts for the DBV, DBZ, and PK packages.
Both the TL431 and TL432 devices are offered in three grades, with initial tolerances (at 25°C) of 0.5%, 1%,
and 2%, for the B, A, and standard grade, respectively. In addition, low output drift vs temperature ensures good
stability over the entire temperature range.
The TL43xxC devices are characterized for operation from 0°C to 70°C, the TL43xxI devices are characterized
for operation from −40°C to 85°C, and the TL43xxQ devices are characterized for operation from −40°C to
125°C.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
Vref TOLERANCE (25°C) = 2%
TL431, TL432 ORDERING INFORMATION
PDIP (P)
SOIC (D)
SOP (PS)
SOT 23 5 (DBV)
SOT-23-5
0°C
0
C to 70
70°C
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOT 23 3 (DBZ)
SOT-23-3
Tube of 50
TL431CP
Tube of 75
TL431CD
Reel of 2500
TL431CDR
Reel of 2000
TL431CPSR
Reel of 3000
TL431CDBVR
Reel of 250
TL431CDBVT
Reel of 3000
TL432CDBVR
Reel of 250
TL432CDBVT
Reel of 3000
TL431CDBZR
Reel of 250
TL431CDBZT
Reel of 3000
TL432CDBZR
Reel of 250
TL432CDBZT
TL431CPK
SOT 89 (PK)
SOT-89
Reel of 1000
TO-226/TO-92
TO
226/TO 92 (LP)
TSSOP (PW)
PDIP (P)
SOIC (D)
SOT 23 5 (DBV)
SOT-23-5
−40°C to 85°C
SOT 23 3 (DBZ)
SOT-23-3
TL432CPK
Bulk of 1000
TL431CLP
Ammo of 2000
TL431CLPM
Reel of 2000
TL431CLPR
Tube of 150
TL431CPW
Reel of 2000
TL431CPWR
Tube of 50
TL431IP
Tube of 75
TL431ID
Reel of 2500
TL431IDR
Reel of 3000
TL431IDBVR
Reel of 250
TL431IDBVT
Reel of 3000
TL432IDBVR
Reel of 250
TL432IDBVT
Reel of 3000
TL431IDBZR
Reel of 250
TL431IDBZT
Reel of 3000
TL432IDBZR
Reel of 250
TL432IDBZT
TL431IPK
SOT 89 (PK)
SOT-89
Reel of 1000
TO 226/TO 92 (LP)
TO-226/TO-92
TL432IPK
Bulk of 1000
TL431ILP
Reel of 2000
TL431ILPR
TOP-SIDE
MARKING‡
TL431CP
TL431C
T431
T3C
T3C_
T4C
T4C_
T3C
T3C_
T4C
T4C_
43
PREVIEW
PREVIEW
TL431C
T431
TL431IP
TL431I
T3I
T3I_
T4I
T4I_
T3I
T3I_
T4I
T4I_
3I
PREVIEW
PREVIEW
TL431I
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
Vref TOLERANCE (25°C) = 2%
TL431, TL432 ORDERING INFORMATION
SOT 23 5 (DBV)
SOT-23-5
−40°C
40°C tto 125°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOT 23 3 (DBZ)
SOT-23-3
Reel of 3000
TL431QDBVR
Reel of 250
TL431QDBVT
Reel of 3000
TL432QDBVR
Reel of 250
TL432QDBVT
Reel of 3000
TL431QDBZR
Reel of 250
TL431QDBZT
Reel of 3000
TL432QDBZR
Reel of 250
TL432QDBZT
TOP-SIDE
MARKING‡
T3Q
T3Q_
T4Q
T4Q_
T3Q
T3Q_
T4Q
T4Q_
TL431QPK
SOT 89 (PK)
SOT-89
SC 70 (DCK)
SC-70
Reel of 1000
TL432QPK
Reel of 1000
TL431QDCKR
Reel of 250
TL431QDCKT
PREVIEW
PREVIEW
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
Vref TOLERANCE (25°C) = 1%
TL431A, TL432A ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
PDIP (P)
SC 70 (DCK)
SC-70
SOIC (D)
SOP (PS)
SOT 23 5 (DBV)
SOT-23-5
0°C to 70°C
SOT 23 3 (DBZ)
SOT-23-3
SOT 89 (PK)
SOT-89
Tube of 50
TL431ACP
Reel of 3000
TL431ACDCKR
Reel of 250
TL431ACDCKT
Tube of 75
TL431ACD
Reel of 2500
TL431ACDR
Reel of 2000
TL431ACPSR
Reel of 3000
TL431ACDBVR
Reel of 250
TL431ACDBVT
Reel of 3000
TL432ACDBVR
Reel of 250
TL432ACDBVT
Reel of 3000
TL431ACDBZR
Reel of 250
TL431ACDBZT
Reel of 3000
TL432ACDBZR
Reel of 250
TL432ACDBZT
Reel of 1000
TO 226/TO 92 (LP)
TO-226/TO-92
TSSOP (PW)
TOP-SIDE
MARKING‡
TL431ACP
PREVIEW
431AC
T431A
TAC
TAC_
T4B
T4B_
TAC
TAC_
T4B
T4B_
TL431ACPK
4A
TL432ACPK
PREVIEW
Bulk of 1000
TL431ACLP
Ammo of 2000
TL431ACLPM
Reel of 2000
TL431ACLPR
Reel of 2000
TL431ACLPRE3
Tube of 150
TL431ACPW
Reel of 2000
TL431ACPWR
TL431AC
T431A
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
Vref TOLERANCE (25°C) = 1%
TL431A, TL432A ORDERING INFORMATION
PDIP (P)
SC 70 (DCK)
SC-70
SOIC (D)
SOT 23 5 (DBV)
SOT-23-5
−40°C
40°C to 85°C
SOT 23 3 (DBZ)
SOT-23-3
SOT 89 (PK)
SOT-89
TO-226/TO-92 ((LP))
SOT 23 5 (DBV)
SOT-23-5
40°C to
t 125°C
−40°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOT 23 3 (DBZ)
SOT-23-3
Tube of 50
TL431AIP
Reel of 3000
TL431AIDCKR
Reel of 250
TL431AIDCKT
Tube of 75
TL431AID
Reel of 2500
TL431AIDR
Reel of 3000
TL431AIDBVR
Reel of 250
TL431AIDBVT
Reel of 3000
TL432AIDBVR
Reel of 250
TL432AIDBVT
Reel of 3000
TL431AIDBZR
Reel of 250
TL431AIDBZT
Reel of 3000
TL432AIDBZR
Reel of 250
TL432AIDBZT
R l off 1000
Reel
TOP-SIDE
MARKING‡
TL431AIP
PREVIEW
431AI
TAI
TAI_
T4A
T4A_
TAI
TAI_
T4A
T4A_
TL431AIPK
4B
TL432AIPK
PREVIEW
Bulk of 1000
TL431AILP
Ammo of 2000
TL431AILPM
Reel of 2000
TL431AILPR
Reel of 3000
TL431AQDBVR
Reel of 250
TL431AQDBVT
Reel of 3000
TL432AQDBVR
Reel of 250
TL432AQDBVT
Reel of 3000
TL431AQDBZR
Reel of 250
TL431AQDBZT
Reel of 3000
TL432AQDBZR
Reel of 250
TL432AQDBZT
TL431AI
TAQ
TAQ_
T4D
T4D_
TAQ
TAQ_
T4D
T4D_
TL431AQPK
SOT 89 (PK)
SOT-89
SC 70 (PK)
SC-70
Reel of 1000
TL432AQPK
Reel of 1000
TL431AQDCKR
Reel of 250
TL432AQDCKT
PREVIEW
PREVIEW
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
Vref TOLERANCE (25°C) = 0.5%
TL431B, TL432B ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
PDIP (P)
SC 70 (DCK)
SC-70
SOIC (D)
SOP (PS)
SOT 23 5 (DBV)
SOT-23-5
0°C
0
C to 70
70°C
C
SOT 23 3 (DBZ)
SOT-23-3
Tube of 50
TL431BCP
Reel of 3000
TL431BCDCKR
Reel of 250
TL431BCDCKT
Tube of 75
TL431BCD
Reel of 2500
TL431BCDR
Reel of 2000
TL431BCPSR
Reel of 3000
TL431BCDBVR
Reel of 250
TL431BCDBVT
Reel of 3000
TL432BCDBVR
Reel of 250
TL432BCDBVT
Reel of 3000
TL431BCDBZR
Reel of 250
TL431BCDBZT
Reel of 3000
TL432BCDBZR
Reel of 250
TL432BCDBZT
TL431BCPK
SOT 89 (PK)
SOT-89
Reel of 1000
TO-226/TO-92
TO
226/TO 92 (LP)
TSSOP (PW)
PDIP (P)
SC 70 (DCK)
SC-70
SOIC (D)
SOT 23 5 (DBV)
SOT-23-5
−40°C to 85°C
SOT 23 3 (DBZ)
SOT-23-3
TL432BCPK
Bulk of 1000
TL431BCLP
Ammo of 2000
TL431BCLPM
Reel of 2000
TL431BCLPR
Tube of 150
TL431BCPW
Reel of 2000
TL431BCPWR
Tube of 50
TL431BIP
Reel of 3000
TL431BIDCKR
Reel of 250
TL431BIDCKT
Tube of 75
TL431BID
Reel of 2500
TL431BIDR
Reel of 3000
TL431BIDBVR
Reel of 250
TL431BIDBVT
Reel of 3000
TL432BIDBVR
Reel of 250
TL432BIDBVT
Reel of 3000
TL431BIDBZR
Reel of 250
TL431BIDBZT
Reel of 3000
TL432BIDBZR
Reel of 250
TL432IBDBZT
TL431BIPK
SOT 89 (PK)
SOT-89
Reel of 1000
TO 226/TO 92 (LP)
TO-226/TO-92
TL432BIPK
Bulk of 1000
TL431BILP
Reel of 2000
TL431BILPR
TOP-SIDE
MARKING‡
TL431BCP
PREVIEW
T431B
TL431B
T3G
T3G_
TBC
TBC_
T3G
T3G_
TBC
TBC_
PREVIEW
PREVIEW
TL431B
T431B
TL431BIP
PREVIEW
Z431B
T3F
T3F_
T4F
T4F_
T3F
T3F_
T4F
T4F_
PREVIEW
PREVIEW
Z431B
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
Vref TOLERANCE (25°C) = 0.5%
TL431B, TL432B ORDERING INFORMATION (CONTINUED)
SOIC (D)
SOT 23 5 (DBV)
SOT-23-5
−40°C
40 C to 125
125°C
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOT 23 3 (DBZ)
SOT-23-3
Tube of 75
TL431BQD
Reel of 2500
TL431BQDR
Reel of 3000
TL431BQDBVR
Reel of 250
TL431BQDBVT
Reel of 3000
TL432BQDBVR
Reel of 250
TL432BQDBVT
Reel of 3000
TL431BQDBZR
Reel of 250
TL431BQDBZT
Reel of 3000
TL432BQDBZR
Reel of 250
TL432BQDBZT
TL431BQPK
SOT 89 (PK)
SOT-89
Reel of 1000
TO-226/TO-92 ((LP))
SC 70 (DCK)
SC-70
TL432BQPK
Bulk of 1000
TL431BQLP
Ammo of 2000
TL431BQLPM
Reel of 2000
TL431BQLPR
Reel of 1000
TL431BQDCKR
Reel of 250
TL431BQDCKT
TOP-SIDE
MARKING‡
T431BQ
T3H
T3H_
T4H
T4H_
T3H
T3H_
T4H
T4H_
PREVIEW
PREVIEW
T431BQ
Q
PREVIEW
PREVIEW
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site.
symbol
REF
ANODE
CATHODE
functional block diagram
CATHODE
+
REF
_
Vref
ANODE
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
equivalent schematic†
CATHODE
800 Ω
800 Ω
20 pF
REF
150 Ω
3.28 kΩ
2.4 kΩ
4 kΩ
10 kΩ
20 pF
7.2 kΩ
1 kΩ
800 Ω
ANODE
† All component values are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡
Cathode voltage, VKA (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 V
Continuous cathode current range, IKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −100 mA to 150 mA
Reference input current range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 μA to 10 mA
Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: Voltage values are with respect to the ANODE terminal, unless otherwise noted.
package thermal data (see Note 2)
PDIP (P)
High K, JESD 51-7
θJC
57°C/W
SC-70 (DCK)
High K, JESD 51-7
259°C/W
87°C/W
SOIC (D)
High K, JESD 51-7
39°C/W
97°C/W
SOP (PS)
High K, JESD 51-7
46°C/W
95°C/W
SOT-89 (PK)
High K, JESD 51-7
9°C/W
52°C/W
SOT-23-5 (DBV)
High K, JESD 51-7
131°C/W
206°C/W
SOT-23-3 (DBZ)
High K, JESD 51-7
76°C/W
206°C/W
TO-92 (LP)
High K, JESD 51-7
55°C/W
140°C/W
TSSOP (PW)
High K, JESD 51-7
65°C/W
149°C/W
PACKAGE
BOARD
θJA
85°C/W
NOTE 2: Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
recommended operating conditions
VKA
IKA
Cathode voltage
Cathode current
TL43xxC
TA
10
Operating
p
g free-air temperature
p
range
g
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIN
MAX
Vref
1
36
V
100
mA
0
70
TL43xxI
−40
85
TL43xxQ
−40
125
UNIT
°C
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TEST
CIRCUIT
PARAMETER
TL431C
TL432C
TEST CONDITIONS
IKA = 10 mA
SOT23-3 and TL432
devices
UNIT
MIN
TYP
MAX
2440
2495
2550
6
16
4
25
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref,
IKA = 10 mA,
TA = 0°C to 70°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = 0°C to 70°C
0.4
1.2
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
1
mA
Ioff
Off-state cathode current
4
0.1
1
μA
|zKA|
Dynamic impedance (see Figure 1)
1
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
All other devices
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
mV
mV
The deviation parameters Vref(dev) and Iref(dev) are defined as the differences between the maximum and minimum
values obtained over the recommended temperature range. The average full-range temperature coefficient of the
reference voltage, αVref, is defined as:
Ťa Ť ǒppmǓ +
V
ref
ǒ
V
I(dev)
V at 25°C
ref
Maximum Vref
Ǔ
10
6
VI(dev)
Minimum Vref
DT A
°C
ΔTA
where:
ΔTA is the recommended operating free-air temperature range of the device.
a can be positive or negative, depending on whether minimum Vref or maximum Vref, respectively, occurs at the
lower temperature.
Example: maximum Vref = 2496 mV at 30°C, minimum Vref = 2492 mV at 0°C, Vref = 2495 mV at 25°C,
ΔTA = 70°C for TL431C
Ťa Ť + ǒ
V
ref
4 mV
2495 mV
Ǔ
10 6
70°C
[
23 ppm
°C
Because minimum Vref occurs at the lower temperature, the coefficient is positive.
Calculating Dynamic Impedance
The dynamic impedance is defined as:
|z KA| +
DV KA
DI KA
When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit
is given by:
|zȀ| + DV [ |z KA| 1 ) R1
R2
DI
ǒ
Ǔ
Figure 1. Calculating Deviation Parameters and Dynamic Impedance
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TEST
CIRCUIT
PARAMETER
Vref
Reference voltage
TL431I
TL432I
TEST CONDITIONS
IKA = 10 mA
SOT23-3 and TL432
devices
UNIT
MIN
TYP
MAX
2440
2495
2550
14
34
5
50
−1.4
−2.7
−1
−2
mV
V
2
VKA = Vref,
Deviation of reference voltage
VI(dev) over full temperature range
(see Figure 1)
2
VKA = Vref,
IKA = 10 mA,
TA = −40°C to 85°C All other devices
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 85°C
0.8
2.5
μA
Imin
Minimum cathode current for
regulation
2
VKA = Vref
0.4
1
mA
Ioff
Off-state cathode current
4
0.1
1
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
mV
mV
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TEST
CIRCUIT
PARAMETER
TL431Q
TL432Q
TEST CONDITIONS
TYP
MAX
2440
2495
2550
mV
14
34
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = −40°C to 125°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 125°C
0.8
2.5
μA
Imin
Minimum cathode current for
regulation
2
VKA = Vref
0.4
1
mA
Ioff
Off-state cathode current
4
0.1
1
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
12
POST OFFICE BOX 655303
IKA = 10 mA
UNIT
MIN
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
• DALLAS, TEXAS 75265
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
PARAMETER
TEST
CIRCUIT
TL431AC
TL432AC
TEST CONDITIONS
IKA = 10 mA
SOT23-3, SC-70,
and TL432 devices
UNIT
MIN
TYP
MAX
2470
2495
2520
6
16
4
25
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref,
IKA = 10 mA,
TA = 0°C to 70°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = 0°C to 70°C
0.8
1.2
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.6
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
1
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
All other devices
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
mV
mV
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
PARAMETER
TEST
CIRCUIT
TL431AI
TL432AI
TEST CONDITIONS
TYP
MAX
2470
2495
2520
14
34
5
50
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref,
IKA = 10 mA,
TA = −40°C to 85°C All other packages
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 85°C
0.8
2.5
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.7
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
POST OFFICE BOX 655303
IKA = 10 mA
SOT23-3, SC-70,
and TL432 devices
UNIT
MIN
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
• DALLAS, TEXAS 75265
mV
mV
13
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TEST
CIRCUIT
PARAMETER
TL431AQ
TL432AQ
TEST CONDITIONS
IKA = 10 mA
UNIT
MIN
TYP
MAX
2470
2495
2520
mV
14
34
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = −40°C to 125°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 125°C
0.8
2.5
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.7
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
TEST
CIRCUIT
PARAMETER
TL431BC
TL432BC
TEST CONDITIONS
TYP
MAX
2483
2495
2507
mV
6
16
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = 0°C to 70°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = 0°C to 70°C
0.8
1.2
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.6
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
1
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
14
POST OFFICE BOX 655303
IKA = 10 mA
UNIT
MIN
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
• DALLAS, TEXAS 75265
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
PARAMETER
TEST
CIRCUIT
TL431BI
TL432BI
TEST CONDITIONS
IKA = 10 mA
UNIT
MIN
TYP
MAX
2483
2495
2507
mV
14
34
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = −40°C to 85°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 85°C
0.8
2.5
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.7
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
2
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise
noted)
PARAMETER
TEST
CIRCUIT
TL431BQ
TL432BQ
TEST CONDITIONS
TYP
MAX
2483
2495
2507
mV
14
34
mV
−1.4
−2.7
−1
−2
mV
V
Vref
Reference voltage
2
VKA = Vref,
VI(dev)
Deviation of reference voltage
over full temperature range
(see Figure 1)
2
VKA = Vref, IKA = 10 mA,
TA = −40°C to 125°C
DV ref
DV KA
Ratio of change in reference voltage
to the change in cathode voltage
3
IKA = 10 mA
Iref
Reference current
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞
2
4
μA
II(dev)
Deviation of reference current
over full temperature range
(see Figure 1)
3
IKA = 10 mA, R1 = 10 kΩ, R2 = ∞,
TA = −40°C to 125°C
0.8
2.5
μA
Imin
Minimum cathode current
for regulation
2
VKA = Vref
0.4
0.7
mA
Ioff
Off-state cathode current
4
0.1
0.5
μA
|zKA|
Dynamic impedance (see Figure 1)
1
VKA = 36 V,
Vref = 0
IKA = 1 mA to 100 mA, VKA = Vref,
f ≤ 1 kHz
0.2
0.5
Ω
POST OFFICE BOX 655303
IKA = 10 mA
UNIT
MIN
ΔVKA = 10 V − Vref
ΔVKA = 36 V − 10 V
• DALLAS, TEXAS 75265
15
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
PARAMETER MEASUREMENT INFORMATION
Input
VKA
IKA
Vref
Figure 2. Test Circuit for VKA = Vref
VKA
Input
IKA
R1
Iref
R2
Vref
ǒ
Figure 3. Test Circuit for VKA > Vref
Input
VKA
Ioff
Figure 4. Test Circuit for Ioff
16
POST OFFICE BOX 655303
Ǔ
V KA + V ref 1 ) R1 ) I ref
R2
• DALLAS, TEXAS 75265
R1
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
Table 1. Graphs
FIGURE
Reference voltage vs Free-air temperature
5
Reference current vs Free-air temperature
6
Cathode current vs Cathode voltage
7, 8
OFF-state cathode current vs Free-air temperature
9
Ratio of delta reference voltage to delta cathode voltage vs Free-air temperature
10
Equivalent input noise voltage vs Frequency
11
Equivalent input noise voltage over a 10-s period
12
Small-signal voltage amplification vs Frequency
13
Reference impedance vs Frequency
14
Pulse response
15
Stability boundary conditions
16
Table 2. Application Circuits
FIGURE
Shunt regulator
17
Single-supply comparator with temperature-compensated threshold
18
Precision high-current series regulator
19
Output control of a three-terminal fixed regulator
20
High-current shunt regulator
21
Crowbar circuit
22
Precision 5-V 1.5-A regulator
23
Efficient 5-V precision regulator
24
PWM converter with reference
25
Voltage monitor
26
Delay timer
27
Precision current limiter
28
Precision constant-current sink
29
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS†
REFERENCE CURRENT
vs
FREE-AIR TEMPERATURE
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
2600
R1 = 10 kΩ
R2 = ∞
IKA = 10 mA
Vref = 2550 mV‡
2560
I ref − Reference Current − μ A
V ref − Reference Voltage − mV
2580
5
VKA = Vref
IKA = 10 mA
2540
2520
Vref = 2495 mV‡
2500
2480
2460
Vref = 2440 mV‡
2440
4
3
2
1
2420
2400
−75
−50
−25
0
25
50
75
100
0
−75
125
−50
−25
‡ Data is for devices having the indicated value of Vref at IKA = 10 mA,
TA = 25°C.
Figure 5
50
75
100
125
CATHODE CURRENT
vs
CATHODE VOLTAGE
150
800
VKA = Vref
TA = 25°C
VKA = Vref
TA = 25°C
100
600
I KA − Cathode Current − μ A
I KA − Cathode Current − mA
25
Figure 6
CATHODE CURRENT
vs
CATHODE VOLTAGE
125
0
TA − Free-Air Temperature − °C
TA − Free-Air Temperature − °C
75
50
25
0
−25
−50
Imin
400
200
0
−75
−100
−2
−1
0
2
1
3
−200
−1
VKA − Cathode Voltage − V
0
1
2
3
VKA − Cathode Voltage − V
Figure 8
Figure 7
† Data at high and low temperatures is applicable only within the recommended operating free-air temperature ranges of the various devices.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS†
RATIO OF DELTA REFERENCE VOLTAGE TO
DELTA CATHODE VOLTAGE
vs
FREE-AIR TEMPERATURE
OFF-STATE CATHODE CURRENT
vs
FREE-AIR TEMPERATURE
− 0.85
2.5
VKA = 3 V to 36 V
− 0.95
2
ΔV ref / ΔV KA − mV/V
I off − Off-State Cathode Current − μ A
VKA = 36 V
Vref = 0
1.5
1
0.5
0
−75
−1.05
−1.15
−1.25
−1.35
−50
−25
0
25
50
75
100
−1.45
−75
125
−50
TA − Free-Air Temperature − °C
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
Figure 10
Figure 9
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
Vn − Equivalent Input Noise Voltage − nV/ Hz
260
IO = 10 mA
TA = 25°C
240
220
200
180
160
140
120
100
10
100
1k
10 k
100 k
f − Frequency − Hz
Figure 11
† Data at high and low temperatures is applicable only within the recommended operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
OVER A 10-S PERIOD
V n − Equivalent Input Noise Voltage − μV
6
5
4
3
2
1
0
−1
−2
−3
f = 0.1 to 10 Hz
IKA = 10 mA
TA = 25°C
−4
−5
−6
0
1
2
3
4
5
6
7
8
9
10
t − Time − s
19.1 V
1 kΩ
500 μF
910 Ω
2000 μF
VCC
TL431
(DUT)
820 Ω
+
VCC
1 μF
TLE2027
AV = 10 V/mV
+
−
16 Ω
16 kΩ
16 kΩ
160 kΩ
1 μF
TLE2027
−
33 kΩ
AV = 2 V/V
0.1 μF
33 kΩ
VEE
VEE
Figure 12. Test Circuit for Equivalent Input Noise Voltage
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
22 μF
To
Oscilloscope
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
SMALL-SIGNAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
IKA = 10 mA
TA = 25°C
A V − Small-Signal Voltage Amplification − dB
60
IKA = 10 mA
TA = 25°C
50
Output
15 kΩ
IKA
232 Ω
40
9 μF
+
30
−
8.25 kΩ
20
GND
TEST CIRCUIT FOR VOLTAGE AMPLIFICATION
10
0
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 13
REFERENCE IMPEDANCE
vs
FREQUENCY
|z KA| − Reference Impedance − Ω
100
IKA = 10 mA
TA = 25°C
1 kΩ
Output
10
IKA
50 Ω
−
+
GND
1
TEST CIRCUIT FOR REFERENCE IMPEDANCE
0.1
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
PULSE RESPONSE
6
TA = 25°C
Input
Input and Output Voltage − V
5
220 Ω
4
Pulse
Generator
f = 100 kHz
3
GND
2
0
−1
50 Ω
Output
TEST CIRCUIT FOR PULSE RESPONSE
1
0
1
2
3
4
5
6
7
t − Time − μs
Figure 15
22
Output
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
TYPICAL CHARACTERISTICS
STABILITY BOUNDARY CONDITIONS†
FOR ALL TL431 AND TL431A DEVICES
(EXCEPT FOR SOT23-3, SC-70, AND Q-TEMP DEVICES)
100
90
I KA − Cathode Current − mA
80
A VKA = Vref
B VKA = 5 V
C VKA = 10 V
D VKA = 15 Vf
150 Ω
IKA
+
TA = 25°C
VBATT
CL
−
B
70
Stable
60
C
Stable
TEST CIRCUIT FOR CURVE A
50
A
40
IKA
150 Ω
R1 = 10 kΩ
30
D
20
CL
+
10
R2
0
0.001
VBATT
−
0.01
0.1
1
10
CL − Load Capacitance − μF
TEST CIRCUIT FOR CURVES B, C, AND D
STABILITY BOUNDARY CONDITIONS†
FOR ALL TL431B, TL432, SOT-23, SC-70, AND Q-TEMP DEVICES
100
90
I KA − Cathode Current − mA
80
150 Ω
A VKA = Vref
B VKA = 5 V
C VKA = 10 V
D VKA = 15 Vf
IKA
+
B
70
VBATT
CL
−
TA = 25°C
60
C
Stable
Stable
50
A
TEST CIRCUIT FOR CURVE A
40
A
30
D
IKA
20
150 Ω
R1 = 10 kΩ
B
10
0
0.001
CL
+
0.01
0.1
1
10
R2
CL − Load Capacitance − μF
−
† The areas under the curves represent conditions that may cause the
device to oscillate. For curves B, C, and D, R2 and V+ were adjusted
to establish the initial VKA and IKA conditions with CL = 0. VBATT and
CL then were adjusted to determine the ranges of stability.
VBATT
TEST CIRCUIT FOR CURVES B, C, AND D
Figure 16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
APPLICATION INFORMATION
R
(see Note A)
VI(BATT)
VO
R1
0.1%
Vref
TL431
V
O
ǒ
Ǔ
+ 1 ) R1 V ref
R2
R2
0.1%
RETURN
NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum VI(BATT).
Figure 17. Shunt Regulator
VI(BATT)
VO
TL431
Von ≈2 V
Voff ≈VI(BATT)
Input
VIT ≈ 2.5 V
GND
Figure 18. Single-Supply Comparator With Temperature-Compensated Threshold
VI(BATT)
R
(see Note A)
2N222
2N222
30 Ω
V
0.01 μF
4.7 kΩ
TL431
O
ǒ
VO
R2
0.1%
R1
0.1%
NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum VI(BATT).
Figure 19. Precision High-Current Series Regulator
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
Ǔ
+ 1 ) R1 V ref
R2
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
APPLICATION INFORMATION
VI(BATT)
IN
OUT
uA7805
Common
VO
R1
TL431
V
O
ǒ
Ǔ
+ 1 ) R1 V ref
R2
Minimum V
O
+ V ref ) 5 V
R2
Figure 20. Output Control of a Three-Terminal Fixed Regulator
VI(BATT)
VO
R1
V
O
ǒ
Ǔ
+ 1 ) R1 V ref
R2
TL431
R2
Figure 21. High-Current Shunt Regulator
VI(BATT)
VO
R1
TL431
R2
C
(see Note A)
NOTE A: Refer to the stability boundary conditions in Figure 16 to determine allowable values for C.
Figure 22. Crowbar Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
APPLICATION INFORMATION
IN
VI(BATT)
LM317
8.2 kΩ
OUT
Adjust
VO ≈5 V, 1.5 A
243 Ω
0.1%
TL431
243 Ω
0.1%
Figure 23. Precision 5-V 1.5-A Regulator
VO ≈5 V
VI(BATT)
Rb
(see Note A)
27.4 kΩ
0.1%
TL431
27.4 kΩ
0.1%
NOTE A: Rb should provide cathode current ≥1 mA to the TL431.
Figure 24. Efficient 5-V Precision Regulator
12 V
VCC
6.8 kΩ
5V
10 kΩ
10 kΩ
0.1%
TL431
10 kΩ
0.1%
−
+
X
Not
Used
TL598
Feedback
Figure 25. PWM Converter With Reference
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
APPLICATION INFORMATION
R3
(see Note A)
VI(BATT)
R4
(see Note A)
R1B
R1A
ǒ
ǒ
TL431
R2A
Ǔ
Ǔ
Low Limit + 1 ) R1B V ref
R2B
High Limit + 1 ) R1A V ref
R2A
LED on When Low Limit < VI(BATT) < High Limit
R2B
NOTE A: R3 and R4 are selected to provide the desired LED intensity and cathode current ≥1 mA to the TL431 at the available VI(BATT).
Figure 26. Voltage Monitor
650 Ω
12 V
2 kΩ
R
TL431
Delay + R
C
In
ǒ12 V12*VV Ǔ
ref
Off
C
On
Figure 27. Delay Timer
RCL
0.1%
VI(BATT)
IO
I out +
R1
TL431
R1 +
V ref
) I KA
R CL
V I(BATT)
I
O
h FE
) I KA
Figure 28. Precision Current Limiter
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
SLVS543H − AUGUST 2004 − REVISED JANUARY 2005
APPLICATION INFORMATION
VI(BATT)
IO
I
TL431
O
+
V ref
RS
RS
0.1%
Figure 29. Precision Constant-Current Sink
28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
B
A
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS108 – AUGUST 2001
DBZ (R-PDSO-G3)
PLASTIC SMALL-OUTLINE
3,04
2,80
2,05
1,78
0,60
0,45
1,03
0,89
1,40
1,20
2,64
2,10
0,51
0,37
1,12
0,89
0,100
0,013
0,55 REF
0,180
0,085
4203227/A 08/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Dimensions are inclusive of plating.
Dimensions are exclusive of mold flash and metal burr.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPSF001F – JANUARY 1996 – REVISED JANUARY 2002
KTP (R-PSFM-G2)
PowerFLEX™ PLASTIC FLANGE-MOUNT PACKAGE
0.080 (2,03)
0.070 (1,78)
0.243 (6,17)
0.233 (5,91)
0.228 (5,79)
0.218 (5,54)
0.050 (1,27)
0.040 (1,02)
0.130 (3,30) NOM
0.215 (5,46)
NOM
0.247 (6,27)
0.237 (6,02)
0.010 (0,25) NOM
Thermal Tab
(See Note C)
0.287 (7,29)
0.277 (7,03)
0.381 (9,68)
0.371 (9,42)
0.100 (2,54)
0.090 (2,29)
0.032 (0,81) MAX
Seating Plane
0.090 (2,29)
0.180 (4,57)
0.004 (0,10)
0.005 (0,13)
0.001 (0,02)
0.031 (0,79)
0.025 (0,63)
0.010 (0,25) M
0.010 (0,25) NOM
Gage Plane
0.047 (1,19)
0.037 (0,94)
0.010 (0,25)
2°–ā6°
4073388/M 01/02
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
The center lead is in electrical contact with the thermal tab.
Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).
Falls within JEDEC TO-252 variation AC.
PowerFLEX is a trademark of Texas Instruments.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
MECHANICAL DATA
MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001
LP (O-PBCY-W3)
PLASTIC CYLINDRICAL PACKAGE
0.205 (5,21)
0.175 (4,44)
0.165 (4,19)
0.125 (3,17)
DIA
0.210 (5,34)
0.170 (4,32)
Seating
Plane
0.157 (4,00) MAX
0.050 (1,27)
C
0.500 (12,70) MIN
0.104 (2,65)
FORMED LEAD OPTION
0.022 (0,56)
0.016 (0,41)
0.016 (0,41)
0.014 (0,35)
STRAIGHT LEAD OPTION
D
0.135 (3,43) MIN
0.105 (2,67)
0.095 (2,41)
0.055 (1,40)
0.045 (1,14)
1
2
3
0.105 (2,67)
0.080 (2,03)
0.105 (2,67)
0.080 (2,03)
4040001-2 /C 10/01
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Lead dimensions are not controlled within this area
D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)
E. Shipping Method:
Straight lead option available in bulk pack only.
Formed lead option available in tape & reel or ammo pack.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
MECHANICAL DATA
MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001
LP (O-PBCY-W3)
PLASTIC CYLINDRICAL PACKAGE
0.539 (13,70)
0.460 (11,70)
1.260 (32,00)
0.905 (23,00)
0.650 (16,50)
0.610 (15,50)
0.020 (0,50) MIN
0.098 (2,50)
0.384 (9,75)
0.335 (8,50)
0.748 (19,00)
0.217 (5,50)
0.433 (11,00)
0.335 (8,50)
0.748 (19,00)
0.689 (17,50)
0.114 (2,90)
0.094 (2,40)
0.114 (2,90)
0.094 (2,40)
0.169 (4,30)
0.146 (3,70)
DIA
0.266 (6,75)
0.234 (5,95)
0.512 (13,00)
0.488 (12,40)
TAPE & REEL
4040001-3 /C 10/01
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Tape and Reel information for the Format Lead Option package.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2005, Texas Instruments Incorporated
TL431
PROGRAMMABLE VOLTAGE REFERENCE
■ ADJUSTABLE OUTPUT VOLTAGE :
2.5 to 36V
■ SINK CURRENT CAPABILITY : 1 to 100mA
■ TYPICAL OUTPUT IMPEDANCE : 0.22Ω
■ 1% AND 2% VOLTAGE PRECISION
DESCRIPTION
Z
TO92
(Plastic Package)
The TL431 is a programmable shunt voltage
reference with guaranteed temperature stability
over the entire temperature range of operation.
The output voltage may be set to any value
between 2.5V and 36V with two external resistors.
The TL431 operates with a wide current range
from 1 to 100mA with a typical dynamic
impedance of 0.22Ω.
ORDER CODE
D
SO8
(Batwing Plastic Micropackage)
Package
Part
Number
Temperature
Range
Z
D
TL431C/AC
TL431I/AI
0°C, +70°C
-40°C, +105°C
•
•
•
•
Z = TO92 Plastic package - also available in Bulk (Z), Tape & Reel (ZT)
and Ammo Pack (AP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
PIN CONNECTIONS (top view)
SO8
(Top view)
TO92
(Top view)
Cathode Anode Reference
1
2
8
6
5
1- Cathode
2- Anode
3- Anode.
4- N.C.
5- N.C.
6- Anode
7- Anode.
8- Reference
1
March 2002
7
3
2
3
4
1/10
TL431
ABSOLUTE MAXIMUM RATINGS
Symbol
VKA
Ik
Iref
pd
Tstg
Parameter
Cathode to Anode Voltage
Continuous Cathode Current Range
Reference Input Current Range
Power Dissipation 1)
TO92
SO8 batwing
Storage Temperature Range
Value
Unit
37
-100 to +150
-0.05 to +10
625
960
-65 to +150
V
mA
mA
mW
°C
1. Pd is calculated with T amb = +25°C, T j = +150°C and Rthja = 200°C/W for TO92 package
= 130°C/W for SO8 batwing package
OPERATING CONDITIONS
Symbol
VKA
Ik
Toper
Parameter
Cathode to Anode Voltage
Cathode Current
Operating Free-air Temperature Range TL431C/AC
TL431I/AI
Value
Unit
Vref to 36
1 to 100
0 to +70
-40 to +105
V
mA
°C
ELECTRICAL CHARACTERISTICS
Tamb = 25°C (unless otherwise specified)
Symbol
Vref
ΔVref
ΔVref
-----------ΔVka
Iref
ΔIref
Imin
Ioff
⏐ZKA⏐
TL431C
Parameter
Reference Input Voltage
Tamb = 25°C
VKA = Vref , Ik = 10 mA
Tmin ≤ Tamb ≤ Tmax
Reference Input Voltage Deviation OverTemperature Range - note 1
VKA = Vref , Ik = 10 mA,Tmin ≤Tamb ≤ Tmax
Ratio of Change in Reference Input
Voltage to Change in Cathode to Anode
Voltage - (figure 2)
Ik = 10mA
ΔVKA = 10V to Vref
ΔVKA = 36V to 10V
Reference Input Current
Ik = 10mA, R1 = 10kΩ, R2 = ∞
Tamb = 25°C
Tmin ≤Tamb ≤Tmax
Reference Input Current Deviation
Over Temperature Range
Ik = 10mA, R1 = 10kΩ, R2 =∞
Tmin ≤Tamb ≤ Tmax
Minimum Cathode Current for Regulation
VKA = Vref
Off-State Cathode Current
Dynamic Impedance - note 2
VKA = Vref ,Δ Ik = 1 to100mA, f ≤1kHZ
TL431AC
Typ.
Max.
Min.
Typ.
Max.
2.44
2.423
2.495
2.55
2.567
2.47
2.453
2.495
2.52
2.537
V
3
17
3
15
mV
-1.4
-1
-2.7
-2
-1.4
-1
-2.7
-2
mV/V
1.8
4
5.2
1.8
4
5.2
μA
0.4
1.2
0.4
1.2
μA
0.5
2.6
1
1000
0.5
2.6
0.6
1000
mA
nA
0.22
0.5
0.22
0.5
Ω
1) ΔVref is defined as the difference between the maximum and minimum values obtained over the full temperature range.
ΔVref = Vref max. - Vref min.
V ref max.
V ref min.
T1
ΔV KA
2) The dynamic Impedance is definied as ⏐ZKA⏐ = ----------------ΔI K
2/10
Unit
Min.
T2
Temperature
TL431
ELECTRICAL CHARACTERISTICS
Tamb = 25°C (unless otherwise specified)
TL431I
Symbol
TL431AI
Parameter
Unit
Min.
Typ.
Max.
Min.
Typ.
Max.
2.44
2.41
2.495
2.55
2.58
2.47
2.44
2.495
2.52
2.55
V
Vref
Reference Input Voltage
VKA = Vref , Ik = 10 mA Tamb = 25°C
Tmin ≤Tamb ≤ Tmax
ΔVref
Reference Input Voltage Deviation OverTemperature Range - note 1
VKA = Vref , Ik =10 mA,Tmin ≤Tamb≤ Tmax
7
30
7
30
mV
ΔVref
-----------ΔV ka
Ratio of Change in Reference Input
Voltage to Change in Cathode to Anode
Voltage
Ik = 10mA
ΔVKA = 10V to Vref
ΔVKA = 36V to 10V
-1.4
-1
-2.7
-2
-1.4
-1
-2.7
-2
mV/V
1.8
4
6.5
1.8
4
6.5
μA
2.5
0.8
1.2
μA
Iref
Reference Input Current
Ik = 10mA, R1 = 10kΩ, R2 = ∞
Tamb = 25°C
Tmin ≤Tamb ≤Tmax
ΔIref
Reference Input Current Deviation
Over Temperature Range
Ik = 10mA, R1 = 10kΩ, R2 =∞
Tmin ≤Tamb ≤ Tmax
0.8
Imin
Minimum Cathode Current for Regulation
VKA = Vref
0.5
1
0.5
0.7
mA
2.6
1000
2.6
1000
nA
0.22
0.5
0.22
0.5
Ω
Ioff
⏐ZKA⏐
Off-State Cathode Current
Dynamic Impedance note 2
VKA = Vref ,Δ Ik = 1 to100mA, f ≤1kHZ
1) ΔVref is defined as the difference between the maximum and minimum values obtained over the full temperature range.
ΔVref = Vref max. - Vref min.
V ref max.
V ref min.
T1
T2
Temperature
ΔV KA
2) The dynamic Impedance is definied as ⏐ZKA⏐ = ----------------ΔI K
3/10
TL431
Figure 2 : Test Circuit for VKA > VREF
Figure 1 : Test Circuit for VKA = VREF
Input
Input
R
Output
R
IK
Output
R1
IREF
IK=10mA
VKA
R2
VKA
VREF
VREF
VKA = VREF
Figure 3 : Test Circuit for IOFF
( 1 + R1
-------- )
R2
+ R1 x IREF
Figure 4 : Test Circuit for Phase Margin and
Voltage Gain
VKA=36V
10μF
10μF
Figure 5 : Block diagram of TL1431
Output
8.25kΩ
Input
IK=10mA
15kΩ
IOFF
VREF
Figure 6 : Test Circuit for Response time
Cathode
+
Vref
Anode
4/10
IK=1mA
1 mA
0 mA
Output
Vref
TL431
Reference voltage vs cathode current
Reference voltage vs Temperature
100
Cathode current IKA (mA)
Cathode voltage VKA (V)
2.54
VKA = VREF
IK = 10 mA
2.52
2.50
2.48
2.46
2.44
-40
TAMB=+25°C
75
50
25
0
-25
-20
0
20
40
60
80
-50
100
-1
0
Temperature (°C)
3
2.0
Reference current IREF (μA)
Cathode current IKA (mA)
2
TAMB = +25°C
1
0
-1
IK=10 mA
R1=10kΩ
R2= + ∝
1.5
1.0
0.5
-2
-1
0
1
2
0.0
−40
3
−20
0
Cathode voltage VKA (V)
20
40
60
80
100
Temperature °C
Off-state cathode current vs temperature
Ratio of change in VREF to change in VKA vs
Temperature
2.0
0.0
VKA = 36 V
VREF = 0 V
ΔVREF / ΔVKA (mV / V)
Off-state current IOFF (μA)
2
Reference current vs temperature
Reference voltage vs cathode current
1.5
1.0
0.5
0.0
-40
1
Cathode voltage VKA (V)
-0.5
IK = 10 mA
-1.0
-1.5
-20
0
20
40
Temperature (°C)
60
80
100
-2.0
-40
-20
0
20
40
60
80
100
Temperature (°C)
5/10
TL431
Static impedance RKA vs Temperature
Minimum operating current vs temperature
0.6
Minimum cathode current IMIN (mA)
Static impedance RKA (Ω)
0.30
0.28
VKA=VREF
TAMB=+25°C
0.26
0.24
0.22
0.20
-40
-20
0
20
40
60
80
0.4
0.0
-40
100
VKA = VREF
0.2
-20
0
20
Temperature (°C)
40
60
80
100
Temperature (°C)
Gain & Phase vs Frequency
Stability behaviour with capacitive loads
100
200
IK=10 mA
See figure 4
Gain
40
VKA=VREF
150
100
0
0
-50
Phase (°)
20
Gain (dB)
50
Phase
80
Cathode current (mA)
60
VKA=5 V
Instable
Area
60
-100
-20
40
VKA=12 V
20
VKA=24 V
-150
-40
1
10
100
0
1E-10
-200
10000
1000
1E-9
Maximum Power dissipation
60
TO92
40
Safe
Area
10
20
30
Input and Output voltage (V)
Cathode current (mA)
SO8
Batwing
80
Cathode voltage (V)
6/10
1E-6
1E-5
8
10
6
TAMB= +25°C
0
1E-7
Pulse response for IK=1mA
100
20
1E-8
Capacitive load (Farad)
Frequency (kHz)
Input
VKA=VREF
TAMB=+25°C
4
Output
2
0
0
2
4
6
Time (μs)
TL431
PACKAGE MECHANICAL DATA
8 PINS - BATWING PLASTIC MICROPACKAGE (SO)
s
b1
b
a1
A
a2
C
c1
a3
L
E
e3
D
M
5
1
4
F
8
Millimeters
Inches
Dim.
Min.
A
a1
a2
a3
b
b1
C
c1
D
E
e
e3
F
L
M
S
Typ.
Max.
0.65
0.35
0.19
0.25
1.75
0.25
1.65
0.85
0.48
0.25
0.5
4.8
5.8
5.0
6.2
0.1
Min.
Typ.
Max.
0.026
0.014
0.007
0.010
0.069
0.010
0.065
0.033
0.019
0.010
0.020
0.189
0.228
0.197
0.244
0.004
45° (typ.)
1.27
3.81
3.8
0.4
0.050
0.150
4.0
1.27
0.6
0.150
0.016
0.157
0.050
0.024
8° (max.)
7/10
TL431
PACKAGE MECHANICAL DATA
3 PINS - PLASTIC PACKAGE TO92 (TAPE & REEL)
A1
P
T
P
A
H
W2
W
W1
W0
H0
I1
H
L1
H1
d
D0
F1 F2
P2
P0
Millimeters
Inches
Dim.
Min
AL
A
T
d
I1
P
PO
P2
F1/F2
Δh
ΔP
W
W0
W1
W2
H
H0
H1
DO
L1
8/10
Typ.
Max.
Min.
Typ.
5.0
5.0
4.0
0.45
2.5
11.7
12.4
5.95
2.4
-1
-1
17.5
5.7
8.5
12.7
12.7
6.35
2.5
0
0
18.0
6
9
15.5
16
3.8
4.0
Max.
0.197
0.197
0.157
0.018
13.7
13
6.75
2.8
1
1
19.0
6.3
9.75
0.5
20
16.5
25
4.2
11
0.098
0.461
0.488
0.234
0.094
-0.039
-0.039
0.689
0.224
0.335
0.500
0.500
0.250
0.098
0
0
0.709
0.236
0.354
0.610
0.630
0.150
0.157
0.539
0.512
0.266
0.110
0.039
0.039
0.748
0.248
0.384
0.020
0.787
0.650
0.984
0.165
0.433
TL431
PACKAGE MECHANICAL DATA
3 PINS - PLASTIC PACKAGE TO92 (TAPE AMMO PACK)
A1
P
T
P
A
H
W2
W
W1
W0
H0
I1
H
L1
H1
d
D0
F1 F2
P2
P0
Millimeters
Inches
Dim.
Min
AL
A
T
d
I1
P
PO
P2
F1/F2
Δh
ΔP
W
W0
W1
W2
H
H0
H1
DO
L1
9/10
Typ.
Max.
Min.
Typ.
5.0
5.0
4.0
0.45
2.5
11.7
12.4
5.95
2.4
-1
-1
17.5
5.7
8.5
12.7
12.7
6.35
2.5
0
0
18.0
6
9
15.5
16
3.8
4.0
Max.
0.197
0.197
0.157
0.018
13.7
13
6.75
2.8
1
1
19.0
6.3
9.75
0.5
20
16.5
25
4.2
11
0.098
0.461
0.488
0.234
0.094
-0.039
-0.039
0.689
0.224
0.335
0.500
0.500
0.250
0.098
0
0
0.709
0.236
0.354
0.610
0.630
0.150
0.157
0.539
0.512
0.266
0.110
0.039
0.039
0.748
0.248
0.384
0.020
0.787
0.650
0.984
0.165
0.433
TL431
PACKAGE MECHANICAL DATA
3 PINS - PLASTIC PACKAGE TO92 (BULK)
Millimeters
Inches
Dim.
Min
L
B
O1
C
K
O2
a
3.2
4.45
4.58
12.7
0.407
0.35
Typ.
Max.
1.27
3.7
5.00
5.03
4.2
5.2
5.33
0.5
0.508
Min.
0.126
0.1752
0.1803
0.5
0.016
0.0138
Typ.
Max.
0.05
0.1457
0.1969
0.198
0.1654
0.2047
0.2098
0.0197
0.02
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com
10/10
TL431, A, B Series,
NCV431A
Programmable
Precision References
The TL431, A, B integrated circuits are three−terminal
programmable shunt regulator diodes. These monolithic IC voltage
references operate as a low temperature coefficient zener which is
programmable from Vref to 36 V with two external resistors. These
devices exhibit a wide operating current range of 1.0 mA to 100 mA
with a typical dynamic impedance of 0.22 W. The characteristics of
these references make them excellent replacements for zener diodes in
many applications such as digital voltmeters, power supplies, and op
amp circuitry. The 2.5 V reference makes it convenient to obtain a
stable reference from 5.0 V logic supplies, and since the TL431, A, B
operates as a shunt regulator, it can be used as either a positive or
negative voltage reference.
Features
http://onsemi.com
TO−92 (TO−226)
LP SUFFIX
CASE 29
1
2
Pin 1. Reference
2. Anode
3. Cathode
3
PDIP−8
P SUFFIX
CASE 626
8
•
•
•
•
•
1
Programmable Output Voltage to 36 V
Voltage Reference Tolerance: ±0.4%, Typ @ 25°C (TL431B)
Low Dynamic Output Impedance, 0.22 W Typical
Sink Current Capability of 1.0 mA to 100 mA
Equivalent Full−Range Temperature Coefficient of 50 ppm/°C
Typical
• Temperature Compensated for Operation over Full Rated Operating
Temperature Range
• Low Output Noise Voltage
• Pb−Free Packages are Available
Micro8E
DM SUFFIX
CASE 846A
8
1
Cathode 1
8 Reference
N/C 2
7 N/C
N/C 3
6 Anode
N/C 4
5 N/C
(Top
View)
SOIC−8
D SUFFIX
CASE 751
8
1
Cathode 1
8
2
7
3
6
N/C 4
5
Anode
Reference
Anode
N/C
(Top View)
This is an internally modified SOIC−8 package. Pins 2, 3, 6 and
7 are electrically common to the die attach flag. This internal
lead frame modification increases power dissipation capability
when appropriately mounted on a printed circuit board. This
modified package conforms to all external dimensions of the
standard SOIC−8 package.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 13 of this data sheet.
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 15 of this data sheet.
© Semiconductor Components Industries, LLC, 2005
March, 2005 − Rev. 21
1
Publication Order Number:
TL431/D
TL431, A, B Series, NCV431A
Symbol
Representative Schematic Diagram
Component values are nominal
Cathode
(K)
Cathode (K)
Reference
(R)
800
20 pF
Representative Block Diagram
Reference
(R)
800
Reference
(R)
Anode
(A)
4.0 k
20 pF
Cathode
(K)
+
150
3.28 k
2.4 k
10 k
7.2 k
−
1.0 k
2.5 Vref
800
Anode (A)
Anode (A)
This device contains 12 active transistors.
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless
otherwise noted.)
Rating
Symbol
Value
Unit
VKA
37
V
Cathode Current Range, Continuous
IK
−100 to +150
mA
Reference Input Current Range, Continuous
Iref
−0.05 to +10
mA
Operating Junction Temperature
TJ
150
°C
Operating Ambient Temperature Range
TL431I, TL431AI, TL431BI
TL431C, TL431AC, TL431BC
NCV431AI, TL431BV
TA
Storage Temperature Range
Tstg
Total Power Dissipation @ TA = 25°C
Derate above 25°C Ambient Temperature
D, LP Suffix Plastic Package
P Suffix Plastic Package
DM Suffix Plastic Package
PD
Total Power Dissipation @ TC = 25°C
Derate above 25°C Case Temperature
D, LP Suffix Plastic Package
P Suffix Plastic Package
PD
Cathode to Anode Voltage
NOTE:
°C
−40 to +85
0 to +70
−40 to +125
−65 to +150
°C
W
0.70
1.10
0.52
W
1.5
3.0
ESD data available upon request.
RECOMMENDED OPERATING CONDITIONS
Condition
Cathode to Anode Voltage
Symbol
Min
Max
Unit
VKA
Vref
36
V
IK
1.0
100
mA
Cathode Current
THERMAL CHARACTERISTICS
Symbol
D, LP Suffix
Package
P Suffix
Package
DM Suffix
Package
Unit
Thermal Resistance, Junction−to−Ambient
RqJA
178
114
240
°C/W
Thermal Resistance, Junction−to−Case
RqJC
83
41
−
°C/W
Characteristic
http://onsemi.com
2
TL431, A, B Series, NCV431A
ELECTRICAL CHARACTERISTICS (TA = 25°C, unless otherwise noted.)
TL431I
Characteristic
Min
Symbol
Reference Input Voltage (Figure 1)
VKA = Vref, IK = 10 mA
TA = 25°C
TA = Tlow to Thigh (Note 1)
TL431C
Typ
Max
Min
Typ
Max
Vref
Unit
V
2.44
2.41
2.495
−
2.55
2.58
2.44
2.423
2.495
−
2.55
2.567
High Logic Level Supply Current from VCC
ICCH
60
−
45
60
mA
mA
mA
Reference Input Voltage Deviation Over
Temperature Range (Figure 1, Notes 1, 2)
VKA= Vref, IK = 10 mA
DVref
−
7.0
30
−
3.0
17
mV
DV
Ratio of Change in Reference Input Voltage to Change
in Cathode to Anode Voltage
IK = 10 mA (Figure 2),
DVKA = 10 V to Vref
DVKA = 36 V to 10 V
DV
mV/V
ref
KA
−
−
Reference Input Current (Figure 2)
IK = 10 mA, R1 = 10 k, R2 = ∞
TA = 25°C
TA = Tlow to Thigh (Note 1)
−1.4
−1.0
−2.7
−2.0
−
−
−1.4
−1.0
−2.7
−2.0
mA
Iref
−
−
1.8
−
4.0
6.5
−
−
1.8
−
4.0
5.2
Reference Input Current Deviation Over
Temperature Range (Figure 2, Note 1, 4)
IK = 10 mA, R1 = 10 k, R2 = ∞
DIref
−
0.8
2.5
−
0.4
1.2
mA
Minimum Cathode Current For Regulation
VKA = Vref (Figure 1)
Imin
−
0.5
1.0
−
0.5
1.0
mA
Off−State Cathode Current (Figure 3)
VKA = 36 V, Vref = 0 V
Ioff
−
20
1000
−
20
1000
nA
|ZKA|
−
0.22
0.5
−
0.22
0.5
W
Dynamic Impedance (Figure 1, Note 3)
VKA = Vref, DIK = 1.0 mA to 100 mA
f ≤ 1.0 kHz
1. Tlow
= −40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM;
= 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,
TL431ACDM, TL431BCDM
Thigh = +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM
= +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM,
TL431BCDM
2. The deviation parameter DVref is defined as the difference between the maximum and minimum values obtained over the full operating
ambient temperature range that applies.
Vref max
DVref = Vref max
−Vref min
DTA = T2 − T1
Vref min
T1
Ambient Temperature
T2
The average temperature coefficient of the reference input voltage, aVref is defined as:
ppm
V
+
ref _C
ǒ
Ǔ
DV
V
ref
ref
@ 25_C
DT
X 106
+
A
D V x 10 6
ref
D T (V @ 25_C)
A ref
aVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature. (Refer to Figure 6.)
Example : DV
V
ref
+ 8.0 mV and slope is positive,
@ 25_C + 2.495 V, DT + 70_C
ref
A
aV
ref
+
0.008 x 106
+ 45.8 ppmń_C
70 (2.495)
DV
KA
3. The dynamic impedance ZKA is defined as: |Z KA| +
. When the device is programmed with two external resistors, R1 and R2,
DI
K
(refer to Figure 2) the total dynamic impedance of the circuit is defined as: |Z KAȀ| [ |Z KA| 1 ) R1
ǒ
http://onsemi.com
3
R2
Ǔ
TL431, A, B Series, NCV431A
ELECTRICAL CHARACTERISTICS (TA = 25°C, unless otherwise noted.)
TL431AI / NCV431AI
Characteristic
Symbol
Reference Input
In ut Voltage (Figure 1)
VKA = Vref, IK = 10 mA
TA = 25°C
25 C
TA = Tlow to
t Thigh
Reference Input Voltage Deviation Over
Temperature Range (Figure 1, Notes 4, 5)
VKA= Vref, IK = 10 mA
Ratio of Change in Reference Input Voltage to
Change in Cathode to Anode Voltage
IK = 10 mA (Figure 2),
DVKA = 10 V to Vref
DVKA = 36 V to 10 V
Min
Typ
Max
TL431AC
Min
Typ
TL431BI / TL431BV
Max
Min
Typ
Max
Vref
DVref
DV
DV
V
2.47
2
47
2 44
2.44
2.495
2
495
−
2.52
2
52
2 55
2.55
2 47
2.47
2.453
2
453
2.495
2
495
−
2 52
2.52
2.537
2
537
2.483
2
483
2 475
2.475
2.495
2
495
2 495
2.495
2.507
2
507
2 515
2.515
−
7.0
30
−
3.0
17
−
3.0
17
mV
mV/V
ref
KA
−
−
Reference Input Current (Figure 2)
IK = 10 mA, R1 = 10 k, R2 = ∞
TA = 25°C
TA = Tlow to Thigh (Note 4)
Unit
−1.4
−1.0
−2.7
−2.0
−
−
−1.4
−1.0
−2.7
−2.0
−
−
−1.4
−1.0
−2.7
−2.0
mA
Iref
−
−
1.8
−
4.0
6.5
−
−
1.8
−
4.0
5.2
−
−
1.1
−
2.0
4.0
Reference Input Current Deviation Over
Temperature Range (Figure 2, Note 4)
IK = 10 mA, R1 = 10 k, R2 = ∞
DIref
−
0.8
2.5
−
0.4
1.2
−
0.8
2.5
mA
Minimum Cathode Current For Regulation
VKA = Vref (Figure 1)
Imin
−
0.5
1.0
−
0.5
1.0
−
0.5
1.0
mA
Off−State Cathode Current (Figure 3)
VKA = 36 V, Vref = 0 V
Ioff
−
20
1000
−
20
1000
−
0.23
500
nA
|ZKA|
−
0.22
0.5
−
0.22
0.5
−
0.14
0.3
W
Dynamic Impedance (Figure 1, Note 6)
VKA = Vref, DIK = 1.0 mA to 100 mA
f ≤ 1.0 kHz
4. Tlow
= −40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431BV, TL431AIDM, TL431IDM,
TL431BIDM, NCV431AIDMR2, NCV431AIDR2
= 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,
TL431ACDM, TL431BCDM
Thigh = +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM
= +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM,
TL431BCDM
= +125°C TL431BV, NCV431AIDMR2, NCV431AIDR2
5. The deviation parameter DVref is defined as the difference between the maximum and minimum values obtained over the full operating
ambient temperature range that applies.
Vref max
DVref = Vref max
−Vref min
DTA = T2 − T1
Vref min
T1
Ambient Temperature
T2
The average temperature coefficient of the reference input voltage, aVref is defined as:
ppm
+
V
ref _C
ǒ
Ǔ
DV
V
ref
ref
@ 25_C
DT
X 106
+
A
D V x 10 6
ref
D T (V @ 25_C)
A ref
aVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature. (Refer to Figure 6.)
Example : DV
V
ref
+ 8.0 mV and slope is positive,
@ 25_C + 2.495 V, DT + 70_C
ref
A
aV
ref
+
0.008 x 106
+ 45.8 ppmń_C
70 (2.495)
DV
KA
6. The dynamic impedance ZKA is defined as |Z KA| +
When the device is programmed with two external resistors, R1 and R2, (refer
DI
K
to Figure 2) the total dynamic impedance of the circuit is defined as: |Z KAȀ| [ |Z KA| 1 ) R1
R2
7. NCV431AIDMR2, NCV431AIDR2 Tlow = −40°C, Thigh = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications
requiring site and change control.
ǒ
http://onsemi.com
4
Ǔ
TL431, A, B Series, NCV431A
Input
Input
VKA
IK
VKA
Iref
R1
Vref
Input
Ioff
IK
R2
V
KA
+V
ǒ
VKA
Ǔ
1 ) R1 ) I SR1
ref
R2
ref
Vref
Figure 1. Test Circuit for VKA = Vref
Figure 2. Test Circuit for VKA > Vref
800
VKA = Vref
TA = 25°C
100
Input
IK
IK , CATHODE CURRENT ( μA)
IK , CATHODE CURRENT (mA)
150
Figure 3. Test Circuit for Ioff
VKA
50
0
−50
−100
−2.0
−1.0
0
1.0
2.0
VKA = Vref
TA = 25°C
600 Input
400
200
0
−200
−1.0
3.0
0
Vref , REFERENCE INPUT VOLTAGE (mV)
VKA
IK VKA = Vref
IK = 10 mA
Input
2560
Vref
Vref Max = 2550 mV
2540
2520
Vref Typ = 2495 mV
2500
2480
2460
2440
Vref Min = 2440 mV
2420
2400
−55
−25
0
25
50
2.0
3.0
Figure 5. Cathode Current versus
Cathode Voltage
Iref , REFERENCE INPUT CURRENT ( μA)
Figure 4. Cathode Current versus
Cathode Voltage
2580
1.0
VKA, CATHODE VOLTAGE (V)
VKA, CATHODE VOLTAGE (V)
2600
IMin
VKA
IK
75
100
125
3.0
2.5
2.0
1.5
IK = 10 mA
1.0
VKA
Input
10k Iref
IK
0.5
0
−55
TA, AMBIENT TEMPERATURE (°C)
−25
0
25
50
75
100
TA, AMBIENT TEMPERATURE (°C)
Figure 6. Reference Input Voltage versus
Ambient Temperature
Figure 7. Reference Input Current versus
Ambient Temperature
http://onsemi.com
5
125
0
IK = 10 mA
TA = 25°C
−8.0
−16
Input
VKA
IK
R1
−24
−32
R2
Vref
0
10
30
20
1.0 k
Ioff , OFF−STATE CATHODE CURRENT (nA)
Δ Vref , REFERENCE INPUT VOLTAGE (mV)
TL431, A, B Series, NCV431A
100
10
1.0
Input
0.01
−55
40
−25
−
+
GND
1.0
0.1
1.0 k
10 k
100 k
1.0 M
0.280
0.260
75
100
125
0.240
0.220
0.200
−55
10 M
−25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (°C)
Figure 10. Dynamic Impedance
versus Frequency
Figure 11. Dynamic Impedance
versus Ambient Temperature
80
60
50
9.0 mF
40
Output
IK
15k
230
NOISE VOLTAGE (nV/ √Hz)
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
50
VKA = Vref
D IK = 1.0 mA to 100 mA
f ≤ 1.0 kHz
Output
1.0k
IK
50
−
+
GND
0.300
f, FREQUENCY (MHz)
8.25k
GND
30
20
10
25
0.320
TA = 25°C
D IK = 1.0 mA to 100 mA
|ZKA|, DYNAMIC IMPEDANCE (Ω )
|ZKA|, DYNAMIC IMPEDANCE (Ω )
10
0
Figure 9. Off−State Cathode Current
versus Ambient Temperature
100
50
VKA
TA, AMBIENT TEMPERATURE (5C)
Figure 8. Change in Reference Input
Voltage versus Cathode Voltage
Output
IK
Ioff
0.1
VKA, CATHODE VOLTAGE (V)
1.0 k
VKA = 36 V
Vref = 0 V
IK = 10 mA
TA = 25°C
60
VKA = Vref
IK = 10 mA
TA = 25°C
40
Input
20
Output
IK
0
−10
1.0 k
10 k
100 k
1.0 M
0
10
10 M
100
1.0 k
10 k
f, FREQUENCY (Hz)
f, FREQUENCY (MHz)
Figure 12. Open−Loop Voltage Gain
versus Frequency
Figure 13. Spectral Noise Density
http://onsemi.com
6
100 k
TL431, A, B Series, NCV431A
Input
Monitor
Output
2.0
220 Output
Pulse
Generator
f = 100 kHz
1.0
50
GND
0
5.0
Input
0
0
4.0
12
8.0
16
Unstable
Area
A
B
C
D
120
I K, CATHODE CURRENT (mA)
VOLTAGE SWING (V)
140
TA = 25°C
3.0
100
TA = 25°C
C
80
60
Stable
40
Stable
D
B
B
A
20
0
1.0 nF
20
Programmed
VKA(V)
Vref
5.0
10
15
10 nF
t, TIME (ms)
A
100 nF
1.0 mF
10 mF
100 mF
CL, LOAD CAPACITANCE
Figure 14. Pulse Response
Figure 15. Stability Boundary Conditions
150
150
IK
IK
V+
10 k
V+
CL
Figure 16. Test Circuit For Curve A
of Stability Boundary Conditions
CL
Figure 17. Test Circuit For Curves B, C, And D
of Stability Boundary Conditions
TYPICAL APPLICATIONS
V+
V+
Vout
Vout
R1
R1
R2
R2
ǒ
Ǔ
V out + 1 ) R1 V
R2 ref
ǒ
Ǔ
V out + 1 ) R1 V
R2 ref
Figure 18. Shunt Regulator
Figure 19. High Current Shunt Regulator
http://onsemi.com
7
TL431, A, B Series, NCV431A
V+
V+
MC7805
Out
In
Common
Vout
R1
Vout
R1
R2
R2
ǒ
ǒ
V out min + V
ref
V out min + V
) 5.0V
Figure 20. Output Control for a
Three−Terminal Fixed Regulator
RCL
V+
Ǔ
V out + 1 ) R1 V
R2 ref
Ǔ
V out + 1 ) R1 V
R2 ref
ref
)V
be
Figure 21. Series Pass Regulator
V+
Iout
Isink
I
V
I out + ref
R
CL
Sink
V
+ ref
R
S
RS
Figure 22. Constant Current Source
V+
Figure 23. Constant Current Sink
V+
Vout
Vout
R1
R1
R2
ǒ
R2
Ǔ
V
+ 1 ) R1 V
out(trip)
R2 ref
V
Figure 24. TRIAC Crowbar
out(trip)
ǒ
Ǔ
+ 1 ) R1 V
R2 ref
Figure 25. SRC Crowbar
http://onsemi.com
8
TL431, A, B Series, NCV431A
V+
Vout
l
R1
V+
R3
Vout
Vin
R2
R4
Vin
Vth = Vref
L.E.D. indicator is ‘on’ when V+ is between the
upper and lower limits.
ǒ Ǔ
UpperLimit + ǒ1 ) R3ǓV
R4 ref
LowerLimit + 1 ) R1 V
R2 ref
Figure 26. Voltage Monitor
5.0 k
1%
50 k
1%
10 kW
V
500 k
1%
RX
≈ 2.0 V
38 V
2.0 mA
25 V
−
LM11
+
330
Tl = 330 to 8.0 W
TI
10 k
Calibrate
5.0 M
1%
100 kW
1.0 MW
V
V
Range
1.0 kW
V
V+
> Vref
Figure 27. Single−Supply Comparator with
Temperature−Compensated Threshold
25 V
1N5305
Vout
< Vref
8.0 W
+
470 mF
360 k
1.0 mF
*
Vout
* Thermalloy
* THM 6024
* Heatsink on
* LP Package
−5.0 V
R x + V outD W Range
V
Figure 28. Linear Ohmmeter
56 k
10 k
0.05 mF
Tone
25 k
Volume
47 k
Figure 29. Simple 400 mW Phono Amplifier
http://onsemi.com
9
TL431, A, B Series, NCV431A
150 mH @ 2.0 A
Vin = 10 V to 20 V
TIP115
Vout = 5.0 V
Iout = 1.0 A
1.0 k
4.7 k
+
4.7 k
MPSA20
1N5823
100 k
0.01mF
2200 mF
470 mF
4.7 k
0.1 mF
2.2 k
10
51 k
Figure 30. High Efficiency Step−Down Switching Converter
Test
Conditions
Results
Line Regulation
Vin = 10 V to 20 V, Io = 1.0 A
53 mV (1.1%)
Load Regulation
Vin = 15 V, Io = 0 A to 1.0 A
25 mV (0.5%)
Output Ripple
Vin = 10 V, Io = 1.0 A
50 mVpp P.A.R.D.
Output Ripple
Vin = 20 V, Io = 1.0 A
100 mVpp P.A.R.D.
Efficiency
Vin = 15 V, Io = 1.0 A
82%
http://onsemi.com
10
+
TL431, A, B Series, NCV431A
APPLICATIONS INFORMATION
The TL431 is a programmable precision reference which
is used in a variety of ways. It serves as a reference voltage
in circuits where a non−standard reference voltage is
needed. Other uses include feedback control for driving an
optocoupler in power supplies, voltage monitor, constant
current source, constant current sink and series pass
regulator. In each of these applications, it is critical to
maintain stability of the device at various operating currents
and load capacitances. In some cases the circuit designer can
estimate the stabilization capacitance from the stability
boundary conditions curve provided in Figure 15. However,
these typical curves only provide stability information at
specific cathode voltages and at a specific load condition.
Additional information is needed to determine the
capacitance needed to optimize phase margin or allow for
process variation.
A simplified model of the TL431 is shown in Figure 31.
When tested for stability boundaries, the load resistance is
150 W. The model reference input consists of an input
transistor and a dc emitter resistance connected to the device
anode. A dependent current source, Gm, develops a current
whose amplitude is determined by the difference between
the 1.78 V internal reference voltage source and the input
transistor emitter voltage. A portion of Gm flows through
compensation capacitance, CP2. The voltage across CP2
drives the output dependent current source, Go, which is
connected across the device cathode and anode.
P2 +
Z1 +
G+G R
GoR
M GM
L
Example 1:
I + 10 mA, R + 230 W, C + 0. Define the transfer gain.
L
L
C
The DC gain is:
G+G R
GoR +
M GM
L
(2.138)(1.0 M)(1.25 m)(230) + 615 + 56 dB
Loop gain + G
C
+
P1
8.25 k
+ 218 + 47 dB
8.25 k ) 15 k
The resulting transfer function Bode plot is shown in
Figure 32. The asymptotic plot may be expressed as the
following equation:
ǒ1 ) 500jfkHzǓ
Av + 615
ǒ1 ) 8.0jfkHzǓǒ1 ) 60 jfkHzǓ
Resistor and capacitor typical values are shown on the
model. Process tolerances are ± 20% for resistors, ±10% for
capacitors, and ±40% for transconductances.
An examination of the device model reveals the location
of circuit poles and zeroes:
1
1
1
+
+ 500 kHz
C
2p * 15.9 k * 20 pF
Z1 P1
Also, the transfer dc voltage gain of the TL431 is:
Go = 1.25 (Vcp2) mmhos.
GM
2p R
1
P +
L
2p R C
L L
where IC is the device cathode current and Gm is in mhos
2p R
1
1
+
+ 60 kHz
2p * 10 M * 0.265 pF
C
P2 P2
In addition, there is an external circuit pole defined by the
load:
Model component values are:
Vref = 1.78 V
Gm = 0.3 + 2.7 exp (−IC/26 mA)
P1 +
2p R
The Bode plot shows a unity gain crossover frequency of
approximately 600 kHz. The phase margin, calculated from
the equation, would be 55.9 degrees. This model matches the
Open−Loop Bode Plot of Figure 12. The total loop would
have a unity gain frequency of about 300 kHz with a phase
margin of about 44 degrees.
1
+ 7.96 kHz
2p * 1.0 M * 20 pF
http://onsemi.com
11
TL431, A, B Series, NCV431A
VCC
RL
CL
Input
3
15 k
Cathode
9.0 mF
Ref
RP2
10 M
Vref
1.78 V
1
500 k
CP1
20 pF
GM
+
−
Rref
RGM
1.0 M
16
RZ1
15.9 k
8.25 k
Anode
Go
1.0 mmho
CP2
0.265 pF
2
Figure 31. Simplified TL431 Device Model
TL431 OPEN−LOOP VOLTAGE GAIN VERSUS FREQUENCY
Note that the transfer function now has an extra pole
formed by the load capacitance and load resistance.
Note that the crossover frequency in this case is about
250 kHz, having a phase margin of about −46 degrees.
Therefore, instability of this circuit is likely.
50
40
30
TL431 OPEN−LOOP BODE PLOT WITH LOAD CAP
20
80
10
Av, OPEN−LOOP GAIN (dB)
Av, OPEN−LOOP VOLTAGE GAIN (dB)
60
0
−10
−20
101
102
103
104
105
106
107
f, FREQUENCY (Hz)
Figure 32. Example 1 Circuit Open Loop Gain Plot
Example 2.
IC = 7.5 mA, RL = 2.2 kW, CL = 0.01 mF. Cathode tied to
reference input pin. An examination of the data sheet
stability boundary curve (Figure 15) shows that this value of
load capacitance and cathode current is on the boundary.
Define the transfer gain.
The DC gain is:
60
40
20
0
−20
101
102
103
104
105
106
f, FREQUENCY (Hz)
Figure 33. Example 2 Circuit Open Loop Gain Plot
With three poles, this system is unstable. The only hope
for stabilizing this circuit is to add a zero. However, that can
only be done by adding a series resistance to the output
capacitance, which will reduce its effectiveness as a noise
filter. Therefore, practically, in reference voltage
applications, the best solution appears to be to use a smaller
value of capacitance in low noise applications or a very
large value to provide noise filtering and a dominant pole
rolloff of the system.
G+G R
GoR +
M GM
L
(2.323)(1.0 M)(1.25 m)(2200) + 6389 + 76 dB
The resulting open loop Bode plot is shown in Figure 33.
The asymptotic plot may be expressed as the following
equation:
ǒ1 ) 500jfkHzǓ
Av + 615
ǒ1 ) 8.0jfkHzǓǒ1 ) 60 jfkHzǓǒ1 ) 7.2jfkHzǓ
http://onsemi.com
12
TL431, A, B Series, NCV431A
ORDERING INFORMATION
Device
Operating Temperature Range
TL431ACD
TL431ACDG
Package Code
1.0%
SOIC−8
(Pb−Free)
1.0%
98 Units / Rail
SOIC−8
(Pb−Free)
TL431BCDG
TL431CD
2.2%
1.0%
SOIC−8
(Pb−Free)
TL431ACDR2G
1.0%
SOIC−8
TL431BCDR2
SOIC−8
(Pb−Free)
TL431BCDR2G
TL431CDR2
TL431CDR2G
TL431ACDMR2
0.4%
2500 Units / Tape & Reel
2.2%
SOIC−8
(Pb−Free)
2.2%
Micro8
(Pb−Free)
TL431BCDMR2G
TL431CDMR2
TL431CDMR2G
1.0%
0.4%
4000 Units / Tape & Reel
0.4%
Micro8
2.2%
Micro8
(Pb−Free)
2.2%
1.0%
TL431ACP
TL431BCP
0.4%
SOIC−8
Micro8
TL431BCDMR2
0.4%
0.4%
SOIC−8
TL431ACDR2
Tolerance
SOIC−8
SOIC−8
TL431BCD
Shipping Information†
0.4%
PDIP−8
0°C to 70°C
50 Units / Rail
TL431CP
2.2%
TL431CPG
PDIP−8
(Pb−Free)
2.2%
TL431ACLP
TO−92 (TO−226)
1.0%
TL431ACLPG
TO−92 (TO−226)
(Pb−Free)
1.0%
TL431BCLP
TO−92 (TO−226)
TL431BCLPG
TO−92 (TO−226)
(Pb−Free)
TL431CLP
TO−92 (TO−226)
2.2%
TL431CLPG
TO−92 (TO−226)
(Pb−Free)
2.2%
TL431ACLPRA
TO−92 (TO−226)
1.0%
TL431ACLPRAG
TO−92 (TO−226)
(Pb−Free)
1.0%
TL431BCLPRA
TO−92 (TO−226)
0.4%
TL431BCLPRAG
TO−92 (TO−226)
(Pb−Free)
0.4%
TL431CLPRA
TO−92 (TO−226)
TL431CLPRAG
TO−92 (TO−226)
(Pb−Free)
2.2%
TL431ACLPRE
TO−92 (TO−226)
1.0%
TL431ACLPREG
TO−92 (TO−226)
(Pb−Free)
1.0%
TL431BCLPRE
TO−92 (TO−226)
0.4%
0.4%
2000 Units / Bag
2000 Units / Tape & Reel
0.4%
2.2%
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
13
TL431, A, B Series, NCV431A
ORDERING INFORMATION
Package Code
Shipping Information†
Tolerance
TL431BCLPREG
TO−92 (TO−226)
(Pb−Free)
2000 Units / Tape & Reel
0.4%
TL431ACLPRP
TO−92 (TO−226)
1.0%
TL431ACLPRPG
TO−92 (TO−226)
(Pb−Free)
1.0%
Device
TL431BCLPRM
Operating Temperature Range
TO−92 (TO−226)
0°C to 70°C
0.4%
2000 Units / Fan−Fold
TL431BCLPRMG
TO−92 (TO−226)
(Pb−Free)
TL431CLPRP
TO−92 (TO−226)
2.2%
TL431CLPRPG
TO−92 (TO−226)
(Pb−Free)
2.2%
SOIC−8
1.0%
SOIC−8
(Pb−Free)
1.0%
TL431AID
TL431AIDG
SOIC−8
TL431BID
SOIC−8
(Pb−Free)
TL431BIDG
TL431ID
TL431IDG
TL431AIDR2
TL431AIDR2G
TL431IDR2
TL431IDR2G
TL431AIDMR2
TL431BIDMR2G
2.2%
SOIC−8
(Pb−Free)
2.2%
SOIC−8
1.0%
SOIC−8
(Pb−Free)
1.0%
0.4%
2500 Units / Tape & Reel
2.2%
SOIC−8
(Pb−Free)
2.2%
Micro8
(Pb−Free)
TL431IDMR2
TL431IDMR2G
TL431AIP
1.0%
TL431BIP
0.4%
4000 Units / Tape & Reel
2.2%
Micro8
(Pb−Free)
2.2%
PDIP−8
1.0%
50 Units / Rail
TL431AILP
2.2%
1.0%
TO−92 (TO−226)
TL431BILP
TO−92 (TO−226)
(Pb−Free)
TL431BILPG
1.0%
0.4%
PDIP−8
TL431IP
0.4%
Micro8
PDIP−8
(Pb−Free)
TL431AIPG
0.4%
SOIC−8
Micro8
−40°C to 85°C
0.4%
SOIC−8
SOIC−8
(Pb−Free)
TL431BIDR2G
TL431BIDMR2
0.4%
98 Units / Rail
SOIC−8
TL431BIDR2
0.4%
0.4%
2000 Units / Box
0.4%
TL431ILP
TO−92 (TO−226)
2.2%
TL431ILPG
TO−92 (TO−226)
(Pb−Free)
2.2%
TL431AILPRA
TO−92 (TO−226)
TL431AILPRAG
TO−92 (TO−226)
(Pb−Free)
1.0%
2000 Units / Tape & Reel
1.0%
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
14
TL431, A, B Series, NCV431A
ORDERING INFORMATION
Device
Operating Temperature Range
Package Code
TL431BILPRA
TO−92 (TO−226)
TL431BILPRAG
TO−92 (TO−226)
(Pb−Free)
TO−92 (TO−226)
TL431ILPRA
TL431ILPRAG
Shipping Information†
Tolerance
0.4%
0.4%
2000 Units / Tape & Reel
TO−92 (TO−226)
(Pb−Free)
−40°C to 85°C
2.2%
2.2%
1.0%
TL431AILPRM
TL431AILPRP
TO−92 ((TO−226))
2000 Units / Ammo Pack
1.0%
2.2%
TL431ILPRP
TL431BVD
SOIC−8
TL431BVDR2
SOIC−8
TL431BVDMR2
Micro8
4000 Units / Tape & Reel
0.4%
TO−92 (TO−226)
2000 Units / Box
0.4%
TL431BVLP
−40°C
40°C to 125°C
0.4%
98 Units / Rail
0.4%
TL431BVP
PDIP−8
50 Units / Rail
0.4%
NCV431AIDMR2
Micro8
4000 Units / Tape & Reel
1%
NCV431AIDR2
SOIC−8
2500 Units / Tape & Reel
1%
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
MARKING DIAGRAMS
SOIC−8
D SUFFIX
CASE 751
8
Micro8
CASE 846A
TO−92 (TO−226)
CASE 29
8
8
xx
ALYW
1
PDIP−8
CASE 626
xx
xx
AYW
1
xx
AWL
YYWW
1
12 3
xx
A
WL, L
YY, Y
WW, W
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
http://onsemi.com
15
TL431, A, B Series, NCV431A
PACKAGE DIMENSIONS
A
TO−92 (TO−226)
LP SUFFIX
PLASTIC PACKAGE
CASE 29−11
ISSUE AL
B
R
P
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND
BEYOND DIMENSION K MINIMUM.
L
SEATING
PLANE
K
DIM
A
B
C
D
G
H
J
K
L
N
P
R
V
D
X X
G
J
H
V
C
SECTION X−X
1
N
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.021
0.045
0.055
0.095
0.105
0.015
0.020
0.500
−−−
0.250
−−−
0.080
0.105
−−−
0.100
0.115
−−−
0.135
−−−
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.407
0.533
1.15
1.39
2.42
2.66
0.39
0.50
12.70
−−−
6.35
−−−
2.04
2.66
−−−
2.54
2.93
−−−
3.43
−−−
N
8
PDIP−8
P SUFFIX
PLASTIC PACKAGE
CASE 626−05
ISSUE L
5
−B−
1
4
F
−A−
NOTE 2
L
C
J
−T−
N
SEATING
PLANE
D
H
M
K
G
0.13 (0.005)
M
T A
M
B
M
http://onsemi.com
16
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
DIM
A
B
C
D
F
G
H
J
K
L
M
N
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
−−−
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
−−−
10_
0.030
0.040
TL431, A, B Series, NCV431A
PACKAGE DIMENSIONS
Micro8
DM SUFFIX
PLASTIC PACKAGE
CASE 846A−02
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH,
PROTRUSIONS OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. 846A−01 OBSOLETE, NEW STANDARD 846A−02.
−A−
−B−
K
PIN 1 ID
G
D 8 PL
0.08 (0.003)
M
T B
S
A
DIM
A
B
C
D
G
H
J
K
L
S
SEATING
−T− PLANE
0.038 (0.0015)
C
L
J
H
SOLDERING FOOTPRINT*
8X
1.04
0.041
0.38
0.015
3.20
0.126
6X
8X
4.24
0.167
0.65
0.0256
5.28
0.208
SCALE 8:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
17
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
−−−
1.10
0.25
0.40
0.65 BSC
0.05
0.15
0.13
0.23
4.75
5.05
0.40
0.70
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
−−−
0.043
0.010
0.016
0.026 BSC
0.002
0.006
0.005
0.009
0.187
0.199
0.016
0.028
TL431, A, B Series, NCV431A
SOIC−8
D SUFFIX
PLASTIC PACKAGE
CASE 751−07
ISSUE AE
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
−X−
A
8
5
S
B
1
0.25 (0.010)
M
Y
M
4
K
−Y−
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
M
D
0.25 (0.010)
M
Z Y
S
X
J
S
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8_
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
Micro8 is a trademark of International Rectifier.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
18
For additional information, please contact your
local Sales Representative.
TL431/D
Order this document by TL431/D
The TL431, A, B integrated circuits are three–terminal programmable
shunt regulator diodes. These monolithic IC voltage references operate as a
low temperature coefficient zener which is programmable from Vref to 36 V
with two external resistors. These devices exhibit a wide operating current
range of 1.0 mA to 100 mA with a typical dynamic impedance of 0.22 Ω. The
characteristics of these references make them excellent replacements for
zener diodes in many applications such as digital voltmeters, power
supplies, and op amp circuitry. The 2.5 V reference makes it convenient to
obtain a stable reference from 5.0 V logic supplies, and since the TL431, A,
B operates as a shunt regulator, it can be used as either a positive or
negative voltage reference.
•
•
•
•
•
•
•
Programmable Output Voltage to 36 V
Voltage Reference Tolerance: ±0.4%, Typ @ 25°C (TL431B)
Low Dynamic Output Impedance, 0.22 Ω Typical
PROGRAMMABLE
PRECISION REFERENCES
SEMICONDUCTOR
TECHNICAL DATA
LP SUFFIX
PLASTIC PACKAGE
CASE 29
(TO–92)
1
Sink Current Capability of 1.0 mA to 100 mA
2
Pin 1. Reference
2. Anode
3. Cathode
3
Equivalent Full–Range Temperature Coefficient of 50 ppm/°C Typical
Temperature Compensated for Operation over Full Rated Operating
Temperature Range
Low Output Noise Voltage
P SUFFIX
PLASTIC PACKAGE
CASE 626
8
1
DM SUFFIX
PLASTIC PACKAGE
CASE 846A
(Micro–8)
8
1
8 Reference
Cathode 1
N/C 2
7 N/C
N/C 3
6 Anode
N/C 4
5 N/C
(Top View)
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SOP–8)
ORDERING INFORMATION
Device
Operating
Temperature Range
Package
TL431CLP, ACLP, BCLP
TO–92
TL431CP, ACP, BCP
Plastic
TL431CDM, ACDM, BCDM
TA = 0° to +70°C
SOP–8
TL431ILP, AILP, BILP
TO–92
TL431IP, AIP, BIP
TL431IDM, AIDM, BIDM
Plastic
TA = –40° to +85°C
TL431ID, AID, BID
Micro–8
8
2
7
3
6
N/C 4
5
Anode
Reference
Anode
N/C
(Top View)
SOP–8 is an internally modified SO–8 package. Pins 2,
3, 6 and 7 are electrically common to the die attach flag.
This internal lead frame modification decreases power
dissipation capability when appropriately mounted on a
printed circuit board. SOP–8 conforms to all external
dimensions of the standard SO–8 package.
SOP–8
© Motorola, Inc. 1998
MOTOROLA ANALOG IC DEVICE DATA
1
Cathode 1
Micro–8
TL431CD, ACD, BCD
8
Rev 6
1
TL431, A, B Series
Symbol
Representative Schematic Diagram
Component values are nominal
Cathode
(K)
Cathode (K)
Reference
(R)
800
800
Reference
(R)
Anode
(A)
20 pF
Representative Block Diagram
Reference
(R)
4.0 k
20 pF
Cathode
(K)
+
150
3.28 k
2.4 k
10 k
7.2 k
–
1.0 k
2.5 Vref
800
Anode (A)
Anode (A)
This device contains 12 active transistors.
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless
otherwise noted.)
Rating
Symbol
Value
Unit
VKA
37
V
Cathode Current Range, Continuous
IK
–100 to +150
mA
Reference Input Current Range, Continuous
Iref
–0.05 to +10
mA
Operating Junction Temperature
TJ
150
°C
Operating Ambient Temperature Range
TL431I, TL431AI, TL431BI
TL431C, TL431AC, TL431BC
TA
Cathode to Anode Voltage
Storage Temperature Range
Tstg
Total Power Dissipation @ TA = 25°C
Derate above 25°C Ambient Temperature
D, LP Suffix Plastic Package
P Suffix Plastic Package
DM Suffix Plastic Package
PD
Total Power Dissipation @ TC = 25°C
Derate above 25°C Case Temperature
D, LP Suffix Plastic Package
P Suffix Plastic Package
PD
NOTE:
°C
–40 to +85
0 to +70
–65 to +150
°C
W
0.70
1.10
0.52
W
1.5
3.0
ESD data available upon request.
RECOMMENDED OPERATING CONDITIONS
Condition
Cathode to Anode Voltage
Symbol
Min
Max
Unit
VKA
Vref
36
V
IK
1.0
100
mA
Cathode Current
THERMAL CHARACTERISTICS
Symbol
D, LP Suffix
Package
P Suffix
Package
DM Suffix
Package
Unit
Thermal Resistance, Junction–to–Ambient
RθJA
178
114
240
°C/W
Thermal Resistance, Junction–to–Case
RθJC
83
41
–
°C/W
Characteristic
2
MOTOROLA ANALOG IC DEVICE DATA
TL431, A, B Series
ELECTRICAL CHARACTERISTICS (TA = 25°C, unless otherwise noted.)
TL431I
Characteristic
Symbol
Reference Input Voltage (Figure 1)
VKA = Vref, IK = 10 mA
TA = 25°C
TA = Tlow to Thigh (Note 1)
Min
Typ
TL431C
Max
Min
Typ
Max
Vref
V
Reference Input Voltage Deviation Over
Temperature Range (Figure 1, Notes 1, 2)
VKA= Vref, IK = 10 mA
ΔVref
Ratio of Change in Reference Input Voltage
to Change in Cathode to Anode Voltage
IK = 10 mA (Figure 2),
ΔVKA = 10 V to Vref
ΔVKA = 36 V to 10 V
DVref
DVKA
2.44
2.41
2.495
–
2.55
2.58
2.44
2.423
2.495
–
2.55
2.567
–
7.0
–
–
3.0
–
mV
mV/V
–
–
Reference Input Current (Figure 2)
IK = 10 mA, R1 = 10 k, R2 = ∞
TA = 25°C
TA = Tlow to Thigh (Note 1)
Unit
–1.4
–1.0
–2.7
–2.0
–
–
–1.4
–1.0
–2.7
–2.0
μA
Iref
–
–
1.8
–
4.0
6.5
–
–
1.8
–
4.0
5.2
Reference Input Current Deviation Over
Temperature Range (Figure 2, Note 1, 4)
IK = 10 mA, R1 = 10 k, R2 = ∞
ΔIref
–
0.8
2.5
–
0.4
1.2
μA
Minimum Cathode Current For Regulation
VKA = Vref (Figure 1)
Imin
–
0.5
1.0
–
0.5
1.0
mA
Off–State Cathode Current (Figure 3)
VKA = 36 V, Vref = 0 V
Ioff
–
260
1000
–
2.6
1000
nA
|ZKA|
–
0.22
0.5
–
0.22
0.5
Ω
Dynamic Impedance (Figure 1, Note 3)
VKA = Vref, ΔIK = 1.0 mA to 100 mA
f ≤ 1.0 kHz
NOTES: 1. Tlow = –40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM
= 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,
TL431ACDM, TL431BCDM
Thigh = +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM
= +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM
2. The deviation parameter ΔVref is defined as the difference between the maximum and minimum values obtained over the full operating ambient
temperature range that applies.
Vref max
ΔVref = Vref max
–Vref min
ΔTA = T2 – T1
Vref min
T1
ǒ
Ǔ
T2
Ambient Temperature
The average temperature coefficient of the reference input voltage, αVref is defined as:
D Vref
V
@ 25_C
X 10 6
D
x 10 6
ref
D TA
(V
@ 25_C)
A ref
αVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature. (Refer to Figure 6.)
ppm
V
ref _C
+ 8.0 mV and slope is positive,
@ 25_C + 2.495 V, DT + 70_C
ref
A
Example : DV
V
+
ref
ref
3. The dynamic impedance ZKA is defined as |Z KA|
+ DDVIKA
+DT
a
V
ref
V
x 106
+ 45.8 ppmń_C
+ 0.008
70 (2.495)
K
When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:
|Z
MOTOROLA ANALOG IC DEVICE DATA
Ȁ| [ |ZKA|
KA
ǒ
1
) R1
R2
Ǔ
3
TL431, A, B Series
ELECTRICAL CHARACTERISTICS (TA = 25°C, unless otherwise noted.)
TL431AI
Characteristic
Symbol
Reference Input Voltage (Figure 1)
VKA = Vref, IK = 10 mA
TA = 25°C
TA = Tlow to Thigh
Min
Typ
TL431AC
Max
Min
Typ
TL431B
Max
Min
Typ
Max
Unit
Vref
V
2.47
2.44
2.495
–
2.52
2.55
2.47
2.453
2.495
–
2.52
2.537
2.483
2.475
2.495
2.495
2.507
2.515
–
7.0
–
–
3.0
–
–
3.0
–
ΔVref
Reference Input Voltage Deviation Over
Temperature Range (Figure 1, Notes 1, 2)
VKA= Vref, IK = 10 mA
DVref
DVKA
Ratio of Change in Reference Input Voltage
to Change in Cathode to Anode Voltage
IK = 10 mA (Figure 2),
ΔVKA = 10 V to Vref
ΔVKA = 36 V to 10 V
mV
mV/V
–
–
Reference Input Current (Figure 2)
IK = 10 mA, R1 = 10 k, R2 = ∞
TA = 25°C
TA = Tlow to Thigh (Note 1)
ΔIref
Reference Input Current Deviation Over
Temperature Range (Figure 2, Note 1)
IK = 10 mA, R1 = 10 k, R2 = ∞
–1.4
–1.0
–2.7
–2.0
–
–
–1.4
–1.0
–2.7
–2.0
–
–
–1.4
–1.0
–2.7
–2.0
μA
–
–
1.8
–
4.0
6.5
–
–
1.8
–
4.0
5.2
–
–
1.1
–
2.0
4.0
ΔIref
–
0.8
2.5
–
0.4
1.2
–
0.4
1.2
μA
Minimum Cathode Current For Regulation
VKA = Vref (Figure 1)
Imin
–
0.5
1.0
–
0.5
1.0
–
0.5
1.0
mA
Off–State Cathode Current (Figure 3)
VKA = 36 V, Vref = 0 V
Ioff
–
260
1000
–
260
1000
–
230
500
nA
|ZKA|
–
0.22
0.5
–
0.22
0.5
–
0.14
0.3
Ω
Dynamic Impedance (Figure 1, Note 3)
VKA = Vref, ΔIK = 1.0 mA to 100 mA
f ≤ 1.0 kHz
NOTES: 1. Tlow = –40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM
= 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,
TL431ACDM, TL431BCDM
Thigh = +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM
= +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM
2. The deviation parameter ΔVref is defined as the difference between the maximum and minimum values obtained over the full operating ambient
temperature range that applies.
Vref max
ΔVref = Vref max
–Vref min
ΔTA = T2 – T1
Vref min
T1
ǒ
Ǔ
T2
Ambient Temperature
The average temperature coefficient of the reference input voltage, αVref is defined as:
D Vref
V
@ 25_C
X 10 6
D
V
x 10 6
ref
(V
@ 25_C)
A
A ref
αVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature. (Refer to Figure 6.)
ppm
V
ref _C
D
T
+ 8.0 mV and slope is positive,
@ 25_C + 2.495 V, DT + 70_C
ref
A
Example : DV
V
+
ref
ref
3. The dynamic impedance ZKA is defined as |Z KA|
+ DDVIKA
+DT
a
V
ref
x 106
+ 45.8 ppmń_C
+ 0.008
70 (2.495)
K
When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:
|Z
4
Ȁ| [ |ZKA|
KA
ǒ
1
) R1
R2
Ǔ
MOTOROLA ANALOG IC DEVICE DATA
TL431, A, B Series
Figure 1. Test Circuit for VKA = Vref
Input
Figure 2. Test Circuit for VKA > Vref
VKA
Input
VKA
IK
Iref
R1
Vref
Figure 3. Test Circuit for Ioff
R2
Input
V
KA
VKA
Ioff
IK
+ Vref ǒ 1
)
R1 Ǔ ) I
S R1
ref
R2
Vref
Figure 4. Cathode Current versus
Cathode Voltage
Figure 5. Cathode Current versus
Cathode Voltage
800
VKA = Vref
TA = 25°C
100
Input
IK , CATHODE CURRENT ( μA)
IK , CATHODE CURRENT (mA)
150
VKA
IK
50
0
–50
–100
–2.0
–1.0
0
1.0
2.0
3.0
600 Input
VKA = Vref
TA = 25°C
400
200
0
–200
–1.0
0
VKA, CATHODE VOLTAGE (V)
VKA
IKVKA = Vref
IK = 10 mA
Input
2560
Vref
Vref Max = 2550 mV
2540
2520
Vref Typ = 2495 mV
2500
2480
2460
2440
Vref Min = 2440 mV
2420
2400
–55
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
2.0
3.0
Figure 7. Reference Input Current versus
Ambient Temperature
100
125
Iref , REFERENCE INPUT CURRENT ( μA)
Vref , REFERENCE INPUT VOLTAGE (mV)
2580
1.0
VKA, CATHODE VOLTAGE (V)
Figure 6. Reference Input Voltage versus
Ambient Temperature
2600
IMin
VKA
IK
3.0
2.5
2.0
1.5
IK = 10 mA
1.0
Input
10k Iref
VKA
IK
0.5
0
–55
–25
0
25
50
75
125
100
TA, AMBIENT TEMPERATURE (°C)
5
TL431, A, B Series
Figure 9. Off–State Cathode Current
versus Ambient Temperature
0
IK = 10 mA
TA = 25°C
–8.0
–16
Input
VKA
IK
R1
–24
–32
R2
Vref
0
10
20
30
1.0 k
Ioff , OFF–STATE CATHODE CURRENT (nA)
Δ Vref , REFERENCE INPUT VOLTAGE (mV)
Figure 8. Change in Reference Input
Voltage versus Cathode Voltage
100
10
1.0
Input
0.1
0.01
–55
40
–25
0
VKA, CATHODE VOLTAGE (V)
50
10
–
+
Gnd
1.0
0.1
1.0 k
10 k
100 k
1.0 M
10 M
0.280
0.260
125
100
125
0.240
0.220
0.200
–55
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (_C)
Figure 12. Open–Loop Voltage Gain
versus Frequency
Figure 13. Spectral Noise Density
80
60
50
9.0 μF
40
IK
15 k
Output
230
NOISE VOLTAGE (nV/ √Hz)
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
100
VKA = Vref
Δ IK = 1.0 mA to 100 mA
f ≤ 1.0 kHz
Output
1.0 k
IK
50
–
+
Gnd
0.300
f, FREQUENCY (MHz)
8.25 k
Gnd
30
20
10
75
0.320
TA = 25_C
Δ IK = 1.0 mA to 100 mA
Output
IK
50
Figure 11. Dynamic Impedance
versus Ambient Temperature
|ZKA|, DYNAMIC IMPEDANCE (Ω )
|ZKA|, DYNAMIC IMPEDANCE (Ω )
1.0 k
25
TA, AMBIENT TEMPERATURE (5C)
Figure 10. Dynamic Impedance
versus Frequency
100
VKA = 36 V
Vref = 0 V
VKA
Ioff
IK = 10 mA
TA = 25_C
60
40
Input
VKA = Vref
IK = 10 mA
TA = 25°C
20
Output
IK
0
–10
1.0 k
10 k
100 k
f, FREQUENCY (MHz)
6
1.0 M
10 M
0
10
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
TL431, A, B Series
Figure 14. Pulse Response
TA = 25_C
Input
Monitor
Output
2.0
Pulse
Generator
f = 100 kHz
1.0
220 Output
50
Gnd
0
5.0
0
4.0
120
100
A) VKA = Vref
B) VKA = 5.0 V @ IK = 10 mA
C) VKA = 10 V @ IK = 10 mA
D) VKA = 15 V @ IK = 10 mA
D) TA = 25°C
Stable
A
A
B
B
80
Stable
C
60
D
40
20
Input
0
IK , CATHODE CURRENT (mA)
VOLTAGE SWING (V)
3.0
Figure 15. Stability Boundary Conditions
140
12
8.0
16
20
0
100 pF
1000 pF
0.01 μF
0.1 μF
1.0 μF
10 μF
CL, LOAD CAPACITANCE
t, TIME (μs)
Figure 16. Test Circuit For Curve A
of Stability Boundary Conditions
Figure 17. Test Circuit For Curves B, C, And D
of Stability Boundary Conditions
150
150
IK
IK
V+
10 k
V+
CL
CL
TYPICAL APPLICATIONS
Figure 18. Shunt Regulator
V+
Figure 19. High Current Shunt Regulator
Vout
R1
V+
Vout
R1
R2
R2
V out
+ ǒ1
)
R1Ǔ V
ref
R2
MOTOROLA ANALOG IC DEVICE DATA
V out + ǒ1 ) R1Ǔ V
ref
R2
7
TL431, A, B Series
Figure 20. Output Control for a
Three–Terminal Fixed Regulator
Figure 21. Series Pass Regulator
V+
MC7805
Out
In
Common
V+
Vout
R1
Vout
R1
R2
R2
V out
+ ǒ1
)
V out min + V
V out + ǒ1 ) R1Ǔ V
ref
R2
R1Ǔ V
ref
R2
ref
)
V out min + V
5.0V
Figure 22. Constant Current Source
RCL
V+
ref
)
V
be
Figure 23. Constant Current Sink
Isink
V+
Iout
V
I
V
I out + ref
R
CL
Sink
+
ref
R
S
RS
Figure 24. TRIAC Crowbar
V+
Vout
Figure 25. SRC Crowbar
V+
Vout
R1
R1
R2
R2
V
out(trip)
+
ǒ1 ) R1Ǔ V
ref
R2
V
8
out(trip)
+
ǒ1 ) R1Ǔ V
ref
R2
MOTOROLA ANALOG IC DEVICE DATA
TL431, A, B Series
Figure 26. Voltage Monitor
V+
Figure 27. Single–Supply Comparator with
Temperature–Compensated Threshold
Vout
l
R1
V+
R3
Vout
Vin
R2
R4
Vth = Vref
L.E.D. indicator is ‘on’ when V+ is between the
upper and lower limits.
Lower Limit
+ ǒ1
)
R1Ǔ V
ref
R2
Vin
< Vref
Vout
V+
> Vref
≈ 2.0 V
Upper Limit + ǒ1 ) R3Ǔ V
ref
R4
Figure 28. Linear Ohmmeter
Figure 29. Simple 400 mW Phono Amplifier
25 V
1N5305
5.0 k
1%
50 k
1%
10 kΩ
V
1.0 kΩ
V
500 k
1%
5.0 M
1%
100 kΩ
V
25 V
–
LM11
+
Range
R x + V out
D
W
V
–5.0 V
Range
MOTOROLA ANALOG IC DEVICE DATA
330
Tl = 330 to 8.0 Ω
TI
10 k
Calibrate
1.0 MΩ
V
RX
38 V
2.0 mA
8.0 Ω
+
470 μF
360 k
1.0 μF
*
Vout
* Thermalloy
* THM 6024
* Heatsink on
* LP Package
56 k
10 k
0.05 μF
Tone
25 k
Volume
47 k
9
TL431, A, B Series
Figure 30. High Efficiency Step–Down Switching Converter
150 mH @ 2.0 A
Vin = 10 V to 20 V
TIP115
Vout = 5.0 V
Iout = 1.0 A
1.0 k
4.7 k
+
4.7 k
MPSA20
1N5823
0.01μF
100 k
2200 μF
470 μF
4.7 k
+
0.1 μF
2.2 k
Test
10
51 k
10
Conditions
Results
Line Regulation
Vin = 10 V to 20 V, Io = 1.0 A
53 mV (1.1%)
Load Regulation
Vin = 15 V, Io = 0 A to 1.0 A
25 mV (0.5%)
Output Ripple
Vin = 10 V, Io = 1.0 A
50 mVpp P.A.R.D.
Output Ripple
Vin = 20 V, Io = 1.0 A
100 mVpp P.A.R.D.
Efficiency
Vin = 15 V, Io = 1.0 A
82%
MOTOROLA ANALOG IC DEVICE DATA
TL431, A, B Series
APPLICATIONS INFORMATION
The TL431 is a programmable precision reference which
is used in a variety of ways. It serves as a reference voltage
in circuits where a non–standard reference voltage is
needed. Other uses include feedback control for driving an
optocoupler in power supplies, voltage monitor, constant
current source, constant current sink and series pass
regulator. In each of these applications, it is critical to
maintain stability of the device at various operating currents
and load capacitances. In some cases the circuit designer
can estimate the stabilization capacitance from the stability
boundary conditions curve provided in Figure 15. However,
these typical curves only provide stability information at
specific cathode voltages and at a specific load condition.
Additional information is needed to determine the
capacitance needed to optimize phase margin or allow for
process variation.
A simplified model of the TL431 is shown in Figure 31.
When tested for stability boundaries, the load resistance is
150 W. The model reference input consists of an input
transistor and a dc emitter resistance connected to the
device anode. A dependent current source, Gm, develops a
current whose amplidute is determined by the difference
between the 1.78 V internal reference voltage source and the
input transistor emitter voltage. A portion of Gm flows through
compensation capacitance, CP2. The voltage across CP2
drives the output dependent current source, Go, which is
connected across the device cathode and anode.
Model component values are:
Vref = 1.78 V
Gm = 0.3 + 2.7 exp (–IC/26 mA)
where IC is the device cathode current and Gm is in mhos
Go = 1.25 (Vcp2) μmhos.
Resistor and capacitor typical values are shown on the
model. Process tolerances are ± 20% for resistors, ±10% for
capacitors, and ±40% for transconductances.
An examination of the device model reveals the location of
circuit poles and zeroes:
1
1
P1
7.96 kHz
2p R
C
2p * 1.0 M * 20 pF
GM P1
+
+
MOTOROLA ANALOG IC DEVICE DATA
+
P2
+ 2p R 1 C + 2p * 10 M1* 0.265 pF + 60 kHz
P2 P2
Z1
+ 2p R 1 C + 2p * 15.91k * 20 pF + 500 kHz
Z1 P1
In addition, there is an external circuit pole defined by the
load:
1
P
L
2p R C
L L
Also, the transfer dc voltage gain of the TL431 is:
+
G
+ GMRGMGoRL
Example 1:
I
C
+ 10 mA, RL+ 230 W, CL+ 0. Define the transfer gain.
The DC gain is:
+ GMRGMGoRL +
(2.138)(1.0 M)(1.25 m)(230) + 615 + 56 dB
8.25 k
Loop gain + G
+ 218 + 47 dB
8.25 k ) 15 k
G
The resulting transfer function Bode plot is shown in
Figure 32. The asymptotic plot may be expressed as the
following equation:
1
jf
500 kHz
Av
615
1
jf
1
jf
8.0 kHz 60 kHz
+
ǒ)Ǔ
ǒ ) Ǔǒ ) Ǔ
The Bode plot shows a unity gain crossover frequency of
approximately 600 kHz. The phase margin, calculated from
the equation, would be 55.9 degrees. This model matches
the Open–Loop Bode Plot of Figure 12. The total loop would
have a unity gain frequency of about 300 kHz with a phase
margin of about 44 degrees.
11
TL431, A, B Series
Figure 31. Simplified TL431 Device Model
VCC
RL
CL
Input
3
15 k
Cathode
9.0 mF
Ref
RP2
10 M
Vref
1.78 V
+
–
1
500 k
8.25 k
RGM
1.0 M
Anode
Figure 32. Example 1
Circuit Open Loop Gain Plot
RZ1
15.9 k
CP2
0.265 pF
2
Note that the transfer function now has an extra pole
formed by the load capacitance and load resistance.
Note that the crossover frequency in this case is about
250 kHz, having a phase margin of about –46 degrees.
Therefore, instability of this circuit is likely.
TL431 OPEN–LOOP VOLTAGE GAIN VERSUS FREQUENCY
60
50
Figure 33. Example 2
Circuit Open Loop Gain Plot
40
30
TL431 OPEN–LOOP BODE PLOT WITH LOAD CAP
80
20
10
0
–10
–20
101
103
102
104
105
106
107
f, FREQUENCY (Hz)
Example 2.
IC = 7.5 mA, RL = 2.2 kW, CL = 0.01 mF. Cathode tied to
reference input pin. An examination of the data sheet stability
boundary curve (Figure 15) shows that this value of load
capacitance and cathode current is on the boundary. Define
the transfer gain.
The DC gain is:
+ GMRGMGoRL +
(2.323)(1.0 M)(1.25 m)(2200) + 6389 + 76 dB
G
The resulting open loop Bode plot is shown in Figure 33.
The asymptotic plot may be expressed as the following
equation:
1
jf
500 kHz
Av
615
1
jf
1
jf
1
jf
8.0 kHz 60 kHz 7.2 kHz
+
12
ǒ)Ǔ
ǒ ) Ǔǒ ) Ǔǒ ) Ǔ
Av, OPEN–LOOP GAIN (dB)
Av, OPEN–LOOP VOLTAGE GAIN (dB)
CP1
20 pF
GM
Rref
16
Go
1.0 mmho
60
40
20
0
–20
101
102
103
104
105
106
f, FREQUENCY (Hz)
With three poles, this system is unstable. The only hope
for stabilizing this circuit is to add a zero. However, that can
only be done by adding a series resistance to the output
capacitance, which will reduce its effectiveness as a noise
filter. Therefore, practically, in reference voltage applications,
the best solution appears to be to use a smaller value of
capacitance in low noise applications or a very large value to
provide noise filtering and a dominant pole rolloff of the
system.
MOTOROLA ANALOG IC DEVICE DATA
TL431, A, B Series
OUTLINE DIMENSIONS
A
LP SUFFIX
PLASTIC PACKAGE
CASE 29–04
(TO–92)
ISSUE AE
B
R
P
L
F
SEATING
PLANE
K
DIM
A
B
C
D
F
G
H
J
K
L
N
P
R
V
D
X X
G
J
H
V
C
SECTION X–X
1
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L.
DIMENSION D AND J APPLY BETWEEN L AND K
MINIMUM. LEAD DIMENSION IS UNCONTROLLED
IN P AND BEYOND DIMENSION K MINIMUM.
N
N
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.022
0.016
0.019
0.045
0.055
0.095
0.105
0.015
0.020
0.500
–––
0.250
–––
0.080
0.105
–––
0.100
0.115
–––
0.135
–––
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.41
0.55
0.41
0.48
1.15
1.39
2.42
2.66
0.39
0.50
12.70
–––
6.35
–––
2.04
2.66
–––
2.54
2.93
–––
3.43
–––
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
5
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
–B–
1
4
F
–A–
NOTE 2
L
C
J
–T–
N
SEATING
PLANE
D
H
M
K
DIM
A
B
C
D
F
G
H
J
K
L
M
N
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
G
0.13 (0.005)
MOTOROLA ANALOG IC DEVICE DATA
M
T A
M
B
M
13
TL431, A, B Series
OUTLINE DIMENSIONS
DM SUFFIX
PLASTIC PACKAGE
CASE 846A–02
(Micro–8)
ISSUE D
–A–
–B–
K
PIN 1 ID
G
D 8 PL
0.08 (0.003)
–T–
NOTES:
6. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
7. CONTROLLING DIMENSION: MILLIMETER.
8. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH,
PROTRUSIONS OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
9. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
M
T B
S
A
DIM
A
B
C
D
G
H
J
K
L
S
SEATING
PLANE
C
0.038 (0.0015)
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
–––
0.043
0.010
0.016
0.026 BSC
0.002
0.006
0.005
0.009
0.187
0.199
0.016
0.028
L
J
H
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
–––
1.10
0.25
0.40
0.65 BSC
0.05
0.15
0.13
0.23
4.75
5.05
0.40
0.70
D SUFFIX
PLASTIC PACKAGE
CASE 751–06
(SOP–8)
ISSUE T
D
A
8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETER.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
5
0.25
H
E
M
B
M
1
4
h
B
e
X 45 _
q
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
14
M
C B
S
A
S
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.19
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
MOTOROLA ANALOG IC DEVICE DATA
TL431, A, B Series
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
MOTOROLA ANALOG IC DEVICE DATA
15
TL431, A, B Series
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,
4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488
Customer Focus Center: 1–800–521–6274
Mfax™: [email protected] – TOUCHTONE 1–602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
Motorola Fax Back System
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
– http://sps.motorola.com/mfax/
HOME PAGE: http://motorola.com/sps/
16
◊
TL431/D
MOTOROLA ANALOG IC DEVICE DATA
TL431A
Adjustable Precision Shunt Regulator
FEATURES
PIN CONNECTIONS
• Programmable Output Voltage to 40V
• Low Dynamic Output Impedance 0.2Ω
• Sink Current Capability of 0.1 mA to 100 mA
• Equivalent Full-Range Temperature Coefficient of 50 ppm/oC
• Temperature Compensated for Operation over Full Rated
Operating Temperature Range
R
• Low Output Noise Voltage
A
K
• Fast Turn on Respons
SOT-89
K
A
TL431ACPK
R
TO-92
R
TL431ACLP--Bulk Pack
TL431ACLPM-Ammo Pack
• TO-92 or SOT-23 and SOT-89 ,SO8packages
A
K
SO8
TL431ACMX
A
CATHODE
ANODE
ANODE
NC
1
8
2
7
3
6
4
5
REF
ANODE
ANODE
NC
SOT-23
TL431ALT1
R
K
DESCRIPTION
The TL431A is a three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges.
The output voltage may be set to any value between Vref (approximately 2.5 volts) and 36 volts with two external resistors. These
devices have a typical dynamic output impedance of 0.2Ω. Active output circuitry provides a very sharp turn-on characteristic,
making these devices excellent replacement for zener diodes in many applications.
The TL431A is characterized for operation from -0oC to +70oC.
SYMBOL
FUNCTIONAL BLOCK DIAGRAM
ABSOLUTE MAXIMUM RATINGS
(Operating temperature range applies unless otherwise specified)
Characteristic
Cathode Voltage
Symbol
Value
Unit
VKA
40
IK
100 ~ 150
Reference Input Current Range
IREF
0.05 ~ 10
mA
Power Dissipation at 25oC:
TO – 92 Package (R‰JA = 178oC/W)
SOT – 23 – 3 Package (R‰JA = 625oC/W)
Junction Temperature Range
PD
TJ
0.7
0.2
0 ~ 150
W
W
o
C
Operating Temperature Range
Tg
0 ~ 70
o
C
-65 ~ +150
o
C
Cathode Current Range (Continuous)
Storage Temperature Range
Tstg
1
V
mA
V
TL431A
Adjustable Precision Shunt Regulator
RECOMMENDED OPERATING CONDITIONS
Characteristic
Symbol
Cathode Voltage
VKA
Cathode Current
IK
Test Condition
Min
Typ
REF
0.5
Max
Unit
40
V
100
mA
ELECTRICAL CHARACTERISTICS
(Ta = 25oC, VKA = VREF, IK = 10mA unless otherwise specified)
Characteristic
Symbol
Reference Input Voltage
Test Condition
Vka=Vref, Ik=10mA
VREF
Min
Typ
Max
Unit
2.445
2.495
2.545
V
VREF(dev)
Tmin ≤ Ta ≤ Tmax
3
17
mV
ΔV R EF
ΔV K A
ΔVKA = 10V-VREF
-1.4
-2.7
mV/V
ΔVKA = 36V- 10V
-1.0
-2.0
IREF
R1 = 10KΩ, R2 = ∞
1.8
4
μA
Deviation of Reference Input
Current Over Full Temperature
Range
IREF(dev)
R1 = 10KΩ, R2 = ∞
0.4
1.2
μA
Minimum Cathode Current for
Regulation
IK(min)
0.25
0.5
mA
Off-State Cathode Current
IK(off)
VKA = 40V, VREF = 0
0.26
0.9
μA
Dynamic Impedance
ZKA
IK = 10mA to 100 mA , f ≤ 1.0KHz
0.22
0.5
Ω
Fig.2. Test Circuit for VKA ≥ VREF
Fig.3. Test Circuit for Ioff
Deviation of Reference Input
Voltage Over Full Temperature
Range
Ratio of Change in Reference Input
Voltage to the Change in Cathode
Voltage
Reference Input Current
TEST CIRCUITS
Fig.1. Test Circuit for VKA = VREF
IN P U T
VKA
IN P U T
IK
VKA
IK
R1
IN P U T
VKA
IK (O F F )
IR E F
B T 432
B T 432
10n F
V R EF
R2
V R EF
10n F
V K A = V R E F (1+ R 1/R 2)+ IR E F R 1
2
B T 432
TL431A
Adjustable Precision Shunt Regulator
PAD LAYOUT
Y
0,0
X
Chip siz e:0,81mmx 0,76 mm
Pad siz e : 94 x 94
Unit
: μm
2
1
3
PAD LOCATION
Unit: μm
Pad No.
Pad Name
Description
X
Y
1
R
Reference
-314
-299
2
A
Anode
-75
-275
3
K
Cathode
231
-299
PHYSICAL CHARACTERISTIC
Wafes dia
Wafes width
Scribe width
Passivation
100 mm (4")
350 ±20μm
90 μm
PSG
Ordering Information
Grade
AA
A
B
Accuracy
0.5% of Typ.
1 % of Typ.
2 % of Typ.
Marking
TL431AA
TL431A
TL431
Min.
2.488V
2.475V
2.445V
Typ.
2.495V
2.495V
2.495V
Max.
2.513V
2.525V
2.545V
Notice: Please don't confuse the version of product (-A,-B,-I Suffix) with Grade of
product (AA, A).
3
TL431A
Adjustable Precision Shunt Regulator
Symbol
A
A1
b
c
D
D1
E
e
e1
L
h
Dimensions In Millimeters
Min
Max
3.300
3.700
1.100
1.400
0.380
0.550
0.360
0.510
4.400
4.700
3.430
4.300
4.700
1.270 TYP
2.440
2.640
14.100
14.500
1.600
0.000
0.380
4
Dimensions In Inches
Min
Max
0.130
0.146
0.043
0.055
0.015
0.022
0.014
0.020
0.173
0.185
0.135
0.169
0.185
0.050 TYP
0.096
0.104
0.555
0.571
0.063
0.000
0.015
TL431A
Adjustable Precision Shunt Regulator
Symbol
A
b
b1
c
D
D1
E
E1
e
e1
L
Dimensions In Millimeters
Min
Max
1.400
1.600
0.320
0.520
0.400
0.580
0.350
0.440
4.400
4.600
1.550 REF
2.300
2.600
3.940
4.250
1.500 TYP
3.000 TYP
0.900
1.200
5
Dimensions In Inches
Min
Max
0.055
0.063
0.013
0.197
0.016
0.023
0.014
0.017
0.173
0.181
0.061 REF
0.091
0.102
0.155
0.167
0.060TYP
0.118TYP
0.035
0.047
TL431A
6\PERO
A
A1
A2
b
c
D
E
E1
e
e1
L
Adjustable Precision Shunt Regulator
'LPHQVLRQV,Q0LOOLPHWHUV
0LQ
0D[
1.050
1.250
0.000
0.100
1.050
1.150
0.300
0.500
0.100
0.200
2.820
3.020
1.500
1.700
2.650
2.950
0.950(BSC)
1.800
2.000
0.300
0.600
0°
8°
6
'LPHQVLRQV,Q,QFKHV
0LQ
0D[
0.041
0.049
0.000
0.004
0.041
0.045
0.012
0.020
0.004
0.008
0.111
0.119
0.059
0.067
0.104
0.116
0.037(BSC)
0.071
0.079
0.012
0.024
0°
8°
TL431A
6\PERO
$
$
$
E
F
'
(
(
H
/
©
Adjustable Precision Shunt Regulator
'LPHQVLRQV,Q0LOOLPHWHUV
0LQ
0D[
%6&
e
e
7
'LPHQVLRQV,Q,QFKHV
0LQ
0D[
%6&
e
e
TL431 Programmable Precision References
The TL431 integrated circuits are three-terminal
programmable shunt regulator diodes. These monolithic
IC voltage references operate as a low temperature
coefficient zener which is programmable from Vref to
36 volts with two external resistors. These devices
exhibit a wide operating current range of 1.0 to 100mA
with a typical dynamic impedance of 0.22 Ω. The
characteristics of these references make them
excellent replacements for zener diodes in many
applications such as digital voltmeters, power supplies,
and op amp circuitry. The 2.5 volt reference makes it
convenient to obtain a stable reference from 5.0 volt
logic supplies, and since the TL431 operates as a shunt
regulator, it can be used as either a positive or negative
voltage reference.
FEATURES
PIN ARRANGEMENT
l Programmable Output Voltage to 36 Volts
TO-92
DIP-8
l Low Dynamic Output Impedance, 0.22 Ω Typical
l Sink Current Capability of 1.0 to 100 mA
l Equivalent Full-Range Temperature Coefficient of
50 ppm/ oC Typical
l Temperature Compensated for operation over
Pin: 1. Reference
2. Anode
3. Cathode
Full Rated Operating Temperature Range
l Low Output Noise Voltage
Pin: 1. Cathode
6. Anode
8. Reference
Other Pins: NC
SOP-8
CIRCUIT SCHEMATIC
Pin: 1.
2.
3.
4.
SYMBOL
Cathode
Anode
Reference
NC
5.
6.
7.
8.
NC
Anode
Anode
Reference
This SOP-8 is an internally modified SOP-8 Package.
Pins 2, 3, 6 and 7 are electrically common to the die
attach flag. This internal lead frame modification
decreases package thermal resistance and increases
power dissipation capability when appropriately
mounted on a printed circuit board. This SOP-8
conforms to all external dimensions of the standard
SOP-8 package.
FUNCTIONAL BLOCK DIAGRAM
ORDERING INFORMATION
Device
TL431CT
TL431CD
TL431CS
TL431IT
TL431ID
TL431IS
9-1
Temperature
Range
0 to +70 oC
-40 to +85 oC
Package
TO-92
DIP-8
SOP-8
TO-92
DIP-8
SOP-8
TL431 Programmable Precision References
MAXIMUM RATINGS
(Full operating ambient temperature range applies unless otherwise noted.)
Rating
Symbol
Va l u e
Unit
VKA
37
V
Cathode Current Range, Continuous
IK
-100 to +150
mA
Reference Input Current Range, Continuous
Iref
-0.05 to +10
mA
Operating Junction Temperature
TJ
150
Cathode to Anode Voltage
Operating Ambient Temperature Range
TL431I, TL431AI, TL431BI
TL431C, TL431AC, TL431BC
TA
Storage Temperature Range
T stg
o
C
o
C
-40 to +85
0 to +70
o
Total Power Dissipation @ TA = 25 C
Derate above TA = 25oC Ambient Temperature
T, S Suffix Packages
D Suffix Package
PD
Total Power Dissipation @ TC = 25oC
Derate above TA = 25oC Case Temperature
T, S Suffix Packages
D Suffix Package
PD
o
-65 to +150
C
W
0.70
1.10
W
1.5
3.0
THERMAL CHARACTERISTICS
Characteristic
Symbol
T, S Suffix
Thermal Resistance, Junction to Ambient
Rθ JA
178
D Suffix
114
o
Unit
C/W
Thermal Resistance, Junction to Case
Rθ JC
83
41
o
C/W
Symbol
Min
Max
VΚA
Vref
36
V
IK
1.0
100
mA
RECOMMENDED OPERATING CONDITIONS
Condition / Value
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
9-2
Unit
TL431 Programmable Precision References
ELECTRICAL CHARACTERISTICS (Ambient temperature at 25oC unless otherwise noted)
Characteristic
Symbol
Reference Input Voltage (Fig. 1)
VKA = Vref, IK = 10mA
TA = 25oC
TA = Tlow to Thigh (Note 1)
TL431I
Min
Typ
Max
TL431C
Min
Typ
Max
Unit
Vref
V
Reference Input Voltage Deviation Over
Temperature Range (Fig. 1, Note 1, 2, 4)
VKA = Vref, IK = 10mA
ΔVref
Ratio of Change in Reference Input Voltage
to Change in Cathode to Anode Voltage
IK = 10mA (Fig. 2),
ΔVKA = 10V to Vref
ΔVKA = 36V to 10V
ΔVref
ΔVKA
2.44
2.41
2.495
---
2.55
2.58
2.44
2.423
2.495
---
2.55
2.567
---
7.0
30
---
3.0
17
mV/V
-----
-1.4
-1.0
-2.7
-2.0
-----
-1.4
-1.0
-2.7
-2.0
μA
Iref
8
Reference Input Current (Fig. 2)
IK = 10mA, R1 = 10k, R2 =
TA = 25oC
TA = Tlow to Thigh (Note 1)
mV
-----
1.8
---
4.0
6.5
-----
1.8
---
4.0
5.2
ΔIref
---
0.8
2.5
---
0.4
1.2
μA
Minimum Cathode Current for Regulation
VKA = Vref (Fig. 1)
Imin
---
0.5
1.0
---
0.5
1.0
mA
Off - State Cathode Current (Fig. 3)
VKA = 36V, Vref = 0V
Ioff
---
260
1000
---
2.6
1000
nA
Dynamic Impedance (Fig. 1, Note 3)
VKA = Vref, ΔIK = 1.0mA to 100mA,
f < 1.0 kHz
ZKA
---
0.22
0.5
---
0.22
0.5
Ω
8
Reference Input Current Deviation Over
Temperature Range (Fig. 2, Note 1, 4)
IK = 10mA, R1 = 10k, R2 =
ELECTRICAL CHARACTERISTICS (Ambient temperature at 25oC unless otherwise noted)
Characteristic
Symbol
Reference Input Voltage (Fig. 1)
VKA = Vref, IK = 10mA
TA = 25oC
TA = Tlow to Thigh (Note 1)
TL431AI
Typ
Max
TL431AC
Min
Typ
Max
Min
TL431B
Typ
Max
Vref
Reference Input Voltage Deviation Over
Temperature Range (Fig. 1, Note 1, 2, 4)
VKA = Vref, IK = 10mA
ΔVref
Ratio of Change in Reference Input Voltage
to Change in Cathode to Anode Voltage
IK = 10mA (Fig. 2),
ΔVKA = 10V to Vref
ΔVKA = 36V to 10V
ΔVref
ΔVKA
Unit
V
2.47
2.44
2.495
---
2.52
2.55
2.47
2.453
2.495
---
2.52
2.537
2.483
2.475
2.495
2.495
2.507
2.515
---
7.0
30
---
3.0
17
---
3.0
17
mV
mV/V
-----
-1.4
-1.0
-2.7
-2.0
-----
-1.4
-1.0
-2.7
-2.0
-----
-1.4
-1.0
-2.7
-2.0
μA
Iref
8
Reference Input Current (Fig. 2)
IK = 10mA, R1 = 10k, R2 =
TA = 25oC
TA = Tlow to Thigh (Note 1)
Min
-----
1.8
---
4.0
6.5
-----
1.8
---
4.0
5.2
-----
1.1
---
2.0
4.0
ΔIref
---
0.8
2.5
---
0.4
1.2
---
0.4
1.2
μA
Minimum Cathode Current for Regulation
VKA = Vref (Fig. 1)
Imin
---
0.5
1.0
---
0.5
1.0
---
0.5
1.0
mA
Off - State Cathode Current (Fig. 3)
VKA = 36V, Vref = 0V
Ioff
---
260
1000
---
260
1000
---
230
500
nA
Dynamic Impedance (Fig. 1, Note 3)
VKA = Vref, ΔIK = 1.0mA to 100mA,
f < 1.0 kHz
ZKA
---
0.22
0.5
---
0.22
0.5
---
0.14
0.3
Ω
8
Reference Input Current Deviation Over
Temperature Range (Fig. 2, Note 1, 4)
IK = 10mA, R1 = 10k, R2 =
9-3
9-4