TECHNICAL DATA TL431 Programmable Precision Reference FEATURES PIN CONNECTIONS Programmable Output Voltage to 40V Low Dynamic Output Impedance 0.2 Sink Current Capability of 0.1 mA to 100 mA Equivalent Full-Range Temperature Coefficient of 50 ppm/oC Temperature Compensated for Operation over Full Rated Operating Temperature Range Low Output Noise Voltage Fast Turn on Response ANODE TO-92, SOP- 8, SOT-23, SOT-89 packages REFERENCE CATHODE DESCRIPTION The TL431 is a three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between Vref (approximately 2.5 volts) and 40 volts with two external resistors. These devices have a typical dynamic output impedance of 0.2. Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacement for zener diodes in many applications. o o The TL431 is characterized for operation from -25 C to +85 C. SYMBOL FUNCTIONAL BLOCK DIAGRAM ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified) Characteristic Cathode Voltage Cathode Current Range (Continuous) Reference Input Current Range o Symbol Value Unit VKA 40 V IK -100 ~ 150 mA IREF 0.05 ~ 10 mA 0.7 0.2 W W Power Dissipation at 25 C: o SOP, TO – 92 Package (RJA = 178 C/W) o SOT Package (RJA = 625 C/W) PD Junction Temperature Range TJ -40 ~ 150 o Operating Temperature Range Tg -40 ~ +85 o -65 ~ +150 o Storage Temperature Range Tstg C C C Rev. 00 TL431 RECOMMENDED OPERATING CONDITIONS Characteristic Symbol Test Condition Min Typ Max Unit Cathode Voltage VKA VREF 40 V Cathode Current IK 0.5 100 mA ELECTRICAL CHARACTERISTICS (Ta = 25oC, VKA = VREF, IK = 10mA unless otherwise specified) Characteristic Min Typ Max 2.440 2.495 2.550 2.470 2.495 2.520 2.482 2.495 2.508 3 17 VKA = 10V-VREF -1.4 -2.7 VKA = 36V- 10V -1.0 -2.0 IREF R1 = 10K, R2 = 1.8 4 Deviation of Reference Input Current Over Full Temperature Range IREF(dev) R1 = 10K, R2 = 0.4 1.2 Minimum Cathode Current for Regulation IK(min) 0.25 0.5 mA Off-State Cathode Current IK(off) VKA = 40 V, VREF = 0 0.26 0.9 Dynamic Impedance ZKA IK = 10mA to 100 mA , f 1.0KHz 0.22 0.5 Reference Input Voltage Symbol Test Condition VREF VKA = VREF, IK = 10mA TL431 (2%) TL431-A (1%) Unit V TL431-C (0.5%) Deviation of Reference Input Voltage Over Full Temperature Range VREF(dev) Ratio of Change in Reference Input Voltage to the Change in Cathode Voltage V REF V K A Reference Input Current Tmin Ta Tmax MV mV/V TEST CIRCUITS Figure 1. Test Circuit for V KA = VREF Figure 2. Test Circuit for V KA VREF Figure 3. Test Circuit for I off INPUT VK A I K (OFF) TL431 TL431 BT432 TL431 Rev. 00 TL431 Electrical Characteristics (Continued) The average temperature coefficient of the reference input voltage, ∝VREF, is defined as: Where: T2 − T1 = full temperature change (0-70˚C). ∝VREF can be positive or negative depending on whether the slope is positive or negative. Example: VDEV = 8.0 mV, VREF = 2495 mV, T2 − T1 = 70˚C, slope is positive. Note 6: The dynamic output impedance, rZ, is defined as: When the device is programmed with two external resistors, R1 and R2, (see Figure 2 ), the dynamic output impedance of the overall circuit, rZ, is defined as: Rev. 00 TL431 Equivalent Circuit Typical Performance Characteristics Input Current vs VZ Thermal Information Input Current vs VZ Dynamic Impedance vs Frequency Rev. 00 TL431 Typical Performance Characteristics (Continued) Stability Boundary Conditions Note: The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VZ and IZ conditions with CL = 0. V+ and CL were then adjusted to determine the ranges of stability. Test Circuit for Curve A Above Typical Applications Shunt Regulator Test Circuit for Curves B, C and D Above Single Supply Comparator with Temperature Compensated Threshold Rev. 00 TL431 Typical Applications (Continued) Higher Current Shunt Regulator Series Regulator Crow Bar Output Control of a Three Terminal Fixed Regulator Rev. 00 TL431 Typical Applications (Continued) Over Voltage/Under Voltage Protection Circuit Voltage Monitor Rev. 00 TL431 Typical Applications (Continued) Current Limiter or Current Source Delay Timer Constant Current Sink Rev. 00 TL431 Ordering Information Reference Input Voltage Product Number TL431CLF TL431CLS TL431CD TL431CS TL431CP TL431ALF TL431ALS TL431AD TL431AS TL431AP TL431LF TL431LS TL431D TL431S TL431P Package TO-92 8-SOP SOT-23 SOT-89 0.5% TO-92 1% 8-SOP SOT-23 SOT-89 TO-92 2% 8-SOP SOT-23 SOT-89 Package Dimensions D SUFFIX SOIC (MS - 012AA) Dimension, mm A 8 5 B H 1 G P 4 D K MIN MAX A 4.80 5.00 B 3.80 4.00 C 1.35 1.75 D 0.33 0.51 F 0.40 1.27 R x 45 C -T- Symbol SEATING PLANE J F 0.25 (0.010) M T C M M G 1.27 H 5.72 J 0° 8° K 0.10 0.25 1. Dimensions A and B do not include mold flash or protrusion. M 0.19 0.25 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B ̂ 0.25 mm (0.010) per side. P 5.80 6.20 R 0.25 0.50 NOTES: Rev. 00 TL431 TO-92 Rev. 00 TL431 Rev. 00 TL431 Rev. 00 TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Description Pin Assignments TL431 (Top View) NEW PRODUCT The TL431 and TL432 are three terminal adjustable shunt regulators offering excellent temperature stability and output current handling capability up to 100mA. The output voltage may be set to any chosen voltage between 2.5 and 36 volts by selection of two external divider resistors. The devices can be used as a replacement for zener diodes in many applications requiring an improvement in zener performance. Diodes’ TL431 has the same electrical specifications as the industry standard ‘431 and is available in 2 grades with initial tolerances of 1% and 0.5% for the A and B grades respectively. Features Temperature range -40 to 125ºC Reference Voltage Tolerance at 25°C TL431A: 2.495V ̈́ 1.0%. ANODE 3 REF 2 CATHODE 1 SOT23 (Top View ) NC 1 NC 2 CATHODE 3 5 ANODE 4 REF SOT25 TL431B: 2.495V ̈́ 0.5% Low Output Noise 0.2 Typical Output Impedance Sink Current Capability: 1mA to 100mA Adjustable Output Voltage: VREF to 36V SOT23 and SOT25: Available in “Green” Molding Compound (No Br, Sb) and Lead Free Finish/ RoHS Compliant (Note 1) TL432 (Top View) ANODE 3 CATHODE 2 REF 1 Applications SOT23 Opto-Coupler Linearisers Shunt Regulators Improved Zener Variable Reference Notes: 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied. Please visit our website at http://www.diodes.com/products/lead_free.html. TL431/432 Document number: DS35050 Rev. 2 - 2 1 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Absolute Maximum Ratings (Note 2) Symbol Unit Cathode Voltage 40 V IKA Continuous Cathode Current 150 mA -0.050 to +10 mA TJ TST NEW PRODUCT Rating VKA IREF PD Notes: Parameter Reference Input Current +150 ° -55 to +150 ° Operating Junction Temperature Storage Temperature Power Dissipation (Notes 3, 4) C C SOT23 330 mW SOT25 500 mW 2. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. Unless otherwise stated voltages specified are relative to the ANODE pin. 3. TJ, max =150°C. 4. Ratings apply to ambient temperature at 25°C. Recommended Operating Conditions Symbol Min Max VKA Cathode Voltage Parameter VREF 36 V IKA Cathode Current 1 100 mA TA Operating Ambient Temperature -40 125 °C TL431/432 Document number: DS35050 Rev. 2 - 2 2 of 14 www.diodes.com Unit September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Electrical Characteristics (TA = +25°C, unless otherwise noted) Symbol Parameter VREF Test Conditions Min Typ. Max Unit TL431A 2.470 2.495 2.520 V TL431B 2.482 2.495 2.507 V 6 16 mV TA = -40 to 85 oC 14 34 mV o TA = -40 to 125 C 14 34 mV VKA = 10V to VREF -1.4 -2.7 mV/V VKA = 36V to 10V -1 -2 mV/V 1 4 A TA = 0 to 70 C IKA = 10mA, R1 = o TA = -40 to 85 C 10K, R2 = TA = -40 to 125 oC 0.8 1.2 A 0.8 2.5 A 0.8 2.5 A VKA = VREF, IKA = 10mA Reference voltage TA = 0 to 70 oC NEW PRODUCT VKA = VREF, IKA = 10mA Deviation of reference voltage over full temperature range (Note 5) VDEV VREF VKA IREF Ratio of the change in reference voltage to the change in cathode voltage IKA = 10mA Reference input current IKA = 10mA, R1 = 10K, R2 = o IREF IREF deviation over full temperature range (Note 5) IKA(MIN) Minimum cathode current for regulation VKA = VREF 0.4 0.7 mA IKA(OFF) Off-state current VKA = 36V, VREF = 0V 0.05 0.5 A 0.2 0.5 ZKA Dynamic output impedance (Note 6) VKA = VREF, f = 0Hz Notes: SOT23 Thermal Resistance Junction to Ambient JA SOT25 380 o C/W 250 o C/W 5. Deviation of VDEV, and IREF are defined as the maximum variation of the values over the full temperature range. The average temperature coefficient of the reference input voltage VREF is defined as: Vmax VDEV X 106 VREF @ 25ºC VREF = ppm/ºC T2 – T1 Vmin Where: T2 – T1 = full temperature change. VDEV = Vmax - Vmin ˞VREF can be positive or negative depending on whether the slope is positive or negative. Notes: 6. The dynamic output impedance, RZ, is defined as: ZKA = VKA IKA T1 Temperature T2 When the device is programmed with two external resistors R1 and R2, the dynamic output impedance of the overall circuit, is defined as: Z’ = V I TL431/432 Document number: DS35050 Rev. 2 - 2 ZKA 1+ R1 R2 3 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR NEW PRODUCT Test Circuits Figure 1. Test circuit for VKA = VREF Figure 2. Test circuit for VKA > VREF Figure 3. Test circuit for IOFF TL431/432 Document number: DS35050 Rev. 2 - 2 4 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Typical Performance Characteristics 2600 0.2 IKA = 10mA V KA = VREF 2560 IREF Reference Current ( A) V REF Reference Voltage (mV) R1 = 10K R2 = IKA = 10mA TA = 25 C 2540 2520 2500 2480 2460 0.15 0.1 0.05 2440 2420 2400 -55 -35 0 -55 -15 5 25 45 65 85 105 125 TA Free Air Temperature ( C) Reference Voltage vs. Free Air Temperature -35 -15 5 25 45 65 85 105 125 TA Free Air Temperature ( C) Reference Current vs. Free Air Temperature 200 150 V KA = VREF V KA = VREF TA = 25 C TA = 25 C IKA Cathode Current ( A) 100 IKA Cathode Current (mA) NEW PRODUCT 2580 50 0 100 IKMIN 0 -50 -100 -2 0 1 2 V KA Cathode Voltage (V) Cathode Current vs. Cathode Voltage -1 TL431/432 Document number: DS35050 Rev. 2 - 2 3 -100 -2 5 of 14 www.diodes.com 0 1 2 V KA Cathode Voltage Cathode Current vs. Cathode Voltage -1 3 September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Typical Performance Characteristics (Continued) 0.50 -0.2 V KA = 36V -0.3 0.40 -0.4 0.35 dV REF/dV KA (mV/V) IKOFF Off-State Cathode Current ( A) V KA = 3V t o 36V V REF = 0 0.30 0.25 0.20 0.15 -0.5 -0.6 -0.7 -0.8 0.10 -0.9 0.05 0.00 -75 -25 0 25 50 75 100 125 TA Free Air Temperature (C) Off-State Cathode Current vs. Free Air Temperature -50 -1.0 -50 75 0 25 50 100 125 TA Free Air Temperature (C) Ratio of Delta Reference Voltage to Delta Cathode Voltage vs. Free Air Temperature -25 400 V N = Equivalent Input Noise Voltage nV/Hz NEW PRODUCT 0.45 380 IKA = 10mA V KA = VREF TA = 25°C 360 340 320 300 280 260 240 220 200 10 100 1K 10K 100K f- Frequency (Hz) Equivalent Input Noise Voltage vs. Frequency TL431/432 Document number: DS35050 Rev. 2 - 2 6 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Typical Performance Characteristics (Continued) 15 Vn - Equivalent Input Noise Voltage - V NEW PRODUCT IKA = 10mA V KA = VREF 10 TA = 25 C 5 0 -5 -10 -15 0 1 2 3 4 5 6 7 8 9 10 Time (Seconds) Equivalent Input Noise Voltage Over A 10-S Period Figure 4. Test circuit for noise input voltage TL431/432 Document number: DS35050 Rev. 2 - 2 7 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Typical Performance Characteristics (Continued) A V Small-Signal Voltage Amplification (dB) IKA = 10mA TA = 25 C 60 50 40 30 20 10 0 100 10M 10K 100K 1M f Frequency (Hz) Small-Signal Voltage Amplification vs. Frequency 1K Test circuit for voltage amplification 100.0 IKA = 10mA TA = 25 C ZKA Reference Impedance ( ) NEW PRODUCT 70 10.0 1.0 0.1 Test circuit for reference impedance 0.0 1K 100K 1M f Frequency (Hz) Reference Impedance vs. Frequency 10K TL431/432 Document number: DS35050 Rev. 2 - 2 10M 8 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Typical Performance Characteristics (Continued) 6 TA = 25 C Input Input and Output Voltage (V) 4 3 Out put 2 Test Circuit for Pulse Response 1 0 0 1 2 3 4 5 6 7 t Time (s) Pulse Response 8 9 10 100 90 TA = 25 C D D 80 IKA - Cathode Current - mA NEW PRODUCT 5 C C A B 70 Stable Stable Stable 60 50 B Test Circuit for Curve A 40 30 20 10 A VKA = V REF B V KA = 5V C V KA = 10V D V KA = 15V 0 0.00001 0.0001 0.001 0.01 0.1 1 C L -Load Capacitance - uF Stability Boundary Conditions 10 Test circuit for curves B, C, D Test Circuit for Curves B, C, D The device is stable under all conditions with a load capacitance not exceeding 50pF. The device is stable under all conditions with a load capacitance between 5nF and 20nF. The device is stable under all conditions with a load capacitance exceeding 300nF. With a cathode current not exceeding 5mA, the device is stable with any load capacitance. TL431/432 Document number: DS35050 Rev. 2 - 2 9 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Applications Information NEW PRODUCT Higher Current Shunt Regulator Shunt Regulator Output Control of a Three Terminal Fixed Regulator Series Regulator Single Supply Comparator with Temperature Compensated Threshold TL431/432 Document number: DS35050 Rev. 2 - 2 Over Voltage / Under Voltage Protection Circuit 10 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Ordering Information TL43 X X XX - 7 NEW PRODUCT Pinout variation Tolerance Package 1: Standard pinout A: s1.0% SA: SOT23 2: Reversed pinout in SOT23 B: s0.5% W5: SOT25 Device (Note 7) Package Code Packaging (Note 5) TL431A(B)SA-7 TL431A(B)W5-7 TL432A(B)SA-7 SA W5 SA SOT23 SOT25 SOT23 Notes: 7” Tape and Reel Part Number Quantity Suffix 3000/Tape & Reel -7 3000/Tape & Reel -7 3000/Tape & Reel -7 Packing 7: Tape & Reel Ammo Box Quantity Part Number Suffix NA NA NA NA NA NA 7. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf. 8. Suffix “B” denotes TL431B device. TL431/432 Document number: DS35050 Rev. 2 - 2 11 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Marking Information (1) SOT23 ( Top View ) 3 NEW PRODUCT XX Y W X 1 2 XX : Identification code Y : Year 0~9 W : Week : A~Z : 1~26 week; a~z : 27~52 week; z represents 52 and 53 week X : A~Z : Green ʳ Device Package Identification Code TL431ASA TL431BSA TL432ASA TL432BSA SOT23 SOT23 SOT23 SOT23 AA AB BA BB (2) SOT25 ( Top View ) 4 7 5 XX Y W X 1 2 3 XX : Identification code Y : Year 0~9 W : Week : A~Z : 1~26 week; a~z : 27~52 week; z represents 52 and 53 week X : A~Z : Green ʳ ʳ Device TL431AW5 TL431BW5 Package SOT25 SOT25 ʳ Identification Code AA AB ʳ TL431/432 Document number: DS35050 Rev. 2 - 2 12 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR Package Outline Dimensions (All Dimensions in mm) NEW PRODUCT (1) Package type: SOT25 (2) Package Types: SOT23 TL431/432 Document number: DS35050 Rev. 2 - 2 13 of 14 www.diodes.com September 2010 © Diodes Incorporated TL431/TL432 ADJUSTABLE PRECISION SHUNT REGULATOR IMPORTANT NOTICE DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). NEW PRODUCT Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. LIFE SUPPORT Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: A. Life support devices or systems are devices or systems which: 1. are intended to implant into the body, or 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright © 2010, Diodes Incorporated www.diodes.com TL431/432 Document number: DS35050 Rev. 2 - 2 14 of 14 www.diodes.com September 2010 © Diodes Incorporated UNISONIC TECHNOLOGIES CO., LTD TL431 LINEAR INTEGRATED CIRCUIT PROGRAMMABLE PRECISION REFERENCE DESCRIPTION The UTC TL431 is a three-terminal adjustable regulator with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between VREF (approximately 2.5V) and 36V with two external resistors. It provides very wide applications, including shunt regulator, series regulator, switching regulator, voltage reference and others. * * * * FEATURES Programmable output Voltage to 36V. Low dynamic output impedance 0.2. Sink current capability of 1.0 to 100mA. Equivalent full-range temperature coefficient of 50ppm/ C typical for operation over full rated operating temperature range. ORDERING INFORMATION Ordering Number Normal Lead Free Halogen Free TL431-AB3-R TL431K-AB3-R TL431G-AB3-R TL431-AE2-R TL431K-AE2-R TL431G-AE2-R TL431-AE3-R TL431K-AE3-R TL431G-AE3-R TL431NS-AE3-R TL431NSL-AE3-R TL431NSG-AE3-R TL431NS-AE2-R TL431NSL-AE2-R TL431NSG-AE2-R TL431-AF5-R TL431K-AF5-R TL431G-AF5-R TL431-S08-R TL431K-S08-R TL431G-S08-R TL431-T92-B TL431K-T92-B TL431G-T92-B TL431-T92-K TL431K-T92-K TL431G-T92-G Note: Pin Code: K: Cathode A: Anode R: Reference Pin Assignment 1 2 3 4 5 6 7 8 R A K - - - - K R A - - - - K R A - - - - R K A - - - - R K A - - - - X X K R A - - K A A X X A A R R A K - - - - R A K - - - - X: No Connection Package Packing SOT-89 SOT-23-3 SOT-23 SOT-23 SOT-23-3 SOT-25 SOP-8 TO-92 TO-92 Tape Reel Tape Reel Tape Reel Tape Reel Tape Reel Tape Reel Tape Reel Tape Box Bulk www.unisonic.com.tw Copyright © 2011 Unisonic Technologies Co., Ltd 1 of 7 QW-R103-003,AC TL431 LINEAR INTEGRATED CIRCUIT MARKING PACKAGE MARKING 3 SOT-23-3 SOT-23 431. 2 K: Lead Free G: Halogen Free 1 3 SOT-23-3 SOT-23 (TL431NS) 431N 2 3 L: Lead Free G: Halogen Free 1 2 1 431 SOT-25 4 K: Lead Free G: Halogen Free 5 UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw 2 of 7 QW-R103-003,AC TL431 LINEAR INTEGRATED CIRCUIT BLOCK DIAGRAM CATHODE REFERENCE CATHODE (K) REFERENCE (R) 2.5V VREF ANODE(A) ANODE UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw 3 of 7 QW-R103-003,AC TL431 LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified) PARAMETER RATINGS UNIT Cathode Voltage 37 V Cathode Current Range(Continuous) -100 ~ +150 mA Reference Input Current Range -0.05 ~ +10 mA TO-92 770 mW Power Dissipation PD SOT-89 800 mW SOT-23/SOT-23-3/SOT-25 300 mW Operating Junction TJ +150 °C Operating Ambient TOPR -40 ~ +85 °C Storage Temperature TSTG -65 ~ +150 °C Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged Absolute maximum ratings are stress ratings only and functional device operation is not implied. SYMBOL VKA IKA IREF RECOMMENDED OPERATING CONDITIONS PARAMETER SYMBOL VKA IKA Cathode Voltage Cathode Current MIN VREF 1 TYP MAX 36 100 UNIT V mA ELECTRICAL CHARACTERISTICS (TC= 25°C, unless otherwise specified.) PARAMETER Reference Input Voltage Deviation of reference Input Voltage Over temperature Ratio of Change in Reference Input Voltage to the Change in Cathode Voltage Reference Input Current Deviation of Reference Input Current Over Full Temperature Range Minimum Cathode Current for Regulation Off-State Cathode Current Dynamic Impedance SYMBOL VREF VREF T VREF VKA IREF IREF T IKA(MIN) IKA(OFF) ZKA TEST CONDITIONS TL431-A TL431-1 VKA=VREF,IKA=10mA TL431-2 TL431-3 VKA=VREF,IKA=10mA 0°C Ta70°C VKA=10V~VREF IKA=10mA VKA=36V~10V IKA=10mA, R1=10k, R2= IKA=10mA, R1=10k, R2= Ta =full Temperature VKA=VREF VKA=36V, VREF=0 VKA=VREF, IKA=1 to 100mA f1.0kHz UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw MIN TYP MAX UNIT 2.483 2.495 2.507 V 2.470 2.495 2.520 V 2.520 2.545 V 2.445 2.470 V 4.5 17 mV -1.0 -0.5 1.5 -2.7 mV/V -2.0 mV/V 4 μA 0.4 1.2 μA 0.3 0.05 0.5 1.0 mA μA 0.15 0.5 4 of 7 QW-R103-003,AC TL431 LINEAR INTEGRATED CIRCUIT TEST CIRCUIT VKA INPUT IKA(OFF) UTC TL431 VKA=VREF×(1+R1/R2)+IREF×R1 For VKAVREF For VKA=VREF For IKA(OFF) APPLICATION CIRCUIT VOUT=(1+R1/R2)×VREF Shutdown Regulator VOUT=(1+R1/R2)×VREF Minimum VOUT=VREF+5V Output Control of a Three -Terminal Fixed Regulator VOUT=(1+R1/R2)×VREF Higher-current Shunt Regulator IOUT=VREF/RS IOUT =VREF/RCL Constant-current Sink Current Limiting or Current Source UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw 5 of 7 QW-R103-003,AC TL431 LINEAR INTEGRATED CIRCUIT Ƶʳ TYPICAL CHARACTERISTICS Cathode Current vs. Cathode Voltage Cathode Current vs. Cathode Voltage 150 800 Ta=25°C 100 600 Cathode Current (A) Cathode Current (mA) 125 V =V KA REF Ta=25°C VKA=VREF 75 50 25 0 -25 -50 400 IKA(MIN) 200 0 -75 -100 -2 -1 0 1 2 -200 -2 3 -1 0 Cathode Voltage (V) Change in Reference Input Voltage vs. Cathode Voltage 2 3 Pulse Response 7 IKA=10mA Ta=25°C -5 Ta=25°C 6 Input and Output Voltage (V) Change In Reference Input Voltage (mV) 0 1 Cathode Voltage (V) -10 -15 -20 -25 -30 -35 5 4 3 2 1 0 -40 -1 0 5 10 15 20 25 30 35 40 -1 0 1 2 3.0 Deviation of Reference Voltage over Temperature IKA=10mA 3 4 5 6 7 Time (μs) Cathode Voltage (V) Frequency Response 60 50 2.4 40 1.6 30 20 0.8 10 0 0 -40 -20 0 25 50 75 100 125 150 Temperature, ( ) UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw 1K 10K 100K 1M 10M Frequency, f (Hz) 6 of 7 QW-R103-003,AC TL431 LINEAR INTEGRATED CIRCUIT UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw 7 of 7 QW-R103-003,AC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C G FEATURES TO-92 PKG z Programmable Output Voltage to 40V z Guaranteed 0.5% Reference Voltage Tolerance z Low (0.2˟ Typ.) Dynamic Output Impedance 3 T O P z Cathode Current Range(Continuous) – 100 ~ 150 mA z Equivalent Full Range Temperature Coefficient of 2 1 50PPM/ଇ z Temperature Compensated For Operation Over Full Rate Operating Temperature Range z Low Output Noise Voltage z Fast Turn-on Response z TO-92, SOT-89 or SOT-23 3L Package SOT-23 PKG ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͣ͑ ͑ ͑ ͑ ͑ ͑ ͑ TOP ͑ APPLICATION z z z z z z z ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͑͢ ͑ ͑ ͑ ͑ ͑ ͑ ͑ ͤ͑ Shunt Regulator Precision High-Current Series Regulator High-Current Shunt Regulator Crowbar Circuit PWM Converter With Reference Voltage Monitor Precision Current Limiter SOT-89 PKG ͑ ͑ TOP ͑ ͑ ͑͢ ͑ ͑ ͑ ͣ͑ ͑ ͑ ͑ ͤ͑ DESCRIPSION The TL431 is a three-terminal adjustable shunt regulator with specified thermal stability over applicable temperature VREF (Approx. 2.5V) and 40V with two external resistors. This device has a typical dynamic output impedance of 0.2. Active output circuitry provides a very sharp turn-on characteristic, making this device excellent replacement for zener diodes in many applications. The TL431 is characterized for operation from -40ଇ to +125ଇ. PIN 1. Reference 2. Anode 3. Cathode ORDERING INFORMATION Device Package TL431 TO-92(Bulk) TL431TA TO-92(Taping) TL431SF SOT-23 3L TL431F SOT-89 3L * Refer to the page 2 for detailed ordering Information, Absolute Maximum Ratings (Operating temperature range applies unless otherwise specified) CHARACTERISTIC SYMBOL MIN. MAX. UNIT VKA - 42 V IK -100 150 mA IREF -0.05 10 mA TJ -40 150 ଇ Operating Temperature Range TOPR -40 125 ଇ Storage Temperature Range TSTG -65 150 ଇ Cathode Voltage Cathode Current Range(Continuous) Reference Input Current Range Junction Temperature Range Dec. 2010 – Rev.1.5 -1- HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C RECOMMENDED OPERATING CONDITIONS CHARACTERISTIC SYMBOL MIN. MAX. UNIT Cathode Voltage VKA VREF 40 V Cathode Current IK 0.5 100 mA Ordering Information VREF Package Tolerance Order No. Package Marking Supplied As TL431C TL431-C TL431GC TL431GC TL431CTA TL431-C TL431GCTA TL431GC TL431A TL431-A TL431GA TL431GA TL431ATA TL431-A TL431GATA TL431GA TL431 TL431 TL431G TL431G TL431TA TL431 TL431GTA TL431G TL431CSF 431 TL431GCSF 431 TL431ASF 431 TL431GASF 431 TL431SF 431 TL431GSF 431 0.5% TL431CF 431 Reel 1% TL431AF 431 Reel 2% TL431F 431 Reel Bulk 0.5% Tape Bulk TO-92 1% Tape Bulk 2% 2.495V Tape 0.5% SOT-23 Reel 1% Reel 2% SOT-89 Reel G G G G G G Dec. 2010 – Rev.1.5 -2- HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C Ordering Information (continued) GGG Dec. 2010 – Rev.1.5 G -3- HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C PIN CONFIGURATION 2 Marking Side TOP TOP 1 3 1 2 3 1 2 3 TO-92 PKG SOT-23 PKG SOT-89 PKG PIN DESCRIPTION TO-92 / SOT-23 / SOT-89 Pin No. Name Function 1 Reference Reference Voltage 2 Anode Ground 3 Cathode Input Supply Voltage TL431 ELECTRICAL CHARACTERISTICS (TA=25ଇ, unless otherwise specified) CHARACTERISTIC Reference Input Voltage Deviation of Reference Input Voltage Ratio of Change in Reference Input Voltage to the Change in Cathode Voltage Reference Input Current Deviation of Reference Input Current SYMBOL VREF VREF/T VREF/VKA TEST CONDITION MIN. TYP. MAX. TL431C 2.483 2.495 2.507 TL431A 2.470 2.495 2.520 TL431 2.440 2.495 2.550 8 20 VKA=10V -VREF -1.4 -2.7 VKA=36V-10V -1.0 -2.0 VKA =VREF, IK =10mA VKA = VREF, IK =10mA TA =Full Range UNIT V mV mV/V IK =10mA IREF IKA=10mA, R1=10, R2= 1.8 4.0 uA IREF/T IK =10mA, R1=10, R2= TA =Full Range 0.4 1.2 uA 0.5 mA Minimum Cathode Current for Regulation IK(MIN) VKA= VREF Off-State Cathode Current IK(OFF) VKA=36V, VREF=0 0.17 0.90 uA VKA= VREF, IK =1mA~100mA f 1kHz 0.27 0.50 Dynamic Impedance Dec. 2010 – Rev.1.5 ZKA -4- HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C TEST CIRCUITS < Fig 2. Test circuit for VKA ˻ VREF > < Fig 1. Test circuit for VKA = VREF > < Fig 3. Test circuit for IKA(OFF) > Dec. 2010 – Rev.1.5 -5- HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C The deviation parameters VREF/T and IREF/T are defined as the differences between the maximum and minimum values obtained over the recommended temperature range. The average full-range temperature coefficient of the reference voltage, VREF, is defined as : VI(dev) ) × 10 6 VREF at 25㷄 VREF (ppm/ 㷄) = TA ( Where : TA is the recommended operating free-air temperature range of the device. VREF can be positive or negative, depending on whether minimum VREF or maximum VREF, respectively, occurs at the lower temperature. Example : Maximum VREF=2496mV at 30, maximum VREF=2492mV at 0, VREF=2495mV at 25, TA=70 for TL431C. 4mV ) × 10 6 2495mV = Ĭ 23ppm/ 㷄 70㷄 ( VREF Because minimum VREF occurs at the lower temperature, the coefficient is positive. Calculating Dynamic Impedance The dynamic impedance is defined as : Z KA = VKA IKA When the device is operating with two external resistors, the total dynamic impedance of the circuit is given by: Z' = V Z KA (1 + R1/R2 ) I Dec. 2010 – Rev.1.5 -6- HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C TYPICAL OPERATING CHARACTERISTICS G Reference Voltage vs. Ambient Temperature Pulse Response GG G G Cathode Current vs. Cathode Voltage Cathode Current vs. Cathode Voltage GG G AV-Small Signal Voltage Amplification (dB) Small Signal Voltage Amplification vs. Frequency 60 Output IKA = 10mA TA = 25°C 50 IKA 15kԽ 232Խ 40 10μF 30 20 8.25kԽ 10 0 1k 10k 100k 1000k 10000k Frequency, f [Hz] Dec. 2010 – Rev.1.5 < Fig 4. TEST Circuit for Voltage Amplification > GG -7- HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C TYPICAL OPERATING CHARACTERISTICS (continued) Stability Boundary Conditions G GGGGGGGGG 100 G 150 90 R1 IKA-Cathode Current (mA) 80 C 70 CL A B 60 R2 50 STABLE STABLE 40 30 B < Fig 5. TEST Circuit > A 20 D 10 0 0 1 10 100 1000 10000 100000 A VKA = VREF, R1= 0, R2 = B VKA = 5.0V, R1=10k, R2 = 10k C VKA = 10.0V, R1=10k, R2 = 3.3k D VKA = 15.0V, R1=10k, R2 = 2K CL-Load Capacitance (nF) G Dec. 2010 – Rev.1.5 -8- HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C APPLICATION INFORMATION 1. Shunt Regulator Note A : R Should provide cathode current 1mA to the TL431 at minimum VI(BATT) 2. Precision High-Current Series Regulator Note A : R Should provide cathode current˻1mA to the TL431 at minimum VI(BATT) 3. Output Control of a Three-Terminal Fixed Regulator Dec. 2010 – Rev.1.5 -9- HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C 4. High-Current Shunt Regulator 5. Precision 5-V 1.5A Regulator 6. Efficient 5-V Precision Regulator NOTE A : RB Should provide cathode current1mA to the TL431. Dec. 2010 – Rev.1.5 - 10 - HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C 7. PWM Converter With Reference 8. Voltage Monitor NOTE A : R3 and R4 are selected to provide the desired LED intensity and cathode current 1mA to the TL431 at the available VI(BATT). 9. Delay Timer Dec. 2010 – Rev.1.5 - 11 - HTC G G PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A/C 10. Precision Current Limiter 11. Precision Constant-Current Sink Dec. 2010 – Rev.1.5 - 12 - HTC TL431 Programmable Voltage Reference ■ Adjustable output voltage: 2.5 to 36V ■ Sink current capability: 1 to 100mA ■ Typical output impedance: 0.22Ω ■ 1% and 2% voltage precision Z TO92 (Plastic Package) Description The TL431 is a programmable shunt voltage reference with guaranteed temperature stability over the entire temperature range of operation. The output voltage may be set to any value between 2.5V and 36V with two external resistors. D SO-8 (Plastic Micropackage) The TL431 operates with a wide current range from 1 to 100mA with a typical dynamic impedance of 0.22Ω. Order Codes Part Number Temperature Range Package Packing TL431CD/CDT Marking 431C SO-8 TL431ACD/ACDT 431AC 0, +70°C TL431CZ/CZT/CZ-AP TL431C TO92 TL431ACZ/ACZT/ACZ-AP TL431AC TL431ID/IDT 431I SO-8 TL431AID/AIDT Tube or Tape & Reel 431AI TL431IZ/IZT/IZ-AP TL431I -40, + 105°C TO92 TL431AIZ/AIZT/AIZ-AP TL431AI TL431IYD/IYDT 431IY SO-8 (automotive grade level) TL431AIYD/AIYDT November 2005 431AIY Rev 2 1/13 www.st.com 13 Pin Diagrams 1 TL431 Pin Diagrams Figure 1. TO92 pin connections (top view) Cathode Anode Reference 1 Figure 2. 2 3 SO-8 pin connections (top view) 8 7 6 5 1 - Cathode 2 - Anode 3 - Anode 4 - N.C. 5 - N.C. 6 - Anode 7 - Anode 8 - Reference 1 2/13 2 3 4 TL431 2 Absolute Maximum Ratings Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol VKA Parameter Cathode to Anode Voltage Value Unit 37 V Ik Continuous Cathode Current Range -100 to +150 mA Iref Reference Input Current Range -0.05 to +10 mA 625 960 mW -65 to +150 °C Value Unit Cathode to Anode Voltage Vref to 36 V Cathode Current 1 to 100 mA 0 to +70 -40 to +105 °C Power Dissipation (1) Pd Tstg TO92 SO-8 batwing Storage Temperature Range 1. Pd is calculated with Tamb = +25°C, Tj = +150°C and Rthja = 200°C/W for TO92 package Rthja = 130°C/W for SO-8 batwing package Table 2. Operating conditions Symbol VKA Ik Parameter Operating Free-air Temperature Range Toper TL431C/AC TL431I/AI 3/13 Electrical Characteristics 3 TL431 Electrical Characteristics Table 3. Tamb = 25°C (unless otherwise specified) Symbol Parameter TL431C TL431AC Unit Min. Typ. Max. Min. Typ. Max. Reference Input Voltage Vref 2.44 2.495 2.55 2.47 2.495 2.52 2.423 2.567 2.453 2.537 VKA = Vref , Ik = 10 mA, Tamb = 25°C Tmin ≤Tamb ≤ Tmax V Reference Input Voltage Deviation Over Temperature ΔVref Range (1) mV VKA = Vref, Ik = 10 mA, Tmin ≤Tamb ≤ Tmax ΔVref -----------ΔVka Iref ΔIref Imin Ioff ⏐ZKA⏐ 3 17 3 15 -1.4 -1 -2.7 -2 -1.4 -1 -2.7 -2 1.8 4 5.2 1.8 4 5.2 Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage Ik = 10mA - ΔVKA = 10V to Vref ΔVKA = 36V to 10V Reference Input Current Ik = 10mA, R1 = 10kΩ, R2 = ∞ Tamb = 25°C Tmin ≤Tamb ≤Tmax Reference Input Current Deviation Over Temperature Range 0.4 1.2 0.4 1.2 0.5 1 0.5 0.6 2.6 1000 2.6 1000 0.22 0.5 0.22 0.5 Minimum Cathode Current for Regulation VKA = Vref Off-State Cathode Current mA nA (2) VKA = Vref , Δ Ik = 1 to100mA, f ≤1kHZ 1. ΔVref is defined as the difference between the maximum and minimum values obtained over the full temperature range. ΔVref = Vref max. - Vref min. V ref max. V ref min. T2 T1 2. The dynamic Impedance is definied as |ZKA| = 4/13 μA μA Ik = 10mA, R1 = 10kΩ, R2 =∞ Tmin ≤Tamb ≤ Tmax Dynamic Impedance mV/V ΔVKA ----------------ΔIK Temperature Ω TL431 Electrical Characteristics Table 4. Tamb = 25°C (unless otherwise specified) Symbol Parameter TL431I Unit Min. Reference Input Voltage Vref ΔVref 2.44 2.41 VKA = V ref , Ik = 10 mA, T amb = 25°C Tmin ≤Tamb ≤ Tmax Typ. 2.49 5 Iref ΔIref Imin Ioff ⏐ZKA⏐ Max. Min. 2.55 2.58 2.47 2.44 Typ. 2.49 5 Max. 2.52 2.55 Reference Input Voltage Deviation Over Temperature Range (1) 7 30 7 30 -1.4 -1 -2.7 -2 -1.4 -1 -2.7 -2 1.8 4 6.5 1.8 4 6.5 Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage Ik = 10mA, ΔVKA = 10V to Vref ΔVKA = 36V to 10V Reference Input Current Ik = 10mA, R1 = 10kΩ, R2 = ∞ Tamb = 25°C Tmin ≤Tamb ≤Tmax Reference Input Current Deviation Over Temperature Range Ik = 10mA, R1 = 10kΩ, R2 =∞ Tmin ≤Tamb ≤ Tmax Off-State Cathode Current 0.8 2.5 0.8 1.2 0.5 1 0.5 0.7 2.6 1000 2.6 1000 0.22 0.5 0.22 0.5 Dynamic Impedance (2) VKA = V ref , Δ Ik = 1 to100mA, f ≤1kHZ mV/V μA μA Minimum Cathode Current for Regulation VKA = V ref V mV VKA = V ref , Ik =10 mA, Tmin ≤Tamb≤ Tmax ΔVref -----------ΔVka TL431AI mA nA Ω 1. ΔVref is defined as the difference between the maximum and minimum values obtained over the full temperature range. ΔVref = Vref max. - Vref min. V ref max. V ref min. T2 T1 2. The dynamic Impedance is definied as |ZKA| = Temperature ΔVKA ----------------ΔIK 5/13 Electrical Characteristics Figure 3. TL431 Test circuit for VKA = VREF Figure 4. Test circuit for V KA = VREF Input Input R Output R Output IK R1 IK=10mA VKA IREF R2 VKA VREF VREF R1 VKA = VREF ( 1 + -------- ) + R1 x IREF R2 Figure 5. Test circuit for IOFF Figure 6. Test circuit for phase margin and voltage gain VKA=36V 10μF 10μF Figure 7. Block diagram of TL1431 Figure 8. Output 8.25kΩ Input IK=10mA 15kΩ IOFF VREF Test circuit for response time Cathode Vref Anode 6/13 IK=1mA + 1 mA 0 mA Output Vref TL431 Electrical Characteristics Figure 9. Reference voltage vs. temp. Figure 10. Reference voltage vs. cathode current 100 Cathode current IKA (mA) Cathode voltage VKA (V) 2.54 VKA = VREF IK = 10 mA 2.52 2.50 2.48 2.46 2.44 -40 TAMB=+25°C 75 50 25 0 -25 -20 0 20 40 60 80 -50 100 -1 0 Temperature (°C) 1 2 3 Cathode voltage VKA (V) Figure 11. Reference voltage vs. cathode current Figure 12. Reference current vs. temp. 2.0 Reference current IREF (μA) Cathode current IKA (mA) 2 TAMB = +25°C 1 0 IK=10 mA R1=10kΩ R2= + ∝ 1.5 1.0 0.5 -1 -2 -1 0 1 2 0.0 −40 3 −20 0 Figure 13. Off-state cathode current vs. temp. 60 80 100 0.0 VKA = 36 V VREF = 0 V ΔVREF / ΔVKA (mV / V) Off-state current IOFF (μA) 40 Figure 14. Ratio of change in VREF to change in VKA vs. temp. 2.0 1.5 1.0 -0.5 IK = 10 mA -1.0 -1.5 0.5 0.0 -40 20 Temperature °C Cathode voltage VKA (V) -20 0 20 40 Temperature (°C) 60 80 100 -2.0 -40 -20 0 20 40 60 80 100 Temperature (°C) 7/13 Electrical Characteristics TL431 Figure 15. Static impedance RKA vs. temp. Figure 16. Maximum operating current vs. temp. 0.6 Minimum cathode current IMIN (mA) Static impedance RKA (Ω) 0.30 0.28 VKA=VREF TAMB=+25°C 0.26 0.24 0.22 0.20 -40 -20 0 20 40 60 80 0.4 VKA = VREF 0.2 0.0 -40 100 -20 0 20 Figure 17. Gain & phase vs. frequency 60 0 -50 -100 Phase (°) Gain (dB) 50 Phase 0 80 VKA=5 V -150 1 10 100 -200 10000 1000 Instable Area 60 -20 -40 100 VKA=VREF 100 20 80 100 150 Cathode current (mA) 40 60 Figure 18. Stability behaviour with capacitive loads 200 IK=10 mA See figure 4 Gain 40 Temperature (°C) Temperature (°C) 40 VKA=12 V 20 VKA=24 V 0 1E-10 Frequency (kHz) 1E-9 1E-8 1E-7 1E-6 1E-5 Capacitive load (Farad) Figure 19. Maximum power dissipation Figure 20. Pulse response for IK = 1mA 6 Cathode current (mA) TAMB= +25°C SO8 Batwing 80 60 TO92 40 20 0 Safe Area Input 20 30 VKA=VREF TAMB=+25°C 4 Output 2 0 10 Cathode voltage (V) 8/13 Input and Output voltage (V) 100 0 2 4 6 Time (μs) 8 10 TL431 4 Package Mechanical Data Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 4.1 SO-8 Package SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 e 1.27 0.157 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 9/13 Package Mechanical Data 4.2 TL431 TO92 (Tape & Reel) Package TO-92 MECHANICA DATA mm. mils DIM. MIN. TYP MAX. MIN. TYP. MAX. A 4.32 4.95 170.1 194.9 b 0.36 0.51 14.2 20.1 D 4.45 4.95 175.2 194.9 E 3.30 3.94 129.9 155.1 e 2.41 2.67 94.9 105.1 e1 1.14 1.40 44.9 55.1 L 12.7 15.49 500.0 609.8 R 2.16 2.41 85.0 94.9 S1 0.92 1.52 36.2 59.8 W 0.41 0.56 16.1 22.0 0102782/C 10/13 TL431 TO92 (Tape Ammo Pack) Package A1 P T P A H W2 W0 W L1 W1 H I1 H0 d H1 4.3 Package Mechanical Data D0 F1 F2 P2 P0 Millimeters Inches Dim. Min Typ. Max. Min. Typ. Max. AL 5.0 0.197 A 5.0 0.197 T 4.0 0.157 d 0.45 0.018 I1 2.5 0.098 P 11.7 12.7 13.7 0.461 0.500 0.539 PO 12.4 12.7 13 0.488 0.500 0.512 P2 5.95 6.35 6.75 0.234 0.250 0.266 F1/F2 2.4 2.5 2.8 0.094 0.098 0.110 Δh -1 0 1 -0.039 0 0.039 ΔP -1 0 1 -0.039 0 0.039 W 17.5 18.0 19.0 0.689 0.709 0.748 W0 5.7 6 6.3 0.224 0.236 0.248 W1 8.5 9 9.75 0.335 0.354 0.384 W2 0.5 0.020 H 20 0.787 H0 15.5 16 H1 DO L1 16.5 0.610 0.630 25 3.8 4.0 4.2 11 0.650 0.984 0.150 0.157 0.165 0.433 11/13 Package Mechanical Data 4.4 TL431 TO92 (Bulk) Package Millimeters Inches Dim. Min L 12/13 Typ. Max. Min. 1.27 Typ. Max. 0.05 B 3.2 3.7 4.2 0.126 0.1457 0.1654 O1 4.45 5.00 5.2 0.1752 0.1969 0.2047 C 4.58 5.03 5.33 0.1803 0.198 0.2098 K 12.7 O2 0.407 0.0197 0.02 a 0.35 0.5 0.5 0.508 0.016 0.0138 TL431 5 Revision History Revision History Date Revision Changes March 2002 1 Initial release. Nov. 2005 2 PPAP references inserted in the datasheet see Table : Order Codes on page 1 . Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 13/13 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 D Operation From −40°C to 125°C D − 0.5% . . . B Grade − 1% . . . A Grade − 2% . . . Standard Grade Typical Temperature Drift (TL431B) − 6 mV (C Temp) − 14 mV (I Temp, Q Temp) TL431, TL431A, TL431B . . . D (SOIC) PACKAGE (TOP VIEW) CATHODE ANODE ANODE NC 1 8 2 7 3 6 4 5 REF ANODE ANODE NC D D D D Low Output Noise 0.2-Ω Typical Output Impedance Sink-Current Capability . . . 1 mA to 100 mA Adjustable Output Voltage . . . Vref to 36 V TL431, TL431A, TL431B . . . P (PDIP), PS (SOP), OR PW (TSSOP) PACKAGE (TOP VIEW) CATHODE NC NC NC 1 8 2 7 3 6 4 5 REF NC ANODE NC NC − No internal connection NC − No internal connection TL431, TL431A, TL431B . . . PK (SOT-89) PACKAGE (TOP VIEW) TL431, TL431A, TL431B . . . LP (TO-92/TO-226) PACKAGE (TOP VIEW) CATHODE CATHODE ANODE ANODE REF REF TL431, TL431A, TL431B . . . DBV (SOT23-5) PACKAGE (TOP VIEW) NC 1 NU 2 CATHODE 3 5 ANODE 4 REF TL431, TL431A, TL431B . . . DBZ (SOT23-3) PACKAGE (TOP VIEW) 1 3 REF 1 ANODE 2 NC 3 5 REF 4 CATHODE TL432, TL432A, TL432B . . . DBZ (SOT23-3) PACKAGE (TOP VIEW) REF 1 CATHODE 2 ANODE 3 2 TL431 . . . KTP (PowerFLEXE/TO-252) PACKAGE (TOP VIEW) ANODE NC NC − No internal connection NC − No internal connection NU − Make no external connection CATHODE TL432, TL432A, TL432B . . . DBV (SOT23-5) PACKAGE (TOP VIEW) CATHODE ANODE REF ANODE TL431A, TL431B . . . DCK (SC-70) PACKAGE (TOP VIEW) CATHODE NC REF 1 6 2 5 3 4 ANODE NC NC NC − No internal connection Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerFLEX is a trademark of Texas Instruments. Copyright © 2004, Texas Instruments Incorporated ! "#$ ! %#&'" ($) (#"! " !%$""! %$ *$ $! $+! !#$! !(( ,-) (#" %"$!!. ($! $"$!!'- "'#($ $!. '' %$$!) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 description/ordering information The TL431 and TL432 are three-terminal adjustable shunt regulators, with specified thermal stability over applicable automotive, commercial, and military temperature ranges. The output voltage can be set to any value between Vref (approximately 2.5 V) and 36 V, with two external resistors (see Figure 17). These devices have a typical output impedance of 0.2 Ω. Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications, such as onboard regulation, adjustable power supplies, and switching power supplies. The TL432 has exactly the same functionality and electrical specifications as the TL431, but has different pinouts for the DBV and DBZ packages. Both the TL431 and TL432 devices are offered in three grades, with initial tolerances (at 25°C) of 0.5%, 1%, and 2%, for the B, A, and standard grade, respectively. In addition, low output drift vs temperature ensures good stability over the entire temperature range. The TL43xxC devices are characterized for operation from 0°C to 70°C, the TL43xxI devices are characterized for operation from −40°C to 85°C, and the TL43xxQ devices are characterized for operation from −40°C to 125°C. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 description/ordering information (continued) Vref TOLERANCE (25°C) = 2% TL431, TL432 ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA PDIP (P) SOIC (D) SOP (PS) SOT 23 5 (DBV) SOT-23-5 0°C to 70°C SOT 23 3 (DBZ) SOT-23-3 SOT-89 (PK) TO-226/TO-92 TO 226/TO 92 (LP) TSSOP (PW) PDIP (P) SOIC (D) SOT 23 5 (DBV) SOT-23-5 −40°C 40°C to 85°C SOT 23 3 (DBZ) SOT-23-3 SOT-89 (PK) TO 226/TO 92 (LP) TO-226/TO-92 Tube of 50 TL431CP Tube of 75 TL431CD Reel of 2500 TL431CDR Reel of 2000 TL431CPSR Reel of 3000 TL431CDBVR Reel of 250 TL431CDBVT Reel of 3000 TL432CDBVR Reel of 250 TL432CDBVT Reel of 3000 TL431CDBZR Reel of 250 TL431CDBZT Reel of 3000 TL432CDBZR Reel of 250 TL432CDBZT Reel of 1000 TL431CPK Bulk of 1000 TL431CLP Ammo of 2000 TL431CLPM Reel of 2000 TL431CLPR Tube of 150 TL431CPW Reel of 2000 TL431CPWR Tube of 50 TL431IP Tube of 75 TL431ID Reel of 2500 TL431IDR Reel of 3000 TL431IDBVR Reel of 250 TL431IDBVT Reel of 3000 TL432IDBVR Reel of 250 TL432IDBVT Reel of 3000 TL431IDBZR Reel of 250 TL431IDBZT Reel of 3000 TL432IDBZR Reel of 250 TL432IDBZT Reel of 1000 TL431IPK Bulk of 1000 TL431ILP Reel of 2000 TL431ILPR TOP-SIDE MARKING‡ TL431CP TL431C T431 T3C T3C_ TAB TAB_ TAC TAC_ TAB TAB_ 43 TL431C T431 TL431IP TL431I T3I T3I_ T4A T4A_ TAI TAI_ T4A T4A_ 3I TL431I † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 description/ordering information (continued) Vref TOLERANCE (25°C) = 2% TL431, TL432 ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA SOT 23 5 (DBV) SOT-23-5 −40°C 40°C to 125°C SOT 23 3 (DBZ) SOT-23-3 Reel of 3000 TL431QDBVR Reel of 250 TL431QDBVT Reel of 3000 TL432QDBVR Reel of 250 TL432QDBVT Reel of 3000 TL431QDBZR Reel of 250 TL431QDBZT Reel of 3000 TL432QDBZR Reel of 250 TL432QDBZT TOP-SIDE MARKING‡ TBD TBD TBD TBD † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site. Vref TOLERANCE (25°C) = 1% TL431A, TL432A ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA PDIP (P) SC 70 (DCK) SC-70 SOIC (D) SOP (PS) SOT 23 5 (DBV) SOT-23-5 0°C to 70°C SOT 23 3 (DBZ) SOT-23-3 SOT-89 (PK) TO-226/TO-92 TO 226/TO 92 (LP) TSSOP (PW) TOP-SIDE MARKING‡ Tube of 50 TL431ACP Reel of 3000 TL431ACDCKR TL431ACP Reel of 250 TL431ACDCKT Tube of 75 TL431ACD Reel of 2500 TL431ACDR Reel of 2000 TL431ACPSR Reel of 3000 TL431ACDBVR Reel of 250 TL431ACDBVT Reel of 3000 TL432ACDBVR Reel of 250 TL432ACDBVT Reel of 3000 TL431ACDBZR Reel of 250 TL431ACDBZT Reel of 3000 TL432ACDBZR Reel of 250 TL432ACDBZT Reel of 1000 TL431ACPK 4A Bulk of 1000 TL431ACLP TL431AC Ammo of 2000 TL431ACLPM Reel of 2000 TL431ACLPR Tube of 150 TL431ACPW Reel of 2000 TL431ACPWR TBD 431AC T431A TAC TAC_ TAB TAB_ TAC TAC_ TAB TAB_ TL431AC T431A † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 description/ordering information (continued) Vref TOLERANCE (25°C) = 1% TL431A, TL432A ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA PDIP (P) SC 70 (DCK) SC-70 SOIC (D) SOT 23 5 (DBV) SOT-23-5 −40°C to 85°C SOT 23 3 (DBZ) SOT-23-3 SOT-89 (PK) TO-226/TO-92 ((LP)) SOT 23 5 (DBV) SOT-23-5 40°C to 125°C −40°C SOT 23 3 (DBZ) SOT-23-3 Tube of 50 TL431AIP Reel of 3000 TL431AIDCKR Reel of 250 TL431AIDCKT Tube of 75 TL431AID Reel of 2500 TL431AIDR Reel of 3000 TL431AIDBVR Reel of 250 TL431AIDBVT Reel of 3000 TL432AIDBVR Reel of 250 TL432AIDBVT Reel of 3000 TL431AIDBZR Reel of 250 TL431AIDBZT Reel of 3000 TL432AIDBZR Reel of 250 TL432AIDBZT Reel of 1000 TL431AIPK Bulk of 1000 TL431AILP Ammo of 2000 TL431AILPM Reel of 2000 TL431AILPR Reel of 3000 TL431AQDBVR Reel of 250 TL431AQDBVR Reel of 3000 TL432AQDBVR Reel of 250 TL432AQDBVT Reel of 3000 TL431AQDBZR Reel of 250 TL431AQDBZT Reel of 3000 TL432AQDBZR Reel of 250 TL432AQDBZT TOP-SIDE MARKING‡ TL431AIP TBD 431AI TAI TAI_ T4A T4A_ TAI TAI_ T4A T4A_ 4B TL431AI TBD TBD TBD TBD † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 description/ordering information (continued) Vref TOLERANCE (25°C) = 0.5% TL431B, TL432B ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA PDIP (P) SC 70 (DCK) SC-70 SOIC (D) SOP (PS) SOT 23 5 (DBV) SOT-23-5 0°C to 70°C SOT 23 3 (DBZ) SOT-23-3 SOT-89 (PK) TO-226/TO-92 TO 226/TO 92 (LP) TSSOP (PW) PDIP (P) SC 70 (DCK) SC-70 SOIC (D) SOT 23 5 (DBV) SOT-23-5 −40°C 40°C to 85°C SOT 23 3 (DBZ) SOT-23-3 SOT-89 (PK) TO 226/TO 92 (LP) TO-226/TO-92 Tube of 50 TL431BCP Reel of 3000 TL431BCDCKR Reel of 250 TL431BCDCKT Tube of 75 TL431BCD Reel of 2500 TL431BCDR Reel of 2000 TL431BCPSR Reel of 3000 TL431BCDBVR Reel of 250 TL431BCDBVT Reel of 3000 TL432BCDBVR Reel of 250 TL432BCDBVT Reel of 3000 TL431BCDBZR Reel of 250 TL431BCDBZT Reel of 3000 TL432BCDBZR Reel of 250 TL432BCDBZT Reel of 1000 TL431BCPK Bulk of 1000 TL431BCLP Ammo of 2000 TL431BCLPM Reel of 2000 TL431BCLPR Tube of 150 TL431BCPW Reel of 2000 TL431BCPWR Tube of 50 TL431BIP Reel of 3000 TL431BIDCKR Reel of 250 TL431BIDCKT Tube of 75 TL431BID Reel of 2500 TL431BIDR Reel of 3000 TL431BIDBVR Reel of 250 TL431BIDBVT Reel of 3000 TL432BIDBVR Reel of 250 TL432BIDBVT Reel of 3000 TL431BIDBZR Reel of 250 TL431BIDBZT Reel of 3000 TL432BIDBZR Reel of 250 TL432IBDBZT Reel of 1000 TL431BIPK Bulk of 1000 TL431BILP Reel of 2000 TL431BILPR TOP-SIDE MARKING‡ TL431BCP TBD T431B TL431B T3G T3G_ TBC TBC_ T3G T3G_ TBC TBC_ 4C TL431B T431B TL431BIP TBD Z431B T3F T3F_ T4F T4F_ T3F T3F_ T4F T4F_ 4I Z431B † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 description/ordering information (continued) Vref TOLERANCE (25°C) = 0.5% TL431B, TL432B ORDERING INFORMATION (CONTINUED) ORDERABLE PART NUMBER PACKAGE† TA SOIC (D) SOT 23 5 (DBV) SOT-23-5 −40°C 40°C to 125°C SOT 23 3 (DBZ) SOT-23-3 SOT-89 (PK) TO-226/TO-92 ((LP)) Tube of 75 TL431BQD Reel of 2500 TL431BQDR Reel of 3000 TL431BQDBVR Reel of 250 TL431BQDBVT Reel of 3000 TL432BQDBVR Reel of 250 TL432BQDBVT Reel of 3000 TL431BQDBZR Reel of 250 TL431BQDBZT Reel of 3000 TL432BQDBZR Reel of 250 TL432BQDBZT Reel of 1000 TL431BQPK Bulk of 1000 TL431BQLP Ammo of 2000 TL431BQLPM Reel of 2000 TL431BQLPR TOP-SIDE MARKING‡ T431BQ T3H T3H_ T4H T4H_ T3H T3H_ T4H T4H_ 3H T431BQ Q † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site. symbol REF ANODE CATHODE functional block diagram CATHODE + REF _ Vref ANODE POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 equivalent schematic† CATHODE 800 Ω 800 Ω 20 pF REF 150 Ω 3.28 kΩ 2.4 kΩ 4 kΩ 10 kΩ 20 pF 7.2 kΩ 1 kΩ 800 Ω ANODE † All component values are nominal. absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡ Cathode voltage, VKA (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 V Continuous cathode current range, IKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −100 mA to 150 mA Reference input current range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 μA to 10 mA Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C ‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: Voltage values are with respect to the ANODE terminal, unless otherwise noted. package thermal data (see Note 2) PDIP (P) High K, JESD 51-7 θJC 57°C/W SOIC (D) High K, JESD 51-7 39°C/W 97°C/W SOP (PS) High K, JESD 51-7 46°C/W 95°C/W SOT-89 (PK) High K, JESD 51-7 9°C/W 52°C/W SOT-23-5 (DBV) High K, JESD 51-7 131°C/W 206°C/W SOT-23-3 (DBZ) High K, JESD 51-7 TBD TBD TO-92 (LP) High K, JESD 51-7 55°C/W 140°C/W TSSOP (PW) High K, JESD 51-7 65°C/W 149°C/W PACKAGE BOARD θJA 85°C/W NOTE 2: Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 recommended operating conditions VKA IKA Cathode voltage Cathode current TL43xxC TA Operating p g free-air temperature p range g POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN MAX Vref 1 36 V 100 mA 0 70 TL43xxI −40 85 TL43xxQ −40 125 UNIT °C 9 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TL431C, TL432C TEST CIRCUIT PARAMETER TEST CONDITIONS IKA = 10 mA SOT23-3 and TL432 devices UNIT MIN TYP MAX 2440 2495 2550 6 16 4 25 −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = 0°C to 70°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = 0°C to 70°C 0.4 1.2 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 1 mA Ioff Off-state cathode current 4 0.1 1 μA |zKA| Dynamic impedance (see Figure 1) 1 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω All other devices ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V mV mV The deviation parameters Vref(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained over the recommended temperature range. The average full-range temperature coefficient of the reference voltage, αVref, is defined as: Ťa Ť ǒppmǓ + V ref ǒ V I(dev) V at 25°C ref Maximum Vref Ǔ 10 6 VI(dev) Minimum Vref DT A °C ΔTA where: ΔTA is the recommended operating free-air temperature range of the device. a can be positive or negative, depending on whether minimum Vref or maximum Vref, respectively, occurs at the lower temperature. Example: maximum Vref = 2496 mV at 30°C, minimum Vref = 2492 mV at 0°C, Vref = 2495 mV at 25°C, ΔTA = 70°C for TL431C Ťa Ť + ǒ V ref 4 mV 2495 mV Ǔ 10 6 70°C [ 23 ppm °C Because minimum Vref occurs at the lower temperature, the coefficient is positive. Calculating Dynamic Impedance The dynamic impedance is defined as: |z KA| + DV KA DI KA When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit is given by: |zȀ| + DV [ |z KA| 1 ) R1 DI R2 ǒ Ǔ Figure 1. Calculating Deviation Parameters and Dynamic Impedance 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) PARAMETER Vref Reference voltage TL431I, TL432I TEST CIRCUIT TEST CONDITIONS IKA = 10 mA SOT23-3 and TL432 devices UNIT MIN TYP MAX 2440 2495 2550 14 34 5 50 −1.4 −2.7 −1 −2 mV V 2 VKA = Vref, Deviation of reference voltage VI(dev) over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 85°C All other devices DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 85°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 1 mA Ioff Off-state cathode current 4 0.1 1 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V mV mV electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) PARAMETER TL431Q, TL432Q TEST CIRCUIT TEST CONDITIONS TYP MAX 2440 2495 2550 mV 14 34 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 125°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 125°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 1 mA Ioff Off-state cathode current 4 0.1 1 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω POST OFFICE BOX 655303 IKA = 10 mA UNIT MIN ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V • DALLAS, TEXAS 75265 11 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TL431AC, TL432AC TEST CIRCUIT PARAMETER TEST CONDITIONS IKA = 10 mA SOT23-3, SC-70, and TL432 devices UNIT MIN TYP MAX 2470 2495 2520 6 16 4 25 −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = 0°C to 70°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = 0°C to 70°C 0.8 1.2 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.6 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 1 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω All other devices ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V mV mV electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TL431AI, TL432AI TEST CIRCUIT PARAMETER TEST CONDITIONS TYP MAX 2470 2495 2520 14 34 5 50 −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 85°C All other packages DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 85°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.7 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω 12 POST OFFICE BOX 655303 IKA = 10 mA SOT23-3, SC-70, and TL432 devices UNIT MIN ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V • DALLAS, TEXAS 75265 mV mV SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) PARAMETER TL431AQ, TL432AQ TEST CIRCUIT TEST CONDITIONS IKA = 10 mA UNIT MIN TYP MAX 2470 2495 2520 mV 14 34 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 125°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 125°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.7 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) PARAMETER TL431BC, TL432BC TEST CIRCUIT TEST CONDITIONS TYP MAX 2483 2495 2507 mV 6 16 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = 0°C to 70°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = 0°C to 70°C 0.8 1.2 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.6 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 1 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω POST OFFICE BOX 655303 IKA = 10 mA UNIT MIN ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V • DALLAS, TEXAS 75265 13 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TL431BI, TL432BI TEST CIRCUIT PARAMETER TEST CONDITIONS IKA = 10 mA UNIT MIN TYP MAX 2483 2495 2507 mV 14 34 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 85°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 85°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.7 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TL431BQ, TL432BQ TEST CIRCUIT PARAMETER TEST CONDITIONS TYP MAX 2483 2495 2507 mV 14 34 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 125°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 125°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.7 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 1 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω 14 POST OFFICE BOX 655303 IKA = 10 mA UNIT MIN ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 PARAMETER MEASUREMENT INFORMATION Input VKA IKA Vref Figure 2. Test Circuit for VKA = Vref VKA Input IKA R1 Iref R2 Vref ǒ Ǔ V KA + V ref 1 ) R1 ) I ref R2 R1 Figure 3. Test Circuit for VKA > Vref Input VKA Ioff Figure 4. Test Circuit for Ioff POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS Table 1. Graphs FIGURE Reference voltage vs Free-air temperature 5 Reference current vs Free-air temperature 6 Cathode current vs Cathode voltage 7, 8 OFF-state cathode current vs Free-air temperature 9 Ratio of delta reference voltage to delta cathode voltage vs Free-air temperature 10 Equivalent input noise voltage vs Frequency 11 Equivalent input noise voltage over a 10-s period 12 Small-signal voltage amplification vs Frequency 13 Reference impedance vs Frequency 14 Pulse response 15 Stability boundary conditions 16 Table 2. Application Circuits FIGURE 16 Shunt regulator 17 Single-supply comparator with temperature-compensated threshold 18 Precision high-current series regulator 19 Output control of a three-terminal fixed regulator 20 High-current shunt regulator 21 Crowbar circuit 22 Precision 5-V 1.5-A regulator 23 Efficient 5-V precision regulator 24 PWM converter with reference 25 Voltage monitor 26 Delay timer 27 Precision current limiter 28 Precision constant-current sink 29 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS† REFERENCE CURRENT vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 2600 R1 = 10 kΩ R2 = ∞ IKA = 10 mA Vref = 2550 mV‡ 2560 I ref − Reference Current − μ A V ref − Reference Voltage − mV 2580 5 VKA = Vref IKA = 10 mA 2540 2520 Vref = 2495 mV‡ 2500 2480 2460 Vref = 2440 mV‡ 2440 4 3 2 1 2420 2400 −75 −50 −25 0 25 50 75 100 0 −75 125 −50 −25 ‡ Data is for devices having the indicated value of Vref at IKA = 10 mA, TA = 25°C. Figure 5 50 75 100 125 CATHODE CURRENT vs CATHODE VOLTAGE 150 800 VKA = Vref TA = 25°C VKA = Vref TA = 25°C 100 600 I KA − Cathode Current − μ A I KA − Cathode Current − mA 25 Figure 6 CATHODE CURRENT vs CATHODE VOLTAGE 125 0 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C 75 50 25 0 −25 −50 Imin 400 200 0 −75 −100 −2 −1 0 2 1 3 −200 −1 VKA − Cathode Voltage − V 0 1 2 3 VKA − Cathode Voltage − V Figure 8 Figure 7 † Data at high and low temperatures is applicable only within the recommended operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS† RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE vs FREE-AIR TEMPERATURE OFF-STATE CATHODE CURRENT vs FREE-AIR TEMPERATURE − 0.85 2.5 VKA = 3 V to 36 V − 0.95 2 ΔV ref / ΔV KA − mV/V I off − Off-State Cathode Current − μ A VKA = 36 V Vref = 0 1.5 1 0.5 0 −75 −1.05 −1.15 −1.25 −1.35 −50 −25 0 25 50 75 100 −1.45 −75 125 −50 TA − Free-Air Temperature − °C −25 0 25 50 75 100 125 TA − Free-Air Temperature − °C Figure 10 Figure 9 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY Vn − Equivalent Input Noise Voltage − nV/ Hz 260 IO = 10 mA TA = 25°C 240 220 200 180 160 140 120 100 10 100 1k 10 k 100 k f − Frequency − Hz Figure 11 † Data at high and low temperatures is applicable only within the recommended operating free-air temperature ranges of the various devices. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-S PERIOD V n − Equivalent Input Noise Voltage − μV 6 5 4 3 2 1 0 −1 −2 −3 f = 0.1 to 10 Hz IKA = 10 mA TA = 25°C −4 −5 −6 0 1 2 3 4 5 6 7 8 9 10 t − Time − s 19.1 V 1 kΩ 500 μF 910 Ω 2000 μF VCC TL431 (DUT) 820 Ω + VCC 1 μF TLE2027 AV = 10 V/mV + − 16 Ω 160 kΩ 16 kΩ 16 kΩ 1 μF TLE2027 − 22 μF To Oscilloscope 33 kΩ AV = 2 V/V 0.1 μF 33 kΩ VEE VEE Figure 12. Test Circuit for Equivalent Input Noise Voltage POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS SMALL-SIGNAL VOLTAGE AMPLIFICATION vs FREQUENCY IKA = 10 mA TA = 25°C A V − Small-Signal Voltage Amplification − dB 60 IKA = 10 mA TA = 25°C 50 Output 15 kΩ IKA 232 Ω 40 9 μF + 30 − 8.25 kΩ 20 GND TEST CIRCUIT FOR VOLTAGE AMPLIFICATION 10 0 1k 10 k 100 k 1M 10 M f − Frequency − Hz Figure 13 REFERENCE IMPEDANCE vs FREQUENCY |z KA| − Reference Impedance − Ω 100 IKA = 10 mA TA = 25°C 1 kΩ 10 IKA 50 Ω − + GND 1 TEST CIRCUIT FOR REFERENCE IMPEDANCE 0.1 1k 10 k 100 k 1M 10 M f − Frequency − Hz Figure 14 20 Output POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 PULSE RESPONSE 6 TA = 25°C Input Input and Output Voltage − V 5 220 Ω Output 4 Pulse Generator f = 100 kHz 3 Output GND 2 TEST CIRCUIT FOR PULSE RESPONSE 1 0 −1 50 Ω 0 1 2 3 4 5 6 7 t − Time − μs Figure 15 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 TYPICAL CHARACTERISTICS STABILITY BOUNDARY CONDITIONS† FOR ALL TL431 AND TL431A DEVICES (EXCEPT FOR SOT23-3, SC-70, AND Q-TEMP DEVICES) 100 90 I KA − Cathode Current − mA 80 A VKA = Vref B VKA = 5 V C VKA = 10 V D VKA = 15 Vf 150 Ω IKA + TA = 25°C VBATT CL − B 70 Stable 60 C Stable TEST CIRCUIT FOR CURVE A 50 A 40 IKA 150 Ω R1 = 10 kΩ 30 D 20 CL + 10 R2 0 0.001 VBATT − 0.01 0.1 1 10 CL − Load Capacitance − μF TEST CIRCUIT FOR CURVES B, C, AND D STABILITY BOUNDARY CONDITIONS† FOR ALL TL431B, TL432, SOT-23, SC-70, AND Q-TEMP DEVICES 100 90 I KA − Cathode Current − mA 80 150 Ω A VKA = Vref B VKA = 5 V C VKA = 10 V D VKA = 15 Vf IKA + B 70 VBATT CL Stable − TA = 25°C 60 C Stable 50 A TEST CIRCUIT FOR CURVE A 40 A 30 D IKA 20 150 Ω R1 = 10 kΩ B 10 0 0.001 CL + 0.01 0.1 1 10 R2 CL − Load Capacitance − μF − † The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VKA and IKA conditions with CL = 0. VBATT and CL then were adjusted to determine the ranges of stability. TEST CIRCUIT FOR CURVES B, C, AND D Figure 16 22 POST OFFICE BOX 655303 VBATT • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 APPLICATION INFORMATION R (see Note A) VI(BATT) VO R1 0.1% Vref TL431 V O ǒ Ǔ + 1 ) R1 V ref R2 R2 0.1% RETURN NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum VI(BATT). Figure 17. Shunt Regulator VI(BATT) VO TL431 Von ≈2 V Voff ≈VI(BATT) Input VIT ≈ 2.5 V GND Figure 18. Single-Supply Comparator With Temperature-Compensated Threshold VI(BATT) R (see Note A) 2N222 2N222 30 Ω V 0.01 μF 4.7 kΩ TL431 O ǒ Ǔ + 1 ) R1 V ref R2 VO R2 0.1% R1 0.1% NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum VI(BATT). Figure 19. Precision High-Current Series Regulator POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 APPLICATION INFORMATION VI(BATT) IN OUT uA7805 Common VO R1 TL431 V O ǒ Ǔ + 1 ) R1 V ref R2 Minimum V O + V ref ) 5 V R2 Figure 20. Output Control of a Three-Terminal Fixed Regulator VI(BATT) VO R1 V O ǒ Ǔ + 1 ) R1 V ref R2 TL431 R2 Figure 21. High-Current Shunt Regulator VI(BATT) VO R1 TL431 R2 C (see Note A) NOTE A: Refer to the stability boundary conditions in Figure 16 to determine allowable values for C. Figure 22. Crowbar Circuit 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 APPLICATION INFORMATION IN VI(BATT) LM317 8.2 kΩ OUT Adjust VO ≈5 V, 1.5 A 243 Ω 0.1% TL431 243 Ω 0.1% Figure 23. Precision 5-V 1.5-A Regulator VO ≈5 V VI(BATT) Rb (see Note A) 27.4 kΩ 0.1% TL431 27.4 kΩ 0.1% NOTE A: Rb should provide cathode current ≥1 mA to the TL431. Figure 24. Efficient 5-V Precision Regulator 12 V VCC 6.8 kΩ 5V 10 kΩ 10 kΩ 0.1% TL431 10 kΩ 0.1% − + X Not Used TL598 Feedback Figure 25. PWM Converter With Reference POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 APPLICATION INFORMATION R3 (see Note A) VI(BATT) R4 (see Note A) R1B R1A ǒ ǒ TL431 R2A Ǔ Ǔ Low Limit + 1 ) R1B V ref R2B High Limit + 1 ) R1A V ref R2A LED on When Low Limit < VI(BATT) < High Limit R2B NOTE A: R3 and R4 are selected to provide the desired LED intensity and cathode current ≥1 mA to the TL431 at the available VI(BATT). Figure 26. Voltage Monitor 650 Ω 12 V 2 kΩ R TL431 Delay + R C In ǒ12 V12*VV Ǔ ref Off C On Figure 27. Delay Timer RCL 0.1% VI(BATT) IO I out + R1 TL431 R1 + Figure 28. Precision Current Limiter 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V ref ) I KA R CL V I(BATT) I O h FE ) I KA SLVS543A – AUGUST 2004 − REVISED AUGUST 2004 APPLICATION INFORMATION VI(BATT) IO I TL431 O + V ref RS RS 0.1% Figure 29. Precision Constant-Current Sink POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MLCC006B – OCTOBER 1996 FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 B A MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 25 5 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MPDI001A – JANUARY 1995 – REVISED JUNE 1999 P (R-PDIP-T8) PLASTIC DUAL-IN-LINE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.325 (8,26) 0.300 (7,62) 0.020 (0,51) MIN 0.015 (0,38) Gage Plane 0.200 (5,08) MAX Seating Plane 0.010 (0,25) NOM 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.430 (10,92) MAX 0.010 (0,25) M 4040082/D 05/98 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MPDS108 – AUGUST 2001 DBZ (R-PDSO-G3) PLASTIC SMALL-OUTLINE 3,04 2,80 2,05 1,78 0,60 0,45 1,03 0,89 1,40 1,20 2,64 2,10 0,51 0,37 1,12 0,89 0,100 0,013 0,55 REF 0,180 0,085 4203227/A 08/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Dimensions are inclusive of plating. Dimensions are exclusive of mold flash and metal burr. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MPSF001F – JANUARY 1996 – REVISED JANUARY 2002 KTP (R-PSFM-G2) PowerFLEX™ PLASTIC FLANGE-MOUNT PACKAGE 0.080 (2,03) 0.070 (1,78) 0.243 (6,17) 0.233 (5,91) 0.228 (5,79) 0.218 (5,54) 0.050 (1,27) 0.040 (1,02) 0.130 (3,30) NOM 0.215 (5,46) NOM 0.247 (6,27) 0.237 (6,02) 0.010 (0,25) NOM Thermal Tab (See Note C) 0.287 (7,29) 0.277 (7,03) 0.381 (9,68) 0.371 (9,42) 0.100 (2,54) 0.090 (2,29) 0.032 (0,81) MAX Seating Plane 0.090 (2,29) 0.180 (4,57) 0.004 (0,10) 0.005 (0,13) 0.001 (0,02) 0.031 (0,79) 0.025 (0,63) 0.010 (0,25) M 0.010 (0,25) NOM Gage Plane 0.047 (1,19) 0.037 (0,94) 0.010 (0,25) 2°–ā6° 4073388/M 01/02 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. The center lead is in electrical contact with the thermal tab. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15). Falls within JEDEC TO-252 variation AC. PowerFLEX is a trademark of Texas Instruments. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001 LP (O-PBCY-W3) PLASTIC CYLINDRICAL PACKAGE 0.205 (5,21) 0.175 (4,44) 0.165 (4,19) 0.125 (3,17) DIA 0.210 (5,34) 0.170 (4,32) Seating Plane 0.157 (4,00) MAX 0.050 (1,27) C 0.500 (12,70) MIN 0.104 (2,65) FORMED LEAD OPTION 0.022 (0,56) 0.016 (0,41) 0.016 (0,41) 0.014 (0,35) STRAIGHT LEAD OPTION D 0.135 (3,43) MIN 0.105 (2,67) 0.095 (2,41) 0.055 (1,40) 0.045 (1,14) 1 2 3 0.105 (2,67) 0.080 (2,03) 0.105 (2,67) 0.080 (2,03) 4040001-2 /C 10/01 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Lead dimensions are not controlled within this area D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92) E. Shipping Method: Straight lead option available in bulk pack only. Formed lead option available in tape & reel or ammo pack. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001 LP (O-PBCY-W3) PLASTIC CYLINDRICAL PACKAGE 0.539 (13,70) 0.460 (11,70) 1.260 (32,00) 0.905 (23,00) 0.650 (16,50) 0.610 (15,50) 0.020 (0,50) MIN 0.098 (2,50) 0.384 (9,75) 0.335 (8,50) 0.748 (19,00) 0.217 (5,50) 0.433 (11,00) 0.335 (8,50) 0.748 (19,00) 0.689 (17,50) 0.114 (2,90) 0.094 (2,40) 0.114 (2,90) 0.094 (2,40) 0.169 (4,30) 0.146 (3,70) DIA 0.266 (6,75) 0.234 (5,95) 0.512 (13,00) 0.488 (12,40) TAPE & REEL 4040001-3 /C 10/01 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Tape and Reel information for the Format Lead Option package. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2004, Texas Instruments Incorporated TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES T H E I N F I N I T E P O W E R I O F P N N O VA T I O N R O D U C T I O N DESCRIPTION The TL431/TL431A/TL431B series precision adjustable three terminal shunt voltage regulators are pin-to-pin compatible with the industry standard TL431. The output voltage of this reference is programmable by using two external resistors from 2.5V to 36V. These devices offer low output D A T A S H E E T K E Y F E AT U R E S impedance for improved load regulation. The typical output impedance of these devices is 200mΩ. These devices find application in the feedback path of switching power supplies, OVP crowbar circuits, reference for A/D, D/A, and as zener diodes with improved turn-on characteristics. NOTE: For current data & package dimensions, visit our web site: http://www.linfinity.com. PRODUCT HIGHLIGHT W INITIAL VOLTAGE REFERENCE ACCURACY OF 0.4% (TL431B) W SINK CURRENT CAPABILITY 1mA to 100mA W TYPICAL OUTPUT DYNAMIC IMPEDANCE LESS THAN 200mΩ; TYPICAL OUTPUT IMPEDANCE OF THE TL431B LESS THAN 100mΩ W ADJUSTABLE OUTPUT VOLTAGE FROM 2.5V TO 36V W AVAILABLE IN SURFACE-MOUNT PACKAGES W LOW OUTPUT NOISE W TYPICAL EQUIVALENT FULL RANGE TEMPERATURE COEFFICIENT OF 30ppm/°C W DIRECT PIN-TO-PIN REPLACEMENT FOR INDUSTRY STANDARD TL431 AND TL1431 PRECISION PROGRAMMABLE REFERENCES VIN VOUT R1 TL431/A & TL431B VO = ⎛1 + ⎝ R1 R2 ⎞ ⎠ * VREF R2 PA C K A G E O R D E R I N F O R M AT I O N TA (°C) 0 to 70 -40 to 85 Initial Tolerance 2% 1% 0.4% 2% 1% 0.4% SOIC DM Plastic 8-pin TL431CDM TL431ACDM TL431BCDM TL431IDM TL431AIDM TL431BIDM TO-92 LP Plastic 3-pin TL431CLP TL431ACLP TL431BCLP TL431ILP TL431AILP TL431BILP Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number. (i.e. TL431CDMT) TO-92 (LP) package also available in ammo-pack. Copyright © 1999 Rev. 1.3 9/99 LINFINITY MICROELECTRONICS INC. 11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570 1 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N A B S O L U T E M A X I M U M R AT I N G S D A T A S H E E T PACKAGE PIN OUTS (Note 1) Cathode to Anode Voltage (VKA) (Note 2) .................................................... -0.3V to 37V Reference Input Current (IREF) ................................................................... -50μA to 10mA Continuous Cathode Current (IK) ......................................................... -100mA to 150mA Operating Junction Temperature Plastic (DM, LP Packages) .................................................................................... 150°C Storage Temperature Range ...................................................................... -65°C to 150°C Lead Temperature ..................................................................................................... 300°C Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal. Pin numbers refer to DIL packages only. Note 2. Voltage values are with respect to the anode terminal unless otherwise noted. CATHODE 1 8 REF N.C. ANODE 2 7 3 6 ANODE ANODE N.C. 4 5 N.C. DM PACKAGE (Top View) 1. CATHODE 2. ANODE T H E R M A L D ATA 3. REF DM PACKAGE: THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA 165°C/W LP PACKAGE: THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA LP PACKAGE (Top View) 156°C/W Junction Temperature Calculation: TJ = TA + (PD x θJA). The θJA numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow BLOCK DIAGRAM Cathode (K) Ref (R) VREF Anode (A) 2 Copyright © 1999 Rev. 1.3 9/99 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N D A T A S H E E T ELECTRICAL CHARACTERISTICS (Note 3) (Unless otherwise specified, these specifications apply over the operating ambient temperatures for TL431C/TL431AC/TL431BC with 0°C ≤ TA ≤ 70°C, TL431I/TL431AI/TL431BI with -40°C ≤ TA ≤ 85°C.) Parameter Reference Input Voltage Reference Drift Voltage Ratio, Ref to Cathode (Note 4) Reference Input Current Symbol TL431 TL431A TL431B TL431C TL431I TL431AC TL431AI TL431BC TL431BI TL431, TL431A TL431B TL431,TL431A VREF ΔVREF ΔVKA IREF TL431B Minimum Operating Current Off-State Cathode Current TL431 TL431A IMIN IOFF TL431B Dynamic Impedance TL431 TL431B | ZKA | Test Conditions IK = 10mA, VKA = VREF, TA = 25°C IK = 10mA, VKA = VREF, TA = 25°C IK = 10mA, VKA = VREF, TA = 25°C IK = 10mA, VKA = VREF IK = 10mA, VKA = VREF IK = 10mA, VKA = VREF IK = 10mA, VKA = VREF IK = 10mA, VKA = VREF IK = 10mA, VKA = VREF IK = 10mA, VKA = 2.5V to 36V IK = 10mA, VKA = 2.5V to 36V VKA = VREF, TA = 25°C VKA = VREF, TA = 25°C VKA = VREF, TA = Operating Range VKA = VREF to 36V VKA = VREF to 36V, TA = 25°C VKA = VREF to 36V, TA = 25°C VKA = VREF to 36V, TA = Operating Range VKA = 36V, VREF = 0V, TA = 25°C VKA = VREF, IK = 1mA to 100mA, f ≤ 1kHz, TA = 25°C VKA = VREF, IK = 1mA to 100mA, f ≤ 1kHz, TA = 25°C TL431/431A/431B Units Min. Typ. Max. 2440 2495 2550 2470 2495 2520 2490 2500 2510 4 17 5 30 4 17 5 30 4 15 5 20 -1.4 -2.7 -1.1 -2 2 4 1.5 1.9 2.3 0.4 1 0.1 1 0.1 1 2 0.18 0.5 0.2 0.5 0.1 0.2 mV mV mV mV mV mV mV mV mV mV/V mV/V μA μA μA mA μA μA μA μA Ω Ω Note 3. These parameters are guaranteed by design. Note 4. ΔVREF ΔVKA Copyright © 1999 Rev. 1.3 9/99 Ratio of change in reference input voltage to the change in cathode voltage. 3 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N D A T A S H E E T GRAPH / CURVE INDEX FIGURE INDEX Characteristic Curves Parameter Measurement Information FIGURE # FIGURE # 1. REFERENCE INPUT VOLTAGE vs. FREE-AIR TEMPERATURE 8. TEST CIRCUIT FOR VKA = VREF 2. REFERENCE INPUT CURRENT vs. FREE-AIR TEMPERATURE 9. TEST CIRCUIT FOR VKA > VREF 3. CATHODE CURRENT vs. CATHODE VOLTAGE 10. TEST CIRCUIT FOR IOFF 4. CATHODE CURRENT vs. CATHODE VOLTAGE 5. OFF-STATE CATHODE CURRENT vs. FREE-AIR TEMPERATURE 6. RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE vs. FREE-AIR TEMPERATURE 7. EQUIVALENT INPUT NOISE VOLTAGE vs. FREQUENCY Typical Characteristics FIGURE # 11. EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD 12. SMALL-SIGNAL VOLTAGE AMPLIFICATION vs. FREQUENCY 13. REFERENCE IMPEDANCE vs. FREQUENCY 14. PULSE RESPONSE 15. STABILITY BOUNDARY CONDITIONS Application Information FIGURE # 16. SHUNT REGULATOR 17. SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD 18. HIGH CURRENT SHUNT REGULATOR 19. CROWBAR CIRCUIT 20. VOLTAGE MONITOR 21. PRECISION CONSTANT-CURRENT SINK 4 Copyright © 1999 Rev. 1.3 9/99 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N D A T A S H E E T CHARACTERISTIC CURVES FIGURE 1. — REFERENCE VOLTAGE vs. FREE-AIR TEMPERATURE FIGURE 2. — REFERENCE CURRENT vs. FREE-AIR TEMPERATURE 5 VREF = VKA IK = 10mA 2.58 (IREF) Reference Input Current - (μA) (VREF) Reference Input Voltage - (V) 2.60 VREF = 2550mV 2.56 TL431/A 2.54 2.52 TL431B 2.50 2.48 VREF = 2495mV TL431/A 2.46 2.44 VREF = 2440mV TL431/A 2.42 2.4 -50 -25 25 0 50 75 100 IK = 10mA R1 = IK = 10mA 4 3 TL431/A 2 TL431B 1 0 -50 125 (TA) Ambient Temperature - (°C) 0 25 50 75 100 125 (TA) Ambient Temperature - (°C) FIGURE 3. — CATHODE CURRENT vs. CATHODE VOLTAGE FIGURE 4. — CATHODE CURRENT vs. CATHODE VOLTAGE 150 800 VKA = VREF TA = 25°C VKA = VREF TA = 25°C 125 100 (IK) Cathode Current - (μA) (IK) Cathode Current - (μA) -25 75 50 25 0 TL431/A -25 TL431B -50 600 IMIN 400 200 0 -75 -100 -200 -2 -1 0 1 2 (VKA) Cathode Voltage - (V) Copyright © 1999 Rev. 1.3 9/99 3 -1 0 1 2 3 (VKA) Cathode Voltage - (V) 5 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N D A T A S H E E T CHARACTERISTIC CURVES FIGURE 5. — OFF-STATE CATHODE CURRENT vs. FREE-AIR TEMPERATURE FIGURE 6. — RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE vs. FREE-AIR TEMPERATURE -0.85 VKA = 36V VREF = 0 TL431/A & TL431B VKA = 3V to 36V -0.95 2 ΔVREF / ΔVKA - (mV/V) (IOFF) Off-State Cathode Current - (μA) 2.5 1.5 1 0.5 0 -50 -1.05 -1.15 -1.25 -1.35 -25 0 25 50 75 100 125 -1.45 -50 -25 0 25 50 75 100 125 (TA) Ambient Temperature - (°C) (TA) Ambient Temperature - (°C) FIGURE 7. — EQUIVALENT INPUT NOISE VOLTAGE vs. FREQUENCY 260 IO = 10mA TA = 25°C (VN) Noise Voltage - (nV/ Hz) 240 220 200 180 160 140 120 100 10 100 1k 10k 100k (f) Frequency - (Hz) 6 Copyright © 1999 Rev. 1.3 9/99 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N D A T A S H E E T PA R A M E T E R M E A S U R E M E N T I N F O R M AT I O N VKA Input VKA Input IK IK R1 IREF R2 VREF VREF FIGURE 9 — TEST CIRCUIT FOR VKA > VREF FIGURE 8 — TEST CIRCUIT FOR VKA = VREF VKA Input IOFF FIGURE 10 — TEST CIRCUIT FOR IOFF Copyright © 1999 Rev. 1.3 9/99 7 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P D R O D U C T I O N S A T A H E E T TYPICAL CHARACTERISTICS 6 f = 0.1 to 10Hz IK = 10mA TA = 25°C (VN) Input Noise Voltage - (μV) 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 0 2 4 6 8 10 (t) Time - (s) FIGURE 11. — EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD 19.1V 1k 500μF VCC 910 2000μF VCC 1μF TL431/A & TL431B (DUT) TLE2027 AV = 10V/mV 820 TLE2027 16k 16 160k 1μF 0.1μF VEE 2.2μF 16k 33k AV = 2V/V 1M CRO 33k VEE Test Circuit for 0.1Hz to 10Hz Equivalent Input Noise Voltage 8 Copyright © 1999 Rev. 1.3 9/99 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N D A T A S H E E T TYPICAL CHARACTERISTICS FIGURE 12. — SMALL-SIGNAL VOLTAGE AMPLIFICATION vs. FREQUENCY 70 60 (AV) Voltage Amplification - (dB) Output IK = 10mA TA = 25°C IK 230 15k 50 9μF 40 30 8.25k 20 10 GND 0 Test Circuit for Voltage Amplification -10 1k 10k 100k 1M 10M (f) Frequency - (Hz) FIGURE 13. — REFERENCE IMPEDANCE vs. FREQUENCY (|zKA|) Reference Impedance - ( ) 100 Output IK = 1mA to 100mA TA = 25°C 1k IK 10 50 1 GND Test Circuit for Reference Impedance 0.1 1k 10k 100k 1M 10M (f) Frequency - (Hz) Copyright © 1999 Rev. 1.3 9/99 9 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N D A T A S H E E T TYPICAL CHARACTERISTICS FIGURE 14. — PULSE RESPONSE 6 Output VIN - (V) 5 220 4 3 Pulse Generator f = 100kHz 2 50 (VKA) Output Voltage - (V) 1 0 3 GND 2 1 Test Circuit for Pulse Response 0 1 0 2 3 4 5 6 (t) Time - (μs) FIGURE 15. — STABILITY BOUNDARY CONDITIONS (IK) Cathode Current - mA 90 80 IK R1=10k 100 A B C D VKA = VREF VKA = 5V VKA = 10V VKA = 15V 150 IK = 10mA TA = 25°C CL B* R2 70 60 50 VBATT Stable Stable C* A* Test Circuit for Curve A 40 30 150 D* 20 IK 10 0 0.001 CL 0.01 0.1 1 10 VBATT (CL) Load Capacitance - (μF) * The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VKA and IK conditions with CL = 0. VBATT and CL were then adjusted to determine the ranges of stability. 10 Test Circuit for Curves B, C, and D Copyright © 1999 Rev. 1.3 9/99 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N D A T A S H E E T A P P L I C AT I O N I N F O R M AT I O N R (see Note) VBATT VBATT VO IK R1 0.1% TL431/A & TL431B TL431/A & TL431B VREF VO VON VOFF Input R2 0.1% 2V VBATT GND VO = Note: ⎛1 + ⎝ R1 R2 ⎞ ⎠ * VREF R should provide ≥ 1mA cathode current to the TL431/A & TL1431 at minimum V BATT. FIGURE 16 — SHUNT REGULATOR VBATT FIGURE 17 — SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD VO VBATT VO R1 R1 TL431/A & TL431B C TL431/A & TL431B R2 VO = ⎛1 + ⎝ R1 R2 ⎞ ⎠ Note: * VREF FIGURE 18 — HIGH CURRENT SHUNT REGULATOR Copyright © 1999 Rev. 1.3 9/99 R2 (see Note) Refer to the stability boundary conditions in Figure 15 to determine allowable values for C. FIGURE 19 — CROWBAR CIRCUIT 11 PRODUCT DATABOOK 1996/1997 TL431/TL431A/TL431B PRECISION PROGRAMMABLE REFERENCES P R O D U C T I O N D A T A S H E E T A P P L I C AT I O N I N F O R M AT I O N R3 (see Note) 12V VBATT IO R4 (Note) R1A TL431/A & TL431B TL431/A & TL431B R2A RS 0.1% R2B ⎛1 + ⎝ High Limit = ⎛1 + ⎝ Low Limit = R1B ⎞ * VREF R2B ⎠ R1B ⎞ * VREF R2B ⎠ LED On when Low Limit < VBATT < High Limit IO = ⎛ ⎝ VREF RS ⎞ ⎠ Note: R3 and R4 are selected to provide the desired LED intensity and ≥ 1mA cathode current to the TL431/A & TL431B at the available V+. FIGURE 20 — VOLTAGE MONITOR FIGURE 21 — PRECISION CONTANT-CURRENT SINK PRODUCTION DATA - Information contained in this document is proprietary to LinFinity, and is current as of publication date. This document may not be modified in any way without the express written consent of LinFinity. Product processing does not necessarily include testing of all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time. 12 Copyright © 1999 Rev. 1.3 9/99 Precision Adjustable Shunt Reference CORPORATION TL431 FEATURES DESCRIPTION • • • • • • The TL431 is an adjustable shunt regulator designed to act as an open-loop error amplifier with a 2.5V temperature compensated reference. Its highly accurate 1% bandgap reference is perfect for applications requiring stability and accuracy over temperature and life. Trimmed 1% Bandgap Reference Nominal Temperature Range Extended to 105oC Temperature-Compensated: 30ppm/ oC Internal Amplifier with 150mA Capability Low Output Noise Low Frequency Dynamic Output Impedance Sharp turn-on characteristics and a low temperature coefficient make the TL431 an excellent replacement for many zener diode applications, programmable to any value greater than 2.5V and up to 36V by using two external resistors. As a combination error amplifier and reference, it can be used to manage control loops such as switching power supplies. ORDERING INFORMATION Part Package TL431LP TL431D TL431S TO-92 8-Pin Plastc SOIC SOT-89 Temperature Range 0 to 105oC 0 to 105oC 0 to 105oC PIN CONFIGURATION (Top View) SOIC (D) TO-92 (LP) SOT-89 (S) CATHODE 1 8 REFERENCE ANODE 2 7 ANODE ANODE 3 6 ANODE N/C 4 5 N/C CATHODE ANODE REFERENCE CATHODE ANODE REFERENCE 1G-34 1G-33 1G-35 CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025 TL431 CORPORATION ABSOLUTE MAXIMUM RATINGS SYMBOL PARAMETER RATING UNITS VKA Cathode-Anode Reverse Breakdown 37 V IAK Anode-Cathode Forward Current 1 A IKA Operating Cathode Current 250 mA IREF Reference Input Current 10 mA PD Continuous Power at 25 oC TO-92 8L SOIC SOT-89 775 750 1000 mW mW mW TJ Junction Temperature 150 o C TSTG Storage Temperature –65 to 150 o C 300 o C TL Lead Temperature, Soldering 10 Seconds Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. RECOMMENDED CONDITIONS SYMBOL TYPICAL THERMAL RESISTANCE PARAMETER RATING UNIT PACKAGE θJA o θJC o TYPICAL DERATING VKA Cathode Voltage VREF to 20 V TO-92 160 C/W 80 C/W 6.3mW/oC IK Cathode Current 10 mA SOIC 175 oC/W 45 oC/W 5.7mW/oC SOT-89 110oC/W 8oC/W 9.1mW/oC FUNCTIONAL BLOCK DIAGRAM CATHODE (K) REFERENCE (R) + – 2.5V ANODE (A) 1G-36 CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025 TL431 CORPORATION ELECTRICAL CHARACTERISTICS Electrical Characteristics are guaranteed over full junction temperature range (0 to 105oC). Ambient temperature must be derated based on power dissipation and package thermal characteristics. The conditions are: VKA = VREF and IK = 10mA unless otherwise stated. SYMBOL PARAMETER VREF Reference Voltage TC ΔVREF with Temp.* ΔVREF ΔVK Ratio of Change in VREF to Cathode Voltage IREF MIN TYP MAX UNIT TEST CIRCUIT 2.470 2.495 2.520 V 1 TA = 25oC 2.541 V 1 Over Temp. 0.20 mV/ oC 1 mV/V 2 2.449 0.07 –2.7 –1.0 –2 –0.4 0.3 Reference Input Current 0.7 4 TEST CONDITION VREF to 10V 10V to 36V μA 2 ΔIREF IREF Temp Deviation 0.4 1.2 μA 2 IK(MIN) Min IK for Regulation 0.4 1 mA 1 IK(OFF) Off State Leakage 0.04 250 nA 3 VREF = 0V, VKA = 36V ZKA Dynamic Output Impedance 0.15 0.5 Ω 1 f ≤ 1kHz, I K = 1 to 150mA Over Temp. mV ppm *CALCULATING AVERAGE TEMPERATURE COEFFICIENT (TC) % 0 0 • TC in mV/oC = 0 ΔVREF ΔVREF (mV) ΔTA ΔT –10 5000 0.5 • TC in %/oC = 0 15 30 45 60 75 90 ΔVREF ⎛ ⎞ ⎜ o ⎟ ⎝ VREF at 25 C ⎠ 105 TEMPERATURE (˚C) o • TC in ppm/ C = 0.07 mV/˚C x 100 ΔTA ΔVREF ⎛ ⎞ ⎜ o ⎟ ⎝ VREF at 25 C ⎠ x 106 ΔTA 0.003 %/˚C 27 ppm/˚C 1G-37 TEST CIRCUITS V IN V KA = V REF V IN V KA IK IK I REF R1 V IN V KA I K(OFF) I REF (V REF ) R2 1G-38 1G-39 TEST CIRCUIT 1 TEST CIRCUIT 2 1G-40 TEST CIRCUIT 3 CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025 TL431 CORPORATION TYPICAL PERFORMANCE CURVES TEMPERATURE RANGE: –55 to 125˚C 700 600 500 400 125˚C 300 25˚C 200 –55˚C 100 0 –100 –200 –1.0 0 1.0 2.0 3.0 VKA – CATHODE VOLTAGE (V) 1G-41 10 1 0.1 75 50 25 0 –25 –50 –75 –1 0 1 2 VKA – CATHODE VOLTAGE (V) 3 1G-42 VKA = VREF 2.53 I K = 10mA 2.52 2.51 2.50 VREF = 2.503V AT 25˚C 2.49 2.48 2.47 2.46 –60 1G-43 REFERENCE INPUT CURRENT 2.0 1.5 1.0 0.5 –10 1G-44 –55˚C 0˚C –20 25˚C 75˚C –30 125˚C –40 I K = 10mA –50 TEMPERATURE RANGE: –55 to 125˚C 0 1G-45 –30 0 30 60 90 120 TA – AMBIENT TEMPERATURE REFERENCE VOLTAGE LINE REGULATION 0 R1 = 10kΩ R2 = ∞ 2.5 I K = 10mA 0 0 30 60 90 120 –60 –30 TA – AMBIENT TEMPERATURE (˚C) 100 2.54 VKA = 36V VREF = 0V 3.0 VKA = VREF TEMPERATURE RANGE: –55 to 125˚C TEMPERATURE COEFFICIENT AS A FUNCTION OF TRIM VALUE OFF STATE LEAKAGE 0.01 0 30 60 90 120 –60 –30 TA – AMBIENT TEMPERATURE (˚C) 125 HIGH CURRENT OPERATING CHARACTERISTICS –100 –2 VREF – REFERENCE VOLTAGE (V) I Z off – OFF STATE CATHODE CURRENT (nA) 100 I REF – REFERENCE INPUT CURRENT (μA) 150 VKA = VREF I K – CATHODE CURRENT (mA) 800 VREF – CHANGE IN REFERENCE VOLTAGE (mV) I K – CATHODE CURRENT (μA) 900 LOW CURRENT OPERATING CHARACTERISTICS 3 6 9 12 15 18 21 24 27 30 VKA – CATHODE VOLTAGE (V) 1G-46 CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025 TL431 CORPORATION TYPICAL PERFORMANCE CURVES (continued) NOISE VOLTAGE 0.150 Z KA – DYNAMIC IMPEDANCE (Ω) NOISE VOLTAGE nV/ Hz 70 60 50 40 30 20 VKA = VREF 10 I K = 10mA TA = 25˚C 0 100 1k 10k 10 f – FREQUENCY (Hz) Z KA – DYNAMIC IMPEDANCE (Ω) A V – SMALL SIGNAL VOLTAGE GAIN (dB) VKA = VREF I KA = 1 TO 100mA f ≤ 1kHz 0.100 0.075 0.050 0.025 0.0 –60 1G-47 –30 0 30 60 90 120 TA – FREE AIR TEMPERATURE 1G-48 DYNAMIC OUTPUT IMPEDANCE TA = 25˚C I K = 1 TO 100mA 10 1.0 0.1 0.01 1k 70 0.125 100k 100 LOW FREQUENCY DYNAMIC OUTPUT IMPEDANCE 10k 100k 1M f – FREQUENCY (Hz) 10M 1G-49 SMALL SIGNAL GAIN vs FREQUENCY OUT 60 50 15k TA = 25˚C I K = 10mA 9μF IK 230Ω 40 30 8.25k GND 20 1H-01 10 0 1k 10k 100k 1M f – FREQUENCY (Hz) 10M 1G-50 CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025 TL431 CORPORATION INPUT AND OUTPUT VOLTAGES (V) TYPICAL PERFORMANCE CURVES (continued) 6 PULSE RESPONSE INPUT INPUT MONITOR 5 220Ω OUT 4 3 OUTPUT 50Ω f P = 100kHz 2 1 GND 0 1H-03 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 t – TIME (μs) 1H-02 I K – CATHODE CURRENT (mA) 100 90 80 STABILITY BOUNDARY CONDITIONS A: VKA = VREF 150 Ω B: VKA = 5V AT I K = 10mA C: VKA = 10V AT I K = 10mA D: VKA = 15V AT I K = 10mA IK 70 60 50 STABILITY REGION C 40 10k 30 A 20 10 CL B TA = 25˚C 1H-05 D 0 100 101 102 103 104 105 106 107 C L – LOAD CAPACITANCE (pF) 1H-04 CALOGIC CORPORATION, 237 Whitney Place, Fremont, California 94539, Telephone: 510-656-2900, FAX: 510-651-3025 AIC431/TL431A/TL431 Adjustable Precision Shunt Regulators FEATURES DESCRIPTION Unconditionally Stable. Precision Reference Voltage. AIC431 :2.495V ±0.5% TL431A :2.495V ±1.0% TL431 :2.495V ±1.6% Sink Current Capability: 200mA. Minimum Cathode Current for Regulation: 250μA. Equivalent Full-Range Temperature Coefficient: 50 ppm/°C. Fast Turn-On Response. Low Dynamic Output Impedance: 0.08Ω. Adjustable Output Voltage. Low Output Noise. Space Saving SOT-89, SOT-23, TO-92 and SO8 packages. TYPICAL APPLICATION CIRCUIT V IN V OUT + R1 The AIC431/TL431A/TL431 are 3-terminal adjustable precision shunt regulators with guaranteed temperature stability over the applicable extended commercial temperature range. The output voltage may be set at any level greater than 2.495V (V REF) up to 30V merely by selecting two external resistors that act as a voltage divider network. These devices have a typical output impedance of 0.08Ω. Active output circuitry provides a very sharp turn-on characteristics, making these devices excellent improved replacements for zener diodes in many applications. The precise ±0.5% reference voltage tolerance of the AIC431 makes it possible in many applications to avoid the use of a variable resistor, consequently saving cost and eliminating drift and reliability problems associated with it. + AIC431 R2 VOUT=(1+R1/R2)VREF Precision Regulator Analog Integrations Corporation 4F, 9, Industry E. 9th Rd, Science Based Industrial Park, Hsinchu Taiwan, ROC DS-431-06 May 31, 01 TEL: 886-3-5772500 FAX: 886-3-5772510 www.analog.com.tw 1 AIC431/TL431A/TL431 ORDERING INFORMATION AIC431 CX TL431A CX TL431 CX PACKAGING TYPE S: SMALL OUTLINE U: SOT-23 X: SOT-89 Z: TO-92 ORDER NUMBER AIC431CS TL431ACS TL431CS (SO-8) AIC431CUN TL431ACUN TL431CUN (SOT-23) PIN CONFIGURATION TOP VIEW CATHOD 1 8 REF ANODE 2 7 ANODE ANODE 3 6 ANODE NC 4 5 NC 3 FRONT VIEW 1: CATHODE 2: VREF 3: ANODE 1 AIC431CUS TL431ACUS TL431CUS (SOT-23) 2 3 FRONT VIEW 1: VREF 2: CATHODE 3: ANODE 1 AIC431CX TL431ACX TL431CX (SOT-89) FRONT VIEW 1: VREF 2: ANODE 3: CATHODE 1 AIC431CZ TL431ACZ TL431CZ (TO-92) 2 FRONT VIEW 1: VREF 2: ANODE 3: CATHODE 2 3 1 2 3 ABSOLUTE MAXIMUM RATINGS Cathode Voltage ........……………...............……………..………...............................30V Continuous Cathode Current ...................………….……...................... -10mA ~ 250mA Reference Input Current Range .......…………........……..........…………………… 10mA Operating Temperature Range .......………….........……….........……………. -40°C ~ 85°C Lead Temperature .......…………..................………………..………………………. 260°C Storage Temperature .......…………..................……………..…………….. -65°C ~ 150°C Power Dissipation (Notes 1, 2) SOT-89 Package .........…………...... 0.80W TO-92 Package ….......…………....... 0.78W Note 1: TJ, max = 150°C. Note 2: Ratings apply to ambient temperature at 25°C. 2 AIC431/TL431A/TL431 TEST CIRCUITS IN IL IN VZ IL R1 IREF VZ AIC431 IREF IZ IZ VREF R2 VREF AIC431 Note: V Z=V REF(1+R1/R2)+IREFxR1 Fig. 1 Test Circuit for VZ=VREF Fig. 2 Test circuit for VZ>VREF IN VZ AIC431 IZ(OFF) Fig. 3 Test circuit for off-state Current ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified.) PARAMETER Reference Voltage TEST CONDITIONS VZ=VREF, AIC431 IL =10mA (Fig. 1) TL431A SYMBOL MIN. TYP. MAX. 2.482 2.495 2.508 2.470 2.495 2.520 2.455 2.495 2.535 9.0 20 mV -0.5 -2.0 mV/V ΔVZ -0.35 -1.5 mV/V IREF 0.8 3.5 μA VREF TL431 Deviation of Reference Input Voltage Over Temperature (Note 3) VZ = VREF , IL =10mA, Ratio of the Change in Reference Voltage to the Change in Cathode voltage IZ=10mA ΔVZ=10V-VREF (Fig. 2) ΔVZ=30V-10V Reference Input Current R1 =10KΩ, R2=∞, IL =10mA (Fig. 2) Ta = 0°C~ +85°C (Fig. 1) VDEV ΔVREF UNIT V 3 AIC431/TL431A/TL431 Deviation of Reference Input Current over Temperature R1 =10KΩ, R2=∞, IL =10mA Ta =-20°C ~ +85°C (Fig. 2) αIREF 0.3 1.2 μA 4 AIC431/TL431A/TL431 ELECTRICAL CHARACTERISTICS (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Minimum Cathode current for Regulation VZ=VREF (Fig. 1) IZ(MIN) 0.25 0.5 mA Off-State Current VZ=20V, VREF =0V (Fig. 3) IZ(OFF) 0.1 1.0 μA Dynamic Output Impedance (Note 4) VZ=VREF Frequency= 0Hz (Fig. 1) RZ 0.08 0.3 Ω Where: T2−T1=full temperature change. αVREF can be positive or negative depending on whether the slope is positive or negative. Example: VDEV= 9.0mV, VREF= 2495mV, T2−T1= 70°C, slope is negative. VMAX VDEV = V MAX-V MIN VMIN ⎡ 9.0mV ⎤ 106 ⎢ 2495mV ⎥⎦ αVREF = ⎣ = −50ppm/ °C T1 70°C T2 TEMPERATURE Note 3. Deviation of reference input voltage, VDEV, is defined as the maximum variation of the reference input voltage over the full temperature range. Note 4. The dynamic output impedance, Rz, is defined as: The average temperature coefficient of the reference input voltage, αVREF is d efined as: When the device is programmed with two external resistors, R1 and R2, (see Fig. 2), the dynamic output impedance of the overall circuit, is defined as: ⎡ VMAX - VMIN ⎤ 6 ⎡ ⎤ 6 VDEV ±⎢ ±⎢ ⎥10 ⎥10 ppm VREF(at 25°C) ⎦ VREF(at 25°C) ⎦ ΔVREF = ⎣ = ⎣ °C T2 − T1 T2 − T1 TYPICAL RZ = rz = Cathode Current vs Cathode Voltage Reference Voltage vs Temperature 2.58 VZ =V REF TA =25° C VZ =VREF 2.56 IZ(MIN) Reference Voltage (V) Cathode Current (μA) [ ] ΔVz R1 ≅ Rz 1+ R2 ΔIz PERFORMANCE CHARACTERISTICS 1000 800 ΔVZ ΔIZ 600 400 200 0 -200 IZ =10mA 2.54 VREF =2.535V 2.52 2.50 VREF =2.495V 2.48 2.46 2.44 VREF=2.455V -400 2.42 -600 -1.0 -0.5 0.0 0.5 1.0 1.5 Cathode Voltage (V) 2.0 2.5 3.0 2.40 -40 -20 0 20 40 60 80 100 120 Temperature (°C ) 5 AIC431/TL431A/TL431 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) Reference Input Current vs Temperature 0.28 Dynamic Impedance vs Temperature R1=10KΩ R2=∞ IZ =10mA 1.15 1.10 Dynamic Impedance (Ω) Reference Input Current (μA) 1.20 1.05 1.00 0.95 0.90 0.85 0.80 0.24 V Z=VREF IZ =1mA to100mA 0.20 F <1KHz 0.16 0.12 0.08 0.04 0.75 0.70 -40 0.00 -40 -20 0 20 40 60 80 100 -20 0 20 60 80 100 120 Temperature (° C) Temperature (° C) Off-State Cathode Current vs Temperature Change in Reference Voltage vs Cathode Voltage 2.5 0 Off-State Cathode Current (μA) Change in Reference Voltage (mV) 40 120 -1 IZ =10mA -2 TA =25°C -3 -4 -5 -6 0 5 10 15 20 25 30 35 40 2.0 VREF=0V VZ =30V 1.5 1.0 0.5 0.0 -40 -20 0 20 40 60 80 100 120 Temperature (° C) Cathode Voltage (V) Small Signal Voltage Amplification Small Signal Voltage Amplification vs Frequency 80 70 IZ =10mA 60 TA=25° C Output 50 47μF 40 R1 10K 250 Av 30 + CIN V IN 20 R AIC431 V1 10 0 -1010 100 1k 10k 100k 1M 10M Frequency (Hz) Test Circuit For Frequency Response 6 AIC431/TL431A/TL431 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) Pulse Response RB Input 220 Pulse Generator f=100kHz OUTPUT RA 50 Output AIC431 Test Circuit For Pulse Respnose Stability Boundary Conditions 100 Cathode Current (mA) VZ 80 V Z=VREF Stable R 60 150 AIC431 CL 40 VIN Stable 20 0 1E-4 1E-3 0.01 0.1 1 10 Load Capacitance (μF) The areas between the curves represent condition that may cause the device oscillate Test Circuit for Stability Boundary Conditions Dynamic impedance vs. Frequency Dynamic Impedance (Ω) 10 Iz=10mA TA=25° C R1 Output 50 1 AIC431 + AC R2 50 + 3V 0.1 GND 1K 10K 100K 1M Frequency (Hz) 7 AIC431/TL431A/TL431 SYMBOL BLOCK DIAGRAM CATHODE (C) REF (R) REF (R) CATHODE (C) + - AIC431 2.495V ANODE (A) ANODE (A) APPLICATION EXAMPLES VIN VIN R1B R R1A AIC431 R2A R2B AIC431 + AIC431 ON C OFF LED on when Low Limit<VIN< High Limit Low Limit ≅ VREF (1+R1B/R2B) Delay=R x C x ln ( V V− V IN IN High Limit ≅ VREF (1+R1A/R2A) Fig. 4 Voltage Monitor ) REF Fig. 5 Delay Timer VIN R CL IOUT IOUT VIN AIC431 RS AIC431 IOUT =VREF/ RCL IOUT =VREF /RS Fig. 6 Current Limiter or Current Source Fig. 7 Constant-Current Sink 8 AIC431/TL431A/TL431 APPLICATION EXAMPLES (Continued) VOUT VIN VIN FUSE VOUT R1 R1 AIC431 AIC431 R2 R2 VOUT ≅ (1+R1/R2) x VREF VLIMIT ≅ (1+R1/R2) x VREF Fig 8. Higher-Current Shunt Regulator Fig 9. Crow Bar VIN R1A R1B AIC431 Output ON when Low Limit <VIN < High Limit + AIC431 R2A R2B VBE Low Limit≅ VREF ( 1+ R1B/ R2B )+ VBE High Limit ≅ VREF ( 1+ R1A/ R2A ) Fig 10. Over-Voltage/Under-Voltage Protection Circuit 9 AIC431/TL431A/TL431 PHYSICAL DIMENSIONS 8 LEAD PLASTIC SO (unit: mm) D SYMBOL MIN MAX A 1.35 1.75 A1 0.10 0.25 B 0.33 0.51 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 H E e e A H 5.80 6.20 L 0.40 1.27 SYMBOL MIN MAX A 1.00 1.30 A1 — 0.10 A2 0.70 0.90 b 0.35 0.50 C 0.10 0.25 D 2.70 3.10 E 1.40 1.80 A1 C B L SOT-23 (unit: mm) C D L E H θ1 e e A A2 A1 b 1.27(TYP) 1.90 (TYP) H 2.60 3.00 L 0.37 — θ1 1° 9° SOT-23 MARKING Part No. AIC431CUN TL431CUN TL431ACUN Marking AC1N AC2N AC3N Part No. AIC431CUS TL431CUS TL431ACUS Marking AC1S AC2S AC3S 10 AIC431/TL431A/TL431 PHYSICAL DIMENSIONS (Continued) SOT-89 (unit: mm) D A SYMBOL MIN MAX C A 1.40 1.60 B 0.36 0.48 C 0.35 0.44 D 4.40 4.60 D1 1.62 1.83 E 2.29 2.60 D1 H E L B e e1 1.50 (TYP.) e1 3.00 (TYP.) H 3.94 4.25 L 0.89 1.20 SYMBOL MIN MAX A 4.32 5.33 SOT-89 MARKING Part No. AIC431CX TL431CX TL431ACX e Marking AC01B AC02B AC03B TO-92 (unit: mm) A E L C C e1 D 0.38 (TYP.) D 4.40 5.20 E 3.17 4.20 e1 L 1.27 (TYP.) 12.7 - 11 www.fairchildsemi.com TL431/TL431A Programmable Shunt Regulator Features Description • • • • The TL431/TL431Aare three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between VREF (approximately 2.5 volts) and 36 volts with two external resistors These devices have a typical dynamic output impedance of 0.2W Active output circuitry provides a very sharp turn-on characteristic, making these devices excel lent replacement for zener diodes in many applications. Programmable Output Voltage to 36 Volts Low Dynamic Output Impedance 0.20 Typical Sink Current Capability of 1.0 to 100mA Equivalent Full-Range Temperature Coefficient of 50ppm/°C Typical • Temperature Compensated For Operation Over Full Rated Operating Temperature Range • Low Output Noise Voltage • Fast Turn-on Response TO-92 1 1. Ref 2. Anode 3. Cathode 8-DIP 1 1.Cathode 2.3.4.5.7.NC 6.Anode 8.Ref 8-SOP 1 1. Cathode 2. 3. 6. 7. Anode 8. Ref 4. 5. NC Rev. 1.0.3 ©2003 Fairchild Semiconductor Corporation TL431/TL431A Internal Block Diagram Absolute Maximum Ratings (Operating temperature range applies unless otherwise specified.) Parameter Symbol Value Unit Cathode Voltage VKA 37 V Cathode Current Range (Continuous) IKA -100 ~ +150 mA IREF -0.05 ~ +10 mA PD 770 1000 mW mW TOPR -25 ~ +85 °C TJ 150 °C TSTG -65 ~ +150 °C Reference Input Current Range Power Dissipation D, LP Suffix Package P Suffix Package Operating Temperature Range Junction Temperature Storage Temperature Range Recommended Operating Conditions Parameter 2 Symbol Min Typ Max Unit Cathode Voltage VKA VREF - 36 V Cathode Current IKA 1.0 - 100 mA TL431/TL431A Electrical Characteristics (TA = +25°C, unless otherwise specified) Parameter Reference Input Voltage Symbol Conditions VREF VKA=VREF, IKA=10mA Deviation of Reference Input Voltage OverTemperature (Note 1) ΔVREF/ ΔT VKA=VREF, IKA=10mA TMIN≤TA≤TMAX Ratio of Change in Reference Input Voltage ΔVREF/ ΔVKA to the Change in Cathode Voltage Reference Input Current Deviation of Reference Input Current Over Full Temperature Range IREF ΔIREF/ΔT TL431 Min. Typ. TL431A Max. Min. Typ. Max. 2.440 2.495 2.550 2.470 2.495 2.520 - 4.5 17 - 4.5 17 Unit V mV ΔVKA=10VVREF - - 10 -2.7 - -1.0 -2.7 ΔVKA=36V10V - -0.5 -2.0 - -0.5 -2.0 IKA=10mA, R1=10KΩ,R2=∞ - 1.5 4 - 1.5 4 μA IKA=10mA, R1=10KΩ,R2=∞ TA =Full Range - 0.4 1.2 0.4 1.2 μA IKA =10mA mV/V - Minimum Cathode Current for Regulation IKA(MIN) VKA=VREF - 0.45 1.0 - 0.45 1.0 mA Off - Stage Cathode Current IKA(OFF) VKA=36V, VREF=0 - 0.05 1.0 - 0.05 1.0 μA Dynamic Impedance (Note 2) ZKA VKA=VREF, IKA=1 to 100mA f ≥1.0KHz - 0.15 0.5 - 0.15 0.5 Ω • TMIN= -25 °C, TMAX= +85 °C 3 TL431/TL431A Test Circuits TL431/A Figure 1. Test Circuit for VKA=VREF TL431/A Figure 3. Test Circuit for lKA(OFF) 4 TL431/A Figure 2. Test Circuit for VKA≥VREF TL431/TL431A Typical Perfomance Characteristics Figure 1. Cathode Current vs. Cathode Voltage Figure 2. Cathode Current vs. Cathode Voltage Figure 3. Change In Reference Input Voltage vs. Cathode Voltage Figure 4. Dynamic Impedance Frequency Figure 5. Small Signal Voltage Amplification vs. Frequency Figure 6. Pulse Response 5 TL431/TL431A Typical Application R V O = V ref § 1 + ------1-· © R 2¹ R V O = § 1 + ------1-· V ref © R ¹ 2 R V O = § 1 + ------1-· V ref © R ¹ 2 MC7805/LM7805 TL431/A TL431/A TL431/A Figure 10. Shunt Regulator Figure 11. Output Control for ThreeTermianl Fixed Regulator TL431/A Figure 13. Current Limit or Current Source 6 Figure 12. High Current Shunt Regulator TL431/A Figure 14. Constant-Current Sink TL431/TL431A Mechanical Dimensions Package TO-92 +0.25 4.58 ±0.20 4.58 –0.15 14.47 ±0.40 0.46 ±0.10 1.27TYP [1.27 ±0.20] 1.27TYP [1.27 ±0.20] +0.10 0.38 –0.05 (0.25) +0.10 0.38 –0.05 1.02 ±0.10 3.86MAX 3.60 ±0.20 (R2.29) 7 TL431/TL431A Mechanical Dimensions (Continued) Package 1.524 ±0.10 #5 2.54 0.100 5.08 MAX 0.200 7.62 0.300 3.40 ±0.20 0.134 ±0.008 +0.10 0.25 –0.05 +0.004 0~15° 8 0.010 –0.002 3.30 ±0.30 0.130 ±0.012 0.33 0.013 MIN 0.060 ±0.004 #4 0.018 ±0.004 #8 9.60 MAX 0.378 #1 9.20 ±0.20 0.362 ±0.008 ( 6.40 ±0.20 0.252 ±0.008 0.46 ±0.10 0.79 ) 0.031 8-DIP TL431/TL431A Mechanical Dimensions (Continued) Package 8-SOP MIN #5 1.80 MAX 0.071 5.72 0.225 ° 3.95 ±0.20 0.156 ±0.008 0~ 8 +0.10 0.15 -0.05 +0.004 0.006 -0.002 MAX0.10 MAX0.004 6.00 ±0.30 0.236 ±0.012 0.41 ±0.10 0.016 ±0.004 #4 1.27 0.050 #8 5.13 MAX 0.202 #1 4.92 ±0.20 0.194 ±0.008 ( 0.56 ) 0.022 1.55 ±0.20 0.061 ±0.008 0.1~0.25 0.004~0.001 0.50 ±0.20 0.020 ±0.008 9 TL431/TL431A Ordering Information Product Number TL431ACLP TL431ACD Output Voltage Tolerance 1% TL431CLP TL431CP Package TO-92 8-SOP TO-92 2% TL431CD Operating Temperature -25 ~ + 85oC 8-DIP 8-SOP DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com 8/4/03 0.0m 001 Stock#DSxxxxxxxx © 2003 Fairchild Semiconductor Corporation SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 D Operation From −40°C to 125°C D Reference Voltage Tolerance at 25°C D − 0.5% . . . B Grade − 1% . . . A Grade − 2% . . . Standard Grade Typical Temperature Drift (TL431B) − 6 mV (C Temp) − 14 mV (I Temp, Q Temp) TL431, TL431A, TL431B . . . D (SOIC) PACKAGE (TOP VIEW) CATHODE ANODE ANODE NC 1 8 2 7 3 6 4 5 REF ANODE ANODE NC D D D D Low Output Noise 0.2-Ω Typical Output Impedance Sink-Current Capability . . . 1 mA to 100 mA Adjustable Output Voltage . . . Vref to 36 V TL431, TL431A, TL431B . . . P (PDIP), PS (SOP), OR PW (TSSOP) PACKAGE (TOP VIEW) CATHODE NC NC NC NC − No internal connection 1 8 2 7 3 6 4 5 NC − No internal connection TL431, TL431A, TL431B . . . PK (SOT-89) PACKAGE (TOP VIEW) TL432, TL432A, TL432B . . . PK (SOT-89) PACKAGE (TOP VIEW) REF ANODE ANODE CATHODE ANODE ANODE REF CATHODE TL431, TL431A, TL431B . . . DBV (SOT-23-5) PACKAGE (TOP VIEW) NC 1 NC† 2 CATHODE 3 5 ANODE 4 REF NC − No internal connection † Pin 2 is connected internally to ANODE (die substrate) and should be floating or connected to ANODE. TL431, TL431A, TL431B . . . DBZ (SOT-23-3) PACKAGE (TOP VIEW) CATHODE 1 3 REF REF NC ANODE NC TL432, TL432A, TL432B . . . DBV (SOT-23-5) PACKAGE (TOP VIEW) NC 1 ANODE 2 NC 3 5 REF 4 CATHODE NC − No internal connection TL432, TL432A, TL432B . . . DBZ (SOT-23-3) PACKAGE (TOP VIEW) REF 1 CATHODE 2 ANODE 3 2 ANODE Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerFLEX is a trademark of Texas Instruments. Copyright © 2005, Texas Instruments Incorporated ! "#$ ! %#&'" ($) (#"! " !%$""! %$ *$ $! $+! !#$! !(( ,-) (#" %"$!!. ($! $"$!!'- "'#($ $!. '' %$$!) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 TL431, TL431A, TL431B . . . LP (TO-92/TO-226) PACKAGE (TOP VIEW) TL431A, TL431B . . . DCK (SC-70) PACKAGE (TOP VIEW) CATHODE CATHODE NC REF ANODE REF 1 6 2 5 3 4 ANODE NC NC NC − No internal connection TL431 . . . KTP (PowerFLEXE/TO-252) PACKAGE (TOP VIEW) ANODE CATHODE ANODE REF description/ordering information The TL431 and TL432 are three-terminal adjustable shunt regulators, with specified thermal stability over applicable automotive, commercial, and military temperature ranges. The output voltage can be set to any value between Vref (approximately 2.5 V) and 36 V, with two external resistors (see Figure 17). These devices have a typical output impedance of 0.2 Ω. Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications, such as onboard regulation, adjustable power supplies, and switching power supplies. The TL432 has exactly the same functionality and electrical specifications as the TL431, but has different pinouts for the DBV, DBZ, and PK packages. Both the TL431 and TL432 devices are offered in three grades, with initial tolerances (at 25°C) of 0.5%, 1%, and 2%, for the B, A, and standard grade, respectively. In addition, low output drift vs temperature ensures good stability over the entire temperature range. The TL43xxC devices are characterized for operation from 0°C to 70°C, the TL43xxI devices are characterized for operation from −40°C to 85°C, and the TL43xxQ devices are characterized for operation from −40°C to 125°C. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 Vref TOLERANCE (25°C) = 2% TL431, TL432 ORDERING INFORMATION PDIP (P) SOIC (D) SOP (PS) SOT 23 5 (DBV) SOT-23-5 0°C 0 C to 70 70°C C ORDERABLE PART NUMBER PACKAGE† TA SOT 23 3 (DBZ) SOT-23-3 Tube of 50 TL431CP Tube of 75 TL431CD Reel of 2500 TL431CDR Reel of 2000 TL431CPSR Reel of 3000 TL431CDBVR Reel of 250 TL431CDBVT Reel of 3000 TL432CDBVR Reel of 250 TL432CDBVT Reel of 3000 TL431CDBZR Reel of 250 TL431CDBZT Reel of 3000 TL432CDBZR Reel of 250 TL432CDBZT TL431CPK SOT 89 (PK) SOT-89 Reel of 1000 TO-226/TO-92 TO 226/TO 92 (LP) TSSOP (PW) PDIP (P) SOIC (D) SOT 23 5 (DBV) SOT-23-5 −40°C to 85°C SOT 23 3 (DBZ) SOT-23-3 TL432CPK Bulk of 1000 TL431CLP Ammo of 2000 TL431CLPM Reel of 2000 TL431CLPR Tube of 150 TL431CPW Reel of 2000 TL431CPWR Tube of 50 TL431IP Tube of 75 TL431ID Reel of 2500 TL431IDR Reel of 3000 TL431IDBVR Reel of 250 TL431IDBVT Reel of 3000 TL432IDBVR Reel of 250 TL432IDBVT Reel of 3000 TL431IDBZR Reel of 250 TL431IDBZT Reel of 3000 TL432IDBZR Reel of 250 TL432IDBZT TL431IPK SOT 89 (PK) SOT-89 Reel of 1000 TO 226/TO 92 (LP) TO-226/TO-92 TL432IPK Bulk of 1000 TL431ILP Reel of 2000 TL431ILPR TOP-SIDE MARKING‡ TL431CP TL431C T431 T3C T3C_ T4C T4C_ T3C T3C_ T4C T4C_ 43 PREVIEW PREVIEW TL431C T431 TL431IP TL431I T3I T3I_ T4I T4I_ T3I T3I_ T4I T4I_ 3I PREVIEW PREVIEW TL431I † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 Vref TOLERANCE (25°C) = 2% TL431, TL432 ORDERING INFORMATION SOT 23 5 (DBV) SOT-23-5 −40°C 40°C tto 125°C ORDERABLE PART NUMBER PACKAGE† TA SOT 23 3 (DBZ) SOT-23-3 Reel of 3000 TL431QDBVR Reel of 250 TL431QDBVT Reel of 3000 TL432QDBVR Reel of 250 TL432QDBVT Reel of 3000 TL431QDBZR Reel of 250 TL431QDBZT Reel of 3000 TL432QDBZR Reel of 250 TL432QDBZT TOP-SIDE MARKING‡ T3Q T3Q_ T4Q T4Q_ T3Q T3Q_ T4Q T4Q_ TL431QPK SOT 89 (PK) SOT-89 SC 70 (DCK) SC-70 Reel of 1000 TL432QPK Reel of 1000 TL431QDCKR Reel of 250 TL431QDCKT PREVIEW PREVIEW † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 Vref TOLERANCE (25°C) = 1% TL431A, TL432A ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA PDIP (P) SC 70 (DCK) SC-70 SOIC (D) SOP (PS) SOT 23 5 (DBV) SOT-23-5 0°C to 70°C SOT 23 3 (DBZ) SOT-23-3 SOT 89 (PK) SOT-89 Tube of 50 TL431ACP Reel of 3000 TL431ACDCKR Reel of 250 TL431ACDCKT Tube of 75 TL431ACD Reel of 2500 TL431ACDR Reel of 2000 TL431ACPSR Reel of 3000 TL431ACDBVR Reel of 250 TL431ACDBVT Reel of 3000 TL432ACDBVR Reel of 250 TL432ACDBVT Reel of 3000 TL431ACDBZR Reel of 250 TL431ACDBZT Reel of 3000 TL432ACDBZR Reel of 250 TL432ACDBZT Reel of 1000 TO 226/TO 92 (LP) TO-226/TO-92 TSSOP (PW) TOP-SIDE MARKING‡ TL431ACP PREVIEW 431AC T431A TAC TAC_ T4B T4B_ TAC TAC_ T4B T4B_ TL431ACPK 4A TL432ACPK PREVIEW Bulk of 1000 TL431ACLP Ammo of 2000 TL431ACLPM Reel of 2000 TL431ACLPR Reel of 2000 TL431ACLPRE3 Tube of 150 TL431ACPW Reel of 2000 TL431ACPWR TL431AC T431A † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 Vref TOLERANCE (25°C) = 1% TL431A, TL432A ORDERING INFORMATION PDIP (P) SC 70 (DCK) SC-70 SOIC (D) SOT 23 5 (DBV) SOT-23-5 −40°C 40°C to 85°C SOT 23 3 (DBZ) SOT-23-3 SOT 89 (PK) SOT-89 TO-226/TO-92 ((LP)) SOT 23 5 (DBV) SOT-23-5 40°C to t 125°C −40°C ORDERABLE PART NUMBER PACKAGE† TA SOT 23 3 (DBZ) SOT-23-3 Tube of 50 TL431AIP Reel of 3000 TL431AIDCKR Reel of 250 TL431AIDCKT Tube of 75 TL431AID Reel of 2500 TL431AIDR Reel of 3000 TL431AIDBVR Reel of 250 TL431AIDBVT Reel of 3000 TL432AIDBVR Reel of 250 TL432AIDBVT Reel of 3000 TL431AIDBZR Reel of 250 TL431AIDBZT Reel of 3000 TL432AIDBZR Reel of 250 TL432AIDBZT R l off 1000 Reel TOP-SIDE MARKING‡ TL431AIP PREVIEW 431AI TAI TAI_ T4A T4A_ TAI TAI_ T4A T4A_ TL431AIPK 4B TL432AIPK PREVIEW Bulk of 1000 TL431AILP Ammo of 2000 TL431AILPM Reel of 2000 TL431AILPR Reel of 3000 TL431AQDBVR Reel of 250 TL431AQDBVT Reel of 3000 TL432AQDBVR Reel of 250 TL432AQDBVT Reel of 3000 TL431AQDBZR Reel of 250 TL431AQDBZT Reel of 3000 TL432AQDBZR Reel of 250 TL432AQDBZT TL431AI TAQ TAQ_ T4D T4D_ TAQ TAQ_ T4D T4D_ TL431AQPK SOT 89 (PK) SOT-89 SC 70 (PK) SC-70 Reel of 1000 TL432AQPK Reel of 1000 TL431AQDCKR Reel of 250 TL432AQDCKT PREVIEW PREVIEW † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 Vref TOLERANCE (25°C) = 0.5% TL431B, TL432B ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA PDIP (P) SC 70 (DCK) SC-70 SOIC (D) SOP (PS) SOT 23 5 (DBV) SOT-23-5 0°C 0 C to 70 70°C C SOT 23 3 (DBZ) SOT-23-3 Tube of 50 TL431BCP Reel of 3000 TL431BCDCKR Reel of 250 TL431BCDCKT Tube of 75 TL431BCD Reel of 2500 TL431BCDR Reel of 2000 TL431BCPSR Reel of 3000 TL431BCDBVR Reel of 250 TL431BCDBVT Reel of 3000 TL432BCDBVR Reel of 250 TL432BCDBVT Reel of 3000 TL431BCDBZR Reel of 250 TL431BCDBZT Reel of 3000 TL432BCDBZR Reel of 250 TL432BCDBZT TL431BCPK SOT 89 (PK) SOT-89 Reel of 1000 TO-226/TO-92 TO 226/TO 92 (LP) TSSOP (PW) PDIP (P) SC 70 (DCK) SC-70 SOIC (D) SOT 23 5 (DBV) SOT-23-5 −40°C to 85°C SOT 23 3 (DBZ) SOT-23-3 TL432BCPK Bulk of 1000 TL431BCLP Ammo of 2000 TL431BCLPM Reel of 2000 TL431BCLPR Tube of 150 TL431BCPW Reel of 2000 TL431BCPWR Tube of 50 TL431BIP Reel of 3000 TL431BIDCKR Reel of 250 TL431BIDCKT Tube of 75 TL431BID Reel of 2500 TL431BIDR Reel of 3000 TL431BIDBVR Reel of 250 TL431BIDBVT Reel of 3000 TL432BIDBVR Reel of 250 TL432BIDBVT Reel of 3000 TL431BIDBZR Reel of 250 TL431BIDBZT Reel of 3000 TL432BIDBZR Reel of 250 TL432IBDBZT TL431BIPK SOT 89 (PK) SOT-89 Reel of 1000 TO 226/TO 92 (LP) TO-226/TO-92 TL432BIPK Bulk of 1000 TL431BILP Reel of 2000 TL431BILPR TOP-SIDE MARKING‡ TL431BCP PREVIEW T431B TL431B T3G T3G_ TBC TBC_ T3G T3G_ TBC TBC_ PREVIEW PREVIEW TL431B T431B TL431BIP PREVIEW Z431B T3F T3F_ T4F T4F_ T3F T3F_ T4F T4F_ PREVIEW PREVIEW Z431B † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 Vref TOLERANCE (25°C) = 0.5% TL431B, TL432B ORDERING INFORMATION (CONTINUED) SOIC (D) SOT 23 5 (DBV) SOT-23-5 −40°C 40 C to 125 125°C C ORDERABLE PART NUMBER PACKAGE† TA SOT 23 3 (DBZ) SOT-23-3 Tube of 75 TL431BQD Reel of 2500 TL431BQDR Reel of 3000 TL431BQDBVR Reel of 250 TL431BQDBVT Reel of 3000 TL432BQDBVR Reel of 250 TL432BQDBVT Reel of 3000 TL431BQDBZR Reel of 250 TL431BQDBZT Reel of 3000 TL432BQDBZR Reel of 250 TL432BQDBZT TL431BQPK SOT 89 (PK) SOT-89 Reel of 1000 TO-226/TO-92 ((LP)) SC 70 (DCK) SC-70 TL432BQPK Bulk of 1000 TL431BQLP Ammo of 2000 TL431BQLPM Reel of 2000 TL431BQLPR Reel of 1000 TL431BQDCKR Reel of 250 TL431BQDCKT TOP-SIDE MARKING‡ T431BQ T3H T3H_ T4H T4H_ T3H T3H_ T4H T4H_ PREVIEW PREVIEW T431BQ Q PREVIEW PREVIEW † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site. symbol REF ANODE CATHODE functional block diagram CATHODE + REF _ Vref ANODE 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 equivalent schematic† CATHODE 800 Ω 800 Ω 20 pF REF 150 Ω 3.28 kΩ 2.4 kΩ 4 kΩ 10 kΩ 20 pF 7.2 kΩ 1 kΩ 800 Ω ANODE † All component values are nominal. absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡ Cathode voltage, VKA (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 V Continuous cathode current range, IKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −100 mA to 150 mA Reference input current range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 μA to 10 mA Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C ‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: Voltage values are with respect to the ANODE terminal, unless otherwise noted. package thermal data (see Note 2) PDIP (P) High K, JESD 51-7 θJC 57°C/W SC-70 (DCK) High K, JESD 51-7 259°C/W 87°C/W SOIC (D) High K, JESD 51-7 39°C/W 97°C/W SOP (PS) High K, JESD 51-7 46°C/W 95°C/W SOT-89 (PK) High K, JESD 51-7 9°C/W 52°C/W SOT-23-5 (DBV) High K, JESD 51-7 131°C/W 206°C/W SOT-23-3 (DBZ) High K, JESD 51-7 76°C/W 206°C/W TO-92 (LP) High K, JESD 51-7 55°C/W 140°C/W TSSOP (PW) High K, JESD 51-7 65°C/W 149°C/W PACKAGE BOARD θJA 85°C/W NOTE 2: Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 recommended operating conditions VKA IKA Cathode voltage Cathode current TL43xxC TA 10 Operating p g free-air temperature p range g POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN MAX Vref 1 36 V 100 mA 0 70 TL43xxI −40 85 TL43xxQ −40 125 UNIT °C SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TEST CIRCUIT PARAMETER TL431C TL432C TEST CONDITIONS IKA = 10 mA SOT23-3 and TL432 devices UNIT MIN TYP MAX 2440 2495 2550 6 16 4 25 −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = 0°C to 70°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = 0°C to 70°C 0.4 1.2 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 1 mA Ioff Off-state cathode current 4 0.1 1 μA |zKA| Dynamic impedance (see Figure 1) 1 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω All other devices ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V mV mV The deviation parameters Vref(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained over the recommended temperature range. The average full-range temperature coefficient of the reference voltage, αVref, is defined as: Ťa Ť ǒppmǓ + V ref ǒ V I(dev) V at 25°C ref Maximum Vref Ǔ 10 6 VI(dev) Minimum Vref DT A °C ΔTA where: ΔTA is the recommended operating free-air temperature range of the device. a can be positive or negative, depending on whether minimum Vref or maximum Vref, respectively, occurs at the lower temperature. Example: maximum Vref = 2496 mV at 30°C, minimum Vref = 2492 mV at 0°C, Vref = 2495 mV at 25°C, ΔTA = 70°C for TL431C Ťa Ť + ǒ V ref 4 mV 2495 mV Ǔ 10 6 70°C [ 23 ppm °C Because minimum Vref occurs at the lower temperature, the coefficient is positive. Calculating Dynamic Impedance The dynamic impedance is defined as: |z KA| + DV KA DI KA When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit is given by: |zȀ| + DV [ |z KA| 1 ) R1 R2 DI ǒ Ǔ Figure 1. Calculating Deviation Parameters and Dynamic Impedance POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TEST CIRCUIT PARAMETER Vref Reference voltage TL431I TL432I TEST CONDITIONS IKA = 10 mA SOT23-3 and TL432 devices UNIT MIN TYP MAX 2440 2495 2550 14 34 5 50 −1.4 −2.7 −1 −2 mV V 2 VKA = Vref, Deviation of reference voltage VI(dev) over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 85°C All other devices DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 85°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 1 mA Ioff Off-state cathode current 4 0.1 1 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V mV mV electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TEST CIRCUIT PARAMETER TL431Q TL432Q TEST CONDITIONS TYP MAX 2440 2495 2550 mV 14 34 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 125°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 125°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 1 mA Ioff Off-state cathode current 4 0.1 1 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω 12 POST OFFICE BOX 655303 IKA = 10 mA UNIT MIN ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V • DALLAS, TEXAS 75265 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) PARAMETER TEST CIRCUIT TL431AC TL432AC TEST CONDITIONS IKA = 10 mA SOT23-3, SC-70, and TL432 devices UNIT MIN TYP MAX 2470 2495 2520 6 16 4 25 −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = 0°C to 70°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = 0°C to 70°C 0.8 1.2 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.6 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 1 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω All other devices ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V mV mV electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) PARAMETER TEST CIRCUIT TL431AI TL432AI TEST CONDITIONS TYP MAX 2470 2495 2520 14 34 5 50 −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 85°C All other packages DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 85°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.7 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω POST OFFICE BOX 655303 IKA = 10 mA SOT23-3, SC-70, and TL432 devices UNIT MIN ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V • DALLAS, TEXAS 75265 mV mV 13 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TEST CIRCUIT PARAMETER TL431AQ TL432AQ TEST CONDITIONS IKA = 10 mA UNIT MIN TYP MAX 2470 2495 2520 mV 14 34 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 125°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 125°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.7 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) TEST CIRCUIT PARAMETER TL431BC TL432BC TEST CONDITIONS TYP MAX 2483 2495 2507 mV 6 16 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = 0°C to 70°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = 0°C to 70°C 0.8 1.2 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.6 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 1 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω 14 POST OFFICE BOX 655303 IKA = 10 mA UNIT MIN ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V • DALLAS, TEXAS 75265 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) PARAMETER TEST CIRCUIT TL431BI TL432BI TEST CONDITIONS IKA = 10 mA UNIT MIN TYP MAX 2483 2495 2507 mV 14 34 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 85°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 85°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.7 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 2 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V electrical characteristics over recommended operating conditions, TA = 25°C (unless otherwise noted) PARAMETER TEST CIRCUIT TL431BQ TL432BQ TEST CONDITIONS TYP MAX 2483 2495 2507 mV 14 34 mV −1.4 −2.7 −1 −2 mV V Vref Reference voltage 2 VKA = Vref, VI(dev) Deviation of reference voltage over full temperature range (see Figure 1) 2 VKA = Vref, IKA = 10 mA, TA = −40°C to 125°C DV ref DV KA Ratio of change in reference voltage to the change in cathode voltage 3 IKA = 10 mA Iref Reference current 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞ 2 4 μA II(dev) Deviation of reference current over full temperature range (see Figure 1) 3 IKA = 10 mA, R1 = 10 kΩ, R2 = ∞, TA = −40°C to 125°C 0.8 2.5 μA Imin Minimum cathode current for regulation 2 VKA = Vref 0.4 0.7 mA Ioff Off-state cathode current 4 0.1 0.5 μA |zKA| Dynamic impedance (see Figure 1) 1 VKA = 36 V, Vref = 0 IKA = 1 mA to 100 mA, VKA = Vref, f ≤ 1 kHz 0.2 0.5 Ω POST OFFICE BOX 655303 IKA = 10 mA UNIT MIN ΔVKA = 10 V − Vref ΔVKA = 36 V − 10 V • DALLAS, TEXAS 75265 15 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 PARAMETER MEASUREMENT INFORMATION Input VKA IKA Vref Figure 2. Test Circuit for VKA = Vref VKA Input IKA R1 Iref R2 Vref ǒ Figure 3. Test Circuit for VKA > Vref Input VKA Ioff Figure 4. Test Circuit for Ioff 16 POST OFFICE BOX 655303 Ǔ V KA + V ref 1 ) R1 ) I ref R2 • DALLAS, TEXAS 75265 R1 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS Table 1. Graphs FIGURE Reference voltage vs Free-air temperature 5 Reference current vs Free-air temperature 6 Cathode current vs Cathode voltage 7, 8 OFF-state cathode current vs Free-air temperature 9 Ratio of delta reference voltage to delta cathode voltage vs Free-air temperature 10 Equivalent input noise voltage vs Frequency 11 Equivalent input noise voltage over a 10-s period 12 Small-signal voltage amplification vs Frequency 13 Reference impedance vs Frequency 14 Pulse response 15 Stability boundary conditions 16 Table 2. Application Circuits FIGURE Shunt regulator 17 Single-supply comparator with temperature-compensated threshold 18 Precision high-current series regulator 19 Output control of a three-terminal fixed regulator 20 High-current shunt regulator 21 Crowbar circuit 22 Precision 5-V 1.5-A regulator 23 Efficient 5-V precision regulator 24 PWM converter with reference 25 Voltage monitor 26 Delay timer 27 Precision current limiter 28 Precision constant-current sink 29 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS† REFERENCE CURRENT vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 2600 R1 = 10 kΩ R2 = ∞ IKA = 10 mA Vref = 2550 mV‡ 2560 I ref − Reference Current − μ A V ref − Reference Voltage − mV 2580 5 VKA = Vref IKA = 10 mA 2540 2520 Vref = 2495 mV‡ 2500 2480 2460 Vref = 2440 mV‡ 2440 4 3 2 1 2420 2400 −75 −50 −25 0 25 50 75 100 0 −75 125 −50 −25 ‡ Data is for devices having the indicated value of Vref at IKA = 10 mA, TA = 25°C. Figure 5 50 75 100 125 CATHODE CURRENT vs CATHODE VOLTAGE 150 800 VKA = Vref TA = 25°C VKA = Vref TA = 25°C 100 600 I KA − Cathode Current − μ A I KA − Cathode Current − mA 25 Figure 6 CATHODE CURRENT vs CATHODE VOLTAGE 125 0 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C 75 50 25 0 −25 −50 Imin 400 200 0 −75 −100 −2 −1 0 2 1 3 −200 −1 VKA − Cathode Voltage − V 0 1 2 3 VKA − Cathode Voltage − V Figure 8 Figure 7 † Data at high and low temperatures is applicable only within the recommended operating free-air temperature ranges of the various devices. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS† RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE vs FREE-AIR TEMPERATURE OFF-STATE CATHODE CURRENT vs FREE-AIR TEMPERATURE − 0.85 2.5 VKA = 3 V to 36 V − 0.95 2 ΔV ref / ΔV KA − mV/V I off − Off-State Cathode Current − μ A VKA = 36 V Vref = 0 1.5 1 0.5 0 −75 −1.05 −1.15 −1.25 −1.35 −50 −25 0 25 50 75 100 −1.45 −75 125 −50 TA − Free-Air Temperature − °C −25 0 25 50 75 100 125 TA − Free-Air Temperature − °C Figure 10 Figure 9 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY Vn − Equivalent Input Noise Voltage − nV/ Hz 260 IO = 10 mA TA = 25°C 240 220 200 180 160 140 120 100 10 100 1k 10 k 100 k f − Frequency − Hz Figure 11 † Data at high and low temperatures is applicable only within the recommended operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-S PERIOD V n − Equivalent Input Noise Voltage − μV 6 5 4 3 2 1 0 −1 −2 −3 f = 0.1 to 10 Hz IKA = 10 mA TA = 25°C −4 −5 −6 0 1 2 3 4 5 6 7 8 9 10 t − Time − s 19.1 V 1 kΩ 500 μF 910 Ω 2000 μF VCC TL431 (DUT) 820 Ω + VCC 1 μF TLE2027 AV = 10 V/mV + − 16 Ω 16 kΩ 16 kΩ 160 kΩ 1 μF TLE2027 − 33 kΩ AV = 2 V/V 0.1 μF 33 kΩ VEE VEE Figure 12. Test Circuit for Equivalent Input Noise Voltage 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 22 μF To Oscilloscope SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS SMALL-SIGNAL VOLTAGE AMPLIFICATION vs FREQUENCY IKA = 10 mA TA = 25°C A V − Small-Signal Voltage Amplification − dB 60 IKA = 10 mA TA = 25°C 50 Output 15 kΩ IKA 232 Ω 40 9 μF + 30 − 8.25 kΩ 20 GND TEST CIRCUIT FOR VOLTAGE AMPLIFICATION 10 0 1k 10 k 100 k 1M 10 M f − Frequency − Hz Figure 13 REFERENCE IMPEDANCE vs FREQUENCY |z KA| − Reference Impedance − Ω 100 IKA = 10 mA TA = 25°C 1 kΩ Output 10 IKA 50 Ω − + GND 1 TEST CIRCUIT FOR REFERENCE IMPEDANCE 0.1 1k 10 k 100 k 1M 10 M f − Frequency − Hz Figure 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS PULSE RESPONSE 6 TA = 25°C Input Input and Output Voltage − V 5 220 Ω 4 Pulse Generator f = 100 kHz 3 GND 2 0 −1 50 Ω Output TEST CIRCUIT FOR PULSE RESPONSE 1 0 1 2 3 4 5 6 7 t − Time − μs Figure 15 22 Output POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 TYPICAL CHARACTERISTICS STABILITY BOUNDARY CONDITIONS† FOR ALL TL431 AND TL431A DEVICES (EXCEPT FOR SOT23-3, SC-70, AND Q-TEMP DEVICES) 100 90 I KA − Cathode Current − mA 80 A VKA = Vref B VKA = 5 V C VKA = 10 V D VKA = 15 Vf 150 Ω IKA + TA = 25°C VBATT CL − B 70 Stable 60 C Stable TEST CIRCUIT FOR CURVE A 50 A 40 IKA 150 Ω R1 = 10 kΩ 30 D 20 CL + 10 R2 0 0.001 VBATT − 0.01 0.1 1 10 CL − Load Capacitance − μF TEST CIRCUIT FOR CURVES B, C, AND D STABILITY BOUNDARY CONDITIONS† FOR ALL TL431B, TL432, SOT-23, SC-70, AND Q-TEMP DEVICES 100 90 I KA − Cathode Current − mA 80 150 Ω A VKA = Vref B VKA = 5 V C VKA = 10 V D VKA = 15 Vf IKA + B 70 VBATT CL − TA = 25°C 60 C Stable Stable 50 A TEST CIRCUIT FOR CURVE A 40 A 30 D IKA 20 150 Ω R1 = 10 kΩ B 10 0 0.001 CL + 0.01 0.1 1 10 R2 CL − Load Capacitance − μF − † The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VKA and IKA conditions with CL = 0. VBATT and CL then were adjusted to determine the ranges of stability. VBATT TEST CIRCUIT FOR CURVES B, C, AND D Figure 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 APPLICATION INFORMATION R (see Note A) VI(BATT) VO R1 0.1% Vref TL431 V O ǒ Ǔ + 1 ) R1 V ref R2 R2 0.1% RETURN NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum VI(BATT). Figure 17. Shunt Regulator VI(BATT) VO TL431 Von ≈2 V Voff ≈VI(BATT) Input VIT ≈ 2.5 V GND Figure 18. Single-Supply Comparator With Temperature-Compensated Threshold VI(BATT) R (see Note A) 2N222 2N222 30 Ω V 0.01 μF 4.7 kΩ TL431 O ǒ VO R2 0.1% R1 0.1% NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum VI(BATT). Figure 19. Precision High-Current Series Regulator 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Ǔ + 1 ) R1 V ref R2 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 APPLICATION INFORMATION VI(BATT) IN OUT uA7805 Common VO R1 TL431 V O ǒ Ǔ + 1 ) R1 V ref R2 Minimum V O + V ref ) 5 V R2 Figure 20. Output Control of a Three-Terminal Fixed Regulator VI(BATT) VO R1 V O ǒ Ǔ + 1 ) R1 V ref R2 TL431 R2 Figure 21. High-Current Shunt Regulator VI(BATT) VO R1 TL431 R2 C (see Note A) NOTE A: Refer to the stability boundary conditions in Figure 16 to determine allowable values for C. Figure 22. Crowbar Circuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 APPLICATION INFORMATION IN VI(BATT) LM317 8.2 kΩ OUT Adjust VO ≈5 V, 1.5 A 243 Ω 0.1% TL431 243 Ω 0.1% Figure 23. Precision 5-V 1.5-A Regulator VO ≈5 V VI(BATT) Rb (see Note A) 27.4 kΩ 0.1% TL431 27.4 kΩ 0.1% NOTE A: Rb should provide cathode current ≥1 mA to the TL431. Figure 24. Efficient 5-V Precision Regulator 12 V VCC 6.8 kΩ 5V 10 kΩ 10 kΩ 0.1% TL431 10 kΩ 0.1% − + X Not Used TL598 Feedback Figure 25. PWM Converter With Reference 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 APPLICATION INFORMATION R3 (see Note A) VI(BATT) R4 (see Note A) R1B R1A ǒ ǒ TL431 R2A Ǔ Ǔ Low Limit + 1 ) R1B V ref R2B High Limit + 1 ) R1A V ref R2A LED on When Low Limit < VI(BATT) < High Limit R2B NOTE A: R3 and R4 are selected to provide the desired LED intensity and cathode current ≥1 mA to the TL431 at the available VI(BATT). Figure 26. Voltage Monitor 650 Ω 12 V 2 kΩ R TL431 Delay + R C In ǒ12 V12*VV Ǔ ref Off C On Figure 27. Delay Timer RCL 0.1% VI(BATT) IO I out + R1 TL431 R1 + V ref ) I KA R CL V I(BATT) I O h FE ) I KA Figure 28. Precision Current Limiter POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SLVS543H − AUGUST 2004 − REVISED JANUARY 2005 APPLICATION INFORMATION VI(BATT) IO I TL431 O + V ref RS RS 0.1% Figure 29. Precision Constant-Current Sink 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MLCC006B – OCTOBER 1996 FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 B A MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 25 5 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MPDI001A – JANUARY 1995 – REVISED JUNE 1999 P (R-PDIP-T8) PLASTIC DUAL-IN-LINE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.325 (8,26) 0.300 (7,62) 0.020 (0,51) MIN 0.015 (0,38) Gage Plane 0.200 (5,08) MAX Seating Plane 0.010 (0,25) NOM 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.430 (10,92) MAX 0.010 (0,25) M 4040082/D 05/98 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MPDS108 – AUGUST 2001 DBZ (R-PDSO-G3) PLASTIC SMALL-OUTLINE 3,04 2,80 2,05 1,78 0,60 0,45 1,03 0,89 1,40 1,20 2,64 2,10 0,51 0,37 1,12 0,89 0,100 0,013 0,55 REF 0,180 0,085 4203227/A 08/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Dimensions are inclusive of plating. Dimensions are exclusive of mold flash and metal burr. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MPSF001F – JANUARY 1996 – REVISED JANUARY 2002 KTP (R-PSFM-G2) PowerFLEX™ PLASTIC FLANGE-MOUNT PACKAGE 0.080 (2,03) 0.070 (1,78) 0.243 (6,17) 0.233 (5,91) 0.228 (5,79) 0.218 (5,54) 0.050 (1,27) 0.040 (1,02) 0.130 (3,30) NOM 0.215 (5,46) NOM 0.247 (6,27) 0.237 (6,02) 0.010 (0,25) NOM Thermal Tab (See Note C) 0.287 (7,29) 0.277 (7,03) 0.381 (9,68) 0.371 (9,42) 0.100 (2,54) 0.090 (2,29) 0.032 (0,81) MAX Seating Plane 0.090 (2,29) 0.180 (4,57) 0.004 (0,10) 0.005 (0,13) 0.001 (0,02) 0.031 (0,79) 0.025 (0,63) 0.010 (0,25) M 0.010 (0,25) NOM Gage Plane 0.047 (1,19) 0.037 (0,94) 0.010 (0,25) 2°–ā6° 4073388/M 01/02 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. The center lead is in electrical contact with the thermal tab. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15). Falls within JEDEC TO-252 variation AC. PowerFLEX is a trademark of Texas Instruments. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001 LP (O-PBCY-W3) PLASTIC CYLINDRICAL PACKAGE 0.205 (5,21) 0.175 (4,44) 0.165 (4,19) 0.125 (3,17) DIA 0.210 (5,34) 0.170 (4,32) Seating Plane 0.157 (4,00) MAX 0.050 (1,27) C 0.500 (12,70) MIN 0.104 (2,65) FORMED LEAD OPTION 0.022 (0,56) 0.016 (0,41) 0.016 (0,41) 0.014 (0,35) STRAIGHT LEAD OPTION D 0.135 (3,43) MIN 0.105 (2,67) 0.095 (2,41) 0.055 (1,40) 0.045 (1,14) 1 2 3 0.105 (2,67) 0.080 (2,03) 0.105 (2,67) 0.080 (2,03) 4040001-2 /C 10/01 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Lead dimensions are not controlled within this area D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92) E. Shipping Method: Straight lead option available in bulk pack only. Formed lead option available in tape & reel or ammo pack. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001 LP (O-PBCY-W3) PLASTIC CYLINDRICAL PACKAGE 0.539 (13,70) 0.460 (11,70) 1.260 (32,00) 0.905 (23,00) 0.650 (16,50) 0.610 (15,50) 0.020 (0,50) MIN 0.098 (2,50) 0.384 (9,75) 0.335 (8,50) 0.748 (19,00) 0.217 (5,50) 0.433 (11,00) 0.335 (8,50) 0.748 (19,00) 0.689 (17,50) 0.114 (2,90) 0.094 (2,40) 0.114 (2,90) 0.094 (2,40) 0.169 (4,30) 0.146 (3,70) DIA 0.266 (6,75) 0.234 (5,95) 0.512 (13,00) 0.488 (12,40) TAPE & REEL 4040001-3 /C 10/01 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Tape and Reel information for the Format Lead Option package. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated TL431 PROGRAMMABLE VOLTAGE REFERENCE ■ ADJUSTABLE OUTPUT VOLTAGE : 2.5 to 36V ■ SINK CURRENT CAPABILITY : 1 to 100mA ■ TYPICAL OUTPUT IMPEDANCE : 0.22Ω ■ 1% AND 2% VOLTAGE PRECISION DESCRIPTION Z TO92 (Plastic Package) The TL431 is a programmable shunt voltage reference with guaranteed temperature stability over the entire temperature range of operation. The output voltage may be set to any value between 2.5V and 36V with two external resistors. The TL431 operates with a wide current range from 1 to 100mA with a typical dynamic impedance of 0.22Ω. ORDER CODE D SO8 (Batwing Plastic Micropackage) Package Part Number Temperature Range Z D TL431C/AC TL431I/AI 0°C, +70°C -40°C, +105°C • • • • Z = TO92 Plastic package - also available in Bulk (Z), Tape & Reel (ZT) and Ammo Pack (AP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) PIN CONNECTIONS (top view) SO8 (Top view) TO92 (Top view) Cathode Anode Reference 1 2 8 6 5 1- Cathode 2- Anode 3- Anode. 4- N.C. 5- N.C. 6- Anode 7- Anode. 8- Reference 1 March 2002 7 3 2 3 4 1/10 TL431 ABSOLUTE MAXIMUM RATINGS Symbol VKA Ik Iref pd Tstg Parameter Cathode to Anode Voltage Continuous Cathode Current Range Reference Input Current Range Power Dissipation 1) TO92 SO8 batwing Storage Temperature Range Value Unit 37 -100 to +150 -0.05 to +10 625 960 -65 to +150 V mA mA mW °C 1. Pd is calculated with T amb = +25°C, T j = +150°C and Rthja = 200°C/W for TO92 package = 130°C/W for SO8 batwing package OPERATING CONDITIONS Symbol VKA Ik Toper Parameter Cathode to Anode Voltage Cathode Current Operating Free-air Temperature Range TL431C/AC TL431I/AI Value Unit Vref to 36 1 to 100 0 to +70 -40 to +105 V mA °C ELECTRICAL CHARACTERISTICS Tamb = 25°C (unless otherwise specified) Symbol Vref ΔVref ΔVref -----------ΔVka Iref ΔIref Imin Ioff ⏐ZKA⏐ TL431C Parameter Reference Input Voltage Tamb = 25°C VKA = Vref , Ik = 10 mA Tmin ≤ Tamb ≤ Tmax Reference Input Voltage Deviation OverTemperature Range - note 1 VKA = Vref , Ik = 10 mA,Tmin ≤Tamb ≤ Tmax Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage - (figure 2) Ik = 10mA ΔVKA = 10V to Vref ΔVKA = 36V to 10V Reference Input Current Ik = 10mA, R1 = 10kΩ, R2 = ∞ Tamb = 25°C Tmin ≤Tamb ≤Tmax Reference Input Current Deviation Over Temperature Range Ik = 10mA, R1 = 10kΩ, R2 =∞ Tmin ≤Tamb ≤ Tmax Minimum Cathode Current for Regulation VKA = Vref Off-State Cathode Current Dynamic Impedance - note 2 VKA = Vref ,Δ Ik = 1 to100mA, f ≤1kHZ TL431AC Typ. Max. Min. Typ. Max. 2.44 2.423 2.495 2.55 2.567 2.47 2.453 2.495 2.52 2.537 V 3 17 3 15 mV -1.4 -1 -2.7 -2 -1.4 -1 -2.7 -2 mV/V 1.8 4 5.2 1.8 4 5.2 μA 0.4 1.2 0.4 1.2 μA 0.5 2.6 1 1000 0.5 2.6 0.6 1000 mA nA 0.22 0.5 0.22 0.5 Ω 1) ΔVref is defined as the difference between the maximum and minimum values obtained over the full temperature range. ΔVref = Vref max. - Vref min. V ref max. V ref min. T1 ΔV KA 2) The dynamic Impedance is definied as ⏐ZKA⏐ = ----------------ΔI K 2/10 Unit Min. T2 Temperature TL431 ELECTRICAL CHARACTERISTICS Tamb = 25°C (unless otherwise specified) TL431I Symbol TL431AI Parameter Unit Min. Typ. Max. Min. Typ. Max. 2.44 2.41 2.495 2.55 2.58 2.47 2.44 2.495 2.52 2.55 V Vref Reference Input Voltage VKA = Vref , Ik = 10 mA Tamb = 25°C Tmin ≤Tamb ≤ Tmax ΔVref Reference Input Voltage Deviation OverTemperature Range - note 1 VKA = Vref , Ik =10 mA,Tmin ≤Tamb≤ Tmax 7 30 7 30 mV ΔVref -----------ΔV ka Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage Ik = 10mA ΔVKA = 10V to Vref ΔVKA = 36V to 10V -1.4 -1 -2.7 -2 -1.4 -1 -2.7 -2 mV/V 1.8 4 6.5 1.8 4 6.5 μA 2.5 0.8 1.2 μA Iref Reference Input Current Ik = 10mA, R1 = 10kΩ, R2 = ∞ Tamb = 25°C Tmin ≤Tamb ≤Tmax ΔIref Reference Input Current Deviation Over Temperature Range Ik = 10mA, R1 = 10kΩ, R2 =∞ Tmin ≤Tamb ≤ Tmax 0.8 Imin Minimum Cathode Current for Regulation VKA = Vref 0.5 1 0.5 0.7 mA 2.6 1000 2.6 1000 nA 0.22 0.5 0.22 0.5 Ω Ioff ⏐ZKA⏐ Off-State Cathode Current Dynamic Impedance note 2 VKA = Vref ,Δ Ik = 1 to100mA, f ≤1kHZ 1) ΔVref is defined as the difference between the maximum and minimum values obtained over the full temperature range. ΔVref = Vref max. - Vref min. V ref max. V ref min. T1 T2 Temperature ΔV KA 2) The dynamic Impedance is definied as ⏐ZKA⏐ = ----------------ΔI K 3/10 TL431 Figure 2 : Test Circuit for VKA > VREF Figure 1 : Test Circuit for VKA = VREF Input Input R Output R IK Output R1 IREF IK=10mA VKA R2 VKA VREF VREF VKA = VREF Figure 3 : Test Circuit for IOFF ( 1 + R1 -------- ) R2 + R1 x IREF Figure 4 : Test Circuit for Phase Margin and Voltage Gain VKA=36V 10μF 10μF Figure 5 : Block diagram of TL1431 Output 8.25kΩ Input IK=10mA 15kΩ IOFF VREF Figure 6 : Test Circuit for Response time Cathode + Vref Anode 4/10 IK=1mA 1 mA 0 mA Output Vref TL431 Reference voltage vs cathode current Reference voltage vs Temperature 100 Cathode current IKA (mA) Cathode voltage VKA (V) 2.54 VKA = VREF IK = 10 mA 2.52 2.50 2.48 2.46 2.44 -40 TAMB=+25°C 75 50 25 0 -25 -20 0 20 40 60 80 -50 100 -1 0 Temperature (°C) 3 2.0 Reference current IREF (μA) Cathode current IKA (mA) 2 TAMB = +25°C 1 0 -1 IK=10 mA R1=10kΩ R2= + ∝ 1.5 1.0 0.5 -2 -1 0 1 2 0.0 −40 3 −20 0 Cathode voltage VKA (V) 20 40 60 80 100 Temperature °C Off-state cathode current vs temperature Ratio of change in VREF to change in VKA vs Temperature 2.0 0.0 VKA = 36 V VREF = 0 V ΔVREF / ΔVKA (mV / V) Off-state current IOFF (μA) 2 Reference current vs temperature Reference voltage vs cathode current 1.5 1.0 0.5 0.0 -40 1 Cathode voltage VKA (V) -0.5 IK = 10 mA -1.0 -1.5 -20 0 20 40 Temperature (°C) 60 80 100 -2.0 -40 -20 0 20 40 60 80 100 Temperature (°C) 5/10 TL431 Static impedance RKA vs Temperature Minimum operating current vs temperature 0.6 Minimum cathode current IMIN (mA) Static impedance RKA (Ω) 0.30 0.28 VKA=VREF TAMB=+25°C 0.26 0.24 0.22 0.20 -40 -20 0 20 40 60 80 0.4 0.0 -40 100 VKA = VREF 0.2 -20 0 20 Temperature (°C) 40 60 80 100 Temperature (°C) Gain & Phase vs Frequency Stability behaviour with capacitive loads 100 200 IK=10 mA See figure 4 Gain 40 VKA=VREF 150 100 0 0 -50 Phase (°) 20 Gain (dB) 50 Phase 80 Cathode current (mA) 60 VKA=5 V Instable Area 60 -100 -20 40 VKA=12 V 20 VKA=24 V -150 -40 1 10 100 0 1E-10 -200 10000 1000 1E-9 Maximum Power dissipation 60 TO92 40 Safe Area 10 20 30 Input and Output voltage (V) Cathode current (mA) SO8 Batwing 80 Cathode voltage (V) 6/10 1E-6 1E-5 8 10 6 TAMB= +25°C 0 1E-7 Pulse response for IK=1mA 100 20 1E-8 Capacitive load (Farad) Frequency (kHz) Input VKA=VREF TAMB=+25°C 4 Output 2 0 0 2 4 6 Time (μs) TL431 PACKAGE MECHANICAL DATA 8 PINS - BATWING PLASTIC MICROPACKAGE (SO) s b1 b a1 A a2 C c1 a3 L E e3 D M 5 1 4 F 8 Millimeters Inches Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S Typ. Max. 0.65 0.35 0.19 0.25 1.75 0.25 1.65 0.85 0.48 0.25 0.5 4.8 5.8 5.0 6.2 0.1 Min. Typ. Max. 0.026 0.014 0.007 0.010 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.189 0.228 0.197 0.244 0.004 45° (typ.) 1.27 3.81 3.8 0.4 0.050 0.150 4.0 1.27 0.6 0.150 0.016 0.157 0.050 0.024 8° (max.) 7/10 TL431 PACKAGE MECHANICAL DATA 3 PINS - PLASTIC PACKAGE TO92 (TAPE & REEL) A1 P T P A H W2 W W1 W0 H0 I1 H L1 H1 d D0 F1 F2 P2 P0 Millimeters Inches Dim. Min AL A T d I1 P PO P2 F1/F2 Δh ΔP W W0 W1 W2 H H0 H1 DO L1 8/10 Typ. Max. Min. Typ. 5.0 5.0 4.0 0.45 2.5 11.7 12.4 5.95 2.4 -1 -1 17.5 5.7 8.5 12.7 12.7 6.35 2.5 0 0 18.0 6 9 15.5 16 3.8 4.0 Max. 0.197 0.197 0.157 0.018 13.7 13 6.75 2.8 1 1 19.0 6.3 9.75 0.5 20 16.5 25 4.2 11 0.098 0.461 0.488 0.234 0.094 -0.039 -0.039 0.689 0.224 0.335 0.500 0.500 0.250 0.098 0 0 0.709 0.236 0.354 0.610 0.630 0.150 0.157 0.539 0.512 0.266 0.110 0.039 0.039 0.748 0.248 0.384 0.020 0.787 0.650 0.984 0.165 0.433 TL431 PACKAGE MECHANICAL DATA 3 PINS - PLASTIC PACKAGE TO92 (TAPE AMMO PACK) A1 P T P A H W2 W W1 W0 H0 I1 H L1 H1 d D0 F1 F2 P2 P0 Millimeters Inches Dim. Min AL A T d I1 P PO P2 F1/F2 Δh ΔP W W0 W1 W2 H H0 H1 DO L1 9/10 Typ. Max. Min. Typ. 5.0 5.0 4.0 0.45 2.5 11.7 12.4 5.95 2.4 -1 -1 17.5 5.7 8.5 12.7 12.7 6.35 2.5 0 0 18.0 6 9 15.5 16 3.8 4.0 Max. 0.197 0.197 0.157 0.018 13.7 13 6.75 2.8 1 1 19.0 6.3 9.75 0.5 20 16.5 25 4.2 11 0.098 0.461 0.488 0.234 0.094 -0.039 -0.039 0.689 0.224 0.335 0.500 0.500 0.250 0.098 0 0 0.709 0.236 0.354 0.610 0.630 0.150 0.157 0.539 0.512 0.266 0.110 0.039 0.039 0.748 0.248 0.384 0.020 0.787 0.650 0.984 0.165 0.433 TL431 PACKAGE MECHANICAL DATA 3 PINS - PLASTIC PACKAGE TO92 (BULK) Millimeters Inches Dim. Min L B O1 C K O2 a 3.2 4.45 4.58 12.7 0.407 0.35 Typ. Max. 1.27 3.7 5.00 5.03 4.2 5.2 5.33 0.5 0.508 Min. 0.126 0.1752 0.1803 0.5 0.016 0.0138 Typ. Max. 0.05 0.1457 0.1969 0.198 0.1654 0.2047 0.2098 0.0197 0.02 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com 10/10 TL431, A, B Series, NCV431A Programmable Precision References The TL431, A, B integrated circuits are three−terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from Vref to 36 V with two external resistors. These devices exhibit a wide operating current range of 1.0 mA to 100 mA with a typical dynamic impedance of 0.22 W. The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 V reference makes it convenient to obtain a stable reference from 5.0 V logic supplies, and since the TL431, A, B operates as a shunt regulator, it can be used as either a positive or negative voltage reference. Features http://onsemi.com TO−92 (TO−226) LP SUFFIX CASE 29 1 2 Pin 1. Reference 2. Anode 3. Cathode 3 PDIP−8 P SUFFIX CASE 626 8 • • • • • 1 Programmable Output Voltage to 36 V Voltage Reference Tolerance: ±0.4%, Typ @ 25°C (TL431B) Low Dynamic Output Impedance, 0.22 W Typical Sink Current Capability of 1.0 mA to 100 mA Equivalent Full−Range Temperature Coefficient of 50 ppm/°C Typical • Temperature Compensated for Operation over Full Rated Operating Temperature Range • Low Output Noise Voltage • Pb−Free Packages are Available Micro8E DM SUFFIX CASE 846A 8 1 Cathode 1 8 Reference N/C 2 7 N/C N/C 3 6 Anode N/C 4 5 N/C (Top View) SOIC−8 D SUFFIX CASE 751 8 1 Cathode 1 8 2 7 3 6 N/C 4 5 Anode Reference Anode N/C (Top View) This is an internally modified SOIC−8 package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification increases power dissipation capability when appropriately mounted on a printed circuit board. This modified package conforms to all external dimensions of the standard SOIC−8 package. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet. DEVICE MARKING INFORMATION See general marking information in the device marking section on page 15 of this data sheet. © Semiconductor Components Industries, LLC, 2005 March, 2005 − Rev. 21 1 Publication Order Number: TL431/D TL431, A, B Series, NCV431A Symbol Representative Schematic Diagram Component values are nominal Cathode (K) Cathode (K) Reference (R) 800 20 pF Representative Block Diagram Reference (R) 800 Reference (R) Anode (A) 4.0 k 20 pF Cathode (K) + 150 3.28 k 2.4 k 10 k 7.2 k − 1.0 k 2.5 Vref 800 Anode (A) Anode (A) This device contains 12 active transistors. MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.) Rating Symbol Value Unit VKA 37 V Cathode Current Range, Continuous IK −100 to +150 mA Reference Input Current Range, Continuous Iref −0.05 to +10 mA Operating Junction Temperature TJ 150 °C Operating Ambient Temperature Range TL431I, TL431AI, TL431BI TL431C, TL431AC, TL431BC NCV431AI, TL431BV TA Storage Temperature Range Tstg Total Power Dissipation @ TA = 25°C Derate above 25°C Ambient Temperature D, LP Suffix Plastic Package P Suffix Plastic Package DM Suffix Plastic Package PD Total Power Dissipation @ TC = 25°C Derate above 25°C Case Temperature D, LP Suffix Plastic Package P Suffix Plastic Package PD Cathode to Anode Voltage NOTE: °C −40 to +85 0 to +70 −40 to +125 −65 to +150 °C W 0.70 1.10 0.52 W 1.5 3.0 ESD data available upon request. RECOMMENDED OPERATING CONDITIONS Condition Cathode to Anode Voltage Symbol Min Max Unit VKA Vref 36 V IK 1.0 100 mA Cathode Current THERMAL CHARACTERISTICS Symbol D, LP Suffix Package P Suffix Package DM Suffix Package Unit Thermal Resistance, Junction−to−Ambient RqJA 178 114 240 °C/W Thermal Resistance, Junction−to−Case RqJC 83 41 − °C/W Characteristic http://onsemi.com 2 TL431, A, B Series, NCV431A ELECTRICAL CHARACTERISTICS (TA = 25°C, unless otherwise noted.) TL431I Characteristic Min Symbol Reference Input Voltage (Figure 1) VKA = Vref, IK = 10 mA TA = 25°C TA = Tlow to Thigh (Note 1) TL431C Typ Max Min Typ Max Vref Unit V 2.44 2.41 2.495 − 2.55 2.58 2.44 2.423 2.495 − 2.55 2.567 High Logic Level Supply Current from VCC ICCH 60 − 45 60 mA mA mA Reference Input Voltage Deviation Over Temperature Range (Figure 1, Notes 1, 2) VKA= Vref, IK = 10 mA DVref − 7.0 30 − 3.0 17 mV DV Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage IK = 10 mA (Figure 2), DVKA = 10 V to Vref DVKA = 36 V to 10 V DV mV/V ref KA − − Reference Input Current (Figure 2) IK = 10 mA, R1 = 10 k, R2 = ∞ TA = 25°C TA = Tlow to Thigh (Note 1) −1.4 −1.0 −2.7 −2.0 − − −1.4 −1.0 −2.7 −2.0 mA Iref − − 1.8 − 4.0 6.5 − − 1.8 − 4.0 5.2 Reference Input Current Deviation Over Temperature Range (Figure 2, Note 1, 4) IK = 10 mA, R1 = 10 k, R2 = ∞ DIref − 0.8 2.5 − 0.4 1.2 mA Minimum Cathode Current For Regulation VKA = Vref (Figure 1) Imin − 0.5 1.0 − 0.5 1.0 mA Off−State Cathode Current (Figure 3) VKA = 36 V, Vref = 0 V Ioff − 20 1000 − 20 1000 nA |ZKA| − 0.22 0.5 − 0.22 0.5 W Dynamic Impedance (Figure 1, Note 3) VKA = Vref, DIK = 1.0 mA to 100 mA f ≤ 1.0 kHz 1. Tlow = −40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM; = 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM Thigh = +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM = +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM 2. The deviation parameter DVref is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies. Vref max DVref = Vref max −Vref min DTA = T2 − T1 Vref min T1 Ambient Temperature T2 The average temperature coefficient of the reference input voltage, aVref is defined as: ppm V + ref _C ǒ Ǔ DV V ref ref @ 25_C DT X 106 + A D V x 10 6 ref D T (V @ 25_C) A ref aVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature. (Refer to Figure 6.) Example : DV V ref + 8.0 mV and slope is positive, @ 25_C + 2.495 V, DT + 70_C ref A aV ref + 0.008 x 106 + 45.8 ppmń_C 70 (2.495) DV KA 3. The dynamic impedance ZKA is defined as: |Z KA| + . When the device is programmed with two external resistors, R1 and R2, DI K (refer to Figure 2) the total dynamic impedance of the circuit is defined as: |Z KAȀ| [ |Z KA| 1 ) R1 ǒ http://onsemi.com 3 R2 Ǔ TL431, A, B Series, NCV431A ELECTRICAL CHARACTERISTICS (TA = 25°C, unless otherwise noted.) TL431AI / NCV431AI Characteristic Symbol Reference Input In ut Voltage (Figure 1) VKA = Vref, IK = 10 mA TA = 25°C 25 C TA = Tlow to t Thigh Reference Input Voltage Deviation Over Temperature Range (Figure 1, Notes 4, 5) VKA= Vref, IK = 10 mA Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage IK = 10 mA (Figure 2), DVKA = 10 V to Vref DVKA = 36 V to 10 V Min Typ Max TL431AC Min Typ TL431BI / TL431BV Max Min Typ Max Vref DVref DV DV V 2.47 2 47 2 44 2.44 2.495 2 495 − 2.52 2 52 2 55 2.55 2 47 2.47 2.453 2 453 2.495 2 495 − 2 52 2.52 2.537 2 537 2.483 2 483 2 475 2.475 2.495 2 495 2 495 2.495 2.507 2 507 2 515 2.515 − 7.0 30 − 3.0 17 − 3.0 17 mV mV/V ref KA − − Reference Input Current (Figure 2) IK = 10 mA, R1 = 10 k, R2 = ∞ TA = 25°C TA = Tlow to Thigh (Note 4) Unit −1.4 −1.0 −2.7 −2.0 − − −1.4 −1.0 −2.7 −2.0 − − −1.4 −1.0 −2.7 −2.0 mA Iref − − 1.8 − 4.0 6.5 − − 1.8 − 4.0 5.2 − − 1.1 − 2.0 4.0 Reference Input Current Deviation Over Temperature Range (Figure 2, Note 4) IK = 10 mA, R1 = 10 k, R2 = ∞ DIref − 0.8 2.5 − 0.4 1.2 − 0.8 2.5 mA Minimum Cathode Current For Regulation VKA = Vref (Figure 1) Imin − 0.5 1.0 − 0.5 1.0 − 0.5 1.0 mA Off−State Cathode Current (Figure 3) VKA = 36 V, Vref = 0 V Ioff − 20 1000 − 20 1000 − 0.23 500 nA |ZKA| − 0.22 0.5 − 0.22 0.5 − 0.14 0.3 W Dynamic Impedance (Figure 1, Note 6) VKA = Vref, DIK = 1.0 mA to 100 mA f ≤ 1.0 kHz 4. Tlow = −40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431BV, TL431AIDM, TL431IDM, TL431BIDM, NCV431AIDMR2, NCV431AIDR2 = 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM Thigh = +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM = +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM = +125°C TL431BV, NCV431AIDMR2, NCV431AIDR2 5. The deviation parameter DVref is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies. Vref max DVref = Vref max −Vref min DTA = T2 − T1 Vref min T1 Ambient Temperature T2 The average temperature coefficient of the reference input voltage, aVref is defined as: ppm + V ref _C ǒ Ǔ DV V ref ref @ 25_C DT X 106 + A D V x 10 6 ref D T (V @ 25_C) A ref aVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature. (Refer to Figure 6.) Example : DV V ref + 8.0 mV and slope is positive, @ 25_C + 2.495 V, DT + 70_C ref A aV ref + 0.008 x 106 + 45.8 ppmń_C 70 (2.495) DV KA 6. The dynamic impedance ZKA is defined as |Z KA| + When the device is programmed with two external resistors, R1 and R2, (refer DI K to Figure 2) the total dynamic impedance of the circuit is defined as: |Z KAȀ| [ |Z KA| 1 ) R1 R2 7. NCV431AIDMR2, NCV431AIDR2 Tlow = −40°C, Thigh = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control. ǒ http://onsemi.com 4 Ǔ TL431, A, B Series, NCV431A Input Input VKA IK VKA Iref R1 Vref Input Ioff IK R2 V KA +V ǒ VKA Ǔ 1 ) R1 ) I SR1 ref R2 ref Vref Figure 1. Test Circuit for VKA = Vref Figure 2. Test Circuit for VKA > Vref 800 VKA = Vref TA = 25°C 100 Input IK IK , CATHODE CURRENT ( μA) IK , CATHODE CURRENT (mA) 150 Figure 3. Test Circuit for Ioff VKA 50 0 −50 −100 −2.0 −1.0 0 1.0 2.0 VKA = Vref TA = 25°C 600 Input 400 200 0 −200 −1.0 3.0 0 Vref , REFERENCE INPUT VOLTAGE (mV) VKA IK VKA = Vref IK = 10 mA Input 2560 Vref Vref Max = 2550 mV 2540 2520 Vref Typ = 2495 mV 2500 2480 2460 2440 Vref Min = 2440 mV 2420 2400 −55 −25 0 25 50 2.0 3.0 Figure 5. Cathode Current versus Cathode Voltage Iref , REFERENCE INPUT CURRENT ( μA) Figure 4. Cathode Current versus Cathode Voltage 2580 1.0 VKA, CATHODE VOLTAGE (V) VKA, CATHODE VOLTAGE (V) 2600 IMin VKA IK 75 100 125 3.0 2.5 2.0 1.5 IK = 10 mA 1.0 VKA Input 10k Iref IK 0.5 0 −55 TA, AMBIENT TEMPERATURE (°C) −25 0 25 50 75 100 TA, AMBIENT TEMPERATURE (°C) Figure 6. Reference Input Voltage versus Ambient Temperature Figure 7. Reference Input Current versus Ambient Temperature http://onsemi.com 5 125 0 IK = 10 mA TA = 25°C −8.0 −16 Input VKA IK R1 −24 −32 R2 Vref 0 10 30 20 1.0 k Ioff , OFF−STATE CATHODE CURRENT (nA) Δ Vref , REFERENCE INPUT VOLTAGE (mV) TL431, A, B Series, NCV431A 100 10 1.0 Input 0.01 −55 40 −25 − + GND 1.0 0.1 1.0 k 10 k 100 k 1.0 M 0.280 0.260 75 100 125 0.240 0.220 0.200 −55 10 M −25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) Figure 10. Dynamic Impedance versus Frequency Figure 11. Dynamic Impedance versus Ambient Temperature 80 60 50 9.0 mF 40 Output IK 15k 230 NOISE VOLTAGE (nV/ √Hz) A VOL, OPEN LOOP VOLTAGE GAIN (dB) 50 VKA = Vref D IK = 1.0 mA to 100 mA f ≤ 1.0 kHz Output 1.0k IK 50 − + GND 0.300 f, FREQUENCY (MHz) 8.25k GND 30 20 10 25 0.320 TA = 25°C D IK = 1.0 mA to 100 mA |ZKA|, DYNAMIC IMPEDANCE (Ω ) |ZKA|, DYNAMIC IMPEDANCE (Ω ) 10 0 Figure 9. Off−State Cathode Current versus Ambient Temperature 100 50 VKA TA, AMBIENT TEMPERATURE (5C) Figure 8. Change in Reference Input Voltage versus Cathode Voltage Output IK Ioff 0.1 VKA, CATHODE VOLTAGE (V) 1.0 k VKA = 36 V Vref = 0 V IK = 10 mA TA = 25°C 60 VKA = Vref IK = 10 mA TA = 25°C 40 Input 20 Output IK 0 −10 1.0 k 10 k 100 k 1.0 M 0 10 10 M 100 1.0 k 10 k f, FREQUENCY (Hz) f, FREQUENCY (MHz) Figure 12. Open−Loop Voltage Gain versus Frequency Figure 13. Spectral Noise Density http://onsemi.com 6 100 k TL431, A, B Series, NCV431A Input Monitor Output 2.0 220 Output Pulse Generator f = 100 kHz 1.0 50 GND 0 5.0 Input 0 0 4.0 12 8.0 16 Unstable Area A B C D 120 I K, CATHODE CURRENT (mA) VOLTAGE SWING (V) 140 TA = 25°C 3.0 100 TA = 25°C C 80 60 Stable 40 Stable D B B A 20 0 1.0 nF 20 Programmed VKA(V) Vref 5.0 10 15 10 nF t, TIME (ms) A 100 nF 1.0 mF 10 mF 100 mF CL, LOAD CAPACITANCE Figure 14. Pulse Response Figure 15. Stability Boundary Conditions 150 150 IK IK V+ 10 k V+ CL Figure 16. Test Circuit For Curve A of Stability Boundary Conditions CL Figure 17. Test Circuit For Curves B, C, And D of Stability Boundary Conditions TYPICAL APPLICATIONS V+ V+ Vout Vout R1 R1 R2 R2 ǒ Ǔ V out + 1 ) R1 V R2 ref ǒ Ǔ V out + 1 ) R1 V R2 ref Figure 18. Shunt Regulator Figure 19. High Current Shunt Regulator http://onsemi.com 7 TL431, A, B Series, NCV431A V+ V+ MC7805 Out In Common Vout R1 Vout R1 R2 R2 ǒ ǒ V out min + V ref V out min + V ) 5.0V Figure 20. Output Control for a Three−Terminal Fixed Regulator RCL V+ Ǔ V out + 1 ) R1 V R2 ref Ǔ V out + 1 ) R1 V R2 ref ref )V be Figure 21. Series Pass Regulator V+ Iout Isink I V I out + ref R CL Sink V + ref R S RS Figure 22. Constant Current Source V+ Figure 23. Constant Current Sink V+ Vout Vout R1 R1 R2 ǒ R2 Ǔ V + 1 ) R1 V out(trip) R2 ref V Figure 24. TRIAC Crowbar out(trip) ǒ Ǔ + 1 ) R1 V R2 ref Figure 25. SRC Crowbar http://onsemi.com 8 TL431, A, B Series, NCV431A V+ Vout l R1 V+ R3 Vout Vin R2 R4 Vin Vth = Vref L.E.D. indicator is ‘on’ when V+ is between the upper and lower limits. ǒ Ǔ UpperLimit + ǒ1 ) R3ǓV R4 ref LowerLimit + 1 ) R1 V R2 ref Figure 26. Voltage Monitor 5.0 k 1% 50 k 1% 10 kW V 500 k 1% RX ≈ 2.0 V 38 V 2.0 mA 25 V − LM11 + 330 Tl = 330 to 8.0 W TI 10 k Calibrate 5.0 M 1% 100 kW 1.0 MW V V Range 1.0 kW V V+ > Vref Figure 27. Single−Supply Comparator with Temperature−Compensated Threshold 25 V 1N5305 Vout < Vref 8.0 W + 470 mF 360 k 1.0 mF * Vout * Thermalloy * THM 6024 * Heatsink on * LP Package −5.0 V R x + V outD W Range V Figure 28. Linear Ohmmeter 56 k 10 k 0.05 mF Tone 25 k Volume 47 k Figure 29. Simple 400 mW Phono Amplifier http://onsemi.com 9 TL431, A, B Series, NCV431A 150 mH @ 2.0 A Vin = 10 V to 20 V TIP115 Vout = 5.0 V Iout = 1.0 A 1.0 k 4.7 k + 4.7 k MPSA20 1N5823 100 k 0.01mF 2200 mF 470 mF 4.7 k 0.1 mF 2.2 k 10 51 k Figure 30. High Efficiency Step−Down Switching Converter Test Conditions Results Line Regulation Vin = 10 V to 20 V, Io = 1.0 A 53 mV (1.1%) Load Regulation Vin = 15 V, Io = 0 A to 1.0 A 25 mV (0.5%) Output Ripple Vin = 10 V, Io = 1.0 A 50 mVpp P.A.R.D. Output Ripple Vin = 20 V, Io = 1.0 A 100 mVpp P.A.R.D. Efficiency Vin = 15 V, Io = 1.0 A 82% http://onsemi.com 10 + TL431, A, B Series, NCV431A APPLICATIONS INFORMATION The TL431 is a programmable precision reference which is used in a variety of ways. It serves as a reference voltage in circuits where a non−standard reference voltage is needed. Other uses include feedback control for driving an optocoupler in power supplies, voltage monitor, constant current source, constant current sink and series pass regulator. In each of these applications, it is critical to maintain stability of the device at various operating currents and load capacitances. In some cases the circuit designer can estimate the stabilization capacitance from the stability boundary conditions curve provided in Figure 15. However, these typical curves only provide stability information at specific cathode voltages and at a specific load condition. Additional information is needed to determine the capacitance needed to optimize phase margin or allow for process variation. A simplified model of the TL431 is shown in Figure 31. When tested for stability boundaries, the load resistance is 150 W. The model reference input consists of an input transistor and a dc emitter resistance connected to the device anode. A dependent current source, Gm, develops a current whose amplitude is determined by the difference between the 1.78 V internal reference voltage source and the input transistor emitter voltage. A portion of Gm flows through compensation capacitance, CP2. The voltage across CP2 drives the output dependent current source, Go, which is connected across the device cathode and anode. P2 + Z1 + G+G R GoR M GM L Example 1: I + 10 mA, R + 230 W, C + 0. Define the transfer gain. L L C The DC gain is: G+G R GoR + M GM L (2.138)(1.0 M)(1.25 m)(230) + 615 + 56 dB Loop gain + G C + P1 8.25 k + 218 + 47 dB 8.25 k ) 15 k The resulting transfer function Bode plot is shown in Figure 32. The asymptotic plot may be expressed as the following equation: ǒ1 ) 500jfkHzǓ Av + 615 ǒ1 ) 8.0jfkHzǓǒ1 ) 60 jfkHzǓ Resistor and capacitor typical values are shown on the model. Process tolerances are ± 20% for resistors, ±10% for capacitors, and ±40% for transconductances. An examination of the device model reveals the location of circuit poles and zeroes: 1 1 1 + + 500 kHz C 2p * 15.9 k * 20 pF Z1 P1 Also, the transfer dc voltage gain of the TL431 is: Go = 1.25 (Vcp2) mmhos. GM 2p R 1 P + L 2p R C L L where IC is the device cathode current and Gm is in mhos 2p R 1 1 + + 60 kHz 2p * 10 M * 0.265 pF C P2 P2 In addition, there is an external circuit pole defined by the load: Model component values are: Vref = 1.78 V Gm = 0.3 + 2.7 exp (−IC/26 mA) P1 + 2p R The Bode plot shows a unity gain crossover frequency of approximately 600 kHz. The phase margin, calculated from the equation, would be 55.9 degrees. This model matches the Open−Loop Bode Plot of Figure 12. The total loop would have a unity gain frequency of about 300 kHz with a phase margin of about 44 degrees. 1 + 7.96 kHz 2p * 1.0 M * 20 pF http://onsemi.com 11 TL431, A, B Series, NCV431A VCC RL CL Input 3 15 k Cathode 9.0 mF Ref RP2 10 M Vref 1.78 V 1 500 k CP1 20 pF GM + − Rref RGM 1.0 M 16 RZ1 15.9 k 8.25 k Anode Go 1.0 mmho CP2 0.265 pF 2 Figure 31. Simplified TL431 Device Model TL431 OPEN−LOOP VOLTAGE GAIN VERSUS FREQUENCY Note that the transfer function now has an extra pole formed by the load capacitance and load resistance. Note that the crossover frequency in this case is about 250 kHz, having a phase margin of about −46 degrees. Therefore, instability of this circuit is likely. 50 40 30 TL431 OPEN−LOOP BODE PLOT WITH LOAD CAP 20 80 10 Av, OPEN−LOOP GAIN (dB) Av, OPEN−LOOP VOLTAGE GAIN (dB) 60 0 −10 −20 101 102 103 104 105 106 107 f, FREQUENCY (Hz) Figure 32. Example 1 Circuit Open Loop Gain Plot Example 2. IC = 7.5 mA, RL = 2.2 kW, CL = 0.01 mF. Cathode tied to reference input pin. An examination of the data sheet stability boundary curve (Figure 15) shows that this value of load capacitance and cathode current is on the boundary. Define the transfer gain. The DC gain is: 60 40 20 0 −20 101 102 103 104 105 106 f, FREQUENCY (Hz) Figure 33. Example 2 Circuit Open Loop Gain Plot With three poles, this system is unstable. The only hope for stabilizing this circuit is to add a zero. However, that can only be done by adding a series resistance to the output capacitance, which will reduce its effectiveness as a noise filter. Therefore, practically, in reference voltage applications, the best solution appears to be to use a smaller value of capacitance in low noise applications or a very large value to provide noise filtering and a dominant pole rolloff of the system. G+G R GoR + M GM L (2.323)(1.0 M)(1.25 m)(2200) + 6389 + 76 dB The resulting open loop Bode plot is shown in Figure 33. The asymptotic plot may be expressed as the following equation: ǒ1 ) 500jfkHzǓ Av + 615 ǒ1 ) 8.0jfkHzǓǒ1 ) 60 jfkHzǓǒ1 ) 7.2jfkHzǓ http://onsemi.com 12 TL431, A, B Series, NCV431A ORDERING INFORMATION Device Operating Temperature Range TL431ACD TL431ACDG Package Code 1.0% SOIC−8 (Pb−Free) 1.0% 98 Units / Rail SOIC−8 (Pb−Free) TL431BCDG TL431CD 2.2% 1.0% SOIC−8 (Pb−Free) TL431ACDR2G 1.0% SOIC−8 TL431BCDR2 SOIC−8 (Pb−Free) TL431BCDR2G TL431CDR2 TL431CDR2G TL431ACDMR2 0.4% 2500 Units / Tape & Reel 2.2% SOIC−8 (Pb−Free) 2.2% Micro8 (Pb−Free) TL431BCDMR2G TL431CDMR2 TL431CDMR2G 1.0% 0.4% 4000 Units / Tape & Reel 0.4% Micro8 2.2% Micro8 (Pb−Free) 2.2% 1.0% TL431ACP TL431BCP 0.4% SOIC−8 Micro8 TL431BCDMR2 0.4% 0.4% SOIC−8 TL431ACDR2 Tolerance SOIC−8 SOIC−8 TL431BCD Shipping Information† 0.4% PDIP−8 0°C to 70°C 50 Units / Rail TL431CP 2.2% TL431CPG PDIP−8 (Pb−Free) 2.2% TL431ACLP TO−92 (TO−226) 1.0% TL431ACLPG TO−92 (TO−226) (Pb−Free) 1.0% TL431BCLP TO−92 (TO−226) TL431BCLPG TO−92 (TO−226) (Pb−Free) TL431CLP TO−92 (TO−226) 2.2% TL431CLPG TO−92 (TO−226) (Pb−Free) 2.2% TL431ACLPRA TO−92 (TO−226) 1.0% TL431ACLPRAG TO−92 (TO−226) (Pb−Free) 1.0% TL431BCLPRA TO−92 (TO−226) 0.4% TL431BCLPRAG TO−92 (TO−226) (Pb−Free) 0.4% TL431CLPRA TO−92 (TO−226) TL431CLPRAG TO−92 (TO−226) (Pb−Free) 2.2% TL431ACLPRE TO−92 (TO−226) 1.0% TL431ACLPREG TO−92 (TO−226) (Pb−Free) 1.0% TL431BCLPRE TO−92 (TO−226) 0.4% 0.4% 2000 Units / Bag 2000 Units / Tape & Reel 0.4% 2.2% †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 13 TL431, A, B Series, NCV431A ORDERING INFORMATION Package Code Shipping Information† Tolerance TL431BCLPREG TO−92 (TO−226) (Pb−Free) 2000 Units / Tape & Reel 0.4% TL431ACLPRP TO−92 (TO−226) 1.0% TL431ACLPRPG TO−92 (TO−226) (Pb−Free) 1.0% Device TL431BCLPRM Operating Temperature Range TO−92 (TO−226) 0°C to 70°C 0.4% 2000 Units / Fan−Fold TL431BCLPRMG TO−92 (TO−226) (Pb−Free) TL431CLPRP TO−92 (TO−226) 2.2% TL431CLPRPG TO−92 (TO−226) (Pb−Free) 2.2% SOIC−8 1.0% SOIC−8 (Pb−Free) 1.0% TL431AID TL431AIDG SOIC−8 TL431BID SOIC−8 (Pb−Free) TL431BIDG TL431ID TL431IDG TL431AIDR2 TL431AIDR2G TL431IDR2 TL431IDR2G TL431AIDMR2 TL431BIDMR2G 2.2% SOIC−8 (Pb−Free) 2.2% SOIC−8 1.0% SOIC−8 (Pb−Free) 1.0% 0.4% 2500 Units / Tape & Reel 2.2% SOIC−8 (Pb−Free) 2.2% Micro8 (Pb−Free) TL431IDMR2 TL431IDMR2G TL431AIP 1.0% TL431BIP 0.4% 4000 Units / Tape & Reel 2.2% Micro8 (Pb−Free) 2.2% PDIP−8 1.0% 50 Units / Rail TL431AILP 2.2% 1.0% TO−92 (TO−226) TL431BILP TO−92 (TO−226) (Pb−Free) TL431BILPG 1.0% 0.4% PDIP−8 TL431IP 0.4% Micro8 PDIP−8 (Pb−Free) TL431AIPG 0.4% SOIC−8 Micro8 −40°C to 85°C 0.4% SOIC−8 SOIC−8 (Pb−Free) TL431BIDR2G TL431BIDMR2 0.4% 98 Units / Rail SOIC−8 TL431BIDR2 0.4% 0.4% 2000 Units / Box 0.4% TL431ILP TO−92 (TO−226) 2.2% TL431ILPG TO−92 (TO−226) (Pb−Free) 2.2% TL431AILPRA TO−92 (TO−226) TL431AILPRAG TO−92 (TO−226) (Pb−Free) 1.0% 2000 Units / Tape & Reel 1.0% †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 14 TL431, A, B Series, NCV431A ORDERING INFORMATION Device Operating Temperature Range Package Code TL431BILPRA TO−92 (TO−226) TL431BILPRAG TO−92 (TO−226) (Pb−Free) TO−92 (TO−226) TL431ILPRA TL431ILPRAG Shipping Information† Tolerance 0.4% 0.4% 2000 Units / Tape & Reel TO−92 (TO−226) (Pb−Free) −40°C to 85°C 2.2% 2.2% 1.0% TL431AILPRM TL431AILPRP TO−92 ((TO−226)) 2000 Units / Ammo Pack 1.0% 2.2% TL431ILPRP TL431BVD SOIC−8 TL431BVDR2 SOIC−8 TL431BVDMR2 Micro8 4000 Units / Tape & Reel 0.4% TO−92 (TO−226) 2000 Units / Box 0.4% TL431BVLP −40°C 40°C to 125°C 0.4% 98 Units / Rail 0.4% TL431BVP PDIP−8 50 Units / Rail 0.4% NCV431AIDMR2 Micro8 4000 Units / Tape & Reel 1% NCV431AIDR2 SOIC−8 2500 Units / Tape & Reel 1% †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. MARKING DIAGRAMS SOIC−8 D SUFFIX CASE 751 8 Micro8 CASE 846A TO−92 (TO−226) CASE 29 8 8 xx ALYW 1 PDIP−8 CASE 626 xx xx AYW 1 xx AWL YYWW 1 12 3 xx A WL, L YY, Y WW, W = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week http://onsemi.com 15 TL431, A, B Series, NCV431A PACKAGE DIMENSIONS A TO−92 (TO−226) LP SUFFIX PLASTIC PACKAGE CASE 29−11 ISSUE AL B R P NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. L SEATING PLANE K DIM A B C D G H J K L N P R V D X X G J H V C SECTION X−X 1 N INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.021 0.045 0.055 0.095 0.105 0.015 0.020 0.500 −−− 0.250 −−− 0.080 0.105 −−− 0.100 0.115 −−− 0.135 −−− MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.407 0.533 1.15 1.39 2.42 2.66 0.39 0.50 12.70 −−− 6.35 −−− 2.04 2.66 −−− 2.54 2.93 −−− 3.43 −−− N 8 PDIP−8 P SUFFIX PLASTIC PACKAGE CASE 626−05 ISSUE L 5 −B− 1 4 F −A− NOTE 2 L C J −T− N SEATING PLANE D H M K G 0.13 (0.005) M T A M B M http://onsemi.com 16 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC −−− 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC −−− 10_ 0.030 0.040 TL431, A, B Series, NCV431A PACKAGE DIMENSIONS Micro8 DM SUFFIX PLASTIC PACKAGE CASE 846A−02 ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A−01 OBSOLETE, NEW STANDARD 846A−02. −A− −B− K PIN 1 ID G D 8 PL 0.08 (0.003) M T B S A DIM A B C D G H J K L S SEATING −T− PLANE 0.038 (0.0015) C L J H SOLDERING FOOTPRINT* 8X 1.04 0.041 0.38 0.015 3.20 0.126 6X 8X 4.24 0.167 0.65 0.0256 5.28 0.208 SCALE 8:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 17 MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 −−− 1.10 0.25 0.40 0.65 BSC 0.05 0.15 0.13 0.23 4.75 5.05 0.40 0.70 INCHES MIN MAX 0.114 0.122 0.114 0.122 −−− 0.043 0.010 0.016 0.026 BSC 0.002 0.006 0.005 0.009 0.187 0.199 0.016 0.028 TL431, A, B Series, NCV431A SOIC−8 D SUFFIX PLASTIC PACKAGE CASE 751−07 ISSUE AE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. −X− A 8 5 S B 1 0.25 (0.010) M Y M 4 K −Y− G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE −Z− 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X J S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Micro8 is a trademark of International Rectifier. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 18 For additional information, please contact your local Sales Representative. TL431/D Order this document by TL431/D The TL431, A, B integrated circuits are three–terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from Vref to 36 V with two external resistors. These devices exhibit a wide operating current range of 1.0 mA to 100 mA with a typical dynamic impedance of 0.22 Ω. The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 V reference makes it convenient to obtain a stable reference from 5.0 V logic supplies, and since the TL431, A, B operates as a shunt regulator, it can be used as either a positive or negative voltage reference. • • • • • • • Programmable Output Voltage to 36 V Voltage Reference Tolerance: ±0.4%, Typ @ 25°C (TL431B) Low Dynamic Output Impedance, 0.22 Ω Typical PROGRAMMABLE PRECISION REFERENCES SEMICONDUCTOR TECHNICAL DATA LP SUFFIX PLASTIC PACKAGE CASE 29 (TO–92) 1 Sink Current Capability of 1.0 mA to 100 mA 2 Pin 1. Reference 2. Anode 3. Cathode 3 Equivalent Full–Range Temperature Coefficient of 50 ppm/°C Typical Temperature Compensated for Operation over Full Rated Operating Temperature Range Low Output Noise Voltage P SUFFIX PLASTIC PACKAGE CASE 626 8 1 DM SUFFIX PLASTIC PACKAGE CASE 846A (Micro–8) 8 1 8 Reference Cathode 1 N/C 2 7 N/C N/C 3 6 Anode N/C 4 5 N/C (Top View) D SUFFIX PLASTIC PACKAGE CASE 751 (SOP–8) ORDERING INFORMATION Device Operating Temperature Range Package TL431CLP, ACLP, BCLP TO–92 TL431CP, ACP, BCP Plastic TL431CDM, ACDM, BCDM TA = 0° to +70°C SOP–8 TL431ILP, AILP, BILP TO–92 TL431IP, AIP, BIP TL431IDM, AIDM, BIDM Plastic TA = –40° to +85°C TL431ID, AID, BID Micro–8 8 2 7 3 6 N/C 4 5 Anode Reference Anode N/C (Top View) SOP–8 is an internally modified SO–8 package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification decreases power dissipation capability when appropriately mounted on a printed circuit board. SOP–8 conforms to all external dimensions of the standard SO–8 package. SOP–8 © Motorola, Inc. 1998 MOTOROLA ANALOG IC DEVICE DATA 1 Cathode 1 Micro–8 TL431CD, ACD, BCD 8 Rev 6 1 TL431, A, B Series Symbol Representative Schematic Diagram Component values are nominal Cathode (K) Cathode (K) Reference (R) 800 800 Reference (R) Anode (A) 20 pF Representative Block Diagram Reference (R) 4.0 k 20 pF Cathode (K) + 150 3.28 k 2.4 k 10 k 7.2 k – 1.0 k 2.5 Vref 800 Anode (A) Anode (A) This device contains 12 active transistors. MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.) Rating Symbol Value Unit VKA 37 V Cathode Current Range, Continuous IK –100 to +150 mA Reference Input Current Range, Continuous Iref –0.05 to +10 mA Operating Junction Temperature TJ 150 °C Operating Ambient Temperature Range TL431I, TL431AI, TL431BI TL431C, TL431AC, TL431BC TA Cathode to Anode Voltage Storage Temperature Range Tstg Total Power Dissipation @ TA = 25°C Derate above 25°C Ambient Temperature D, LP Suffix Plastic Package P Suffix Plastic Package DM Suffix Plastic Package PD Total Power Dissipation @ TC = 25°C Derate above 25°C Case Temperature D, LP Suffix Plastic Package P Suffix Plastic Package PD NOTE: °C –40 to +85 0 to +70 –65 to +150 °C W 0.70 1.10 0.52 W 1.5 3.0 ESD data available upon request. RECOMMENDED OPERATING CONDITIONS Condition Cathode to Anode Voltage Symbol Min Max Unit VKA Vref 36 V IK 1.0 100 mA Cathode Current THERMAL CHARACTERISTICS Symbol D, LP Suffix Package P Suffix Package DM Suffix Package Unit Thermal Resistance, Junction–to–Ambient RθJA 178 114 240 °C/W Thermal Resistance, Junction–to–Case RθJC 83 41 – °C/W Characteristic 2 MOTOROLA ANALOG IC DEVICE DATA TL431, A, B Series ELECTRICAL CHARACTERISTICS (TA = 25°C, unless otherwise noted.) TL431I Characteristic Symbol Reference Input Voltage (Figure 1) VKA = Vref, IK = 10 mA TA = 25°C TA = Tlow to Thigh (Note 1) Min Typ TL431C Max Min Typ Max Vref V Reference Input Voltage Deviation Over Temperature Range (Figure 1, Notes 1, 2) VKA= Vref, IK = 10 mA ΔVref Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage IK = 10 mA (Figure 2), ΔVKA = 10 V to Vref ΔVKA = 36 V to 10 V DVref DVKA 2.44 2.41 2.495 – 2.55 2.58 2.44 2.423 2.495 – 2.55 2.567 – 7.0 – – 3.0 – mV mV/V – – Reference Input Current (Figure 2) IK = 10 mA, R1 = 10 k, R2 = ∞ TA = 25°C TA = Tlow to Thigh (Note 1) Unit –1.4 –1.0 –2.7 –2.0 – – –1.4 –1.0 –2.7 –2.0 μA Iref – – 1.8 – 4.0 6.5 – – 1.8 – 4.0 5.2 Reference Input Current Deviation Over Temperature Range (Figure 2, Note 1, 4) IK = 10 mA, R1 = 10 k, R2 = ∞ ΔIref – 0.8 2.5 – 0.4 1.2 μA Minimum Cathode Current For Regulation VKA = Vref (Figure 1) Imin – 0.5 1.0 – 0.5 1.0 mA Off–State Cathode Current (Figure 3) VKA = 36 V, Vref = 0 V Ioff – 260 1000 – 2.6 1000 nA |ZKA| – 0.22 0.5 – 0.22 0.5 Ω Dynamic Impedance (Figure 1, Note 3) VKA = Vref, ΔIK = 1.0 mA to 100 mA f ≤ 1.0 kHz NOTES: 1. Tlow = –40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM = 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM Thigh = +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM = +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM 2. The deviation parameter ΔVref is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies. Vref max ΔVref = Vref max –Vref min ΔTA = T2 – T1 Vref min T1 ǒ Ǔ T2 Ambient Temperature The average temperature coefficient of the reference input voltage, αVref is defined as: D Vref V @ 25_C X 10 6 D x 10 6 ref D TA (V @ 25_C) A ref αVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature. (Refer to Figure 6.) ppm V ref _C + 8.0 mV and slope is positive, @ 25_C + 2.495 V, DT + 70_C ref A Example : DV V + ref ref 3. The dynamic impedance ZKA is defined as |Z KA| + DDVIKA +DT a V ref V x 106 + 45.8 ppmń_C + 0.008 70 (2.495) K When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as: |Z MOTOROLA ANALOG IC DEVICE DATA Ȁ| [ |ZKA| KA ǒ 1 ) R1 R2 Ǔ 3 TL431, A, B Series ELECTRICAL CHARACTERISTICS (TA = 25°C, unless otherwise noted.) TL431AI Characteristic Symbol Reference Input Voltage (Figure 1) VKA = Vref, IK = 10 mA TA = 25°C TA = Tlow to Thigh Min Typ TL431AC Max Min Typ TL431B Max Min Typ Max Unit Vref V 2.47 2.44 2.495 – 2.52 2.55 2.47 2.453 2.495 – 2.52 2.537 2.483 2.475 2.495 2.495 2.507 2.515 – 7.0 – – 3.0 – – 3.0 – ΔVref Reference Input Voltage Deviation Over Temperature Range (Figure 1, Notes 1, 2) VKA= Vref, IK = 10 mA DVref DVKA Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage IK = 10 mA (Figure 2), ΔVKA = 10 V to Vref ΔVKA = 36 V to 10 V mV mV/V – – Reference Input Current (Figure 2) IK = 10 mA, R1 = 10 k, R2 = ∞ TA = 25°C TA = Tlow to Thigh (Note 1) ΔIref Reference Input Current Deviation Over Temperature Range (Figure 2, Note 1) IK = 10 mA, R1 = 10 k, R2 = ∞ –1.4 –1.0 –2.7 –2.0 – – –1.4 –1.0 –2.7 –2.0 – – –1.4 –1.0 –2.7 –2.0 μA – – 1.8 – 4.0 6.5 – – 1.8 – 4.0 5.2 – – 1.1 – 2.0 4.0 ΔIref – 0.8 2.5 – 0.4 1.2 – 0.4 1.2 μA Minimum Cathode Current For Regulation VKA = Vref (Figure 1) Imin – 0.5 1.0 – 0.5 1.0 – 0.5 1.0 mA Off–State Cathode Current (Figure 3) VKA = 36 V, Vref = 0 V Ioff – 260 1000 – 260 1000 – 230 500 nA |ZKA| – 0.22 0.5 – 0.22 0.5 – 0.14 0.3 Ω Dynamic Impedance (Figure 1, Note 3) VKA = Vref, ΔIK = 1.0 mA to 100 mA f ≤ 1.0 kHz NOTES: 1. Tlow = –40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM = 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM Thigh = +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM = +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM 2. The deviation parameter ΔVref is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies. Vref max ΔVref = Vref max –Vref min ΔTA = T2 – T1 Vref min T1 ǒ Ǔ T2 Ambient Temperature The average temperature coefficient of the reference input voltage, αVref is defined as: D Vref V @ 25_C X 10 6 D V x 10 6 ref (V @ 25_C) A A ref αVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature. (Refer to Figure 6.) ppm V ref _C D T + 8.0 mV and slope is positive, @ 25_C + 2.495 V, DT + 70_C ref A Example : DV V + ref ref 3. The dynamic impedance ZKA is defined as |Z KA| + DDVIKA +DT a V ref x 106 + 45.8 ppmń_C + 0.008 70 (2.495) K When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as: |Z 4 Ȁ| [ |ZKA| KA ǒ 1 ) R1 R2 Ǔ MOTOROLA ANALOG IC DEVICE DATA TL431, A, B Series Figure 1. Test Circuit for VKA = Vref Input Figure 2. Test Circuit for VKA > Vref VKA Input VKA IK Iref R1 Vref Figure 3. Test Circuit for Ioff R2 Input V KA VKA Ioff IK + Vref ǒ 1 ) R1 Ǔ ) I S R1 ref R2 Vref Figure 4. Cathode Current versus Cathode Voltage Figure 5. Cathode Current versus Cathode Voltage 800 VKA = Vref TA = 25°C 100 Input IK , CATHODE CURRENT ( μA) IK , CATHODE CURRENT (mA) 150 VKA IK 50 0 –50 –100 –2.0 –1.0 0 1.0 2.0 3.0 600 Input VKA = Vref TA = 25°C 400 200 0 –200 –1.0 0 VKA, CATHODE VOLTAGE (V) VKA IKVKA = Vref IK = 10 mA Input 2560 Vref Vref Max = 2550 mV 2540 2520 Vref Typ = 2495 mV 2500 2480 2460 2440 Vref Min = 2440 mV 2420 2400 –55 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) MOTOROLA ANALOG IC DEVICE DATA 2.0 3.0 Figure 7. Reference Input Current versus Ambient Temperature 100 125 Iref , REFERENCE INPUT CURRENT ( μA) Vref , REFERENCE INPUT VOLTAGE (mV) 2580 1.0 VKA, CATHODE VOLTAGE (V) Figure 6. Reference Input Voltage versus Ambient Temperature 2600 IMin VKA IK 3.0 2.5 2.0 1.5 IK = 10 mA 1.0 Input 10k Iref VKA IK 0.5 0 –55 –25 0 25 50 75 125 100 TA, AMBIENT TEMPERATURE (°C) 5 TL431, A, B Series Figure 9. Off–State Cathode Current versus Ambient Temperature 0 IK = 10 mA TA = 25°C –8.0 –16 Input VKA IK R1 –24 –32 R2 Vref 0 10 20 30 1.0 k Ioff , OFF–STATE CATHODE CURRENT (nA) Δ Vref , REFERENCE INPUT VOLTAGE (mV) Figure 8. Change in Reference Input Voltage versus Cathode Voltage 100 10 1.0 Input 0.1 0.01 –55 40 –25 0 VKA, CATHODE VOLTAGE (V) 50 10 – + Gnd 1.0 0.1 1.0 k 10 k 100 k 1.0 M 10 M 0.280 0.260 125 100 125 0.240 0.220 0.200 –55 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (_C) Figure 12. Open–Loop Voltage Gain versus Frequency Figure 13. Spectral Noise Density 80 60 50 9.0 μF 40 IK 15 k Output 230 NOISE VOLTAGE (nV/ √Hz) A VOL, OPEN LOOP VOLTAGE GAIN (dB) 100 VKA = Vref Δ IK = 1.0 mA to 100 mA f ≤ 1.0 kHz Output 1.0 k IK 50 – + Gnd 0.300 f, FREQUENCY (MHz) 8.25 k Gnd 30 20 10 75 0.320 TA = 25_C Δ IK = 1.0 mA to 100 mA Output IK 50 Figure 11. Dynamic Impedance versus Ambient Temperature |ZKA|, DYNAMIC IMPEDANCE (Ω ) |ZKA|, DYNAMIC IMPEDANCE (Ω ) 1.0 k 25 TA, AMBIENT TEMPERATURE (5C) Figure 10. Dynamic Impedance versus Frequency 100 VKA = 36 V Vref = 0 V VKA Ioff IK = 10 mA TA = 25_C 60 40 Input VKA = Vref IK = 10 mA TA = 25°C 20 Output IK 0 –10 1.0 k 10 k 100 k f, FREQUENCY (MHz) 6 1.0 M 10 M 0 10 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA TL431, A, B Series Figure 14. Pulse Response TA = 25_C Input Monitor Output 2.0 Pulse Generator f = 100 kHz 1.0 220 Output 50 Gnd 0 5.0 0 4.0 120 100 A) VKA = Vref B) VKA = 5.0 V @ IK = 10 mA C) VKA = 10 V @ IK = 10 mA D) VKA = 15 V @ IK = 10 mA D) TA = 25°C Stable A A B B 80 Stable C 60 D 40 20 Input 0 IK , CATHODE CURRENT (mA) VOLTAGE SWING (V) 3.0 Figure 15. Stability Boundary Conditions 140 12 8.0 16 20 0 100 pF 1000 pF 0.01 μF 0.1 μF 1.0 μF 10 μF CL, LOAD CAPACITANCE t, TIME (μs) Figure 16. Test Circuit For Curve A of Stability Boundary Conditions Figure 17. Test Circuit For Curves B, C, And D of Stability Boundary Conditions 150 150 IK IK V+ 10 k V+ CL CL TYPICAL APPLICATIONS Figure 18. Shunt Regulator V+ Figure 19. High Current Shunt Regulator Vout R1 V+ Vout R1 R2 R2 V out + ǒ1 ) R1Ǔ V ref R2 MOTOROLA ANALOG IC DEVICE DATA V out + ǒ1 ) R1Ǔ V ref R2 7 TL431, A, B Series Figure 20. Output Control for a Three–Terminal Fixed Regulator Figure 21. Series Pass Regulator V+ MC7805 Out In Common V+ Vout R1 Vout R1 R2 R2 V out + ǒ1 ) V out min + V V out + ǒ1 ) R1Ǔ V ref R2 R1Ǔ V ref R2 ref ) V out min + V 5.0V Figure 22. Constant Current Source RCL V+ ref ) V be Figure 23. Constant Current Sink Isink V+ Iout V I V I out + ref R CL Sink + ref R S RS Figure 24. TRIAC Crowbar V+ Vout Figure 25. SRC Crowbar V+ Vout R1 R1 R2 R2 V out(trip) + ǒ1 ) R1Ǔ V ref R2 V 8 out(trip) + ǒ1 ) R1Ǔ V ref R2 MOTOROLA ANALOG IC DEVICE DATA TL431, A, B Series Figure 26. Voltage Monitor V+ Figure 27. Single–Supply Comparator with Temperature–Compensated Threshold Vout l R1 V+ R3 Vout Vin R2 R4 Vth = Vref L.E.D. indicator is ‘on’ when V+ is between the upper and lower limits. Lower Limit + ǒ1 ) R1Ǔ V ref R2 Vin < Vref Vout V+ > Vref ≈ 2.0 V Upper Limit + ǒ1 ) R3Ǔ V ref R4 Figure 28. Linear Ohmmeter Figure 29. Simple 400 mW Phono Amplifier 25 V 1N5305 5.0 k 1% 50 k 1% 10 kΩ V 1.0 kΩ V 500 k 1% 5.0 M 1% 100 kΩ V 25 V – LM11 + Range R x + V out D W V –5.0 V Range MOTOROLA ANALOG IC DEVICE DATA 330 Tl = 330 to 8.0 Ω TI 10 k Calibrate 1.0 MΩ V RX 38 V 2.0 mA 8.0 Ω + 470 μF 360 k 1.0 μF * Vout * Thermalloy * THM 6024 * Heatsink on * LP Package 56 k 10 k 0.05 μF Tone 25 k Volume 47 k 9 TL431, A, B Series Figure 30. High Efficiency Step–Down Switching Converter 150 mH @ 2.0 A Vin = 10 V to 20 V TIP115 Vout = 5.0 V Iout = 1.0 A 1.0 k 4.7 k + 4.7 k MPSA20 1N5823 0.01μF 100 k 2200 μF 470 μF 4.7 k + 0.1 μF 2.2 k Test 10 51 k 10 Conditions Results Line Regulation Vin = 10 V to 20 V, Io = 1.0 A 53 mV (1.1%) Load Regulation Vin = 15 V, Io = 0 A to 1.0 A 25 mV (0.5%) Output Ripple Vin = 10 V, Io = 1.0 A 50 mVpp P.A.R.D. Output Ripple Vin = 20 V, Io = 1.0 A 100 mVpp P.A.R.D. Efficiency Vin = 15 V, Io = 1.0 A 82% MOTOROLA ANALOG IC DEVICE DATA TL431, A, B Series APPLICATIONS INFORMATION The TL431 is a programmable precision reference which is used in a variety of ways. It serves as a reference voltage in circuits where a non–standard reference voltage is needed. Other uses include feedback control for driving an optocoupler in power supplies, voltage monitor, constant current source, constant current sink and series pass regulator. In each of these applications, it is critical to maintain stability of the device at various operating currents and load capacitances. In some cases the circuit designer can estimate the stabilization capacitance from the stability boundary conditions curve provided in Figure 15. However, these typical curves only provide stability information at specific cathode voltages and at a specific load condition. Additional information is needed to determine the capacitance needed to optimize phase margin or allow for process variation. A simplified model of the TL431 is shown in Figure 31. When tested for stability boundaries, the load resistance is 150 W. The model reference input consists of an input transistor and a dc emitter resistance connected to the device anode. A dependent current source, Gm, develops a current whose amplidute is determined by the difference between the 1.78 V internal reference voltage source and the input transistor emitter voltage. A portion of Gm flows through compensation capacitance, CP2. The voltage across CP2 drives the output dependent current source, Go, which is connected across the device cathode and anode. Model component values are: Vref = 1.78 V Gm = 0.3 + 2.7 exp (–IC/26 mA) where IC is the device cathode current and Gm is in mhos Go = 1.25 (Vcp2) μmhos. Resistor and capacitor typical values are shown on the model. Process tolerances are ± 20% for resistors, ±10% for capacitors, and ±40% for transconductances. An examination of the device model reveals the location of circuit poles and zeroes: 1 1 P1 7.96 kHz 2p R C 2p * 1.0 M * 20 pF GM P1 + + MOTOROLA ANALOG IC DEVICE DATA + P2 + 2p R 1 C + 2p * 10 M1* 0.265 pF + 60 kHz P2 P2 Z1 + 2p R 1 C + 2p * 15.91k * 20 pF + 500 kHz Z1 P1 In addition, there is an external circuit pole defined by the load: 1 P L 2p R C L L Also, the transfer dc voltage gain of the TL431 is: + G + GMRGMGoRL Example 1: I C + 10 mA, RL+ 230 W, CL+ 0. Define the transfer gain. The DC gain is: + GMRGMGoRL + (2.138)(1.0 M)(1.25 m)(230) + 615 + 56 dB 8.25 k Loop gain + G + 218 + 47 dB 8.25 k ) 15 k G The resulting transfer function Bode plot is shown in Figure 32. The asymptotic plot may be expressed as the following equation: 1 jf 500 kHz Av 615 1 jf 1 jf 8.0 kHz 60 kHz + ǒ)Ǔ ǒ ) Ǔǒ ) Ǔ The Bode plot shows a unity gain crossover frequency of approximately 600 kHz. The phase margin, calculated from the equation, would be 55.9 degrees. This model matches the Open–Loop Bode Plot of Figure 12. The total loop would have a unity gain frequency of about 300 kHz with a phase margin of about 44 degrees. 11 TL431, A, B Series Figure 31. Simplified TL431 Device Model VCC RL CL Input 3 15 k Cathode 9.0 mF Ref RP2 10 M Vref 1.78 V + – 1 500 k 8.25 k RGM 1.0 M Anode Figure 32. Example 1 Circuit Open Loop Gain Plot RZ1 15.9 k CP2 0.265 pF 2 Note that the transfer function now has an extra pole formed by the load capacitance and load resistance. Note that the crossover frequency in this case is about 250 kHz, having a phase margin of about –46 degrees. Therefore, instability of this circuit is likely. TL431 OPEN–LOOP VOLTAGE GAIN VERSUS FREQUENCY 60 50 Figure 33. Example 2 Circuit Open Loop Gain Plot 40 30 TL431 OPEN–LOOP BODE PLOT WITH LOAD CAP 80 20 10 0 –10 –20 101 103 102 104 105 106 107 f, FREQUENCY (Hz) Example 2. IC = 7.5 mA, RL = 2.2 kW, CL = 0.01 mF. Cathode tied to reference input pin. An examination of the data sheet stability boundary curve (Figure 15) shows that this value of load capacitance and cathode current is on the boundary. Define the transfer gain. The DC gain is: + GMRGMGoRL + (2.323)(1.0 M)(1.25 m)(2200) + 6389 + 76 dB G The resulting open loop Bode plot is shown in Figure 33. The asymptotic plot may be expressed as the following equation: 1 jf 500 kHz Av 615 1 jf 1 jf 1 jf 8.0 kHz 60 kHz 7.2 kHz + 12 ǒ)Ǔ ǒ ) Ǔǒ ) Ǔǒ ) Ǔ Av, OPEN–LOOP GAIN (dB) Av, OPEN–LOOP VOLTAGE GAIN (dB) CP1 20 pF GM Rref 16 Go 1.0 mmho 60 40 20 0 –20 101 102 103 104 105 106 f, FREQUENCY (Hz) With three poles, this system is unstable. The only hope for stabilizing this circuit is to add a zero. However, that can only be done by adding a series resistance to the output capacitance, which will reduce its effectiveness as a noise filter. Therefore, practically, in reference voltage applications, the best solution appears to be to use a smaller value of capacitance in low noise applications or a very large value to provide noise filtering and a dominant pole rolloff of the system. MOTOROLA ANALOG IC DEVICE DATA TL431, A, B Series OUTLINE DIMENSIONS A LP SUFFIX PLASTIC PACKAGE CASE 29–04 (TO–92) ISSUE AE B R P L F SEATING PLANE K DIM A B C D F G H J K L N P R V D X X G J H V C SECTION X–X 1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. N N INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.022 0.016 0.019 0.045 0.055 0.095 0.105 0.015 0.020 0.500 ––– 0.250 ––– 0.080 0.105 ––– 0.100 0.115 ––– 0.135 ––– MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.41 0.55 0.41 0.48 1.15 1.39 2.42 2.66 0.39 0.50 12.70 ––– 6.35 ––– 2.04 2.66 ––– 2.54 2.93 ––– 3.43 ––– P SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 8 5 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. –B– 1 4 F –A– NOTE 2 L C J –T– N SEATING PLANE D H M K DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 10_ 0.030 0.040 G 0.13 (0.005) MOTOROLA ANALOG IC DEVICE DATA M T A M B M 13 TL431, A, B Series OUTLINE DIMENSIONS DM SUFFIX PLASTIC PACKAGE CASE 846A–02 (Micro–8) ISSUE D –A– –B– K PIN 1 ID G D 8 PL 0.08 (0.003) –T– NOTES: 6. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 7. CONTROLLING DIMENSION: MILLIMETER. 8. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 9. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. M T B S A DIM A B C D G H J K L S SEATING PLANE C 0.038 (0.0015) INCHES MIN MAX 0.114 0.122 0.114 0.122 ––– 0.043 0.010 0.016 0.026 BSC 0.002 0.006 0.005 0.009 0.187 0.199 0.016 0.028 L J H MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 ––– 1.10 0.25 0.40 0.65 BSC 0.05 0.15 0.13 0.23 4.75 5.05 0.40 0.70 D SUFFIX PLASTIC PACKAGE CASE 751–06 (SOP–8) ISSUE T D A 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETER. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C 5 0.25 H E M B M 1 4 h B e X 45 _ q A C SEATING PLANE L 0.10 A1 B 0.25 14 M C B S A S DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.19 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ MOTOROLA ANALOG IC DEVICE DATA TL431, A, B Series Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. MOTOROLA ANALOG IC DEVICE DATA 15 TL431, A, B Series Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488 Customer Focus Center: 1–800–521–6274 Mfax™: [email protected] – TOUCHTONE 1–602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, Motorola Fax Back System – US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 – http://sps.motorola.com/mfax/ HOME PAGE: http://motorola.com/sps/ 16 ◊ TL431/D MOTOROLA ANALOG IC DEVICE DATA TL431A Adjustable Precision Shunt Regulator FEATURES PIN CONNECTIONS • Programmable Output Voltage to 40V • Low Dynamic Output Impedance 0.2Ω • Sink Current Capability of 0.1 mA to 100 mA • Equivalent Full-Range Temperature Coefficient of 50 ppm/oC • Temperature Compensated for Operation over Full Rated Operating Temperature Range R • Low Output Noise Voltage A K • Fast Turn on Respons SOT-89 K A TL431ACPK R TO-92 R TL431ACLP--Bulk Pack TL431ACLPM-Ammo Pack • TO-92 or SOT-23 and SOT-89 ,SO8packages A K SO8 TL431ACMX A CATHODE ANODE ANODE NC 1 8 2 7 3 6 4 5 REF ANODE ANODE NC SOT-23 TL431ALT1 R K DESCRIPTION The TL431A is a three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between Vref (approximately 2.5 volts) and 36 volts with two external resistors. These devices have a typical dynamic output impedance of 0.2Ω. Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacement for zener diodes in many applications. The TL431A is characterized for operation from -0oC to +70oC. SYMBOL FUNCTIONAL BLOCK DIAGRAM ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified) Characteristic Cathode Voltage Symbol Value Unit VKA 40 IK 100 ~ 150 Reference Input Current Range IREF 0.05 ~ 10 mA Power Dissipation at 25oC: TO – 92 Package (RJA = 178oC/W) SOT – 23 – 3 Package (RJA = 625oC/W) Junction Temperature Range PD TJ 0.7 0.2 0 ~ 150 W W o C Operating Temperature Range Tg 0 ~ 70 o C -65 ~ +150 o C Cathode Current Range (Continuous) Storage Temperature Range Tstg 1 V mA V TL431A Adjustable Precision Shunt Regulator RECOMMENDED OPERATING CONDITIONS Characteristic Symbol Cathode Voltage VKA Cathode Current IK Test Condition Min Typ REF 0.5 Max Unit 40 V 100 mA ELECTRICAL CHARACTERISTICS (Ta = 25oC, VKA = VREF, IK = 10mA unless otherwise specified) Characteristic Symbol Reference Input Voltage Test Condition Vka=Vref, Ik=10mA VREF Min Typ Max Unit 2.445 2.495 2.545 V VREF(dev) Tmin ≤ Ta ≤ Tmax 3 17 mV ΔV R EF ΔV K A ΔVKA = 10V-VREF -1.4 -2.7 mV/V ΔVKA = 36V- 10V -1.0 -2.0 IREF R1 = 10KΩ, R2 = ∞ 1.8 4 μA Deviation of Reference Input Current Over Full Temperature Range IREF(dev) R1 = 10KΩ, R2 = ∞ 0.4 1.2 μA Minimum Cathode Current for Regulation IK(min) 0.25 0.5 mA Off-State Cathode Current IK(off) VKA = 40V, VREF = 0 0.26 0.9 μA Dynamic Impedance ZKA IK = 10mA to 100 mA , f ≤ 1.0KHz 0.22 0.5 Ω Fig.2. Test Circuit for VKA ≥ VREF Fig.3. Test Circuit for Ioff Deviation of Reference Input Voltage Over Full Temperature Range Ratio of Change in Reference Input Voltage to the Change in Cathode Voltage Reference Input Current TEST CIRCUITS Fig.1. Test Circuit for VKA = VREF IN P U T VKA IN P U T IK VKA IK R1 IN P U T VKA IK (O F F ) IR E F B T 432 B T 432 10n F V R EF R2 V R EF 10n F V K A = V R E F (1+ R 1/R 2)+ IR E F R 1 2 B T 432 TL431A Adjustable Precision Shunt Regulator PAD LAYOUT Y 0,0 X Chip siz e:0,81mmx 0,76 mm Pad siz e : 94 x 94 Unit : μm 2 1 3 PAD LOCATION Unit: μm Pad No. Pad Name Description X Y 1 R Reference -314 -299 2 A Anode -75 -275 3 K Cathode 231 -299 PHYSICAL CHARACTERISTIC Wafes dia Wafes width Scribe width Passivation 100 mm (4") 350 ±20μm 90 μm PSG Ordering Information Grade AA A B Accuracy 0.5% of Typ. 1 % of Typ. 2 % of Typ. Marking TL431AA TL431A TL431 Min. 2.488V 2.475V 2.445V Typ. 2.495V 2.495V 2.495V Max. 2.513V 2.525V 2.545V Notice: Please don't confuse the version of product (-A,-B,-I Suffix) with Grade of product (AA, A). 3 TL431A Adjustable Precision Shunt Regulator Symbol A A1 b c D D1 E e e1 L h Dimensions In Millimeters Min Max 3.300 3.700 1.100 1.400 0.380 0.550 0.360 0.510 4.400 4.700 3.430 4.300 4.700 1.270 TYP 2.440 2.640 14.100 14.500 1.600 0.000 0.380 4 Dimensions In Inches Min Max 0.130 0.146 0.043 0.055 0.015 0.022 0.014 0.020 0.173 0.185 0.135 0.169 0.185 0.050 TYP 0.096 0.104 0.555 0.571 0.063 0.000 0.015 TL431A Adjustable Precision Shunt Regulator Symbol A b b1 c D D1 E E1 e e1 L Dimensions In Millimeters Min Max 1.400 1.600 0.320 0.520 0.400 0.580 0.350 0.440 4.400 4.600 1.550 REF 2.300 2.600 3.940 4.250 1.500 TYP 3.000 TYP 0.900 1.200 5 Dimensions In Inches Min Max 0.055 0.063 0.013 0.197 0.016 0.023 0.014 0.017 0.173 0.181 0.061 REF 0.091 0.102 0.155 0.167 0.060TYP 0.118TYP 0.035 0.047 TL431A 6\PERO A A1 A2 b c D E E1 e e1 L Adjustable Precision Shunt Regulator 'LPHQVLRQV,Q0LOOLPHWHUV 0LQ 0D[ 1.050 1.250 0.000 0.100 1.050 1.150 0.300 0.500 0.100 0.200 2.820 3.020 1.500 1.700 2.650 2.950 0.950(BSC) 1.800 2.000 0.300 0.600 0° 8° 6 'LPHQVLRQV,Q,QFKHV 0LQ 0D[ 0.041 0.049 0.000 0.004 0.041 0.045 0.012 0.020 0.004 0.008 0.111 0.119 0.059 0.067 0.104 0.116 0.037(BSC) 0.071 0.079 0.012 0.024 0° 8° TL431A 6\PERO $ $ $ E F ' ( ( H / © Adjustable Precision Shunt Regulator 'LPHQVLRQV,Q0LOOLPHWHUV 0LQ 0D[ %6& e e 7 'LPHQVLRQV,Q,QFKHV 0LQ 0D[ %6& e e TL431 Programmable Precision References The TL431 integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from Vref to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100mA with a typical dynamic impedance of 0.22 Ω. The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 volt reference makes it convenient to obtain a stable reference from 5.0 volt logic supplies, and since the TL431 operates as a shunt regulator, it can be used as either a positive or negative voltage reference. FEATURES PIN ARRANGEMENT l Programmable Output Voltage to 36 Volts TO-92 DIP-8 l Low Dynamic Output Impedance, 0.22 Ω Typical l Sink Current Capability of 1.0 to 100 mA l Equivalent Full-Range Temperature Coefficient of 50 ppm/ oC Typical l Temperature Compensated for operation over Pin: 1. Reference 2. Anode 3. Cathode Full Rated Operating Temperature Range l Low Output Noise Voltage Pin: 1. Cathode 6. Anode 8. Reference Other Pins: NC SOP-8 CIRCUIT SCHEMATIC Pin: 1. 2. 3. 4. SYMBOL Cathode Anode Reference NC 5. 6. 7. 8. NC Anode Anode Reference This SOP-8 is an internally modified SOP-8 Package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. This SOP-8 conforms to all external dimensions of the standard SOP-8 package. FUNCTIONAL BLOCK DIAGRAM ORDERING INFORMATION Device TL431CT TL431CD TL431CS TL431IT TL431ID TL431IS 9-1 Temperature Range 0 to +70 oC -40 to +85 oC Package TO-92 DIP-8 SOP-8 TO-92 DIP-8 SOP-8 TL431 Programmable Precision References MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted.) Rating Symbol Va l u e Unit VKA 37 V Cathode Current Range, Continuous IK -100 to +150 mA Reference Input Current Range, Continuous Iref -0.05 to +10 mA Operating Junction Temperature TJ 150 Cathode to Anode Voltage Operating Ambient Temperature Range TL431I, TL431AI, TL431BI TL431C, TL431AC, TL431BC TA Storage Temperature Range T stg o C o C -40 to +85 0 to +70 o Total Power Dissipation @ TA = 25 C Derate above TA = 25oC Ambient Temperature T, S Suffix Packages D Suffix Package PD Total Power Dissipation @ TC = 25oC Derate above TA = 25oC Case Temperature T, S Suffix Packages D Suffix Package PD o -65 to +150 C W 0.70 1.10 W 1.5 3.0 THERMAL CHARACTERISTICS Characteristic Symbol T, S Suffix Thermal Resistance, Junction to Ambient Rθ JA 178 D Suffix 114 o Unit C/W Thermal Resistance, Junction to Case Rθ JC 83 41 o C/W Symbol Min Max VΚA Vref 36 V IK 1.0 100 mA RECOMMENDED OPERATING CONDITIONS Condition / Value Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case 9-2 Unit TL431 Programmable Precision References ELECTRICAL CHARACTERISTICS (Ambient temperature at 25oC unless otherwise noted) Characteristic Symbol Reference Input Voltage (Fig. 1) VKA = Vref, IK = 10mA TA = 25oC TA = Tlow to Thigh (Note 1) TL431I Min Typ Max TL431C Min Typ Max Unit Vref V Reference Input Voltage Deviation Over Temperature Range (Fig. 1, Note 1, 2, 4) VKA = Vref, IK = 10mA ΔVref Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage IK = 10mA (Fig. 2), ΔVKA = 10V to Vref ΔVKA = 36V to 10V ΔVref ΔVKA 2.44 2.41 2.495 --- 2.55 2.58 2.44 2.423 2.495 --- 2.55 2.567 --- 7.0 30 --- 3.0 17 mV/V ----- -1.4 -1.0 -2.7 -2.0 ----- -1.4 -1.0 -2.7 -2.0 μA Iref 8 Reference Input Current (Fig. 2) IK = 10mA, R1 = 10k, R2 = TA = 25oC TA = Tlow to Thigh (Note 1) mV ----- 1.8 --- 4.0 6.5 ----- 1.8 --- 4.0 5.2 ΔIref --- 0.8 2.5 --- 0.4 1.2 μA Minimum Cathode Current for Regulation VKA = Vref (Fig. 1) Imin --- 0.5 1.0 --- 0.5 1.0 mA Off - State Cathode Current (Fig. 3) VKA = 36V, Vref = 0V Ioff --- 260 1000 --- 2.6 1000 nA Dynamic Impedance (Fig. 1, Note 3) VKA = Vref, ΔIK = 1.0mA to 100mA, f < 1.0 kHz ZKA --- 0.22 0.5 --- 0.22 0.5 Ω 8 Reference Input Current Deviation Over Temperature Range (Fig. 2, Note 1, 4) IK = 10mA, R1 = 10k, R2 = ELECTRICAL CHARACTERISTICS (Ambient temperature at 25oC unless otherwise noted) Characteristic Symbol Reference Input Voltage (Fig. 1) VKA = Vref, IK = 10mA TA = 25oC TA = Tlow to Thigh (Note 1) TL431AI Typ Max TL431AC Min Typ Max Min TL431B Typ Max Vref Reference Input Voltage Deviation Over Temperature Range (Fig. 1, Note 1, 2, 4) VKA = Vref, IK = 10mA ΔVref Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage IK = 10mA (Fig. 2), ΔVKA = 10V to Vref ΔVKA = 36V to 10V ΔVref ΔVKA Unit V 2.47 2.44 2.495 --- 2.52 2.55 2.47 2.453 2.495 --- 2.52 2.537 2.483 2.475 2.495 2.495 2.507 2.515 --- 7.0 30 --- 3.0 17 --- 3.0 17 mV mV/V ----- -1.4 -1.0 -2.7 -2.0 ----- -1.4 -1.0 -2.7 -2.0 ----- -1.4 -1.0 -2.7 -2.0 μA Iref 8 Reference Input Current (Fig. 2) IK = 10mA, R1 = 10k, R2 = TA = 25oC TA = Tlow to Thigh (Note 1) Min ----- 1.8 --- 4.0 6.5 ----- 1.8 --- 4.0 5.2 ----- 1.1 --- 2.0 4.0 ΔIref --- 0.8 2.5 --- 0.4 1.2 --- 0.4 1.2 μA Minimum Cathode Current for Regulation VKA = Vref (Fig. 1) Imin --- 0.5 1.0 --- 0.5 1.0 --- 0.5 1.0 mA Off - State Cathode Current (Fig. 3) VKA = 36V, Vref = 0V Ioff --- 260 1000 --- 260 1000 --- 230 500 nA Dynamic Impedance (Fig. 1, Note 3) VKA = Vref, ΔIK = 1.0mA to 100mA, f < 1.0 kHz ZKA --- 0.22 0.5 --- 0.22 0.5 --- 0.14 0.3 Ω 8 Reference Input Current Deviation Over Temperature Range (Fig. 2, Note 1, 4) IK = 10mA, R1 = 10k, R2 = 9-3 9-4