RICHTEK RT8284

RT8284
2A, 23V, 340kHz Synchronous Step-Down Converter
General Description
Features
The RT8284 is a high efficiency, monolithic synchronous
step-down DC/DC converter that can deliver up to 2A output
current from a 4.5V to 23V input supply. The RT8284's
current mode architecture and external compensation
allow the transient response to be optimized over a wide
range of loads and output capacitors. Cycle-by-cycle
current limit provides protection against shorted outputs
and soft-start eliminates input current surge during startup. The RT8284 also provides under voltage protection
and thermal shutdown protection. The low current (< 3μA)
shutdown mode provides output disconnect, enabling easy
power management in battery powered systems. The
RT8284 is a available in a SOP-8 and SOP-8
(Exposed Pad) package.
子
电
维
佳
富
市
圳
Ordering Information
5
5
1
8
3
2
Lead Plating System
G : Green (Halogen Free and Pb Free)
5-
Richtek products are :
`
RoHS compliant and compatible with the current require-
5
7
0
3
8
/
诚
28
厦
大
Pin Configurations
(TOP VIEW)
Suitable for use in SnPb or Pb-free soldering processes.
鼎
Marking Information
市
RT8284GS
RT8284GS : Product Number
RT8284
GSYMDNN
RT8284GSP
圳
YMDNN : Date Code
BOOT
8
YMDNN : Date Code
SS
VIN
2
7
EN
SW
3
6
COMP
GND
4
5
FB
8
SS
深
RT8284GSP : Product Number
RT8284
GSPYMDNN
室
5
0
Wireless AP/Router
Set-Top-Box
Industrial and Commercial Low Power Systems
LCD Monitors and TVs
Green Electronics/Appliances
Point of Load Regulation of High-Performance DSPs
际
国
ments of IPC/JEDEC J-STD-020.
`
4
1
2
25
Package Type
S : SOP-8
SP: SOP-8(Exposed Pad-Option 1)
Note :
0
5
4
Applications
深
RT8284
±1.5% High Accuracy Feedback Voltage
Input Voltage Range : 4.5V to 23V
2A Output Current
Integrated N-MOSFETs
Current Mode Control
340kHz Fixed Frequency Operation
Output Adjustable Voltage Range : 0.923V to 20V
Efficiency Up to 95%
Programmable Soft-Start
Stable with Low ESR Ceramic Output Capacitors
Cycle-by-Cycle Over Current Protection
Input Under Voltage Lockout
Output Under Voltage Protection
Thermal Shutdown Protection
RoHS Compliant and Halogen Free
SOP-8
BOOT
VIN
2
SW
GND
3
GND
7
EN
6
COMP
5
FB
9
4
SOP-8 (Exposed Pad)
DS8284-01 March 2011
www.richtek.com
1
RT8284
Typical Application Circuit
2
VIN
4.5V to 23V
CIN
10µF
1
CBOOT
L
10nF 10µH
RT8284
SW 3
REN 100k
CSS
0.1µF
BOOT
VIN
R1
26.1k
7 EN
8 SS
4, 9 (Exposed Pad)
FB 5
COMP
GND
CC
3.3nF
6
RC
13k
CC (nF)
3.3
3.3
3.3
3.3
3.3
3.3
市
圳
1
1
2
2
5
6
3
4
2
5
VIN
GND
COMP
厦
大
际
Phase Node. Connect this pin to external L-C filter.
Ground. The exposed pad must be soldered to a large PCB and
connected to GND for maximum power dissipation.
Feedback Input Pin. This pin is connected to the converter output. It
is used to set the output of the converter to regulate to the desired
value via an internal resistive divider. For an adjustable output, an
external resistive divider is connected to this pin.
Compensation Node. COMP is used to compensate the regulation
control loop. Connect a series RC network from COMP to GND. In
some cases, an additional capacitor from COMP to GND is required.
国
诚
鼎
市
圳
深
FB
28
Pin Function
Input Supply Voltage, 4.5V to 23V. Must bypass with a suitably large
ceramic capacitor.
SW
5
6
1
8
3
室
5
0
Bootstrap for High-Side Gate Driver. Connect a 10nF or greater
ceramic capacitor from BOOT to SW pins.
BOOT
5
7
0
3
4,
9 (Exposed Pad)
55
Pin Name
4
1
2
3
8
/
25
深
0
5
4
COUT (μF)
22 x 2
22 x 2
22 x 2
22 x 2
22 x 2
22 x 2
佳
Functional Pin Description
Pin No.
SOP-8
SOP-8
(Exposed Pad)
子
电
L (μH)
22
15
10
6.8
4.7
3.6
维
富
COUT
22µF x 2
R2
10k
CP
Open
Recommended Component Selection
VOUT (V) R1 (kΩ) R2 (kΩ) RC (kΩ)
8
76.8
10
27
5
45.3
10
20
3.3
26.1
10
13
2.5
16.9
10
9.1
1.8
9.53
10
5.6
1.2
3
10
3.6
VOUT
3.3V/2A
7
7
EN
Enable Input pin. A logic high enables the converter; a logic low
forces the RT8284 into shutdown mode reducing the supply current
to less than 3μA. Attach this pin to VIN with a 100kΩ pull up resistor
for automatic startup.
8
8
SS
Soft-Start Control Input. SS controls the soft-start period. Connect a
capacitor from SS to GND to set the soft-Start period. A 0.1μF
capacitor sets the soft-start period to 15.5ms .
www.richtek.com
2
DS8284-01 March 2011
RT8284
Function Block Diagram
VIN
Internal
Regulator
Oscillator
Foldback
Control
-
5k
EN
VA
-
0.5V
+
UV
Comparator
Lockout
Comparator
+
2.7V
3V
Current Sense
Amplifier
+
Slope Comp
Shutdown
Comparator VA VCC
1.2V
+
BOOT
S
130m Ω
Q
SW
+
R
Current
Comparator
子
130m Ω
Q
电
VCC
维
6µA
SS
佳
+
+
Error Amp
0.923V
富
市
FB
圳
深
25
5
5
1
5-
5
7
0
4
1
2
3
8
/
COMP
8
3
2
0
5
4
GND
室
5
0
28
厦
大
际
国
诚
鼎
市
圳
深
DS8284-01 March 2011
www.richtek.com
3
RT8284
Absolute Maximum Ratings
(Note 1)
Supply Voltage, VIN ----------------------------------------------------------------------------------------------Input Voltage, SW ------------------------------------------------------------------------------------------------VBOOT − VSW -------------------------------------------------------------------------------------------------------Other Pins Voltages ----------------------------------------------------------------------------------------------Power Dissipation, PD @ TA = 25°C
SOP-8 ----------------------------------------------------------------------------------------------------------------SOP-8 (Exposed Pad) --------------------------------------------------------------------------------------------Package Thermal Resistance (Note 2)
SOP-8, θJA ----------------------------------------------------------------------------------------------------------SOP-8 (Exposed Pad), θJA --------------------------------------------------------------------------------------SOP-8 (Εxposed Pad), θJC --------------------------------------------------------------------------------------Junction Temperature --------------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) ----------------------------------------------------------------------Storage Temperature Range ------------------------------------------------------------------------------------ESD Susceptibility (Note 3)
HBM (Human Body Mode) --------------------------------------------------------------------------------------MM (Machine Mode) ----------------------------------------------------------------------------------------------
子
电
维
佳
富
市
圳
Recommended Operating Conditions
深
1.111W
1.333W
90°C/W
75°C
15°C
150°C
260°C
−40°C to 150°C
0
5
4
4
1
2
3
8
/
(Note 4)
25
−0.3V to 25V
−0.3V to (VIN + 0.3V)
−0.3V to 6V
−0.3V to 6V
2kV
200V
室
5
0
Supply Voltage, VIN ----------------------------------------------------------------------------------------------- 4.5V to 23V
Junction Temperature Range ------------------------------------------------------------------------------------ −40°C to 125°C
Ambient Temperature Range ------------------------------------------------------------------------------------ −40°C to 85°C
5
5
1
8
3
2
Electrical Characteristics
5
5
Shutdown Supply Current
Supply Current
Symbol
Min
Typ
Max
Unit
--
0.5
3
μA
--
0.8
1.2
mA
0.909
0.923
0.937
V
--
940
--
μA/V
RDS(ON)1
--
130
--
mΩ
RDS(ON)2
--
130
--
mΩ
--
0
10
μA
3.5
4.5
--
A
--
1.2
--
A
GCS
--
5
--
A/V
fOSC1
300
340
380
kHz
ICC
07
Feedback Voltage
圳
际
VEN = 0V
国
诚
鼎
市
Low Side Switch-On Resistance
Test Conditions
VEN = 3 V, VFB = 1V
VFB
Error Amplifier Transconductance GEA
High Side Switch-On Resistance
厦
大
(VIN = 12V, TA = 25°C unless otherwise specified)
Parameter
28
4.5V ≦ VIN ≦ 23V
ΔI C = ±10μA
High Side Switch Leakage Current
VEN = 0V, VSW = 0V
Upper Switch Current Limit
Min.Duty Cycle, VBOOT−SW = 4.8V
Low Switch Current Limit
COMP to Current Sense
Transconductance
Oscillator Frequency
From Drain to Source
深
Short Circuit Oscillation
Frequency
fOSC2
VFB = 0V
--
110
--
kHz
Maximum Duty Cycle
DMAX
VFB = 0.7V
--
93
--
%
Minimum On-Time
tON
--
100
--
ns
To be continued
www.richtek.com
4
DS8284-01 March 2011
RT8284
Parameter
EN Threshold Voltage
Symbol
Test Conditions
Min
Typ
Max
Unit
Logic High
VIH
2.7
--
5.5
Logic Low
VIL
--
--
0.4
3.8
4.2
4.5
V
--
320
--
mV
Input Under Voltage Lockout Threshold
VIN Rising
Input Under Voltage Lockout Hysteresis
V
Soft-Start Current
VSS = 0V
--
6
--
μA
Soft-Start Period
CSS = 0.1μF
--
15.5
--
ms
--
150
--
°C
Thermal Shutdown
TSD
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the
子
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended
电
periods may remain possibility to affect device reliability.
维
0
5
4
Note 2. θJA is measured in natural convection at TA = 25°C on a high-effective thermal conductivity four-layer test board,refer
to JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposeed pad for
佳
SOP-8 (Exposed Pad) package.
富
4
1
2
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
3
8
/
市
Note 4. The device is not guaranteed to function outside its operating conditions.
圳
深
25
5
5
1
8
3
2
5-
5
7
0
室
5
0
28
厦
大
际
国
诚
鼎
市
圳
深
DS8284-01 March 2011
www.richtek.com
5
RT8284
Typical Operating Characteristics
Efficiency vs. Output Current
90
0.935
Reference Voltage (V)
0.940
80
Efficiency (%)
Reference Voltage vs. Input Voltage
100
VIN = 4.5V
VIN = 12V
VIN = 23V
70
60
50
40
30
20
0.930
0.925
0.920
0.915
0.910
电
VOUT = 3.3V
0
0.900
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
维
2.0
Output Current (A)
富
Reference Voltage vs. Temperature
市
0.940
0.935
圳
0.930
深
0.925
0.910
-2
0.905
-50
-25
0
07
25
50
Temperature (°C)
100
24
3.31
28
3.30
3.29
VIN = 4.5V
VIN = 12V
VIN = 23V
厦
3.28
3.27
际
VOUT = 3.3V
3.24
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
Output Current (A)
Frequency vs. Temperature
370
Frequency (kHz)1
Frequency (kHz)1
22
380
深
340
20
室
5
0
3.32
3.25
诚
圳
350
18
4
4
3.33
125
市
360
16
大
鼎
370
50
14
Input Voltage (V)
8
/
5
Frequency vs. Input Voltage
380
12
1
2
3
3.35
国
75
10
3.26
VIN = 12V, VOUT = 3.3V
55
0.900
8
Output Voltage vs. Output Current
3.34
1
8
3
0.915
VIN = 4.5V to 23V, VOUT = 3.3V, IOUT = 0A
6
3.36
2
5
5
0.920
4
佳
Output Voltage (V)
0.0
Reference Voltage (V)
子
0.905
10
330
320
310
360
350
340
330
320
310
VOUT = 3.3V, IOUT = 0A
300
VIN = 12V, VOUT = 3.3V, IOUT = 0A
300
4
6
8
10
12
14
16
18
Input Voltage (V)
www.richtek.com
6
20
22
24
-50
-25
0
25
50
75
100
125
Temperature (°C)
DS8284-01 March 2011
RT8284
Current Limit VS. Temperature
6.0
5.5
5.5
Current Limit (A)
Current Limit (A)
Current Limit vs. Duty cycle
6.0
5.0
4.5
4.0
3.5
5.0
4.5
4.0
子
3.5
电
VIN = 4.5V to 23V, VOUT = 3.3V
3.0
3.0
0
10
20
30
40
50
60
70
80
90
-50
Duty Cycle (%)
富
市
圳
深
IOUT
(1A/Div)
-2
07
际
圳
深
IL
(1A/Div)
100
125
4
4
1
2
3
室
5
0
28
VIN = 12V, VOUT = 3.3V, IOUT = 1A to 2A
Switching
VOUT
(10mV/Div)
VSW
(10V/Div)
IL
(1A/Div)
VIN = 12V, VOUT = 3.3V, IOUT = 2A
Time (1μs/Div)
DS8284-01 March 2011
75
Time (100μs/Div)
诚
市
VOUT
(10mV/Div)
VSW
(10V/Div)
大
鼎
Switching
50
厦
IOUT
(1A/Div)
国
Time (100μs/Div)
50
25
Temprature (°C)
8
/
5
2
5
5
VIN = 12V, VOUT = 3.3V, IOUT = 0A to 2A
0
Load Transient Response
VOUT
(100mV/Div)
1
8
3
55
-25
佳
Load Transient Response
VOUT
(100mV/Div)
维
100
VIN = 12V, VOUT = 3.3V
VIN = 12V, VOUT = 3.3V, IOUT = 1A
Time (1μs/Div)
www.richtek.com
7
RT8284
Power Off from VIN
Power On from VIN
VIN
(5V/Div)
VIN
(5V/Div)
VOUT
(2V/Div)
VOUT
(2V/Div)
IL
(2A/Div)
IL
(2A/Div)
VIN = 12V, VOUT = 3.3V, IOUT = 2A
维
佳
富
Power On from EN
圳
VOUT
(2V/Div)
IOUT
(2A/Div)
Power Off from EN
5
5
1
VOUT
(2V/Div)
国
28
厦
大
际
VIN = 12V, VOUT = 3.3V, IOUT = 2A
Time (5ms/Div)
室
5
0
VEN
(5V/Div)
8
3
2
75
4
1
2
25
5-
0
5
4
Time (5ms/Div)
3
8
/
市
深
VIN = 12V, VOUT = 3.3V, IOUT = 2A
电
Time (5ms/Div)
VEN
(5V/Div)
子
IOUT
(2A/Div)
VIN = 12V, VOUT = 3.3V, IOUT = 2A
Time (5ms/Div)
诚
0
鼎
市
圳
深
www.richtek.com
8
DS8284-01 March 2011
RT8284
Application Information
Soft-Start
The RT8284 is a synchronous high voltage buck converter
that can support the input voltage range from 4.5V to 23V
and the output current can be up to 2A.
The RT8284 contains an external soft-start clamp that
gradually raises the output voltage. The soft-start timming
can be programed by the external capacitor between SS
pin and GND. The chip provides a 6μA charge current for
the external capacitor. If 0.1μF capacitor is used to set
the soft-start, it's period will be 15.5ms (typ.).
Output Voltage Setting
The resistive divider allows the FB pin to sense the output
voltage as shown in Figure 1.
VOUT
Chip Enable Operation
R1
RT8284
电
R2
GND
维
佳
Figure 1. Output Voltage Setting
富
The output voltage is set by an external resistive voltage
divider according to the following equation :
市
VOUT = VFB ⎛⎜ 1+ R1 ⎞⎟
⎝ R2 ⎠
Where VFB is the feedback reference voltage 0.923V (typ.).
圳
深
External Bootstrap Diode
5
5
1
8
3
2
driver voltage for the high side MOSFET.
5-
It is recommended to add an external bootstrap diode
between an external 5V and BOOT pin for efficiency
improvement when input voltage is lower than 5.5V or duty
ratio is higher than 65% .The bootstrap diode can be a
low cost one such as IN4148 or BAT54. The external 5V
can be a 5V fixed input from system or a 5V output of the
RT8284. Note that the external boot voltage must be lower
than 5.5V
5V
诚
0
鼎
市
圳
深
BOOT
RT8284
10nF
SW
Figure 2. External Bootstrap Diode
DS8284-01 March 2011
3
8
/
An external MOSFET can be added to implement digital
control on the EN pin when no system voltage above 2.5V
is available, as shown in Figure 3. In this case, a 100kΩ
pull-up resistor, REN, is connected between VIN and the
EN pin. MOSFET Q1 will be under logic control to pull
down the EN pin.
厦
大
际
室
5
0
28
VIN
国
0
5
4
4
1
2
25
Connect a 10nF low ESR ceramic capacitor between the
BOOT pin and SW pin. This capacitor provides the gate
75
The EN pin is the chip enable input. Pulling the EN pin
low (<0.4V) will shutdown the device. During shutdown
mode, the RT8284 quiescent current drops to lower than
3μA. Driving the EN pin high ( > 2.7V, < 5.5V) will turn on
the device again. For external timing control (e.g.RC),
the EN pin can also be externally pulled high by adding a
R EN* resistor and C EN * capacitor from the VIN pin
(see Figure 5).
子
FB
REN
100k
Chip Enable
2
BOOT
VIN
CIN
1
CBOOT
RT8284
7 EN
VOUT
L
SW 3
R1
Q1
8 SS
CSS
4,
9 (Exposed Pad)
GND
COUT
FB 5
COMP
6
CC
RC
R2
CP
Figure 3. Enable Control Circuit for Logic Control with
Low Voltage
To prevent enabling circuit when VIN is smaller than the
VOUT target value, a resistive voltage divider can be placed
between the input voltage and ground and connected to
the EN pin to adjust IC lockout threshold, as shown in
Figure 4. For example, if an 8V output voltage is regulated
from a 12V input voltage, the resistor REN2 can be selected
to set input lockout threshold larger than 8V.
www.richtek.com
9
RT8284
2
VIN
12V
REN1
100k
CIN
10µF
BOOT
VIN
1
CBOOT
L
RT8284
7 EN
SW
3
R1
REN2
COUT
COMP
GND
6
CC
Series
Dimensions
(mm)
TDK
VLF10045
10 x 9.7 x 4.5
TDK
TAIYO
YUDEN
SLF12565
12.5 x 12.5 x 6.5
NR8040
8x8x4
R2
RC
CP
Figure 4. The Resistors can be Selected to Set IC
Lockout Threshold
CIN and COUT Selection
The input capacitance, C IN, is needed to filter the
trapezoidal current at the source of the high side MOSFET.
To prevent large ripple current, a low ESR input capacitor
sized for the maximum RMS current should be used. The
RMS current is given by :
子
Hiccup Mode
电
For the RT8284, it provides Hiccup Mode Under Voltage
Protection (UVP). When the FB voltage drops below 0.5V,
VFB, the UVP function will be triggered and the RT8284
will shut down for a period of time and then recover
automatically. The Hiccup Mode UVP can reduce input
current in short-circuit conditions.
维
佳
富
市
圳
Inductor Selection
深
55
1
8
3
V
V
ΔIL = ⎡⎢ OUT ⎤⎥ × ⎡⎢1− OUT ⎤⎥
VIN ⎦
⎣ f ×L ⎦ ⎣
2
5
Having a lower ripple current reduces not only the ESR
losses in the output capacitors but also the output voltage
ripple. High frequency with small ripple current can achieve
highest efficiency operation. However, it requires a large
inductor to achieve this goal.
75
鼎
For the ripple current selection, the value of ΔIL = 0.24(IMAX)
will be a reasonable starting point. The largest ripple
current occurs at the highest VIN. To guarantee that the
ripple current stays below the specified maximum, the
inductor value should be chosen according to the following
equation :
⎡ VOUT ⎤ ⎡
VOUT ⎤
L =⎢
× ⎢1−
⎥
⎥
f
×
Δ
I
V
L(MAX) ⎦ ⎣
IN(MAX) ⎦
⎣
市
圳
深
The inductor's current rating (caused a 40°C temperature
rising from 25°C ambient) should be greater than the
maximum load current and its saturation current should
be greater than the short circuit peak current limit. Please
see Table 2 for the inductor selection reference.
0
5
4
14
VOUT
VIN
2
3
8
VIN
−1
VOUT
This formula has a maximum at VIN = 2VOUT, where
I RMS = IOUT / 2. This simple worst-case condition is
commonly used for design because even significant
deviations do not offer much relief.
室
5
0
28
Choose a capacitor rated at a higher temperature than
required. Several capacitors may also be paralleled to
meet size or height requirements in the design.
厦
大
For the input capacitor, one 10μF low ESR ceramic
capacitors are recommended. For the recommended
capacitor, please refer to table 3 for more detail.
际
国
诚
0
IRMS = IOUT(MAX)
/
5
2
The inductor value and operating frequency determine the
ripple current according to a specific input and output
voltage. The ripple current ΔIL increases with higher VIN
and decreases with higher inductance.
www.richtek.com
10
Component
Supplier
FB 5
8 SS
CSS
4,
9 (Exposed Pad)
Table 2. Suggested Inductors for Typical
Application Circuit
VOUT
8V
The selection of COUT is determined by the required ESR
to minimize voltage ripple.
Moreover, the amount of bulk capacitance is also a key
for COUT selection to ensure that the control loop is stable.
Loop stability can be checked by viewing the load transient
response as described in a later section.
The output ripple, ΔVOUT , is determined by :
1
⎤
ΔVOUT ≤ ΔIL ⎡⎢ESR +
8fCOUT ⎦⎥
⎣
The output ripple will be highest at the maximum input
voltage since ΔIL increases with input voltage. Multiple
capacitors placed in parallel may be needed to meet the
ESR and RMS current handling requirement. Dry tantalum,
special polymer, aluminum electrolytic and ceramic
capacitors are all available in surface mount
DS8284-01 March 2011
RT8284
packages.Special polymer capacitors offer very low ESR
value. However, it provides lower capacitance density than
other types. Although Tantalum capacitors have the highest
capacitance density, it is important to only use types that
pass the surge test for use in switching power supplies.
Aluminum electrolytic capacitors have significantly higher
ESR. However, it can be used in cost-sensitive applications
for ripple current rating and long term reliability
considerations. Ceramic capacitors have excellent low
ESR characteristics but can have a high voltage coefficient
and audible piezoelectric effects. The high Q of ceramic
capacitors with trace inductance can also lead to significant
ringing.
Checking Transient Response
The regulator loop response can be checked by looking
at the load transient response. Switching regulators take
several cycles to respond to a step in load current. When
a load step occurs, VOUT immediately shifts by an amount
equal to ΔILOAD (ESR) also begins to charge or discharge
COUT generating a feedback error signal for the regulator
to return VOUT to its steady-state value. During this
recovery time, VOUT can be monitored for overshoot or
ringing that would indicate a stability problem.
子
EMI Consideration
电
Since parasitic inductance and capacitance effects in PCB
circuitry would cause a spike voltage on SW pin when
high-side MOSFET is turned-on/off, this spike voltage on
SW may impact on EMI performance in the system. In
维
Higher values, lower cost ceramic capacitors are now
becoming available in smaller case sizes. Their high ripple
current, high voltage rating and low ESR make them ideal
佳
富
for switching regulator applications. However, care must
be taken when these capacitors are used at input and
output. When a ceramic capacitor is used at the input
and the power is supplied by a wall adapter through long
wires, a load step at the output can induce ringing at the
input, VIN. At best, this ringing can couple to the output
and be mistaken as loop instability. At worst, a sudden
inrush of current through the long wires can potentially
cause a voltage spike at VIN large enough to damage the
part.
市
圳
深
1
8
3
2
5
5
7
0
Chip Enable
圳
深
CEN*
VIN
7 EN
8 SS
CSS
4,
0.1µF 9 (Exposed Pad)
* : Optional
诚
鼎
CIN
10µF
市
REN*
3
8
/
室
5
0
28
capability to the high-side MOSFET. It is strongly
recommended to reserve the R-C snubber during PCB
layout for EMI improvement. Moreover, reducing the SW
trace area and keeping the main power in a small loop will
be helpful on EMI performance. For detailed PCB layout
guide, please refer to the section of Layout Consideration.
厦
大
际
国
2
VIN
4.5V to 23V
4
1
2
order to enhance EMI performance, there are two methods
to suppress the spike voltage. One is to place an R-C
snubber between SW and GND and make them as close
as possible to the SW pin (see Figure 5). Another method
is adding a resistor in series with the bootstrap
capacitor, CBOOT. But this method will decrease the driving
25
55
0
5
4
GND
BOOT
1
RBOOT*
CBOOT
L
10nF 10µH
RT8284
SW
3
RS*
R1
26.1k
CS*
FB 5
COMP
6
VOUT
3.3V/2A
CC
3.3nF
RC
13k
COUT
22µFx2
R2
10k
CP
NC
Figure 5. Reference Circuit with Snubber and Enable Timing Control
DS8284-01 March 2011
www.richtek.com
11
RT8284
Thermal Considerations
6.b) reduces the θJA to 64°C/W. Even further, increasing
For continuous operation, do not exceed absolute
maximum operation junction temperature 125°C. The
maximum power dissipation depends on the thermal
resistance of IC package, PCB layout, the rate of
surroundings airflow and temperature difference between
junctions to ambient. The maximum power dissipation can
be calculated by following formula :
the copper area of pad to 70mm2 (Figure 6.e) reduces the
θJA to 49°C/W.
The maximum power dissipation depends on operating
ambient temperature for fixed T J(MAX) and thermal
resistance θJA. For RT8284 packages, the Figure 7 of derating curves allows the designer to see the effect of rising
ambient temperature on the maximum power dissipation
allowed.
PD(MAX) = (TJ(MAX) − TA) / θJA
Where T J(MAX) is the maximum operation junction
temperature, TA is the ambient temperature and the θJA
is the junction to ambient thermal resistance.
2.2
Power Dissipation (W)
For recommended operating conditions specification of
RT8284, the maximum junction temperature is 125°C. The
junction to ambient thermal resistance θJA is layout
dependent. For SOP-8 (Exposed Pad) package, the
thermal resistance θJA is 75°C/W on the standard JEDEC
富
市
圳
55
1
8
3
P D(MAX) = (125°C − 25°C) / (75°C/W) = 1.33W
(min. copper area PCB layout with SOP-8 Exposed Pad)
2
5
P D(MAX) = (125°C − 25°C) / (49°C/W) = 2.04W
(70mm2 copper area PCB layout with SOP-8 Exposed
Pad)
5
7
0
1.6
维
1.4
0
5
4
4
1
2
1.2
1.0
0.8
3
8
/
25
Four-Layer PCB
电
1.8
佳
51-7 four layers thermal test board. For SOP-8 package,
the thermal resistance θJA is 90°C/W on the standard
JEDEC 51-7 four layers thermal test board. The maximum
power dissipation at TA = 25°C can be calculated by
following formula :
深
子
2.0
0.6
0.4
室
5
0
0.2
0.0
0
25
50
75
Copper Area
70mm2
50mm2
30mm2
10mm2
Min.Layout
SOP-8
100
125
28
Ambient Temperature (°C)
Figure 7. Derating Curves for RT8284 Package
厦
大
际
国
P D(MAX) = (125°C − 25°C) / (90°C/W) = 1.11W
(min. copper area PCB layout with SOP-8)
诚
鼎
The thermal resistance θJA of SOP-8 (Exposed Pad) is
determined by the package architecture design and the
PCB layout design. However, the package architecture
design had been designed. If possible, it's useful to increase
thermal performance by the PCB layout copper design.
The thermal resistance θJA can be decreased by adding
copper area under the exposed pad of SOP-8 (Exposed
Pad) package.
市
(a) Copper Area = (2.3 x 2.3) mm2, θJA = 75°C/W
圳
深
As shown in Figure 6, the amount of copper area to which
the SOP-8 (Exposed Pad) is mounted affects thermal
performance. When mounted to the standard SOP-8
(Exposed Pad) pad (Figure 6.a), θJA is 75°C/W. Adding
copper area of pad under the SOP-8 (Exposed Pad) (Figure
www.richtek.com
12
(b) Copper Area = 10mm2, θJA = 64°C/W
DS8284-01 March 2011
RT8284
Layout Consideration
For best performance of the RT8284, the follow layout
giidelines must be strictly followed.
(c) Copper Area = 30mm2 , θJA = 54°C/W
`
Input capacitor must be placed as close to the IC as
possible.
`
SW should be connected to inductor by wide and short
trace. Keep sensitive components away from this trace.
`
The feedback components must be connected as close
to the device as possible
子
The feedback components
must be connected as close
to the device as possible.
Input capacitor must be placed
as close to the IC as possible.
电
维
(d) Copper Area = 50mm2 , θJA = 51°C/W
市
圳
1
8
3
Table 3. Suggested Capacitors for CIN and COUT
CIN
CIN
75
MURATA
际
4
GND
6
COMP
5
FB
9
GND
厦
Case Size
诚
10
1206
C3225X5R1E106K
10
1206
TMK316BJ106ML
10
1206
MURATA
47
1206
COUT
圳
GRM31CR60J476M
TDK
C3225X5R0J476M
47
1210
MURATA
GRM32ER71C226M
22
1210
TDK
C3225X5R1C22M
22
1210
DS8284-01 March 2011
VOUT
28
COUT
COUT
RC
R1
R2
室
5
0
TAIYO YUDEN
深
CP
Figure 8. PCB Layout Guide
CIN
COUT
REN VIN
Capacitance (μF)
Part No.
鼎
市
3
EN
大
GRM31CR61E106K
TDK
SW
GND
SS
7
国
Component Supplier
0
2
83
5/
Figure 6. Themal Resistance vs. Copper Area Layout
Design
4
1
2
VIN
CC
8
L1
SW should be connected to inductor by
wide and short trace. Keep sensitive
components away from this trace.
2
5
5
(e) Copper Area = 70mm2 , θJA = 49°C/W
0
5
4
CSS
BOOT
RS CS
COUT
VOUT
深
Location
CIN
佳
富
2
5
SW GND
VIN
GND
www.richtek.com
13
RT8284
Outline Dimension
H
A
M
J
B
F
子
电
C
I
维
佳
D
富
圳
深
A
B
市
Min
4.801
1.346
D
0.330
5-
5
7
0
0.150
1.753
0.053
M
0.400
鼎
市
0.007
0.010
0.254
0.002
0.010
6.200
0.228
0.244
1.270
0.016
0.050
大
际
国
诚
0.069
0.053
0.254
5.791
0.157
0.047
0.170
J
厦
0.197
0.020
1.346
0.050
28
Max
0.013
1.194
I
0.189
0.508
23
H
3.988
室
5
0
Min
25
81
C
F
5.004
Max
Dimensions In Inches
55
3.810
4
1
2
3
8
/
Dimensions In Millimeters
Symbol
0
5
4
8-Lead SOP Plastic Package
圳
深
www.richtek.com
14
DS8284-01 March 2011
RT8284
H
A
M
EXPOSED THERMAL PAD
(Bottom of Package)
Y
J
X
B
F
子
C
I
Min
4.801
圳
B
深
C
0.170
0.254
市
圳
Y
0.157
0.000
0.152
5.791
室
5
0
0.053
28
厦
0.069
0.020
0.053
0.010
0.000
0.006
6.200
0.228
0.244
1.270
0.016
0.050
2.300
0.079
0.091
2.000
2.300
0.079
0.091
2.100
2.500
0.083
0.098
3.000
3.500
0.118
0.138
2.000
大
际
国
诚
鼎
0.150
0.007
X
X
0.197
0.047
0.406
Option 2
0.189
1.346
-2
Y
Max
5
5
1
38
M
Min
0.013
1.194
J
4
1
2
Dimensions In Inches
0.510
F
I
07
1.753
0
5
4
83
5.004
4.000
1.346
0.330
H
Max
/
5
2
3.810
D
Option 1
富
市
A
55
佳
Dimensions In Millimeters
Symbol
电
维
D
8-Lead SOP (Exposed Pad) Plastic Package
深
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: [email protected]
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
DS8284-01 March 2011
www.richtek.com
15