EXAR MP7610CS

MP7610
Octal 14-Bit DAC ArrayTM
D/A Converter with Output Amplifier
and Serial Data/Address mP Control Logic
June 1998-3
FEATURES
·
·
·
·
·
·
·
·
·
·
APPLICATIONS
Eight Independent 14-Bit DACs with Output Amplifiers
Low Power 320 mW (typ.)
Serial Digital Data and Address Port (3-Wire Standard)
14-Bit Resolution, 12-Bit Accuracy
Extremely Well Matched DACs
Extremely Low Analog Ground Current (<60mA/Channel)
+10 V Output Swing with +11.4 V Supplies
Zero Volt Output Preset (Data = 10 .. 00)
Rugged Construction -- Latch-Up Free
Parallel Version: MP7611
·
·
·
·
·
·
·
Data Acquisition Systems
ATE
Process Control
Self-Diagnostic Systems
Logic Analyzers
Digital Storage Scopes
PC Based Controller/DAS
GENERAL DESCRIPTION
The MP7610 provides eight independent 14-bit resolution
Digital-to-Analog Converters with voltage output
amplifiers and a 3-wire standard serial digital address and
data port.
The output amplifier is capable of sinking and sourcing
5mA, and the output voltage settles to 12-bits in less than
30ms (typ.).
The MP7610 is equipped with a serial data (3-wire
standard) m-processor logic interface to reduce pin count,
package size, and board space.
Built using an advanced linear BiCMOS, these devices
offer rugged solutions that are latch-up free, and take
advantage of EXAR’s patented thin-film resistor process
which exhibits excellent long term stability and reliability.
SIMPLIFIED BLOCK DIAGRAM
VRP
VRP
-+
VRN
D
Q
14
LAT0
XR XE
RST
4 to 16 Decoder
SDI
LAT
D
Q
EN
4
D
EN
LAT
D
Q
LAT7
XR XE
14
DAC7
VO7
VRN
XE7
LD
CLK
+
--
VRP
8
8
VO0
VRN
LD
Not Used
+
--
XE0
XE0 - XE7
14
DAC0
D0 to D13
A0 to A3
18-Bit Shift Register
Q
VEE
VEE
VCC
VCC
Tri-State Buffer
VRP
AGND
LD
AGND VREF DGND DVDD
Rev. 4.01
E1998
1 CA 94538 z (510) 668-7000 z (510) 668-7017
EXAR Corporation, 48720 Kato Road, Fremont,
SDO
MP7610
ORDERING INFORMATION
Package
Type
Temperature
Range
Part No.
Res.
(Bits)
INL
(LSB)
DNL
(LSB)
FSE
(LSB)
PLCC
0 to +70°C
MP7610CP
14
¦2
¦2
¦16
PLCC
--40 to +85°C
MP7610BP
14
¦4
¦3
¦24
14
¦8
¦4
¦32
SOIC
--40 to +85°C
0 to +70°C
MP7610AP
MP7610CS
14
¦4
¦3
¦24
SOIC
--40 to +85°C
MP7610BS
14
¦2
¦2
¦16
SOIC
--40 to +85°C
MP7610AS
14
¦8
¦4
¦32
PLCC
PIN CONFIGURATIONS
AGND
VO0
VO1
VO2
VO3
VEE
VCC
VREF
VCC
VEE
VO4
VO5
VO6
VO7
1
See the following page for
pin descriptions
44 Pin PLCC
1
28
2
27
3
26
4
25
5
24
6
23
7
22
8
21
9
20
10
19
11
18
12
17
13
16
14
15
DGND
N/C
N/C
DVDD
N/C or DVDD
N/C
SDO
SDI
CLK
LD
N/C
RST
N/C
AGND
28 Pin SOIC (Jedec, 0.346”)
Rev. 4.01
2
MP7610
PIN DESCRIPTION
SOIC
Pin #
PLCC
Pin #
Symbol
1
2
AGND
2
3
VO0
DAC 0 Output
3
4
VO1
DAC 1 Output
4
5
VO2
DAC 2 Output
5
6
VO3
DAC 3 Output
6
7
VEE
Analog Negative Power Supply (--12 V)
7
9
VCC
Analog Positive Power Supply (+12 V)
8
12
VREF
Voltage Reference Input (+5 V)
Description
Analog Ground
9
13
VCC
Analog Positive Power Supply (+12 V)
10
15
VEE
Analog Negative Power Supply (--12 V)
11
18
VO4
DAC 4 Output
12
19
VO5
DAC 5 Output
13
20
VO6
DAC 6 Output
14
21
VO7
DAC 7 Output
15
24
AGND
Analog Ground
N/C
No Connection
RST
Reset all DACs to 0 V Output
N/C
No Connection
Load Signal; Load Data to Selected DAC
16
17
26
18
19
29
LD
20
31
CLK
Serial Data Clock
21
32
SDI
Serial Data Input
22
34
SDO
Shift Register Serial Output
N/C
No Connection
No Connection or DVDD
23
24
37
N/C
25
40
DVDD
26
Digital Positive Power Supply (+5 V)
N/C
No Connection
27
1, 8, 10, 11, 14,
16, 17, 22, 23,
25, 27, 28, 30,
33, 35, 36, 38,
39, 41, 42, 43
N/C
No Connection
28
44
DGND
Digital Ground
Rev. 4.01
3
MP7610
ELECTRICAL CHARACTERISTICS
VCC = +12 V, VEE = --12 V, VREF = 5 V, DVDD = 5.0 V, T = 25°C, Output Load = 5kW (unless otherwise noted)
Parameter
Symbol
Min
N
14
25°C
Typ
Max
Tmin to Tmax
Min
Max
Units
Test Conditions/Comments
STATIC PERFORMANCE
Resolution (All Grades)
Integral Non-Linearity
(Relative Accuracy)
A
B
C
INL
Differential Non-Linearity
A
B
C
DNL
Positive Full Scale Error
A
B
C
+FSE
Positive Full Scale Error
Temperature Coefficient
D+FSE/
DT
--FSE
Negative Full Scale Error
Temperature Coefficient
D--FSE/
DT
Bipolar Zero Offset
Temperature Coefficient
INL Matching
A
B
C
LSB
¦8
¦4
¦2
¦8
¦4
¦2.5
¦4
¦3
¦2
¦4
¦3
¦2.5
¦32
¦24
¦16
¦32
¦24
¦16
LSB
4
ppm/°C
¦32
¦24
¦16
¦32
¦24
¦16
4
ppm/°C
ZOFS
0°C to 85°C
LSB
¦16
¦12
¦12
¦16
¦12
¦12
2
ppm/°C
LSB
DINL
¦8
¦6
¦6
¦8
¦6
¦6
All Channels Maximum Error
ME
with DAC 0 adjusted to minimum error
A
B
C
¦16
¦8
¦6
¦16
¦8
¦6
Bipolar Zero Matching
A
B
C
¦16
¦12
¦12
¦16
¦12
¦12
¦16
¦12
¦12
¦16
¦12
¦12
Full Scale Error Matching
A
B
C
0°C to 85°C
LSB
24
16
12
DZOFS/
DT
End Point Linearity Spec
LSB
24
16
12
Negative Full Scale Error
A
B
C
Bipolar Zero Offset
A
B
C
Bits
LSB
LSB
DZOFS
LSB
DFSE
Rev. 4.01
4
0°C to 85°C
MP7610
ELECTRICAL CHARACTERISTICS (CONT’D)
Parameter
25°C
Typ
Max
Tmin to Tmax
Min
Max
tsd
30
50
50
CT
Q
PSRR
0.04
--70
Symbol
Min
Units
Test Conditions/Comments
DYNAMIC PERFORMANCE
Voltage Settling from LD
to VDAC Out1
Channel-to-Channel Crosstalk6
Digital Feedthrough1, 6
Power Supply Rejection Ratio
ms
LSB
dB
ppm/%
5
ZS to FS (20 V Step)
5k, 50pF load
DC
CLK and Data to VOUTi
DVEE & DVCC = ±5%, ppm of FS
REFERENCE INPUTS
Impedance of VREF
REF
350
VREF Voltage1, 2
VREF
3.5
VIH
VIL
IL
CL
2.4
700
1.05k
350
1.05k
6
W
See Application Hints for Driving
the reference input
V
DIGITAL INPUTS3
Logic High
Logic Low
Input Current
Input Capacitance1
V
V
mA
pF
0.8
±10
8
ANALOG OUTPUTS
Output Swing
Output Drive Current
Output Impedance
Output Short Circuit Current
--VEE +1.4
--5
VCC --1.4
RO
ISC
1
25
30
40
55
V
mA
W
mA
mA
mA
mA
VOH
VOL
4.5
0.5
V
V
5
+FS to AGND
+FS to VEE
--FS to AGND
--FS to VCC
DIGITAL OUTPUTS
Output High Voltage
Output Low Voltage
POWER SUPPLIES
VCC Voltage5
VEE Voltage5
DVDD Voltage
Positive Supply Current
Negative Supply Current
Digital Supply Current
Power Dissipation
VCC VREF+1.5 12
VEE --12.75
--12
DVDD
4.5
5
ICC
8
IEE
15
IDD
PDISS
320
12.75
--5
5.5
10
20
2
420
VREF+1.5 12.75
--12.75
--5
4.5
5.5
10
20
2
450
V
V
V
mA
mA
mA
mW
Bipolar zero
Bipolar zero
Bipolar zero
Bipolar zero
mA
See Application Notes
ANALOG GROUND CURRENT
Per Channel1
IAGND
±60
DIGITAL TIMING
SPECIFICATIONS1,4
Input Clock Pulse Width
Data Setup Time
Data Hold Time
CLK to SDO Propagation Delay
DAC Register Load Pulse Width
Preset Pulse Width
Clock Edge to Load Time
LD Falling Edge to SDO
Tri-state Enable
VIL = 0, VIH = 5.0, CL = 20 pF
tCH, tCL
tDS
tDH
tPD
tLD
tPR
tCKLD1
tCKLD2
tHZ1
60
15
15
40
45
65
140
0
50
ns
ns
ns
ns
ns
ns
ns
ns
Rev. 4.01
5
Note: tLD and tCKLD2 cannot both
be min. since tCKLD1=tCKLD2+tLD
MP7610
ELECTRICAL CHARACTERISTICS (CONT’D)
Parameter
25°C
Typ
Max
Tmin to Tmax
Min
Max
Symbol
Min
Units
tHZ2
50
ns
tLDCK
tLDSU
50
45
ns
ns
Test Conditions/Comments
DIGITAL TIMING
SPECIFICATIONS1, 4 (CONT’D)
LD Rising Edge to SDO
Tri-state Disable
LD Rising Edge to CLK Enable
LD Set-up Time with Respect
to CLK
NOTES:
1
Guaranteed; not tested.
2
Specified values guarantee functionality.
3
Digital inputs should not go below digital GND or exceed DVDD supply voltage.
4
See Figures 2 and 3. All digital input signals are specified with tR = tF = 10 ns 10% to 90% and timed from a 50% voltage level.
5
For power supply values < ¦2£VREF, the output swing is limited as specified in Analog Outputs.
6
Digital feedthrough and channel-to-channel crosstalk are heavily dependent on the board layout and environment.
Specifications are subject to change without notice
ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)1, 2
Analog Inputs & Outputs . . . . . . . Indefinite Shorts to
VCC, VEE, DVDD, AGND, DGND (provided that power
dissipation of the package spec is not exceeded)
Operating Temperature Range
Extended Industrial . . . . . . . . . . . . . . --40°C to +85°C
Maximum Junction Temperature . . . --65°C to 150°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . 150°C
Lead Temperature (Soldering, 10 sec) . . . . . +300°C
Package Power Dissipation Rating @ 75°C
SOIC, PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150mW
Derates above 75°C . . . . . . . . . . . . . . . . . . . . 15mW/°C
VCC to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . +16.5 V
VEE to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . --16.5 V
DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . +6.5 V
VREF to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . +7.0 V
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1 V
(Functionality guaranteed for ¦0.5 V only)
Digital Input & Output Voltage
to DGND . . . . . . . . . . . . . . . . . . . . --0.5 to DVDD +0.5V
NOTES:
1
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a
stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
2
Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps
(HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short
transients outside the supplies of less than 100mA for less than 100ms.
APPLICATION NOTES
NOTE: When using these DACs to drive remote devices, the accuracy of the output can be improved by utilizing a remote analog
ground connection. The difference between the DGND and AGND should be limited to ¦300 mV to assure normal operation. If there
is any chance that the AGND to DGND can be greater than ¦1 V, we recommend two back-to-back diodes be used between DGND
and AGND to clamp the voltage and prevent damage to the DAC. Using a buffer between the remote ground location and AGND may
help reduce noise induced from long lead or trace lengths.
Rev. 4.01
6
MP7610
MSB
SDI 1
A3
(Data In) 0
CLK
LD
SDO
A2
A1
A0
D13
D12
D11
D10
D9
D8
D0
1
0
1
0
1
DAC Register
Loaded
A3 (1)
Previous Data
0
VOUT
Note:
(1)
Because A3 is available immediately after 18th clock edge of DATA Shift-in, only 17 clock cycles are
needed to complete the readback.
Figure 1. Serial Data Timing and Loading
SDI
SDO
CLK
LD
tDS
1
0
tDH
tHZ1
1
0
tCH
1
0
tCL
1
tCKLD2
tCKLD1
0
tLD
--FS
Note:
tLDCK2
tLDSU
tPD
+FS
VOUT
tHZ2
HIGH Z
tSD
(1)
+2 LSB Band
CLK should be high during the falling edge of LD to insure proper function of the shift register.
Figure 2. Serial Data Input Timing (RST = “1”)
tPR
RST 1
0
VOUT
VOUT = 0 V
Note: Reset settling time is <tSD
Figure 3. Reset Operation
Rev. 4.01
7
MP7610
The MP7610 is equipped with a serial data (3-wire standard)
LD signal going low also disables the serial data (SDI), output
(SDO tri-stated) and the CLK input. This design tremendously
reduces digital noise and glitch transients into the DACs due to
free running CLK and SDI. Note also that the preset signal
(RST) resets all analog outputs to 0 volt regardless of digital inputs.
m-processor logic interface to reduce pin count, package size,
and board wire (space). If the LD signal is high, the CLK signal
loads the digital input bits (SDI) into the shift register (4 bits address A3 to A0 plus 14 bits data D13 to D0 for the MP7610). The
LD signal going low loads the data into the selected DAC. The
Function
A3
A2 A1 A0
Shift Data In
and Out
X
X
X
X
1
Stop Shifting
Data In and
Out
X
X
X
X
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No Operation
1® 0
1® 0
1® 0
1® 0
1® 0
1® 0
1® 0
1® 0
No Operation
1
1
1
1
1
1
0
1
X
X
X
X
Load DACs
DAC 0
DAC 1
DAC 2
DAC 3
DAC 4
DAC 5
DAC 6
DAC 7
Reset all DACs
to 0 V
LD
CLK
RST
SDI
SDO
0 ®1
1
Data Input
Valid
Data Output
Valid
X
1
X
Hi-Z
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
No Operation
No Operation
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
X
X
Hi-Z
Hi-Z
X
X
0
X
X
Repeat
Table 1. Digital Function Truth Table
Serial In/Serial Out
Note: For timing information See Electrical Characteristics.
Hex Code
Binary Code
Output Voltage = 2 · Vr (--1 + 2·D )
(Vr = +5 V)
16384
OOOO
00000000000000
10 · (--1 + 0) = --10
1FFF
01111111111111
2OOO
10000000000000
10 · (--1 +16384 ) = 0
2OO1
10000000000001
10 · (--1 +16386 ) = 1.22 mV
3FFF
11111111111111
10 · (--1 +32766 ) = 9.99878
16382
) = --1.22 mV
16384
10 · (--1 +
16384
16384
16384
Table 2. MP7610 Ideal DAC Output vs. Input Code
Note: See Electrical Characteristics for real system accuracy
Rev. 4.01
8
MP7610
SERIAL INTERFACE DIAGRAMS
VRI1
VOI1
1
VRI2
1
8
VOI2
IC(1)
mPC
SDI LD
VRIn
1
8
VOIn
8
IC(2)
SDO
SDI LD
IC(n)
SDO
SDI LD
SDO
Data
LD
CLK
Figure 4. Simplified Diagram
VRI1
VOI1
1
VRI2
8
VOI2
1
IC(1)
mPC
SDI LD
VRIm
8
VOIm
1
8
IC(2)
SDO
SDI LD
SDO
IC(n)
SDI LD
SDO
Data Out
Data
n
CS or LD
CLK
#1
#2
#n
Figure 5. Simplified Diagram
VRI1 VOI1
VRI2 VOI2
VRIn VOIn
IC(1)
IC(2)
IC(n)
Address
mPC
n
Address
Decoder
1
SDO
2
2n
SDI LD SDO1
SDI LD SDO2
WR
(SDI) Data In
CLK
Figure 6. Simplified Diagram
Rev. 4.01
9
SDI LD SDOm
MP7610
16
A0 to A15
16
Address Bus
3
E1
A0 to A2
02
E3
R/W
E2
74LS138
Address
Decoder
MC6800
8 Data Bus
8
DBO to DB7
DB7
LD
CLK
SDI
RST
From SYSTEM RESET
NOTES
1.
Execute consecutive memory write instructions while manipulating the data between WRITEs so that each
WRITE presents the next bit.
2.
The serial data loading is triggered by the CLK pulse which is asserted by a decoded memory WRITE to
memory location 2000, R/W, and 02. A WRITE to address 4000 transfers data from input shift register to DAC
register.
Figure 7. MC6800 Interface
Address Bus
8
8
8085
ALE
8212
3
+5
E1
A0 to A2
E3
74LS138
Address
Decoder
E2
WR
8
Data Bus
SOD
LD
CLK
SDI
RST
From SYSTEM RESET
NOTES:
1.
Clock generated by WR and decoding address 8000.
2.
Data is clocked in the DAC shift register by executing memory write instructions. The clock input is generated
by decoding address 8000 and WR. Data is then loaded into the DAC register with a memory write instruction
to address 4000.
3.
Serial data must be present in the right justified format in registers H & L of the microprocessor.
Figure 8. 8085 Interface
Rev. 4.01
10
MP7610
PERFORMANCE CHARACTERISTICS
11 V
0V
--11 V
VOUT
2.5mV
0V
--2.5mV
VOUT Settling
50ms/Division
Graph 1. Typical Output Settling Characteristic
VREF = 5 V, RL = 5K, CL = 500pF
Graph 1 shows the typical output settling characteristic of the MP7610 Family for a RESET !ZS!FS!ZS series
of code transitions. The top graph shows the output voltage transients, while the bottom graph shows the difference between the output and the ideal output.
14-BIT LSB
4
--4
0
CODE
Graph 2. Linearity with
VREF = 5 V, All DACs, All Codes
Rev. 4.01
11
16384
MP7610
Graph 3. DAC 0 INL vs. VREF
Graph 4. DAC 0 DNL vs. VREF
14-BIT LSB
4
14-BIT LSB
4
--4
0
CODE
--4
16384
0
Graph 5. DAC 0 Linearity with
VREF = 5 V, VOUT = ¦10
16384
Graph 6. DAC 0 Linearity with
VREF = 4.5 V, VOUT = ¦9
14-BIT LSB
4
14-BIT LSB
4
--4
CODE
0
CODE
--4
16384
Graph 7. DAC 0 Linearity with
VREF = 4 V, VOUT = ¦8
0
CODE
16384
Graph 8. DAC 0 Linearity with
VREF = 3.5 V, VOUT = ¦7
Rev. 4.01
12
MP7610
50
VOUT
MP7610
Family
5k
VO
500pF
I
CL
2mA
CL = 500pF, 5nF, 50nF, 500nF
Figure 9. Circuit for Determining Typical Analog Output Pulse Response
2.0mA
I
0.0
400mV
VO
--400mV
200mV
CL = 500pF
CL = 5nF
CL = 50nF
CL = 500nF
VOUT
--200mV
0s
1.0ms
2.0ms
3.0ms
4.0ms
5.0ms
Graph 9. Typical Response of the MP7610 Family Analog Output to
a Current Pulse with CL=500pF, 5nF, 50nF, 500nF
(See Figure 9. above)
Rev. 4.01
13
6.0ms
MP7610
44 LEAD PLASTIC LEADED CHIP CARRIER
(PLCC)
Rev. 1.00
C
D
D1
Seating Plane
45° x H1
45° x H2
A2
2 1 44
B1
D
D1
B D
2
D3
e
R
D3
A1
A
INCHES
SYMBOL
MIN
MILLIMETERS
MAX
MIN
MAX
A
0.165
0.180
4.19
4.57
A1
0.090
0.120
2.29
3.05
A2
0.020
------.
0.51
------
B
0.013
0.021
0.33
0.53
B1
0.026
0.032
0.66
0.81
C
0.008
0.013
0.19
0.32
D
0.685
0.695
17.40
17.65
D1
0.650
0.656
16.51
16.66
D2
0.590
0.630
14.99
16.00
D3
0.500 typ.
12.70 typ.
e
0.050 BSC
1.27 BSC
H1
0.042
0.056
1.07
1.42
H2
0.042
0.048
1.07
1.22
R
0.025
0.045
0.64
1.14
Note: The control dimension is the inch column
Rev. 4.01
14
MP7610
28 LEAD SMALL OUTLINE
(350 MIL JEDEC SOIC)
Rev. 1.00
D
28
15
E
H
1
14
C
A
Seating
Plane
e
a
B
A1
L
INCHES
SYMBOL
MIN
MILLIMETERS
MAX
MIN
MAX
A
0.093
0.104
2.35
2.65
A1
0.004
0.012
0.10
0.30
B
0.013
0.020
0.33
0.51
C
0.009
0.013
0.23
0.32
D
0.706
0.718
17.93
18.24
E
0.340
0.350
8.64
8.89
e
0.050 BSC
1.27 BSC
H
0.460
0.485
11.68
12.32
L
0.016
0.050
0.40
1.27
a
0°
8°
0°
8°
Note: The control dimension is the millimeter column
Rev. 4.01
15
MP7610
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are
free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary
depending upon a user’s specific application. While the information in this publication has been carefully checked;
no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.
Copyright 1998 EXAR Corporation
Datasheet June 1998
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
Rev. 4.01
16