EXAR MP7641

MP7641
8-Channel Voltage Output
10 MHz Input Bandwidth 8-Bit
Multiplying DACs with
Serial Digital Port
FEATURES
• DACs Matched to +0.5% (typ)
• Chip Select Available: MP7651
• Low Harmonic Distortion: 0.25% typical with
VREF = 1 V p-p @ 1 MHz
• VREF/2 Output Preset Level
• Latch-Up Free
• ESD Protection: 2000 V Minimum
• 8 Independent 2-Quadrant Multiplying 8-Bit DACs
• Dual Positive (+10 V and +5 V) Supplies or
Dual (+5 V) Supplies Capability
• High Speed:
– 12.5 MHz Digital Clock Rate
– VREF to VOUT Settling Time: 150ns to 8–bit
(typ)
– Voltage Reference Input Bandwidth:
10 MHz
• Low Power: 150mW
• Low AC Voltage Reference Feedthrough
• Excellent Channel-to-Channel Isolation
• DNL = +0.8 LSB, INL = +1 LSB (typ)
APPLICATIONS
• Direct High-Frequency Automatic Gain Control
• Video AGC & CCD Level AGC
• Convergence Adjustment for High-Resolution
Monitors (Workstations)
GENERAL DESCRIPTION
The MP7641 is ideal for direct gain control of video, composite video, CCD and other high frequency analog signals. The device includes 8-channels of high speed, high bandwidth, two
quadrant multiplying, 8-bit accurate digital-to-analog converter.
It includes an output drive buffer per channel capable of driving a
+1mA (typ) to a load. DNL of better than +0.8 LSB is achieved
with a channel-to-channel matching of better than 0.5% (typ).
Stability, matching, and precision of the DACs are achieved by
using EXAR’s thin film technology. Also, excellent channel-tochannel isolation is achieved with EXAR’s BiCMOS process
which cannot be achieved using a typical CMOS technology.
fast output settling time, and VREF feedthrough isolation of
–65dB or better. In addition, low distortion in the order of 0.25%
with a 1 V p-p, 1 MHz signal is achieved.
The combination of a constant input Z and the ability to vary
AGND within +300 mV allows flexibility for optimum system design.
The MP7641 has a serial data 3-wire standard µ-processor
logic interface to reduce pin count, package size, and board wire
(space).
The MP7641 is fabricated on a junction isolated, high speed
BiCMOS (BiCMOS IVTM) process with thin film resistors. This
process enables precision high speed analog/digital (mixedmode) circuits to be fabricated on the same chip.
An open loop architecture (patent pending) provides wide
small signal bandwidth from VREF to output up to 10 MHz (typ),
Rev. 2.00
1
MP7641
SIMPLIFIED BLOCK DIAGRAM
VDD
VCC
VR0
RST
8
8-Bit Latch
+1
DAC 0
VO0
VR1
8
8-Bit Latch
DAC 1
VO1
+1
VR7
8
8-Bit Latch
VO7
+1
DAC 7
8
8
8
LD
4-8 DEC
1-Bit
Latch
CLK
LD
4
DB0 to DB7
4-Bit Address
SDO
12-Bit Shift Register
1-Bit
Latch
SDI
3-State
Buffer
VEE
DGND
AGND
ORDERING INFORMATION
Package
Type
Temperature
Range
Part No.
INL
(LSB)
DNL
(LSB)
Gain Error
(% FSR)
SOIC
–40 to +85°C
MP7641AS
+1
+0.8
+1.5
Plastic Dip
–40 to +85°C
MP7641AN
+1
+0.8
+1.5
Rev. 2.00
2
MP7641
PIN CONFIGURATIONS
VO1
VO2
VR2
VR3
VO3
VDD
VCC
VEE
AGND
DGND
VO4
VR4
VR5
VO5
See Packaging Section for Package Dimensions
1
28
2
27
3
26
4
25
5
24
6
23
7
22
8
21
9
20
10
19
11
18
12
17
13
16
14
15
VR1
VR0
VO0
AGND
RST
LD
CLK
SDO
SDI
AGND
VO7
VR7
VR6
VO6
VO1
VO2
VR2
VR3
VO3
VDD
VCC
VEE
AGND
DGND
VO4
VR4
VR5
VO5
28 Pin PDIP (0.300”)
NN28
1
28
2
27
3
26
4
25
5
24
6
23
7
22
8
21
9
20
10
19
11
18
12
17
13
16
14
15
VR1
VR0
VO0
AGND
RST
LD
CLK
SDO
SDI
AGND
VO7
VR7
VR6
VO6
28 Pin SOIC (EIAJ, 0.335”)
R28
PIN OUT DEFINITIONS
PIN NO.
NAME
1
VO1
2
VO2
3
4
DESCRIPTION
PIN NO.
NAME
DAC 1 Output
16
VR6
DAC 6 Reference Input
DAC 2 Output
17
VR7
DAC 7 Reference Input
VR2
DAC 2 Reference Input
18
VO7
DAC 7 Output
VR3
DAC 3 Reference Input
19
AGND
Analog Ground
5
VO3
DAC 3 Output
20
SDI
Serial Data/Address Input
6
VDD
Digital Positive Supply
21
SDO
Serial Data Output
7
VCC
Analog Positive Supply
22
CLK
Shift Register Clock
8
VEE
Analog Negative Supply
23
LD
9
AGND
Analog Ground
Load Signal; Load Data
to Selected DACs
10
DGND
Digital Ground
24
RST
Reset Signal; Reset all DACs to
VREF/2
11
VO4
DAC 4 Output
25
AGND
Analog Ground
12
VR4
DAC 4 Reference Input
26
VO0
DAC 0 Output
13
VR5
DAC 5 Reference Input
27
VR0
DAC 0 Reference Input
14
VO5
DAC 5 Output
28
VR1
DAC 1 Reference Input
15
VO6
DAC 6 Output
Rev. 2.00
3
DESCRIPTION
MP7641
ELECTRICAL CHARACTERISTICS TABLE FOR DUAL SUPPLIES
Unless Otherwise Noted: VDD = 5 V, VCC = +5 V, VEE = –5 V, VREF = 3 V and –3 V, T = 25°C,
Output Load = Open, AGND=DGND=0 V
Parameter
25°C
Typ
Symbol
Min
N
DNL
INL
8
Max
Tmin to Tmax
Min
Max
Units
Test Conditions/Comments
DC CHARACTERISTICS
Resolution (All Grades)
Differential Non-Linearity
Integral Non-Linearity
Monotonicity
Gain Error
Zero Scale Offset
Output Drive Capability
8
+0.8
+1
+1
+1
+1.5
+75
Guaranteed
+1.5
+75
Guaranteed
GE
ZOFS
IO
+20
+1
Bits
LSB
LSB
% FSR
mV
mA
FSR = Full Scale Range1
REFERENCE INPUTS
Impedance of VREF
Voltage Range
REF
VR
6
VEE +1.5
12
18
VCC –1.8
6
18
V
kΩ
VREF
DYNAMIC
CHARACTERISTICS2
Input to Output Bandwidth
Input to Output Settling Time5
Small Signal Voltage Reference
Input to Output Bandwidth
Small Signal Voltage Reference
Input to Output Bandwidth
Voltage Settling from VREF to
VDAC Out
Voltage Settling from Digital
Code to VDAC Out
VREF Feedthrough
Group Delay
Harmonic Distortion
Channel-to-Channel Crosstalk
Digital Feedthrough
Power Supply
Rejection Ratio
Max Swing is AGND +3 V
RL = 5 k, CL = 20 pF
ƒtr
ƒtr
5
10
150
10
MHz
ns
MHz
VR = 1.6 V p–p, RL = 5kΩ to VEE
VR = 1.6 V p–p, RL = 5kΩ to VEE
VOUT=50mV p-p above code 16
8
MHz
VOUT=50mV p-p for all codes
VR=0 to VR = 3V Step6
to 1 LSB
ZS to FS to 1 LSB
tsr
275
300
325
ns
tsd
275
300
325
ns
FDT
GD
THD
CT
Q
PSRR
–65
20
0.5
–75
ICC
IEE
15
15
150
dB
ns
%
dB
nVS
%/%
VREF=1MHz Sine 3V p-p
@ 1 MHz, single channel
CLK to VOUT
∆V=+5%
30
30
300
mA
mA
mW
VREF = 0 V
VREF = 0 V
VREF = 0 V, Codes = all 1
0.8
+10
8
V
V
µA
pF
1
0.02
Codes=0 @ 1 MHz
POWER CONSUMPTION
Positive Supply Current
Negative Supply Current
Power Dissipation
PDISS
25
25
250
DIGITAL INPUT
CHACTERISTICS
Logic High3
Logic Low3
Input Current
Input Capacitance2
VIH
VIL
IL
CL
2.4
2.4
0.8
+10
8
Rev. 2.00
4
MP7641
ELECTRICAL CHARACTERISTICS TABLE
Description
25°C
Typ
Max
Tmin to Tmax
Min
Max
Symbol
Min
Units
tCH, tCL
tDS
tDH
tPD
tLD
tRST
tCKLD1
tCKLD2
tHZ1
40
10
15
100
50
100
0
50
100
60
100
0
60
ns
ns
ns
ns
ns
ns
ns
ns
ns
tHZ2
35
50
ns
tLDCK1
tLDCK2
tLDSU
25
35
15
40
50
20
ns
ns
ns
Conditions
DIGITAL TIMING
SPECIFICATIONS2, 4
Input Clock Pulse Width
Data Setup Time
Data Hold Time
CLK to SDO Propagation Delay
DAC Register Load Pulse Width
Reset Pulse Width
Clock Edge to Load Rising Edge
Clock Edge to Load Falling Edge
Load Falling Edge to SDO
3-state Enable
Load Rising Edge to SDO
3-state Disable
Load Falling Edge to CLK Disable
Load Rising Edge to CLK Enable
LD Set-up Time with Respect
to CLK
50
10
15
40
50
NOTES
Full Scale Range (FSR) is 3V.
2
Guaranteed but not production tested.
3
Digital input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur.
4
See Figures 2 and 3.
5
For reference input pulse: tR = tF > 100 ns.
1
Specifications are subject to change without notice
Rev. 2.00
5
MP7641
ELECTRICAL CHARACTERISTICS TABLE FOR DUAL POSITIVE SUPPLIES
Unless Otherwise Noted: VDD = 5 V, VCC = 10 V, VEE = 0 V, VREF = 3 V and –3 V, T = 25°C,
Output Load = Open, AGND = (VCC + VEE)/2 = 5 V, DGND = 0 V
Parameter
25°C
Typ
Symbol
Min
N
DNL
INL
8
Max
Tmin to Tmax
Min
Max
Units
Test Conditions/Comments
DC CHARACTERISTICS
Resolution (All Grades)
Differential Non-Linearity
Integral Non-Linearity
Monotonicity
Gain Error
Zero Scale Offset
Output Drive Capability
8
+0.8
+1
+1
+1
+1.5
+75
Guaranteed
+1.5
+75
Guaranteed
GE
ZOFS
IO
+20
+1
REF
VR
6
12
18
VEE +1.5
VCC –1.8
Bits
LSB
LSB
% FSR
mV
mA
FSR = Full Scale Range1
REFERENCE INPUTS
Impedance of VREF
Voltage Range
6
18
V
kΩ
VREF
DYNAMIC
CHARACTERISTICS2
Input to Output Bandwidth
Input to Output Settling Time5
Small Signal Voltage Reference
Input to Output Bandwidth
Small Signal Voltage Reference
Input to Output Bandwidth
Voltage Settling from VREF to
VDAC Out
Voltage Settling from Digital
Code to VDAC Out
VREF Feedthrough
Group Delay
Harmonic Distortion
Channel-to-Channel Crosstalk
Digital Feedthrough
Power Supply
Rejection Ratio
Max Swing is AGND +3 V
RL = 5 k, CL = 20 pF
ƒtr
ƒtr
5
10
150
10
MHz
ns
MHz
VR = 1.6 V p–p, RL = 5kΩ to VEE
VR = 1.6 V p–p, RL = 5kΩ to VEE
VOUT=50mV p-p above code 16
8
MHz
VOUT=50mV p-p for all codes
VR=0 to VR = 3V Step6
to 1 LSB
ZS to FS to 1 LSB
tsr
275
300
325
ns
tsd
275
300
325
ns
FDT
GD
THD
CT
Q
PSRR
–65
20
0.5
–75
ICC
IEE
15
15
150
dB
ns
%
dB
nVS
%/%
VREF=1MHz Sine 3V p-p
@ 1 MHz, single channel
CLK to VOUT
∆V=+5%
30
30
300
mA
mA
mW
VREF = 0 V
VREF = 0 V
VREF = 0 V, Codes = all 1
0.8
+10
8
V
V
µA
pF
1
0.02
Codes=0 @ 1 MHz
POWER CONSUMPTION
Positive Supply Current
Negative Supply Current
Power Dissipation
PDISS
25
25
250
DIGITAL INPUT
CHACTERISTICS
Logic High3
Logic Low3
Input Current
Input Capacitance2
VIH
VIL
IL
CL
2.4
2.4
0.8
+10
8
Rev. 2.00
6
MP7641
ELECTRICAL CHARACTERISTICS TABLE
Description
25°C
Typ
Max
Tmin to Tmax
Min
Max
Symbol
Min
Units
tCH, tCL
tDS
tDH
tPD
tLD
tRST
tCKLD1
tCKLD2
tHZ1
40
10
15
100
50
100
0
50
100
60
100
0
60
ns
ns
ns
ns
ns
ns
ns
ns
ns
tHZ2
35
50
ns
tLDCK1
tLDCK2
tLDSU
25
35
15
40
50
20
ns
ns
ns
Conditions
DIGITAL TIMING
SPECIFICATIONS2, 4
Input Clock Pulse Width
Data Setup Time
Data Hold Time
CLK to SDO Propagation Delay
DAC Register Load Pulse Width
Reset Pulse Width
Clock Edge to Load Rising Edge
Clock Edge to Load Falling Edge
Load Falling Edge to SDO
3-state Enable
Load Rising Edge to SDO
3-state Disable
Load Falling Edge to CLK Disable
Load Rising Edge to CLK Enable
LD Set-up Time with Respect
to CLK
50
10
15
40
50
NOTES
1
Full Scale Range (FSR) is 3V.
2
Guaranteed but not production tested.
3
Digital input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur.
4
See Figures 2 and 3.
5
For reference input pulse: tR = tF > 100 ns.
Specifications are subject to change without notice
ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)1,2
Operating Temperature Range
Extended Industrial . . . . . . . . . . . . . . . . . . . –40°C to +85°C
Maximum Junction Temperature . . . . . . . . . –65°C to 150°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . +300°C
Package Power Dissipation Rating @ 75°C
PDIP, SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000mW
Derates above 75°C . . . . . . . . . . . . . . . . . . . . . . 6mW/°C
VCC to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6.5 V
VEE to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –6.5 V
VCC to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +13.0 V
VEE to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –6.5 V
VRi to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC to VEE
VOi to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC to VEE
Digital Input & Output Voltage to DGND –0.5 to VDD +0.5 V
NOTES:
1
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a
stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
2
Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps
(HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short
transients outside the supplies of less than 100mA for less than 100µs.
APPLICATIONS INFORMATION
Refer to Section 8 for Applications Information
Rev. 2.00
7
MP7641
SDI 1
(Data In) 0
CLK
1
0
LD
1
0
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
DAC Register
Loaded
VOUT
Figure 1. Serial Data Timing and Loading
tDS
SDI
1
0
SDO
tDH
tHZ2
HIGH Z
tHZ1
1
0
1
CLK
tPD
tCH
0
tCL
1
LD
0
tLDCK2
tLDSU
tCKLD2
tCKLD1
tLDCK1
tLD
VOUT
tSD
+ 1/2 LSB BAND
Figure 2. Detail Serial Data Input Timing (RST = “1”)
RST
1
tRST
0
tSD
VO = VREF
VO = VREF/2
+ 1/2 LSB ERROR BAND
Figure 3. RESET Operation
Rev. 2.00
8
MP7641
THEORY OF OPERATION
also disables the serial data input (SDI), output (SDO 3-stated)
and the CLK input. This design tremendously reduces digital
noise, and glitch transients into the DACs due to free running
CLK and SDI. Also, 3-stating the SDO output with LD signal
would allow read back of pre-stored digital data of the selected
package using one SDO wire for all DAC ICs on the board. Note
also that the reset signal (RST) resets all analog outputs to 1/2 of
VREF, regardless of any digital inputs. Note that the input VRi is
referenced to AGND.
The MP7641 is equipped with a serial data 3-wire standard
µ-processor logic interface to reduce pin count, package size,
and board wire (space). This interface consists of LD which controls the transfer of data to the selected DAC channel, SDI (serial
data/address input), CLK (shift register clock) and SDO (serial
data output). When the LD signal is high, CLK signal loads the
digital input bits (SDI) into the 12-bit shift register (4 bits address
A3 to A0, then 8 bits data D7 to D0). The LD signal going low
loads this data into the selected DAC. The LD signal going low
Function
A3 A2 A1 A0
LD
CLK
RST
SDI
SDO
Shift Data In
and Out
X
X
X
X
1
0→1
Repeat
1
Data Input
Valid
Data Output
Valid
Stop Shifting
Data In and
Out
X
X
X
X
0
X
1
X
Hi-Z
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No Operation
1→0
1→0
1→0
1→0
1→0
1→0
1→0
1→0
No Operation
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
1
1
1
1
1
1
0
1
No Operation
No Operation
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
X
X
Hi-Z
Hi-Z
Reset all DACs to X
VREF/2
X
X
X
X
X
0
X
X
Load DACs
DAC 0
DAC 1
DAC 2
DAC 3
DAC 4
DAC 5
DAC 6
DAC 7
Table 1. Digital Function Truth Table
Serial In/Serial Out
DB7 DB6
MSB
DB5
DB4
DB3
DB2
DB1
DB0 DAC Output Voltage
D
LSB VOi = AGND + (VRi – AGND) ( 256 )
0
0
0
0
0
0
0
0
AGND
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
254
(VRi – AGND) ( 256 ) + AGND
1
1
1
1
1
1
1
1
255
(VRi – AGND) ( 256 ) + AGND
1
(VRi – AGND) ( 256 ) + AGND
Table 2. DAC Transfer Function
Analog Output vs. Digital Code
Rev. 2.00
9
MP7641
OPERATION WITH DUAL POSITIVE POWER SUPPLIES
For the dual positive supplies operation, VCC = +10 V, VDD = 5 V, VEE = 0 V and analog output zero level is to be referenced to (VCC +
VEE) /2 by setting the AGND pin to 5 V.
MICROPROCESSOR INTERFACE
ADDRESS BUS
A0 to A23
AS
ADDRESS
DECODER
CS
VMA
MC68000
CLK LD
UPA
SDI
1/4 7HC125
MP7641
RST
UDS
DB0
FROM SYSTEM RESET
16
DB0 to DB15
16
DATA BUS
Figure 4. MC68000 Interface (Simplified Diagram)
1
16
A0 to A15
ADDRESS BUS
3
A0 to A2
E1
MC6800
02
E3
R/W
E2
DB0 to DB7
74LS138
ADDRESS
DECODER
8
8
DATA BUS
LD
DB7
SDI
CLK
MP7641
RST
FROM SYSTEM RESET
NOTES:
1. Execute consecutive memory write instructions while manipulating the data between WRITEs so that
each WRITE presents the next bit
2. The serial data loading is triggered by the CLK pulse which is asserted by a decoded memory WRITE
location 2000, R/W, and 02. A WRITE to address 4000 transfers data from the input shift register to the
DAC register.
Figure 5. MC6800 Interface (Simplified Diagram)
Rev. 2.00
10
MP7641
8
ADDRESS BUS
8
8085
8212
ALE
3
A0 to A2
E1
+5
74LS138
E3
ADDRESS
DECODER
E2
WR
DATA BUS
8
SOD
LD
CLK
MP7641
SDI
RST
FROM SYSTEM RESET
Figure 6. 8085 Interface (Simplified Diagram)
NOTES:
1. Clock generated by WR and decoding address 8000
2. Data is clocked into the DAC shift register by executing memory write instructions. the clock input is
generated by decoding address 8000 and WR. Data is then loaded into the DAC register with a memory
write instruction to address 4000.
3. Serial data must be present in the right justified format in registers H & L of the microprocessor.
Rev. 2.00
11
MP7641
VRI1
VRI2
VOI1
8
8
µPC
VOI2
8
8
VRIN
VOIN
8
8
IC (1)
IC (2)
IC (n)
MP7641
MP7641
MP7641
SDI LD
SDO
SDI LD
SDO
SDI LD
SDO
DATA
LD
CLK
Figure 7. Simplified Diagram
Configuration A
VRI1
8
µPC
VOI1
VRI2
8
8
VOI2
8
VOIN
VRIN
8
8
IC (1)
IC (2)
IC (n)
MP7641
MP7641
MP7641
SDI LD
SDO
SDI LD
SDO
SDI LD
DATA OUT
DATA
n
#1
#2
CS OR LD
CLK
Figure 8. Simplified Diagram
Configuration B
Rev. 2.00
12
#n
SDO
MP7641
VRI1 VOI1
VRI2 VOI2
VRIm VOIm
1
SDO
ADDRESS
µPC
n
2
2n
IC (1)
IC (2)
IC (m)
MP7641
MP7641
MP7641
SDI LD
SDO
SDI LD
SDO2
SDI LD
WR
(SDI) DATA IN
CLK
Figure 9. Simplified Diagram
Configuration C
MP7641 EVALUATION BOARD
Measurement
Buffer
5 pF
1.6 V p-p
1k
Test Load
27
28
3
4
12
13
VR0 VO0
26
2
VR2 VO2
5
VR3 VO3
16
VR5 VO5
VR6 VO6
17
VR7 VO7
5k
1
VR1 VO1
VR4 VO4
20 pF
11
14
15
18
VOUT
9
DGND
AGND
10
MP7641
All resistors = 50 Ω unless otherwise specified
Gain of all DACs set to 1 (no attenuation)
NOTE: See Graphs 1 through 8
Figure 10. Single Channel Crosstalk
Rev. 2.00
13
SDOm
MP7641
5 pF
1k
1.6 Vp–p
Test Load
27
28
3
4
12
13
VR0 VO0
VR5 VO5
VR6 VO6
17
VR7 VO7
N/C
SDI
SDO
CLK
LD
RST
N/C
DGND
AGND
5k
2
5
VR3 VO3
VR4 VO4
20 pF
1
VR2 VO2
16
9
26
VR1 VO1
11
14
15
18
19
20
21
22
23
24
25
VOUT
10
MP7641
All resistors = 50 Ω unless otherwise specified.
Gain of all DACs set to 1 (no attenuation).
NOTE: See Graph 20B.
Figure 11. All Hostile Crosstalk
5 pF
1.6 Vp–p
1k
Test Load
27
28
3
4
12
13
VR0 VO0
VR5 VO5
VR6 VO6
17
VR7 VO7
N/C
SDI
SDO
CLK
LD
RST
N/C
DGND
AGND
5k
2
5
VR3 VO3
VR4 VO4
20 pF
1
VR2 VO2
16
9
26
VR1 VO1
11
14
15
18
19
20
21
22
23
24
25
VOUT
10
MP7641
All resistors = 50 Ω unless otherwise specified.
Gain of all DACs set to 1 (no attenuation) except monitored DAC
set to 0 (full attenuation).
NOTE: See Graph 20A.
Figure 12. All Hostile Crosstalk & Feedthrough
Rev. 2.00
14
MP7641
5 pF
VCC
VEE
1k
Test Load
DUT
27
28
3
4
12
13
VR0 VO0
VR1 VO1
VR2 VO2
VR3 VO3
VR4 VO4
16
VR5 VO5
VR6 VO6
17
VR7 VO7
N/C
SDI
SDO
CLK
LD
RST
N/C
9
DGND
AGND
26
20 pF
5k
1
2
5
11
14
15
18
19
20
21
22
23
24
25
VOUT
10
MP7641
All resistors = 50 Ω unless otherwise specified.
Gain of all DACs set to 1 (no attenuation).
NOTE: See Figure 12.
Figure 13. PSRR
5 pF
1k
Test Load
27
28
3
4
12
13
VR0 VO0
VR5 VO5
VR6 VO6
17
VR7 VO7
N/C
SDI
SDO
CLK
LD
RST
N/C
DGND
AGND
5k
2
5
VR3 VO3
VR4 VO4
20 pF
1
VR2 VO2
16
9
26
VR1 VO1
11
14
15
18
19
20
21
22
23
24
25
VOUT
10
MP7641
1.6 Vp–p
All resistors = 50 Ω unless otherwise specified.
NOTE: See Graph 16.
Figure 14. Frequency Response / THD Response
Rev. 2.00
15
MP7641
PERFORMANCE CHARACTERISTICS
Channel-to-Channel Crosstalk (Gain vs. Frequency; All DACs set to full scale; VREF=1.6 Vp-p)
Output DACs shown below are:
DAC 1, 7, 2, 6, 5, 3 & 4.
Output DACs shown below are:
DAC 2, 0, 7, 6, 4, 3 & 5.
DAC 2
dB
dB
DAC 1
DAC 0 Driven
MHz
DAC 1 Driven
Graph 1.
MHz
Graph 2.
Output DACs shown below are:
DAC 1, 3, 7, 4, 0, 5 & 6.
Output DACs shown below are:
DAC 2, 4, 1, 5, 0, 6 & 7.
DAC 1
dB
dB
DAC 2
DAC 2 Driven
DAC 3 Driven
MHz
Graph 3.
MHz
Graph 4.
Output DACs shown below are:
DAC 5, 3, 6, 2, 7, 0 & 1.
Output DACs shown below are:
DAC 4, 6, 3, 2, 1, 0 & 7.
dB
dB
DAC 5
DAC 4 Driven
DAC 4
DAC 5 Driven
MHz
Graph 5.
MHz
Graph 6.
Output DACs shown below are:
DAC 7, 5, 0, 4, 3, 1 & 2.
Output DACs shown below are:
DAC 6, 0, 5, 4, 1, 2 & 3.
dB
dB
DAC 7
DAC 6 Driven
DAC 6
MHz
DAC 7 Driven
Graph 7.
MHz
Graph 8.
Rev. 2.00
16
MP7641
Digital Input Code
Digital Input Code
Graph 9. Linearity Error vs.
Digital Input Code
DACs 0 to 3
Graph 10. Linearity Error
vs. Digital Input Code
DACs 4 to 7
Graph 11. Reset Voltage vs. Temperature
VR = 500 mV p-p
Graph 12. PSRR vs. Frequency
Phase
VR = 1.6 V p-p
Gain
Graph 13. Gain & Phase vs. Frequency
Graph 14. Feedthrough vs. Frequency
Rev. 2.00
17
MP7641
VR = 6 V p-p
3 V p-p
1.5 V p-p
1 V p-p
0.5 V p-p
Graph 15. Gain (VO/VR) vs. Frequency
Open Loop/Unloaded Output*
Graph 16. THD vs. Frequency
Graph 17. ICC vs. Temperature
Graph 18. IEE vs. Temperature
A
GE = +1.5% FSR
VRR Positive
All DACs driven, measured DAC
@ zero scale and other DACs
@ full scale
B
VRR Negative
All DACs except monitored
driven, all DACs @ full scale
–V
Graph 19. Reference Input Voltage
Range vs. Supply Voltages
Graph 20. All Channel
Crosstalk vs. Frequency
* A 2K or 5K resistor across output and VEE will remove peaking (see Graph 26).
Rev. 2.00
18
MP7641
LD
(5 V/DIV)
VR
(2 V/DIV)
VR = 3 V
Digital Code =
255→0→255
Digital Code =
All Ones
VO
(2 V/DIV)
VO
(2 V/DIV)
2µs/DIV
2µs/DIV
Graph 21. Digital Settling
Graph 22. Pulse Response
(tR = tF = 100 ns for VR)
VR
(2 V/DIV)
LD
(5 V/DIV)
VO
(2 V/DIV)
VO
(10mV/DIV)
2µs/DIV
2µs/DIV
Graph 23. 128 kHz
Sawtooth Waveform Response
Graph 24. Clock and SDI
Feedthrough
LD
(5 V/DIV)
Gain
(5 dB/DIV)
VO
(10mV/DIV)
Group Delay
(20 ns/DIV)
2µs/DIV
MHz
Graph 25. Clock/SDI
Feedthrough
Graph 26. Typical Gain and Group
Delay vs. Frequency (with 5K resistor
across output to VEE)
Rev. 2.00
19
MP7641
28 LEAD PLASTIC DUAL-IN-LINE
(300 MIL PDIP)
NN28
S
28
15
1
14
Q1
E1
E
D
A1
Seating
Plane
A
L
B
e
B1
α
MILLIMETERS
INCHES
SYMBOL
MIN
MAX
MIN
MAX
A
0.130
0.230
3.30
5.84
A1
0.015
––
0.381
––
B
0.014
0.023
0.356
0.584
B1 (1)
0.038
0.065
0.965
1.65
C
0.008
0.015
0.203
0.381
D
1.340
1.485
34.04
37.72
E
0.290
0.325
7.37
8.26
E1
0.240
0.310
6.10
7.87
e
0.100 BSC
L
0.115
α
0.150
2.54 BSC
2.92
3.81
0°
15°
0°
15°
Q1
0.055
0.070
1.40
1.78
S
0.020
0.100
0.508
2.54
Note:
(1)
The minimum limit for dimensions B1 may be 0.023”
(0.58 mm) for all four corner leads only.
Rev. 2.00
20
C
MP7641
28 LEAD SMALL OUTLINE
(335 MIL EIAJ SOIC)
R28
D
28
15
E
1
H
14
C
A
Seating
Plane
e
B
A1
L
MILLIMETERS
SYMBOL
A
A1
MIN
2.60
INCHES
MAX
MIN
2.80
0.102
0.2 (typ.)
MAX
0.110
0.008 (typ.)
B
0.3
0.5
0.012
0.020
C
0.10
0.20
0.004
0.008
D
17.6
18.0
0.693
0.709
E
8.3
8.5
0.327
0.335
e
1.27 (typ.)
0.050 (typ.)
H
11.5
12.1
0.453
0.477
L
0.8
1.2
0.031
0.047
Rev. 2.00
21
MP7641
Notes
Rev. 2.00
22
MP7641
Notes
Rev. 2.00
23
MP7641
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are
free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary
depending upon a user’s specific application. While the information in this publication has been carefully checked;
no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.
Copyright 1993 EXAR Corporation
Datasheet April 1995
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
Rev. 2.00
24