19-1328; Rev 1; 10/99 Low-Voltage, CMOS Analog Multiplexers/Switches ____________________________Features The MAX4581/MAX4582/MAX4583 are low-voltage, CMOS analog ICs configured as an 8-channel multiplexer (MAX4581), two 4-channel multiplexers (MAX4582), and three single-pole/double-throw (SPDT) switches (MAX4583). These CMOS devices can operate continuously with ±2V to ±6V dual power supplies or a +2V to +12V single supply. Each switch can handle Rail-to-Rail® analog signals. The off-leakage current is only 1nA at +25°C or 5nA at +85°C. ♦ Pin Compatible with Industry-Standard 74HC4051/74HC4052/74HC4053 and MAX4051/MAX4052/MAX4053 ♦ Offered in Automotive Temperature Range (-40°C to +125°C) ♦ Guaranteed On-Resistance: 80Ω with ±5V Supplies 150Ω with Single +5V Supply ♦ Guaranteed On-Resistance Match Between Channels All digital inputs have 0.8V to 2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +5V or dual ±5V supplies. ♦ Guaranteed Low Off-Leakage Current: 1nA at +25°C ♦ Guaranteed Low On-Leakage Current: 1nA at +25°C ________________________Applications Battery-Operated Equipment ♦ +2V to +12V Single-Supply Operation ±2V to ±6V Dual-Supply Operation Audio and Video Signal Routing ♦ TTL/CMOS-Logic Compatible Low-Voltage Data-Acquisition Systems ♦ Low Distortion: < 0.02% (600Ω) ♦ Low Crosstalk: < -96dB (50Ω, MAX4582) Communications Circuits ♦ High Off-Isolation: < -74dB (50Ω) Automotive _______________Ordering Information PART MAX4581CPE TEMP. RANGE PIN-PACKAGE 0°C to +70°C 16 Plastic DIP MAX4581CSE 0°C to +70°C 16 Narrow SO MAX4581CUE 0°C to +70°C 16 TSSOP Ordering Information continued at end of data sheet. ____________________________________Pin Configurations/Functional Diagrams TOP VIEW MAX4582 MAX4581 MAX4583 16 VCC Y0 1 16 VCC Y1 1 16 VCC X6 2 15 X2 Y2 2 15 X2 Y0 2 15 Y X 3 14 X1 Y 3 14 X1 Z1 3 14 X X7 4 13 X0 Y3 4 13 X Z 4 13 X1 X5 5 12 X3 Y1 5 12 X0 Z0 5 12 X0 11 A Enable 6 11 X3 Enable 6 11 A 10 B VEE 7 VEE 7 10 B X4 1 Enable 6 VEE 7 GND 8 LOGIC 9 DIP/SO/QSOP/TSSOP C GND 8 LOGIC 10 A 9 DIP/SO/QSOP/TSSOP B GND 8 9 C DIP/SO/QSOP/TSSOP Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769. MAX4581/MAX4582/MAX4583 ________________General Description MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches ABSOLUTE MAXIMUM RATINGS Voltages Referenced to VEE VCC .........................................................................-0.3V to 13V Voltage into Any Terminal (Note 1) ...(VEE - 0.3V) to (VCC + 0.3V) Continuous Current into Any Terminal..............................±20mA Peak Current, X_, Y_, Z_ (pulsed at 1ms, 10% duty cycle) ...................................±40mA ESD per Method 3015.7 ..................................................>2000V Continuous Power Dissipation (TA = +70°C) Plastic DIP (derate 10.53mW/°C above +70°C)............842mW Narrow SO (derate 8.70mW/°C above +70°C)..............696mW QSOP (derate 8.3mW/°C above +70°C) .......................667mW TSSOP (derate 6.7mW/°C above +70°C)......................457mW Operating Temperature Ranges MAX458_C_ .........................................................0°C to +70°C MAX458_E_ ......................................................-40°C to +85°C MAX458_A_.....................................................-40°C to +125°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C Note 1: Voltages exceeding VCC or VEE on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—Dual Supplies (VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS TEMP MIN TYP MAX UNITS (Note 2) ANALOG SWITCH Analog-Signal Range VX, VY, VZ C, E, A +25°C VEE 50 VCC V 80 Ω Switch On-Resistance RON VCC = 4.5V; VEE = -4.5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V Switch On-Resistance Match Between Channels (Note 3) ∆RON VCC = 4.5V; VEE = -4.5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V +25°C Switch On-Resistance Flatness (Note 4) RFLAT(ON) VCC = 5V; VEE = -5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3V, 0V, -3V +25°C X_, Y_, Z_ Off Leakage (Note 5) IX_(OFF), IY_(OFF), IZ_(OFF) VCC = 5.5V; VEE = -5.5V; ± VX_, VY_, VZ_ = ±4.5V; VX, VY, VZ = 4.5V +25°C -1 1 C, E, A -10 10 X, Y, Z Off Leakage (Note 5) IX(OFF), IY(OFF), IZ(OFF) VCC = 5.5V; VEE = -5.5V; VX_, VY_, VZ_ = ±4.5V; ± VX, VY, VZ = 4.5V X, Y, Z On Leakage (Note 5) IX(ON), IY(ON), IZ(ON) C, E, A 1 C, E, A MAX4581 MAX4582 MAX4583 MAX4581 VCC = 5.5V; VEE = -5.5V; VX, VY, VZ = ±4.5V 100 MAX4582 MAX4583 4 Ω 6 4 C, E, A 10 12 Ω nA +25°C -2 2 C, E, A -100 100 +25°C -1 1 C, E, A -50 50 +25°C -2 2 C, E, A -100 100 +25°C -1 1 C, E, A -50 50 nA nA DIGITAL I/O Logic Input Logic Threshold High VAH, VBH, VCH C, E, A Logic Input Logic Threshold Low VAL, VBL, VCL C, E, A 2 1.5 0.8 1.5 _______________________________________________________________________________________ 2.4 V V Low-Voltage, CMOS Analog Multiplexers/Switches (VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS TEMP MIN TYP MAX UNITS (Note 2) Input Current High IAH, IBH, ICH VA, VB, VC = 2.4V C, E, A -1 1 µA Input Current Low IAL, IBL, ICL VA, VB, VC = 0.8V C, E, A -1 1 µA SWITCH DYNAMIC CHARACTERISTICS Inhibit Turn-On Time t(ON) VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF; Figure 3 TA = +25°C Inhibit Turn-Off Time t(OFF) VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF; Figure 3 TA = +25°C Address Transition Time tTRANS VX_, VY_, VZ_ = ±3V; RL = 300Ω; CL = 35pF; Figure 2 TA = +25°C Break-Before-Make Time tBBM Charge Injection (Note 6) Q 4 CX(ON), CY(ON), CZ(ON) VX_, VY_, VZ_ = 0V; f = 1MHz; Figure 7 VISO RL = 50Ω, f = 1MHz, Figure 6 RL = 50Ω, f = 1MHz, Figure 6 Total Harmonic Distortion THD RL = 600Ω, 5Vp-p, f = 20Hz to 20kHz VCC, VEE VCC = 5.5V, VEE = -5.5V, VA, VB, VC, VEnable = V+ or 0 ns 5 pC pF pF 6 25 TA = +25°C 17 MAX4583 VCT ns ns 10 MAX4581 MAX4582 20 ns 18 TA = +25°C MAX4583 Channel-to-Channel Crosstalk ICC, IEE 4 MAX4581 MAX4582 200 200 TA = +25°C VX_, VY_, VZ_ = 0V; f = 1MHz; Figure 7 Power-Supply Current 90 C, E, A 0.5 CX(OFF), CY(OFF), CZ(OFF) 100 150 TA = +25°C Output Off Capacitance POWER SUPPLY Power-Supply Range C, E, A C = 1nF, RS = 0Ω, VS = 0V VX_, VY_, VZ_ = 0V; f = 1MHz; Figure 7 Off Isolation 40 TA = +25°C CX_(OFF), CY_(OFF), CZ_(OFF) 200 200 VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF; Figure 4 Input Off Capacitance Output On Capacitance 100 C, E, A pF 12.5 TA = +25°C -73 MAX4582 TA = +25°C -96 MAX4583 TA = +25°C -73 TA = +25°C 0.02 dB pF % C, E, A ±2 ±6 TA = +25°C -1 1 C, E, A -10 10 V µA Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column. Note 3: ∆RON = RON(MAX) - RON(MIN). Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges; i.e., VX_, VY_, VZ_ = 3V to 0 and 0 to -3V. Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA = +25°C. Note 6: Guaranteed by design, not production tested. _______________________________________________________________________________________ 3 MAX4581/MAX4582/MAX4583 ELECTRICAL CHARACTERISTICS—Dual Supplies (continued) MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches ELECTRICAL CHARACTERISTICS—Single +5V Supply (VCC = 4.5V to 5.5V, VEE = 0V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS TEMP MIN TYP MAX UNITS (Note 2) ANALOG SWITCH Analog-Signal Range VX_, VY_, VZ_, VX, VY, VZ Switch On-Resistance RON VCC = 4.5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V TA = +25°C C, E, A Switch On-Resistance Match Between Channels (Note 3) ∆RON VCC = 4.5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V TA = +25°C TA = +25°C -1 1 C, E, A -10 10 TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A -2 -100 -1 -50 -2 -100 -1 -50 2 100 1 50 2 100 1 50 C, E, A VEE VCC V 90 150 200 Ω 2 8 C, E, A X_, Y_, Z_ Off Leakage (Note 5) IX_(OFF), IY_(OFF), IZ_(OFF) VCC = 5.5V; VX_, VY_, VZ_ = 1V, 4.5V; VX, VY, VZ = 4.5V, 1V X, Y, Z Off Leakage (Note 5) IX(OFF), IY(OFF), IZ(OFF) VCC = 5.5V; VX_, VY_, VZ_ = 1V, 4.5V; VX, VY, VZ = 4.5V, 1V X, Y, Z On Leakage (Note 5) IX(ON), IY(ON), IZ(ON) VCC = 5.5V; VX, VY, VZ = 4.5V, 1V MAX4581 MAX4582 MAX4583 MAX4581 MAX4582 MAX4583 Ω 10 nA nA nA DIGITAL I/O Logic Input Logic Threshold High VAH, VBH, VCH, VEnableH C, E, A Logic Input Logic Threshold Low VAL, VBL, VCL, VEnableL C, E, A 0.8 Input Current High IAH, IBH, ICH, IEnableH VAL, VBL, VCL, VEnableL = 2.4V C, E, A -1 1 µA Input Current Low IAL, IBL, ICL, IEnableL VAL, VBL, VCL, VEnableL = 0.8V C, E, A -1 1 µA 5 200 250 100 150 200 250 pC SWITCH DYNAMIC CHARACTERISTICS C = 1nF, RS = 0Ω, VS = 2.5V Charge Injection (Note 6) Q Enable Turn-On Time t(ON) VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF, Figure 3 Enable Turn-Off Time t(OFF) VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF, Figure 3 Address Transition Time tTRANS VX_, VY_, VZ_ = 3V/0V, RL = 300Ω, CL = 35pF, Figure 2 TA = +25°C TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A Break-Before-Make Time tBBM VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF, Figure 4 TA = +25°C 1.5 1.5 0.8 100 40 80 10 2.4 30 V V ns ns ns ns Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column. Note 3: ∆RON = RON(MAX) - RON(MIN). Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges; i.e., VX_, VY_, VZ_ = 3V to 0 and 0 to -3V. Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA = +25°C. Note 6: Guaranteed by design, not production tested. 4 _______________________________________________________________________________________ Low-Voltage, CMOS Analog Multiplexers/Switches (VCC = 2.7V to 3.6V, VEE = 0V, V_H = 2.0V, V_L = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL POWER SUPPLY Power-Supply Range Power-Supply Current CONDITIONS TEMP VCC, VEE ICC, IEE VCC = 3.6V; VA, VB, VC, VEnable = V+ or 0 MIN TYP MAX UNITS (Note 2) C, E, A TA = +25°C C, E, A 2 -1 -10 12 1 10 V C, E, A VEE VCC V 450 550 Ω µA ANALOG SWITCH Analog-Signal Range VX_, VY_, VZ_, VX, VY, VZ Switch On-Resistance RON X_, Y_, Z_ Off Leakage (Note 5) VCC = 2.7V; IX, IY, IZ = 0.1mA; VX, VY, VZ = 1.5V TA = +25°C C, E, A IX_(OFF), IY_(OFF), IZ_(OFF) VCC = 3.6V; VX_, VY_, VZ_ = 1V, 3V; VX, VY, VZ = 3V, 1V TA = +25°C -1 1 C, E, A -10 10 X, Y, Z Off Leakage (Note 6) IX(OFF), IY(OFF), IZ(OFF) VCC = 3.6V; VX_, VY_, VZ_ = 1V, 3.0V; VX, VY, VZ = 3.0V, 1V X, Y, Z On Leakage (Note 6) IX(ON), IY(ON), IZ(ON) VCC = 3.6V; VX, VY, VZ = 3.0V, 1V TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A -2 -100 -1 -50 -2 -100 -1 -50 2 100 1 50 2 100 1 50 MAX4581 MAX4582 MAX4583 MAX4581 MAX4582 MAX4583 190 nA nA nA DIGITAL I/O Logic Input Logic Threshold High VAH, VBH, VCH, VEnableH C, E, A Logic Input Logic Threshold Low VAL, VBL, VCL, VEnableL C, E, A 0.5 Input Current High IAH, IBH, ICH, IEnableH VA, VB, VC = VEnable = 2.0V C, E, A -1 1 µA Input Current Low IAL, IBL, ICL, IEnableL VA, VB, VC = VEnable = 0.5V C, E, A -1 1 µA 1.0 SWITCH DYNAMIC CHARACTERISTICS (Note 6) SWITCH DYNAMIC CHARACTERISTICS VX_, VY_, VZ_ = 1.5V; RL = 300Ω; Enable Turn-On Time t(ON) CL = 35pF; Figure 3 Enable Turn-Off Time t(OFF) Address Transition Time tTRANS Break-Before-Make Time POWER SUPPLY Power-Supply Current tBBM ICC, IEE TA = +25°C C, E, A TA = +25°C VX_, VY_, VZ_ = 1.5V; RL = 300Ω; CL = 35pF; Figure 3 C, E, A TA = +25°C VX_, VY_, VZ_ = 1.5V/0V; RL = 300Ω; CL = 35pF; Figure 2 C, E, A VX_, VY_, VZ_ = 1.5V; RL = 300Ω; CL = 35pF TA = +25°C 15 TA = +25°C C, E, A -1 -10 VCC = 3.6V, VA, VB, VC, VEnable = V+ or 0 2.0 1.0 170 50 130 V V 300 400 200 300 300 400 40 ns ns ns ns 1 10 µA Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column. Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA = +25°C. Note 6: Guaranteed by design, not production tested. _______________________________________________________________________________________ 5 MAX4581/MAX4582/MAX4583 ELECTRICAL CHARACTERISTICS—Single +3V Supply Typical Operating Characteristics (VCC = 5V, VEE = -5V, GND = 0V, TA = +25°C, unless otherwise noted.) ON-RESISTANCE vs. VX, VY, VZ AND TEMPERATURE (DUAL SUPPLIES) TA = +85°C 55 VCC = 2.7V, VEE = -2.7V VCC = 1.2V TA = +70°C 35 TA = +25°C 25 VCC = 3.3V, VEE = -3.3V VCC = 5V, VEE = -5V VCC = 2.7V VCC = 3.3V VCC = 5V 100 VCC = 10V 10 5 -3 -2 -1 0 1 2 3 4 -5 5 -4 -3 -2 -1 0 1 2 3 4 0 5 3 4 TA = +85°C TA = +70°C 110 5 6 7 OFF LEAKAGE vs. TEMPERATURE 100 MAX4581toc04 130 VCC = 5.5V VEE = -5.5V 10 TA = +25°C OFF LEAKAGE (nA) RON (Ω) 2 VX, VY, VZ (V) ON-RESISTANCE vs. VX, VY, VZ AND TEMPERATURE (SINGLE SUPPLY) 90 1 VX, VY, VZ (V) VX, VY, VZ (V) MAX4581/2/3-05 -4 VCC = 7.5V TA = 0°C TA = -40°C 15 10 -5 VCC = 2V 1000 RON (Ω) 45 RON (Ω) VCC = 2V, VEE = -2V 10,000 MAX4581toc02 VCC = 1.2V, VEE = -1.2V 100 65 MAX4581/2/3 toc01 1000 ON-RESISTANCE vs. VX, VY, VZ (SINGLE SUPPLY) MAX4581 toc03 ON-RESISTANCE vs. VX, VY, VZ (DUAL SUPPLIES) RON (Ω) 70 50 TA = -40°C TA = 0°C 1 IX, IY, IZ 0.1 30 IX_, IY_, IZ_ 10 0 0.01 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 -50 -25 VX, VY, VZ (V) ON LEAKAGE vs. TEMPERATURE 0 25 50 75 TEMPERATURE (°C) 100 125 CHARGE INJECTION vs. VX, VY, VZ VCC = 5.5V VEE = -5.5V 10,000 MAX4581-07 1.5 MAX4581/2/3-toc-6 100,000 1.0 0.5 0 1,000 Q (pC) ON LEAKAGE (pA) MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches 100 -0.5 VCC = 5V VEE = 0V -1.0 VCC = 5V VEE = -5V -1.5 10 -2.0 -2.5 1 -50 6 -25 0 25 50 75 TEMPERATURE (°C) 100 125 -5 -4 -3 -2 -1 0 1 2 3 VX, VY, VZ (V) _______________________________________________________________________________________ 4 5 8 9 10 Low-Voltage, CMOS Analog Multiplexers/Switches SUPPLY CURRENT vs. TEMPERATURE FREQUENCY RESPONSE VCC = 5V VEE = -5V VA, VB,VC,VEnable = 0V, 5V LOSS (dB) IEE 1 0.1 0.01 0 25 50 75 TEMPERATURE (°C) 100 60 40 OFF LOSS 20 0 -50 -60 -70 -80 -20 -40 ON PHASE -90 -100 -60 -80 -110 -120 -110 -120 125 0.1 1 10 PHASE (DEGREES) ICC, IEE (nA) 80 -30 -40 ICC -25 120 100 ON LOSS -20 10 -50 MAX4581-09 0 -10 MAX4581/2/3-08 100 100 FREQUENCY (MHz) VCC CURRENT vs. LOGIC LEVEL (VA, VB, VC, VEnable) TOTAL HARMONIC DISTORTION vs. FREQUENCY 600Ω IN AND OUT MAX4581-11 1 MAX4581-10 100 10-1 10-2 10 VCC = 12V 10-3 ICC (A) 1 10-5 10-6 VCC = 5V 10-7 10-8 0.1 10-9 10-10 10-11 0.01 100 1k 10k 0 100k 1 2 3 4 5 6 7 8 9 10 11 12 VA, VB, VC, VEnable FREQUENCY (Hz) LOGIC-LEVEL THRESHOLD vs. VCC 3.0 MAX4581toc12 10 2.5 VA, VB, VC, VEnable (V) THD (%) 10-4 2.0 1.5 1.0 0.5 0 0 1 2 3 4 5 6 7 8 9 10 11 12 VCC (V) _______________________________________________________________________________________ 7 MAX4581/MAX4582/MAX4583 Typical Operating Characteristics (continued) (VCC = 5V, VEE = -5V, GND = 0V, TA = +25°C, unless otherwise noted.) Low-Voltage, CMOS Analog Multiplexers/Switches MAX4581/MAX4582/MAX4583 Pin Description PIN NAME FUNCTION MAX4581 MAX4582 MAX4583 13, 14, 15, 12, 1, 5, 2, 4 — — X0–X7 3 — — — — — — — 12, 14, 15, 11 13 — — — — — — 14 13 12 1 2 X X0, X1, X2, X3 X X1 X0 Y1 Y0 6 6 6 Enable 7 7 7 VEE Negative Analog Supply-Voltage Input. Connect to GND for single-supply operation. 8 8 8 GND Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to VCC and VEE.) 11 10 9 — — — — — 16 10 9 — 1, 5, 2, 4 3 — — — 16 11 10 9 — 15 5 3 4 16 A B C Y0, Y1, Y2, Y3 Y Z0 Z1 Z VCC Analog Switch Inputs 0–7 Analog Switch Output Analog Switch “X” Inputs 0–3 Analog Switch “X” Output Analog Switch “X” Normally Open Input Analog Switch “X” Normally Closed Input Analog Switch “Y” Normally Open Input Analog Switch “Y” Normally Closed Input Digital Enable Input. Normally connect to GND. Can be driven to logic high to set all switches off. Digital Address “A” Input Digital Address “B” Input Digital Address “C” Input Analog Switch “Y” Inputs 0–3 Analog Switch “Y” Output Analog Switch “Z” Normally Closed Input Analog Switch “Z” Normally Open Input Analog Switch “Z” Output Positive Analog and Digital Supply Voltage Input Note: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions. __________Applications Information Power-Supply Considerations Overview The MAX4581/MAX4582/MAX4583 construction is typical of most CMOS analog switches. They have three supply pins: VCC, VEE, and GND. VCC and VEE are used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESDprotection diodes are internally connected between each analog-signal pin and both VCC and VEE. If any analog signal exceeds VCC or VEE, one of these diodes will conduct. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from VCC or VEE. 8 Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either VCC or VEE and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the VCC and VEE pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of either the same or opposite polarity. There is no connection between the analog-signal paths and GND. _______________________________________________________________________________________ Low-Voltage, CMOS Analog Multiplexers/Switches SELECT INPUTS MAX4581/MAX4582/MAX4583 Table 1. Truth Table/Switch Programming ON SWITCHES ENABLE INPUT C* B A MAX4581 MAX4582 MAX4583 H X X X All switches open All switches open All switches open L L L L X–X0 X–X0, Y–Y0 X–X0, Y–Y0, Z–Z0 L L L H X–X1 X–X1, Y–Y1 X–X1, Y–Y0, Z–Z0 L L H L X–X2 X–X2, Y–Y2 X–X0, Y–Y1, Z–Z0 L L H H X–X3 X–X3, Y–Y3 X–X1, Y–Y1, Z–Z0 L H L L X–X4 X–X0, Y–Y0 X–X0, Y–Y0, Z–Z1 L H L H X–X5 X–X1, Y–Y1 X–X1, Y–Y0, Z–Z1 L H H L X–X6 X–X2, Y–Y2 X–X0, Y–Y1, Z–Z1 L H H H X–X7 X–X3, Y–Y3 X–X1, Y–Y1, Z–Z1 X = Don’t care *C not present on MAX4582. Note: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction. VCC and GND power the internal logic and logic-level translators, and set the input logic limits. The logic-level translators convert the logic levels into switched VCC and VEE signals to drive the gates of the analog signals. This drive signal is the only connection between the logic supplies and signals and the analog supplies. VCC and VEE have ESD-protection diodes to GND. The logic-level thresholds are TTL/CMOS compatible when VCC is +5V. As VCC rises, the threshold increases slightly, so when VCC reaches +12V the threshold is about 3.1V (above the TTL-guaranteed high-level minimum of 2.8V, but still compatible with CMOS outputs). Bipolar Supplies These devices operate with bipolar supplies between ±2V and ±5V. The VCC and VEE supplies need not be symmetrical, but their sum cannot exceed the +13V absolute maximum rating Single Supply These devices operate from a single supply between +2V and +12V when VEE is connected to GND. All of the bipolar precautions must be observed. At room temperature, they actually “work” with a single supply near or below +1.7V, although as supply voltage decreases, switch on-resistance and switching times become very high. _______________________________________________________________________________________ 9 MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches Overvoltage Protection Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence VCC on first, then VEE, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog-signal range to one diode drop below VCC and one diode drop above VEE, but does not affect the devices’ low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between VCC and VEE should not exceed 13V. These protection diodes are not recommended when using a single supply if signal levels must extend to ground. High-Frequency Performance In 50Ω systems, signal response is reasonably flat up to 50MHz (see Typical Operating Characteristics ). Above 20MHz, the on response has several minor peaks which are highly layout dependent. The problem is not turning the switch on, but turning it off. The offstate switch acts like a capacitor and passes higher frequencies with less attenuation. At 10MHz, off isolation is about -50dB in 50Ω systems, becoming worse (approximately 20dB per decade) as frequency increases. Higher circuit impedances also degrade off isolation. Adjacent channel attenuation is about 3dB above that of a bare IC socket and is entirely due to capacitive coupling. Pin Nomenclature The MAX4581/MAX4582/MAX4583 are pin-compatible with the industry-standard 74HC4051/74HC4052/ 74HC4053 and the MAX4051/MAX4052/MAX4053. They function identically and have identical logic diagrams, although these parts differ electrically. 10 VCC D1 EXTERNAL BLOCKING DIODE MAX4581 MAX4582 MAX4583 VCC X, Y, Z * * * * X_, Y_, Z_ VEE D2 EXTERNAL BLOCKING DIODE VEE *INTERNAL PROTECTION DIODES Figure 1. Overvoltage Protection Using External Blocking Diodes The pin designations and logic diagrams in this data sheet conform to the original 1972 specifications published by RCA for the CD4051/CD4052/CD4053. These designations differ from the standard Maxim switch and mux designations as found all other Maxim data sheets (including the MAX4051/MAX4052/MAX4053) and may cause confusion. Designers who feel more comfortable with Maxim’s standard designations are advised that the pin designations and logic diagrams on the MAX4051/MAX4052/MAX4053 data sheet may be freely applied to the MAX4581/MAX4582/MAX4583. ______________________________________________________________________________________ Low-Voltage, CMOS Analog Multiplexers/Switches VCC VA, VB, VC 50Ω A VA, VB, VC VCC X0 B VCC X1–X6 VX0 X7 Enable 90% VEE VOUT X GND 50% 0V C MAX4581 VCC VEE 0V VOUT 35pF 90% VX7 300Ω VEE tTRANS tTRANS VCC VA, VB 50Ω A B VA, VB VCC X0, Y0 VCC VX0, VY0 MAX4582 X3, Y3 90% VEE X, Y GND 50% 0V X1, X2, Y1, Y2 Enable VCC VOUT VEE 35pF 0V VOUT 90% VX3, VY3 300Ω VEE tTRANS tTRANS VCC VA, VB, VC VCC VA, VB, VC X1, Y1, Z1 A, B, C VEE VX0, VY0, VZ0 MAX4583 Enable GND VCC X, Y, Z VEE VOUT 35pF 300Ω VEE 50% 0V 50Ω X2, Y2, Z2 VCC 90% 0V VOUT 90% VX1, VY1, VZ1 tTRANS tTRANS VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY. Figure 2. Address Transition Times ______________________________________________________________________________________ 11 MAX4581/MAX4582/MAX4583 ______________________________________________Test Circuits/Timing Diagrams MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches _________________________________Test Circuits/Timing Diagrams (continued) VCC A VEnable VCC X0 B VCC VCC 50% 0V X1–X7 VX0 C 90% MAX4581 VEnable Enable VOUT X GND 50Ω VEE VOUT 90% 35pF 0V 300Ω VEE tOFF tON VCC A B VEnable VCC X0, Y0 VCC VCC 50% 0V X1–X3, Y1–Y3 VX0, VY0 90% MAX4582 VEnable Enable X, Y GND VOUT VEE 50Ω 35pF VOUT 90% 0V 300Ω VEE tOFF tON VCC A B C VCC VEnable X1, Y1, Z1 VCC 0V VEE VX0, VY0, VZ0 MAX4583 X0, Y0, Z0 VEnable Enable X, Y, Z GND VOUT VEE 50Ω 35pF 300Ω VEE VCC 50% 90% VOUT 90% VX1, VY1, VZ1 tON VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY. Figure 3. Inhibit Switching Times 12 ______________________________________________________________________________________ tOFF Low-Voltage, CMOS Analog Multiplexers/Switches VCC VCC VA, VB, VC VCC A 50Ω VA, VB X0–X7 B VCC A VCC X0–X3, Y0–Y3 B 50Ω VCC C MAX4582 MAX4581 Enable VOUT X GND VEE Enable X, Y GND 35pF VOUT VEE 35pF 300Ω 300Ω VEE VEE VCC VA, VB, VC VCC X0, X1, Y0, Y1, Z0, Z1 A, B, C tR < 20ns tF < 20ns V+ VA, VB, VC VCC 0V 50Ω VX, VY, VZ MAX4583 Enable 80% X, Y, Z GND 50% VOUT VEE 35pF 300Ω VEE VOUT 0V VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY. tBBM Figure 4. Break-Before-Make Interval VCC VCC X_, Y_, Z_ A CHANNEL SELECT VEnable VCC 0V B C VEnable MAX4581 MAX4582 MAX4583 Enable GND 50Ω X, Y, Z VEE VEE VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY. VOUT ∆ VOUT VOUT CL = 1000pF ∆ VOUT IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF. Q = ∆ VOUT X CL Figure 5. Charge Injection ______________________________________________________________________________________ 13 MAX4581/MAX4582/MAX4583 _________________________________Test Circuits/Timing Diagrams (continued) MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches _________________________________Test Circuits/Timing Diagrams (continued) VCC 10nF VCC A CHANNEL SELECT VIN NETWORK ANALYZER 50Ω 50Ω X_, Y_, Z_ OFF ISOLATION = 20log VIN B C MAX4581 MAX4582 MAX4583 Enable GND ON LOSS = 20log VOUT X, Y, Z VEE MEAS. REF. CROSSTALK = 20log 50Ω 50Ω 10nF VEE MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS. OFF ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH. ON LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH. CROSSTALK (MAX4582/MAX4583) IS MEASURED FROM ONE CHANNEL (A, B, C) TO ALL OTHER CHANNELS. SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED. Figure 6. Off Isolation, On Loss, and Crosstalk VCC A CHANNEL SELECT VCC X_, Y_, Z_ B C Enable MAX4581 MAX4582 MAX4583 GND X, Y, Z VEE 1MHz CAPACITANCE ANALYZER VEE Figure 7. Capacitance 14 VOUT ______________________________________________________________________________________ VOUT VIN VOUT VIN Low-Voltage, CMOS Analog Multiplexers/Switches PART MAX4581CEE MAX4581C/D MAX4581EPE MAX4581ESE TEMP. RANGE 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 16 QSOP Dice* 16 Plastic DIP 16 Narrow SO MAX4581EUE MAX4581EEE MAX4581ASE MAX4581AUE MAX4582CPE -40°C to +85°C -40°C to +85°C -40°C to +125°C -40°C to +125°C 0°C to +70°C 16 TSSOP 16 QSOP 16 Narrow SO 16 TSSOP 16 Plastic DIP MAX4582CSE 0°C to +70°C 16 Narrow SO MAX4582CUE MAX4582CEE MAX4582C/D MAX4582EPE MAX4582ESE 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C 16 TSSOP 16 QSOP Dice* 16 Plastic DIP 16 Narrow SO PART TEMP. RANGE PIN-PACKAGE MAX4582EUE MAX4582EEE MAX4582ASE MAX4582AUE -40°C to +85°C -40°C to +85°C -40°C to +125°C -40°C to +125°C 16 TSSOP 16 QSOP 16 Narrow SO 16 TSSOP MAX4583CPE MAX4583CSE MAX4583CUE MAX4583CEE MAX4583C/D MAX4583EPE MAX4583ESE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C 16 Plastic DIP 16 Narrow SO 16 TSSOP 16 QSOP Dice* 16 Plastic DIP 16 Narrow SO MAX4583EUE -40°C to +85°C 16 TSSOP MAX4583EEE -40°C to +85°C 16 QSOP MAX4583ASE -40°C to +125°C 16 Narrow SO MAX4583AUE -40°C to +125°C 16 TSSOP *Contact factory for availability. __________________________________________________________Chip Topographies MAX4581 X6 X4 VCC MAX4582 X2 Y2 Y0 VCC X2 X1 X X1 Y N.C. X7 X Y3 X0 X5 X0 Y1 X3 X3 0.069" (1.75mm) 0.069" (1.75mm) A A Enable Enable VEE GND C 0.053" (1.35mm) VEE B GND B 0.053" (1.35mm) N.C. N.C. = NO CONNECTION TRANSISTOR COUNT: 219 SUBSTRATE CONNECTED TO V+. TRANSISTOR COUNT: 219 SUBSTRATE CONNECTED TO V+. ______________________________________________________________________________________ 15 MAX4581/MAX4582/MAX4583 _Ordering Information (continued) ____Chip Topographies (continued) MAX4583 Y0 Y1 VCC Y X Z1 N.C. Z X1 Z0 X0 0.069" (1.75mm) A Enable VEE GND C 0.053" (1.35mm) B N.C. = NO CONNECTION TRANSISTOR COUNT: 219 SUBSTRATE CONNECTED TO V+. ________________________________________________________Package Information TSSOP.EPS MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1999 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.