19-0269; Rev 0; 9/94 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators The MAX603/MAX604 low-dropout, low quiescent current, linear regulators supply 5V, 3.3V, or an adjustable output for currents up to 500mA. They are available in a 1.8W SO package. Typical dropouts are 320mV at 5V and 500mA, or 240mV at 3.3V and 200mA. Quiescent currents are 15µA typ and 35µA max. Shutdown turns off all circuitry and puts the regulator in a 2µA off mode. A unique protection scheme limits reverse currents when the input voltage falls below the output. Other features include foldback current limiting and thermal overload protection. The output is preset at 3.3V for the MAX604 and 5V for the MAX603. In addition, both devices employ Dual Mode™ operation, allowing user-adjustable outputs from 1.25V to 11V using external resistors. The input voltage supply range is 2.7V to 11.5V. The MAX603/MAX604 feature a 500mA P-channel MOSFET pass transistor. This transistor allows the devices to draw less than 35µA over temperature, independent of the output current. The supply current remains low because the P-channel MOSFET pass transistor draws no base currents (unlike the PNP transistors of conventional bipolar linear regulators). Also, when the input-to-output voltage differential becomes small, the internal P-channel MOSFET does not suffer from excessive base current losses that occur with saturated PNP transistors. ________________________Applications 5V and 3.3V Regulators 1.25V to 11V Adjustable Regulators Battery-Powered Devices Pagers and Cellular Phones Portable Instruments Solar-Powered Instruments ____________________________Features ♦ 500mA Output Current, with Foldback Current Limiting ♦ High-Power (1.8W) 8-Pin SO Package ♦ Dual Mode™ Operation: Fixed or Adjustable Output from 1.25V to 11V ♦ Large Input Range (2.7V to 11.5V) ♦ Internal 500mA P-Channel Pass Transistor ♦ 15µA Typical Quiescent Current ♦ 2µA (Max) Shutdown Mode ♦ Thermal Overload Protection ♦ Reverse-Current Protection ______________Ordering Information PART TEMP. RANGE PIN-PACKAGE MAX603CPA 0°C to +70°C 8 Plastic DIP MAX603CSA MAX603C/D MAX603EPA MAX603ESA MAX603MJA MAX604CPA 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -55°C to +125°C 0°C to +70°C 8 SO Dice* 8 Plastic DIP 8 SO 8 CERDIP** 8 Plastic DIP MAX604CSA MAX604C/D MAX604EPA MAX604ESA MAX604MJA 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -55°C to +125°C 8 SO Dice* 8 Plastic DIP 8 SO 8 CERDIP** * Dice are tested at TA = +25°C, DC parameters only. ** Contact factory for availability. __________Typical Operating Circuit __________________Pin Configuration TOP VIEW OUT IN OUTPUT VOLTAGE MAX603 MAX604 BATTERY CIN 10µF OFF GND IN 1 GND 2 COUT 10µF SET GND 3 MAX603 MAX604 OFF 4 8 OUT 7 GND 6 GND 5 SET DIP/SO ™ Dual Mode is a trademark of Maxim Integrated Products. ________________________________________________________________ Maxim Integrated Products Call toll free 1-800-998-8800 for free samples or literature. 1 MAX603/MAX604 _______________General Description MAX603/MAX604 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators ABSOLUTE MAXIMUM RATINGS Supply Voltage (IN or OUT to GND).......................-0.3V to +12V Output Short-Circuit Duration ..............................................1 min Continuous Output Current ...............................................600mA SET, OFF Input Voltages ...........................-0.3V to the greater of (IN + 0.3V) or (OUT + 0.3V) Continuous Power Dissipation (TA = +70°C) Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW SO (derate 23.6mW/°C above +70°C) .............................1.8W CERDIP (derate 8.00mW/°C above +70°C) .................640mW Operating Temperature Ranges MAX60_C_A ........................................................0°C to +70°C MAX60_E_A .....................................................-40°C to +85°C MAX60_MJA ..................................................-55°C to +125°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VIN = 6V (MAX603) or 4.3V (MAX604), CIN = COUT = 10µF, OFF = VIN, SET = GND, TJ = TMIN to TMAX, unless otherwise noted. Typical values are at TJ = +25°C.) (Note 1) PARAMETER Input Voltage Output Voltage (Note 2) Load Regulation SYMBOL VIN VOUT ∆VLDR CONDITIONS ∆VLNR ∆VDO 2.7 11.5 2.9 11.5 MAX60_M 3.0 11.5 IOUT = 20µA to 500mA, 6.0V < VIN < 11.5V MAX603 4.75 IOUT = 20µA to 300mA, 4.3V < VIN < 11.5V MAX604 IOUT = 1mA to 500mA IOUT = 500mA IOUT = 200mA OFF Quiescent Current Minimum Load Current IQ IQ OFF IOUT MIN 3.0V ≤ VIN ≤ 11.5V, SET = OUT OFF ≤ 0.4V, RL = 1kΩ, (VOUT + 1V) ≤ VIN ≤ 11.5V VIN = 11.5V, SET = OUT 5.00 MAX603C/E 3.15 3.30 60 MAX603M Thermal Shutdown Temperature Thermal Shutdown Hysteresis 2 ILIM V 5.25 MAX604 MAX603 MAX604 MAX60_C/E 30 100 7 40 220 320 550 240 410 480 820 15 35 40 0.01 mV 100 130 MAX60_M MAX60_C 3.45 150 mV mV µA 2 MAX60_E 10 MAX60_M 20 MAX60_C 2 MAX60_E 6 MAX60_M Foldback Current Limit (Note 4) UNITS V (VOUT + 0.5V) ≤ VIN ≤ 11.5V, IOUT = 25mA IOUT = 400mA Quiescent Current MAX MAX60_E IOUT = 200mA Dropout Voltage (Note 3) TYP MAX60_C SET = OUT, RL = 1kΩ IOUT = 1mA to 300mA Line Regulation MIN µA µA 20 VOUT < 0.8V 350 VOUT > 0.8V and VIN - VOUT > 0.7V 1200 mA TSD 160 °C ∆TSD 10 °C _______________________________________________________________________________________ 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators MAX603/MAX604 ELECTRICAL CHARACTERISTICS (continued) (VIN = 6V (MAX603) or 4.3V (MAX604), CIN = COUT = 10µF, OFF = VIN, SET = GND, TJ = TMIN to TMAX, unless otherwise noted. Typical values are at TJ = +25°C.) (Note 1) PARAMETER Reverse-Current Protection Threshold (Note 5) SYMBOL ∆VRTH CONDITIONS MIN IRVL MAX603 6 20 VOUT = 3.0V MAX604 6 20 0.01 10 VIN = 0V, VOUT = 4.5V (MAX603) VOUT = 3.0V (MAX604) MAX60_E 20 MAX60_M 100 VOSH RL = 1kΩ, COUT = 10µF, OFF rise time ≤ 1µs Time Required to Exit Shutdown tSTART VIN = 9V, RL = 18Ω, V OFF switched from 0V to VIN, time from 0% to 95% of VOUT Dual-Mode SET Threshold VSET TH Start-Up Overshoot For internal feedback 2 %VOUT 200 µs 80 1.24 V ±0.01 ±10 nA 0.01 2 VSET = 1.5V or 0V MAX60_C VIN = 11.5V, VOUT = 2V, SET = OUT MAX60_E 6 MAX60_M OFF Input Leakage Current Output Noise (Note 6) IOFF en mV 1.20 ISET VIH OFF 30 1.16 SET Input Leakage Current OFF Threshold Voltage µA 80 SET = OUT, RL = 1kΩ VIL OFF mV 150 VSET IOUT LKG UNITS For external feedback SET Reference Voltage OUT Leakage Current MAX VOUT = 4.5V MAX60_C Reverse Leakage Current TYP 20 Off 0.4 On, SET = OUT, VIN = 4V 2.0 On, SET = OUT, VIN = 6V 3.0 On, SET = OUT, VIN = 11.5V 4.0 V OFF = VIN or GND 10Hz to 10kHz, SET = OUT, RL = 1kΩ, COUT = 10µF µA V ±0.01 250 ±10 nA µVRMS Note 1: Electrical specifications are measured by pulse testing and are guaranteed for a junction temperature (TJ) equal to the operating temperature range. C and E grade parts may be operated up to a TJ of +125°. Expect performance similar to M grade specifications. For TJ between +125°C and +150°C, the output voltage may drift more. Note 2: (VIN - VOUT) is limited to keep the product (IOUT x (VIN - VOUT)) from exceeding the package power dissipation limits. Note 3: Dropout Voltage is (VIN - VOUT) when VOUT falls to 100mV below its nominal value at VIN = VOUT + 2V. For example, the MAX603 is tested by measuring the VOUT at VIN = 7V, then VIN is lowered until VOUT falls 100mV below the measured value. The difference (VIN - VOUT) is then measured and defined as ∆VDO. Note 4: Foldback Current Limit was characterized by pulse testing to remain below the maximum junction temperature. Note 5: The Reverse-Current Protection Threshold is the output/input differential voltage (VOUT - VIN) at which reverse-current protection switchover occurs and the pass transistor is turned off. Note 6: Noise is tested using a bandpass amplifier with two poles at 10Hz and two poles at 10kHz. _______________________________________________________________________________________ 3 __________________________________________Typical Operating Characteristics (VIN = 7V for MAX603, VIN = 5.3V for MAX604, OFF = VIN, SET = GND, CIN = COUT = 10µF, RL = 1kΩ, TJ = +25°C, unless otherwise noted.) 0.97 VOUT = 3.3V, 5V, 10V NORMALIZED TO OUTPUT VOLTAGE AT 1mA 0.96 MAX603, VIN = 7V, VOUT = 5V 15 10 MAX604, VIN = 5.3V, VOUT = 3.3V 700 0.1 10 1 100 LOAD CURRENT (mA) LOAD CURRENT (mA) OUTPUT VOLTAGE vs. TEMPERATURE QUIESCENT CURRENT vs. TEMPERATURE MAX603/4-TOC-04 103 102 101 100 99 98 604 X I Q, MA 8 MAX603 20 MAX604 15 6 3 2 5 4 7 6 0.9 10 0 5 25 45 65 85 105 125 0.6 5 25 45 2Ω 0.4 ) ON 0.3 65 85 105 125 S( RD = 1. )= N S(O 100 200 300 400 LINE-TRANSIENT RESPONSE OUTPUT NOISE (1mV/div) MAX603 VOUT = 5V tR = 10µs, tF = 70µs 2ms/div A: VIN = 8V (HIGH), VIN = 7V (LOW) B: OUTPUT VOLTAGE (50mV/div) 4 500 LOAD CURRENT (mA) B 10ms/div N) R DS(O RD A MAX603 VOUT = 5V 5Ω 0.6 Ω = 0.4 MAX603, VOUT = 10V, SET EXTERNALLY 0 TEMPERATURE (°C) 10Hz TO 10kHz OUTPUT NOISE MAX603 VOUT = 5V 0.5 0 -55 -35 -15 10 11 12 0.7 0.2 5 TEMPERATURE (°C) 9 MAX604 VOUT = 3.3V 0.8 0.1 -55 -35 -15 8 DROPOUT VOLTAGE vs. LOAD CURRENT 97 96 14 12 2 SUPPLY VOLTAGE (V) 25 QUIESCENT CURRENT (µA) 104 3 700 DROPOUT VOLTAGE (V) 100 18 16 0 MAX603/4-TOC-05 10 1 AX I Q, M MAX604, VOUT = 3.3V 1 UPWARD CURVE IS THERMAL EFFECT 0 0.1 603 4 10 5 0.95 MAX603, VIN = 12V, VOUT = 10V _______________________________________________________________________________________ 600 700 MAX1603/4 TOC-03 20 MAX603/4-TOC-06 0.98 20 22 MAX603, VOUT = 5V 5 OUTPUT VOLTAGE (V) 0.99 25 24 6 MAX603/4-TOC-02 MAX603/4-TOC-01 1.00 30 QUIESCENT CURRENT (µA) NORMALIZED OUTPUT VOLTAGE 1.01 OUTPUT VOLTAGE AND QUIESCENT CURRENT vs. SUPPLY VOLTAGE QUIESCENT CURRENT vs. LOAD CURRENT QUIESCENT CURRENT (µA) OUTPUT VOLTAGE vs. LOAD CURRENT NORMALIZED OUTPUT VOLTAGE (%) MAX603/MAX604 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators OVERSHOOT AND TIME EXITING SHUTDOWN MODE LOAD-TRANSIENT RESPONSE B 5V A A B MAX603 VOUT = 5V 0V 2ms/div 500µs/div A: OFF PIN VOLTAGE (1V/div) RISE TIME = 13µs B: MAX603 OUTPUT VOLTAGE (1V/div) DELAY = 4.936ms, OVERSHOOT = 1%, RISE TIME = 55µs A: OUTPUT VOLTAGE (100mV/div) B: IOUT = 500mA (HIGH), IOUT = 5mA (LOW) ______________________________________________________________Pin Description PIN NAME DESCRIPTION 1 IN 2, 3, 6, 7 GND Ground. These pins function as heatsinks, only in the SOIC package. All GND pins must be soldered to the circuit board for proper power dissipation. Connect to large copper pads or planes to channel heat from the IC. 4 OFF Shutdown, active low. Switch logic levels in less than 1µs with the high level above the OFF threshold. 5 SET Feedback for Setting the Output Voltage. Connect to GND to set the output voltage to the preselected 3.3V or 5V. Connect to an external resistor network for adjustable output operation. 8 OUT Regulator Output. Fixed or adjustable from 1.25V to 11.0V. Sources up to 500mA for input voltages above 4V. Regulator Input. Supply voltage can range from 2.7V to 11.5V. 1 8 MAX603 OUT MAX604 2 7 GND GND VIN 3 CIN 10µF 4 IN GND OFF GND SET 6 VOUT R1 COUT 10µF 5 RL R2 Figure 1. Test Circuit _______________________________________________________________________________________ 5 MAX603/MAX604 _____________________________Typical Operating Characteristics (continued) (VIN = 7V for MAX603, VIN = 5.3V for MAX604, OFF = VIN, SET = GND, CIN = COUT = 10µF, RL = 1kΩ, TJ = +25°C, unless otherwise noted.) MAX603/MAX604 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators IN SHUTDOWN ERROR AMP OFF MOSFET DRIVER WITH FOLDBACK CURRENT LIMIT REVERSE CURRENT PROTECTION P SHUTDOWN LOGIC OUT SET R1 1.20V REFERENCE THERMAL SENSOR DUAL-MODE COMPARATOR 80mV R2 MAX603 MAX604 GND Figure 2. Functional Diagram _______________Detailed Description The MAX603/MAX604 are low-dropout, low-quiescentcurrent linear regulators designed primarily for batterypowered applications. They supply an adjustable 1.25V to 11V output or a preselected 5V (MAX603) or 3.3V (MAX604) output for load currents up to 500mA. As illustrated in Figure 2, they consist of a 1.20V reference, error amplifier, MOSFET driver, P-channel pass transistor, dual-mode comparator, and internal feedback voltage divider. The 1.20V bandgap reference is connected to the error amplifier’s inverting input. The error amplifier compares this reference with the selected feedback voltage and amplifies the difference. The MOSFET driver reads the error signal and applies the appropriate drive to the Pchannel pass transistor. If the feedback voltage is lower than the reference, the pass transistor gate is pulled lower, allowing more current to pass and increasing the output voltage. If the feedback voltage is too high, the pass transistor gate is pulled up, allowing less current to pass to the output. 6 The output voltage is fed back through either an internal resistor voltage divider connected to the OUT pin, or an external resistor network connected to the SET pin. The dual-mode comparator examines the SET voltage and selects the feedback path used. If SET is below 80mV, internal feedback is used and the output voltage is regulated to 5V for the MAX603 or 3.3V for the MAX604. Additional blocks include a foldback current limiter, reverse current protection, thermal sensor, and shutdown logic. Internal P-Channel Pass Transistor The MAX603/MAX604 feature a 500mA P-channel MOSFET pass transistor. This provides several advantages over similar designs using PNP pass transistors, including longer battery life. The P-channel MOSFET requires no base drive, which reduces quiescent current considerably. PNP based regulators waste considerable amounts of current in dropout when the pass transistor saturates. They also use high base-drive currents under large loads. The MAX603/MAX604 do not suffer from these problems and consume only 15µA of quiescent current under light and heavy loads, as well as in dropout. _______________________________________________________________________________________ 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators MAX603 MAX604 CIN BATTERY 0.1µF to 10µF OUTPUT VOLTAGE OUT IN OFF R1 SET COUT 10µF R2 GND RL R1 VOUT = VSET 1 + R2 where VSET = 1.20V. To simplify resistor selection: Figure 3. Adjustable Output Using External Feedback Resistors V R1 = R2 OUT - 1 VSET Since the input bias current at SET is nominally zero, large resistance values can be used for R1 and R2 to minimize power consumption without losing accuracy. Up to 1.5MΩ is acceptable for R2. Since the VSET tolerance is less than ±40mV, the output can be set using fixed resistors instead of trim pots. In preset voltage mode, impedances between SET and ground should be less than 10kΩ. Otherwise, spurious conditions could cause the voltage at SET to exceed the 80mV dual-mode threshold. Shutdown A low input on the OFF pin shuts down the MAX603/ MAX604. In the off mode, the pass transistor, control circuit, reference, and all biases are turned off, reducing the supply current below 2µA. OFF should be connected to IN for normal operation. Use a fast comparator, Schmitt trigger, or CMOS or TTL logic to drive the OFF pin in and out of shutdown. Rise times should be shorter than 1µs. Do not use slow RC circuits, leave OFF open, or allow the input to linger between thresholds; these measures will prevent the output from jumping to the positive supply rail in response to an indeterminate input state. Since the OFF threshold varies with input supply voltage (see Electrical Characteristics), do not derive the drive voltage from 3.3V logic. With VIN at 11.5V, the high OFF logic level needs to be above 4V. Foldback Current Limiting The MAX603/MAX604 also include a foldback current limiter. It monitors and controls the pass transistor’s gate voltage, estimating the output current and limiting it to 1.2A for output voltages above 0.8V and VIN - VOUT > 0.7V. For VIN - VOUT < 0.7V (dropout operation), there is no current limit. If the output voltage drops below 0.8V, implying a short-circuit condition, the output current is limited to 350mA. The output can be shorted to ground for one minute without damaging the device if the package can dissipate V IN x 350mA without exceeding TJ = +150°C. Thermal Overload Protection Thermal overload protection limits total power dissipation in the MAX603/MAX604. When the junction temperature exceeds TJ = +160°C, the thermal sensor sends a signal to the shutdown logic, turning off the pass transistor and allowing the IC to cool. The thermal sensor will turn the pass transistor on again after the IC’s junction temperature cools by 10°C, resulting in a pulsed output during thermal overload conditions. Thermal overload protection is designed to protect the MAX603/MAX604 in the event of fault conditions. For continual operation, the absolute maximum junction temperature rating of TJ = +150°C should not be exceeded. Operating Region and Power Dissipation Maximum power dissipation of the MAX603/MAX604 depends on the thermal resistance of the case and circuit board, the temperature difference between the die junction and ambient air, and the rate of air flow. The power dissipation across the device is P = IOUT (VIN VOUT). The resulting maximum power dissipation is: ( ) TJ - TA P MAX = θ JB + θBA ( ) where (TJ - TA) is the temperature difference between the MAX603/MAX604 die junction and the surrounding _______________________________________________________________________________________ 7 MAX603/MAX604 Output Voltage Selection The MAX603/MAX604 feature dual-mode operation. In preset voltage mode, the output of the MAX603 is set to 5V and the output of the MAX604 is set to 3.3V using internal, trimmed feedback resistors. Select this mode by connecting SET to ground. In adjustable mode, an output between 1.25V and 11V is selected using two external resistors connected as a voltage divider to SET (Figure 3). The output voltage is set by the following equation: MAXIMUM OUTPUT CURRENT vs. SUPPLY VOLTAGE POWER DISSIPATION vs. GROUND PAD AREA 1.5 1.4 MAX603, VOUT = 5V 8-PIN SO PACKAGE PAPER EPOXY BOARD SINGLE SIDED 1oz. COPPER TJ = +125°C TA = +25°C STILL AIR 1.3 1.2 1.1 1.0 0.2 1.3 1 6.5 10 65 MAXIMUM CONTINUOUS CURRENT LIMIT 600 HIGH-POWER SOIC 500 400 300 200 PLASTIC DIP OPERATING REGION AT TA = +25°C TJ = +125°C 100 0 20 (in2) 130 (cm2) 4 5 6 MAXIMUM SUPPLY VOLTAGE LIMIT MAX603/4 FIG 4 1.6 MAXIMUM OUTPUT CURRENT (mA) POWER DISSIPATION (W) 1.7 700 MAX603/4-FIG-04A MAX603 1.8 TYPICAL DROPOUT VOLTAGE LIMIT MAX603/MAX604 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators CERAMIC DIP 8 9 10 11 12 7 SUPPLY VOLTAGE (V) 13 COPPER GROUND PAD AREA Figure 4 assumes the IC is an 8-pin SOIC package, is soldered directly to the pad, has a +125°C maximum junction temperature and a +25°C ambient air temperature, and has no other heat sources. Use larger pad sizes for other packages, lower junction temperatures, higher ambient temperatures, or conditions where the IC is not soldered directly to the heat-sinking ground pad. The MAX603/MAX604 can regulate currents up to 500mA and operate with input voltages up to 11.5V, but not simultaneously. High output currents can only be sustained when input-output differential voltages are 8 500 HIGH-POWER SOIC 400 300 200 PLASTIC DIP OPERATING REGION AT TA = +25°C TJ = +125°C 100 0 2 3 4 MAXIMUM SUPPLY VOLTAGE LIMIT 600 TYPICAL DROPOUT VOLTAGE LIMIT air, θJB (or θJC) is the thermal resistance of the package chosen, and θBA is the thermal resistance through the printed circuit board, copper traces and other materials to the surrounding air. The 8-pin SOIC package for the MAX603/MAX604 features a special lead frame with a lower thermal resistance and higher allowable power dissipation. The thermal resistance of this package is θJB = 42°C/W, compared with θJB = 110°C/W for an 8pin plastic DIP package and θJB = 125°C/W for an 8-pin ceramic DIP package. The GND pins of the MAX603/MAX604 SOIC package perform the dual function of providing an electrical connection to ground and channeling heat away. Connect all GND pins to ground using a large pad or ground plane. Where this is impossible, place a copper plane on an adjacent layer. The pad should exceed the dimensions in Figure 4. MAXIMUM OUTPUT CURRENT (mA) Figure 4. Typical Maximum Power Dissipation vs. Ground Pad Size. MAXIMUM CONTINUOUS CURRENT LIMIT MAX603/4-FIG-04B MAX604 700 CERAMIC DIP 5 6 7 8 9 10 11 12 13 SUPPLY VOLTAGE (V) Figure 5. Power Operating Regions: Maximum Output Current vs. Differential Supply Voltage low, as shown in Figure 5. Maximum power dissipation depends on packaging, board layout, temperature, and air flow. The maximum output current is: IOUT(max ) = ( PMAX × TJ - TA (VIN ) ) - VOUT × 100°C where PMAX is derived from Figure 4. Reverse-Current Protection The MAX603/MAX604 has a unique protection scheme that limits reverse currents when the input voltage falls below the output. It monitors the voltages on IN and OUT and switches the IC’s substrate and power bus to _______________________________________________________________________________________ 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators OUT IN OFF CIN BATTERY OUTPUT VOLTAGE MAX603 MAX604 COUT 10µF GND SET Figure 6. 3.3V or 5V Linear-Regulator Application Figure 6 illustrates the typical application for the MAX603/MAX604. Capacitor Selection and Regulator Stability Normally, use 0.1µF to 10µF capacitors on the input and 10µF on the output of the MAX603/MAX604. The larger input capacitor values provide better supplynoise rejection and line-transient response. Improve load-transient response, stability, and power-supply rejection by using large output capacitors. For stable operation over the full temperature range and with load currents up to 500mA, 10µF is recommended. Using capacitors smaller than 3.3µF can result in oscillation. Noise POWER-SUPPLY REJECTION RATIO vs. FREQUENCY 80 MAX603/4-FIG-06 90 IOUT = 1mA 70 PSRR (dB) 60 PSRR and Operation from Sources Other than Batteries 50 40 30 20 10 0 The MAX603/MAX604 exhibit 3mVp-p to 4mVp-p of noise during normal operation. This is negligible in most applications. When using the MAX603/MAX604 in applications that include analog-to-digital converters of greater than 12 bits, consider the ADC’s power-supply rejection specifications. Refer to the output noise plot in the Typical Operating Characteristics. IOUT = 100mA VIN = 1Vp-p FOR f < 400kHz CIN = 0µF COUT = 10µF 100 101 102 103 104 105 106 FREQUENCY (Hz) Figure 7. Power-Supply Rejection Ratio vs. Ripple Frequency the more positive of the two. The control circuitry can then remain functioning and turn the pass transistor off, limiting reverse currents back through the device. This feature allows a backup regulator or battery pack to maintain VOUT when the supply at IN fails. Reverse-current protection activates when the voltage on IN falls 6mV (20mV maximum) below the voltage on OUT. Before this happens, currents as high as several milliamperes can flow back through the device. After switchover, typical reverse currents are limited to 0.01µA for as long as the condition exists. The MAX603/MAX604 are designed to deliver low dropout voltages and low quiescent currents in batterypowered systems. Achieving these objectives requires trading off power-supply noise rejection and swift response to supply variations and load transients. Power-supply rejection is 80dB at low freqencies and rolls off above 10Hz. As the frequency increases above 10kHz, the output capacitor is the major contributor to the rejection of power-supply noise (Figure 7). Do not use power supplies with ripple above 100kHz, especially when the ripple exceeds 100mVp-p. When operating from sources other than batteries, improved supplynoise rejection and transient response can be achieved by increasing the values of the input and output capacitors, and through passive filtering techniques. The Typical Operating Characteristics show the MAX603/ MAX604 supply and load-transient responses. Transient Considerations The Typical Operating Characteristics show the MAX603/MAX604 load-transient response. Two components of the output response can be observed on the load-transient graphs—a DC shift from the output impedance due to the different load currents, and the transient response. Typical transients for step changes in the load current from 5mA to 500mA are 0.2V. Increasing the output capacitor’s value attenuates transient spikes. _______________________________________________________________________________________ 9 MAX603/MAX604 __________Applications Information MAX603/MAX604 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators Input-Output (Dropout) Voltage A regulator’s minimum input-output voltage differential, or dropout voltage, determines the lowest usable supply voltage. In battery-powered systems, this will determine the useful end-of-life battery voltage. Because the MAX603/MAX604 use a P-channel MOSFET pass transistor, their dropout voltage is a function of rDS(ON) multiplied by the load current (see Electrical Characteristics). Quickly stepping up the input voltage from the dropout voltage can result in overshoot. This occurs when the pass transistor is fully on at dropout and the IC is not given time to respond to the supply voltage change. Prevent this by slowing the input voltage rise time. ___________________Chip Topography IN OUT 0.100" (2.54mm) OFF GND SET 0.104" (2.64mm) TRANSISTOR COUNT: 111 NO DIRECT SUBSTRATE CONNECTION. THE N-SUBSTRATE IS INTERNALLY SWITCHED BETWEEN THE MORE POSITIVE OF IN OR OUT. 10 ______________________________________________________________________________________ 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators D E DIM E1 A A1 A2 A3 B B1 C D1 E E1 e eA eB L A3 A A2 L A1 0° - 15° C e B1 eA B eB D1 P PACKAGE PLASTIC DUAL-IN-LINE DIM PINS D D D D D D DIM D 0°-8° A 0.101mm 0.005in. e B A1 E C H L S PACKAGE SMALL OUTLINE INCHES MAX MIN 0.200 – – 0.015 0.175 0.125 0.080 0.055 0.022 0.016 0.065 0.045 0.012 0.008 0.080 0.005 0.325 0.300 0.310 0.240 – 0.100 – 0.300 0.400 – 0.150 0.115 A A1 B C E e H L 8 14 16 18 20 24 INCHES MAX MIN 0.069 0.053 0.010 0.004 0.019 0.014 0.010 0.007 0.157 0.150 0.050 0.244 0.228 0.050 0.016 DIM PINS D D D INCHES MIN MAX 0.348 0.390 0.735 0.765 0.745 0.765 0.885 0.915 1.015 1.045 1.14 1.265 8 14 16 MILLIMETERS MIN MAX – 5.08 0.38 – 3.18 4.45 1.40 2.03 0.41 0.56 1.14 1.65 0.20 0.30 0.13 2.03 7.62 8.26 6.10 7.87 2.54 – 7.62 – – 10.16 2.92 3.81 MILLIMETERS MIN MAX 8.84 9.91 18.67 19.43 18.92 19.43 22.48 23.24 25.78 26.54 28.96 32.13 MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.19 0.25 3.80 4.00 1.27 5.80 6.20 0.40 1.27 INCHES MILLIMETERS MIN MAX MIN MAX 0.189 0.197 4.80 5.00 0.337 0.344 8.55 8.75 0.386 0.394 9.80 10.00 21-0041A ______________________________________________________________________________________ 11 MAX603/MAX604 ________________________________________________________Package Information MAX603/MAX604 5V/3.3V or Adjustable, Low-Dropout, Low IQ, 500mA Linear Regulators ___________________________________________Package Information (continued) DIM E1 E D A 0°-15° Q L L1 e C B1 B S1 S A B B1 C E E1 e L L1 Q S S1 INCHES MIN MAX – 0.200 0.014 0.023 0.038 0.065 0.008 0.015 0.220 0.310 0.290 0.320 0.100 0.125 0.200 0.150 – 0.015 0.070 – 0.098 0.005 – DIM PINS J PACKAGE (0.300 in.) CERDIP DUAL-IN-LINE D D D D D D 8 14 16 18 20 24 MILLIMETERS MIN MAX – 5.08 0.36 0.58 0.97 1.65 0.20 0.38 5.59 7.87 7.37 8.13 2.54 3.18 5.08 3.81 – 0.38 1.78 – 2.49 0.13 – INCHES MILLIMETERS MIN MAX MIN MAX – 0.405 – 10.29 – 0.785 – 19.94 – 0.840 – 21.34 – 0.960 – 24.38 – 1.060 – 26.92 – 1.280 – 32.51 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 © 1994 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.