AD OP200GS-REEL

a
Dual Low Offset, Low Power
Operational Amplifier
OP200
PIN CONNECTIONS
16-Lead SOIC (S-Suffix)
16
OUT A
15
NC
NC 3
14
NC
V– 4
13
V+
NC 5
12
NC
+IN B 6
11
NC
10
OUT B
–
–IN A 1
+IN A 2
+
+
–IN B 7
–
FEATURES
Low Input Offset Voltage: 75 V Max
Low Offset Voltage Drift, Over –55C < TA < +125C:
0.5 V/C Max
Low Supply Current (Per Amplifier): 725 A Max
High Open-Loop Gain: 5000 V/mV Min
Low Input Bias Current: 2 nA Max
Low Noise Voltage Density: 11 nV/√Hz at 1 kHz
Stable with Large Capacitive Loads: 10 nF Typ
Pin Compatible to OP221, MC1458, and LT1013 with
Improved Performance
Available in Die Form
NC 8
9
NC
NC = NO CONNECT
GENERAL DESCRIPTION
The OP200 is the first monolithic dual operational amplifier to
offer OP77 type precision performance. Available in the industrystandard 8-lead pinout, the OP200 combines precision performance
with the space and cost savings offered by a dual amplifier.
The OP200 features an extremely low input offset voltage of less
than 75 µV with a drift below 0.5 µV/°C, guaranteed over the full
military temperature range. Open-loop gain of the OP200 exceeds
5,000,000 into a 10 kΩ load; input bias current is under 2 nA;
CMR is over 120 dB and PSRR below 1.8 µV/V. On-chip
Zener zap trimming is used to achieve the extremely low input
offset voltage of the OP200 and eliminates the need for offset
pulling.
Power consumption of the OP200 is very low, with each amplifier
drawing less than 725 µA of supply current. The total current
drawn by the dual OP200 is less than one-half that of a single
OP07, yet the OP200 offers significant improvements over this
industry-standard op amp. The voltage noise density of the OP200,
11 nV/√Hz at 1 kHz, is half that of most competitive devices.
8-Lead PDIP (P-Suffix)
8-Lead CERDIP (Z-Suffix)
OUT A 1
–IN A 2
+IN A 3
A
– +
B
+ –
V– 4
8
V+
7
OUT B
6
–IN B
5
+IN B
The OP200 is pin compatible with the OP221, LM158,
MC1458/1558, and LT1013.
The OP200 is an ideal choice for applications requiring multiple
precision op amps and where low power consumption is critical.
For a quad precision op amp, see the OP400.
V+
BIAS
OUT
VOLTAGE
LIMITING
NETWORK
+IN
–IN
V–
REV. B
Figure 1. Simplified Schematic (One of two amplifiers is shown.)
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© 2004 Analog Devices, Inc. All rights reserved.
OP200–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
Parameter
Symbol
Input Offset Voltage
VOS
(VS = ±15 V, TA = 25C, unless otherwise noted.)
Conditions
Min
OP200A/E
Typ
Max
25
Long-Term Input
Voltage Stability
Min
75
0.1
OP200G
Typ
Max
Unit
80
200
µV
µV/mo
0.1
Input Offset Current
IOS
VCM = 0 V
0.05
1.0
0.05
3.5
nA
Input Bias Current
IB
VCM = 0 V
0.1
2.0
0.1
5.0
nA
Input Noise Voltage
en p-p
0.1 Hz to 10 Hz
0.5
Input Noise
Voltage Density*
en
fO = 10 Hz
fO = 1000 Hz
22
11
Input Noise Current
in p-p
0.1 Hz to 10 Hz
Input Noise
Current Density
in
fO = 10 Hz
Input Resistance
Differential Mode
Input Resistance
Common Mode
Large Signal
Voltage Gain
0.5
µVp-p
22
11
nV/√Hz
15
15
pAp-p
0.4
0.4
pA/√Hz
RIN
10
10
MΩ
RINCM
125
125
GΩ
7000
3200
M/mV
AVO
VO – ± 10 V
RL = 10 kΩ
RL = 2 kΩ
5000
2000
12000
3700
36
18
3000
1500
*Sample tested.
Specifications subject to change without notice.
–2–
REV. B
OP200
ELECTRICAL CHARACTERISTICS (V = 15 V, –55C ≤ T ≤ +125C for OP200A, unless otherwise noted.)
S
Parameter
Symbol
Input Offset Voltage
VOS
Average Input Offset Voltage Drift
TCVOS
Input Offset Current
IOS
Input Bias Current
Large Signal Voltage Gain
A
Conditions
Min
OP200A
Typ
Max
Unit
45
125
µV
0.2
0.5
µV/°C
VCM = 0 V
0.15
2.5
nA
IB
VCM = 0 V
0.9
5.0
nA
AVO
VO = 10 V
RL = 10 Ω
RL = 2 kΩ
3000
1000
9000
2700
V/mV
V/mV
± 12
± 12.5
V
115
130
dB
Input Voltage Range*
IVR
Common-Mode Rejection
CMR
VCM = ± 12 V
Power Supply Rejection Ratio
PSRR
VS = +3 V to +18 V
Output Voltage Swing
VO
RL = 10 kΩ
RL = 2 kΩ
Supply Current Per Amplifier
ISY
No Load
600
AV = 1
8
Capacitive Load Stability
0.2
± 12
± 11
µV/V
3.2
± 12.4
± 12
V
V
µA
775
nF
*Guaranteed by CMR test.
Specifications subject to change without notice.
ELECTRICAL CHARACTERISTICS (V = 15 V, T = 25C, unless otherwise noted.)
S
Parameter
Symbol
1
Conditions
Input Voltage Range
IVR
Common-Mode
Rejection
CMR
VCM = ± 12 V
Power Supply
Rejection Ratio
PSRR
VS = ± 3 V
to ± 18 V
Output Voltage
Swing
VO
RL= 10 kΩ
RL = 2 kΩ
Supply Current
Per Amplifier
ISY
No Load
Slew Rate
SR
Gain Bandwidth
Product
GBWP
AV = 1
CS
VO = 20 V p-p
fO = 10 Hz
Channel Separation2
Input Capacitance
A
Min
OP200A/E
Typ
± 12
120
± 12
± 11
± 13
± 12
± 13
V
135
110
130
dB
1.8
± 12.6
± 12.2
570
0.1
0.15
0.6
± 12
± 11
725
0.1
123
Specifications subject to change without notice.
–3–
5.6
Unit
µV/V
V
V
725
µA
0.15
V/µS
500
kHz
145
dB
3.2
3.2
pF
10
10
nF
145
AV = 1
No Oscillations
Max
± 12.6
± 12.2
570
500
NOTES
1
Guaranteed by CMR test.
2
Guaranteed but not 100% tested.
REV. B
OP200G
Typ
0.4
CIN
Capacitive Load
Stability
Min
Max
123
OP200–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (V = ±15 V, –40C ≤ T ≤ +85C, unless otherwise noted.)
S
A
OP200G
Typ
Max
Unit
100
110
300
µV
0.2
0.5
0.6
2.0
µV/°C
VCM = 0 V
0.08
2.5
0.1
6.0
nA
IB
VCM = 0 V
03
5.0
0.5
10.0
nA
Large-Signal
Voltage Gain
AVO
VO = ± 10 V
RL= 10 kΩ
RL = 2 kΩ
Input Voltage
Range*
IVR
Common-Mode
Rejection
CMR
VCM = ± 12 V
Power Supply
Rejection Ratio
PSRR
VS = ± 3 V
to ± 18 V
Output Voltage
Swing
VO
RL = 10 kΩ
RL = 2 kΩ
ISY
No Load
600
AV = 1
No Oscillations
10
10
Symbol
Input Offset Voltage
VOS
35
Average Input Offset
Voltage Drift
TCVOS
Input Offset Current
IOS
Input Bias Current
Supply Current
Per Amplifier
Capacitive Load
Stability
Conditions
Min
OP200E
Typ
Parameter
Max
Min
3000
1500
10000
3200
2000
1000
5000
2500
V/mV
V/mV
± 12
± 12.5
± 12
± 12.5
V
115
130
105
130
dB
0.15
± 12
± 11
3.2
± 12.4
± 12
0.3
± 12
± 11
775
10.0
± 12.4
± 12.2
600
10
10
µV/V
V
V
775
µA
nF
nF
*Guaranteed by CMR test.
Specifications subject to change without notice.
–4–
REV. B
OP200
1/2
OP200
V1 20Vp-p @ 10Hz
100
10k
50k
50
1/2
OP200
1/2
OP200
CHANNEL SEPARATION = 20 LOG
1/2
OP200
V2
eOUT TO SPECTRUM
ANALYZER
eOUT(nV/ Hz) = 2 eOUT(nV/ Hz) 101
V1
V2/1000
Figure 2. Channel Separation Test Circuit
Figure 3. Noise Test Schematic
ABSOLUTE MAXIMUM RATINGS 1
ORDERING GUIDE
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . ± 30 V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage
Output Short-Circuit Duration . . . . . . . . . . . . . . Continuous
Storage Temperature Range
P, S, Z-Package . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300°C
Junction Temperature (TJ) . . . . . . . . . . . . . –65°C to +150°C
Operating Temperature Range
OP200A . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C
OP200E . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
OP200G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
Package
TA = 25C
VOS Max
(V)
75
75
200
200
200
CERDIP
8-Lead
Plastic
Operating
Temperature
Range
OP200GP
OP200GS
OP200GS-REEL
MIL
XIND
XIND
XIND
XIND
OP200AZ
OP200EZ
Package Type
JA2
JC
Unit
For military processed devices, please refer to the Standard
Microcircuit Drawing (SMD) available at
www.dscc.dla.mil/programs/milspec/default.asp
8-Lead CERDIP (Z)
8-Lead Plastic DIP (P)
16-Lead SOIC (S)
148
96
92
16
37
27
°C/W
°C/W
°C/W
SMD Part Number
ADI Equivalent
5962-8859301M2A
5962-8859301MPA
OP200ARCMDA
OP200AZMDA
NOTES
1
Absolute maximum ratings apply to both DICE and packaged parts, unless
otherwise noted.
2
␪JA is specified for worst-case mounting conditions, i.e., ␪JA is specified for
device in socket for CERDIP and PDIP packages; ␪JA is specified for device
soldered to printed circuit board for SOIC package.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the OP200 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
REV. B
–5–
OP200 –Typical Performance Characteristics
60
1
1
2
3
TIME – Minutes
4
30
20
10
0
–75 –50 –25
0
25
50
75
TEMPERATURE – C
5
TPC 1. Warm-Up Drift
INPUT BIAS CURRENT – nA
250
150
100
50
0
–75 –50 –25
0
25
50
75
TEMPERATURE – C
TPC 4. Input Offset Current vs.
Temperature
0.6
0.4
0.2
–1
–2
100 125
TA = 25C
VS = 15V
120
100
80
60
40
20
0
–10
–5
0
5
10
COMON-MODE VOLTAGE – V
15
TPC 5. Input Bias Current vs.
Common-Mode Voltage
100
1
10
100
1k
FREQUENCY – Hz
10k
100k
TPC 6. Common-Mode Rejection
vs. Frequency
1000
1
10
100
FREQUENCY – Hz
TPC 7. Voltage Noise Density
vs. Frequency
TA = 25C
VS = 15V
CURRENT NOISE DENSITY – fA/ Hz
VOLTAGE NOISE DENSITY – nV/ Hz
TA = 25C
VS = 15V
10
0.8
0
–15
100 125
0
140
TA = 25C
VS = 15V
200
1
TPC 3. Input Bias Current vs.
Temperature
1.0
VS = 15V
2
–3
0
25
50
75
–75 –50 –25
TEMPERATURE – C
100 125
TPC 2. Input Offset Voltage
vs. Temperature
300
INPUT OFFSET CURRENT – pA
40
COMMON-MODE REJECTION – dB
0
VS = 15V
50
INPUT BIAS CURRENT – nA
2
5
3
VS = 15V
INPUT OFFSET VOLTAGE – V
CHANGE IN OFFSET VOLTAGE – V
TA = 25C
VS = 15V
1k
100
1
10
100
FREQUENCY – Hz
TPC 8. Current Noise Density
vs. Frequency
–6–
1k
TPC 9. 0.1 to 10 Hz Noise
REV. B
OP200
1.12
1.10
1.08
6
10
14
SUPPLY VOLTAGE – V
1.15
1.14
1.13
1.12
1.11
–75 –50 –25
0
25
50
75
TEMPERATURE – C
16
TPC 11. Total Supply Current
vs. Temperature
0.4
0.3
40
20
TA = 25C
1
10
100
1k
FREQUENCY – Hz
10k
100k
TA = 25C
VS = 15V
120
OPEN-LOOP GAIN – dB
OPEN-LOOP GAIN – V/mV
0.5
POSITIVE
SUPPLY
60
140
VS = 15V
RL = 2k
5000
0.6
80
TPC 12. Power Supply Rejection
vs. Frequency
6000
0.7
100
0
0.1
100 125
NEGATIVE
SUPPLY
120
4000
3000
2000
100
80
60
0
PHASE
90
40
GAIN
20
135
1000
0.2
180
0
–25
0
25
50
75
TEMPERATURE – C
100
125
OUTPUT SWING – V p-p AT 1% Distortion
TA = 25C
VS = 15V
120
100
AV = 1000
80
AV = 100
60
AV = 10
40
AV = 1
20
0
10
100
1k
10k
FREQUENCY – Hz
100k
TPC 16. Closed-Loop Gain
vs. Frequency
REV. B
1M
100
–20
10
125
TPC 14. Open-Loop Gain vs.
Temperature
TPC 13. Power Supply Rejection
vs. Temperature
140
–25
0
25
50
75
TEMPERATURE – C
30
1
TA = 25C
VS = 15V
25
100
1k
10k
FREQUENCY – Hz
1M
100k
TPC 15. Open-Loop Gain and
Phase Shift vs. Frequency
AV = 100
AV = 10
20
DISTORTION – %
0.1
–75 –50
0
–75 –50
15
10
0.1
0.01
TA = 25C
VS = 15V
VOUT = 10V p-p
RL = 2k
5
0
10
AV = 1
100
1k
10k
FREQUENCY – Hz
100k
TPC 17. Maximum Output Swing
vs. Frequency
–7–
0.001
100
1k
FREQUENCY – Hz
10k
TPC 18. Total Harmonic Distortion
vs. Frequency
PHASE SHIFT – Degrees
1.14
TPC 10. Total Supply Current
vs. Supply Voltage
POWER SUPPLY REJECTION – V/V
TWO AMPLIFIERS
VS = 15V
POWER SUPPLY REJECTION – nA
1.16
1.06
2
GAIN – dB
140
1.16
TWO AMPLIFIERS
TA = 25C
TOTAL SUPPLY CURRENT – mA
TOTAL SUPPLY CURRENT – mA
1.18
OP200
50
29
FALLING
35
30
25
RISING
20
15
10
5
0
0
0.5
1.0
1.5
1.0
1.5
CAPACITIVE LOAD – nF
3.0
150
TA = 25C
VS = 15V
28
CHANNEL SEPARATION – dB
OVERSHOOT – %
40
SHORT-CIRCUIT CURRENT – mA
TA = 25C
VS = 15V
45
27
26
SINKING
25
24
SOURCING
23
140
130
120
110
100
90
10
22
0
1
2
3
TIME – Minutes
4
5
100
1k
10k
FREQUENCY – Hz
100k
TPC 19. Overshoot vs.
Capacitive Load
TPC 20. Short-Circuit
Current vs. Time
TPC 21. Channel Separation
vs. Frequency
TPC 22. Large Signal
Transient Response
TPC 23. Small Signal
Transient Response
TPC 24. Small Signal Transient
Response CLOAD = 1 nF
APPLICATIONS INFORMATION
The OP200 is inherently stable at all gains and is capable of
driving large capacitive loads without oscillating. Nonetheless,
good supply decoupling is highly recommended. Proper supply
decoupling reduces problems caused by supply line noise and
improves the capacitive load driving capability of the OP200.
+15V
3
VIN
5
1/2
OP200AZ
7
A dual instrumentation amplifier that consumes less than 33 mW
of power per channel is shown in Figure 4. The linearity of the
instrumentation amplifier exceeds 16 bits in gains of 5 to 200
and is better than 14 bits in gains from 200 to 1000. CMRR is
above 115 dB (gain = 1000). Offset voltage drift is typically
0.2 µV/°C over the military temperature range, which is comparable to the best monolithic instrumentation amplifiers. The
bandwidth of the low power instrumentation amplifier is a function of gain and is shown below:
Gain
Bandwidth
5
10
100
1000
150 kHz
67 kHz
7.5 kHz
500 Hz
20k
VOUT
4
–15V
APPLICATIONS
VREF
1
2
6
Dual Low-Power Instrumentation Amplifier
8
1/2
OP200AZ
5k
5k
20k
RG
VOUT = 5 +
40000
VIN + VREF
RG
Figure 4. Dual Low Power Instrumentation Amplifier
The output signal is specified with respect to the reference
input, which is normally connected to analog ground. The
reference input can be used to offset the output from –10 V
to +10 V if required.
–8–
REV. B
OP200
Precision Absolute Value Amplifier
Precision Current Pump
The circuit in Figure 5 is a precision absolute value amplifier
with an input impedance of 10 MΩ. The high gain and low
TCVOS of the OP200 ensure accurate operation with microvolt
input signals. In this circuit, the input always appears as a
common-mode signal to the op amps. The CMR of the OP200
exceeds 120 dB, yielding an error of less than 2 ppm.
Maximum output current of the precision current pump shown
in Figure 6 is ± 10 mA. Voltage compliance is ± 10 V with ± 15 V
supplies. Output impedance of the current transmitter exceeds
3 MΩ with linearity better than 16 bits.
+15
C2
0.1pF
VIN
R1
1k
3
C1
30pF
8
D1
1N4148
1/2
1
OP200AZ
VIN
R1
10k
2
4 C2
0.1pF
R3
10k
1/2
OP200EZ
R2
10k
6
7
IOUT
+15
8
R4
1k
1/2
OP200AZ
R5
100
1
3
R3
1k
5
D1
1N4148
2
7
5
1/2
OP200EZ
6
VOUT
4
0V < VOUT < 10V
IOUT =
R2
2k
VIN
RS
=
VIN
= 10mA/V
100
–15
Figure 6. Precision Current Pump
Dual 12-Bit Voltage Output DAC
–15
The dual output DAC shown in Figure 7 is capable of providing
untrimmed 12-bit accurate operation over the entire military
temperature range. Offset voltage, bias current, and gain errors
of the OP200 contribute less than 1/10 of an LSB error at 12
bits over the military temperature range.
Figure 5. Precision Absolute Value Amplifier
5V
21
VDD
DAC-8222EW
10V
REFERENCE
VOLTAGE
4 VREFA
DAC A
1/2
DAC8212AV
RFBA
8
3
IOUTA 2
2
–
1/2
OP200AZ
1
OUTA
3
4
DAC DATA BUS
PINS 6(MSB) – 17(LSB)
–15V
23
RFBB
22 VREFB
DAC
CONTROL
DAC B
1/2
DAC8212AV
6
–
1/2
OP200AZ
AGND 1
18 DAC A/DAC B
19 CS
20 WR
IOUTB 24
5
DGND
5
Figure 7. Dual 12-Bit Voltage Output DAC
REV. B
–9–
7
OUTB
OP200
+5V
Dual Precision Voltage Reference
–2.5V
A dual OP200 and a REF43, a 2.5 V reference, can be used to
build a ± 2.5 V precision voltage reference. Maximum output
current from each reference is ± 10 mA with load regulation
under 25 µV/mA. Line regulation is better than 15 µV/V and
output voltage drift is under 20 µV/°C. Output voltage noise
from 0.1 Hz to 10 Hz is typically 75 µV p-p. R1 and D1 ensure
correct start-up.
R1
22k
Programmable High Resolution Window Comparator
2
R2
10k
2
8
D1
1N914
1/2
OP200AZ
3
The programmable window comparator shown in Figure 9 is
easily capable of 12-bit accuracy over the full military temperature range. A dual CMOS 12-bit DAC, the DAC8212, is used
in the voltage switching mode to set the upper and lower thresholds (DAC A and DAC B, respectively).
REF43A
4
6
6
1/2
OP200AZ
4
R4
5k
–5V
R3
10k
7
5
–2.5V
Figure 8. Dual Precision Voltage Reference
15V
VIN
21
VDD
8
10V
REFERENCE
2 IOUTA
DAC A
1/2
DAC8212AV
RREFA
4
3
R1
10k 2
DAC DATA BUS
PINS 6(MSB) – 17(LSB)
4
DAC
CONTROL
SIGNALS
1/2
OP200AZ
1
–
5V
D1
1N4148
–15V
R2
10k
24 IOUTB
+
DAC B
1/2
DAC8212AV
RREFB 22
1/2
OP200AZ
5
D2
1N4148
+
7
R3
10k
TTL OUT
R4
10k
Q1
2N2222
OUTB
–
18 DAC A/DAC B
19 CS
20 WR
DGND
5
AGND
1
Figure 9. Programmable High Resolution Window Comparator
–10–
REV. B
OP200
OUTLINE DIMENSIONS
8-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-8)
Z-Suffix
8-Lead Plastic Dual In-Line Package [PDIP]
(N-8)
P-Suffix
Dimensions shown in inches and (millimeters)
Dimensions shown in inches and (millimeters)
0.005 (0.13)
MIN
8
0.055 (1.40)
MAX
0.375 (9.53)
0.365 (9.27)
0.355 (9.02)
5
0.310 (7.87)
0.220 (5.59)
PIN 1
1
4
8
5
1
4
0.295 (7.49)
0.285 (7.24)
0.275 (6.98)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54) BSC
0.200 (5.08)
MAX
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
0.100 (2.54)
BSC
0.320 (8.13)
0.290 (7.37)
0.405 (10.29) MAX
0.060 (1.52)
0.015 (0.38)
0.150 (3.81)
MIN
SEATING
0.070 (1.78) PLANE
0.030 (0.76)
0.015
(0.38)
MIN
0.180
(4.57)
MAX
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.015 (0.38)
0.008 (0.20)
15
0
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
SEATING
PLANE
0.060 (1.52)
0.050 (1.27)
0.045 (1.14)
0.150 (3.81)
0.135 (3.43)
0.120 (3.05)
0.015 (0.38)
0.010 (0.25)
0.008 (0.20)
COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
16-Lead Standard Small Outline Package [SOIC]
Wide Body
(RW-16)
S-Suffix
Dimensions shown in millimeters and (inches)
10.50 (0.4134)
10.10 (0.3976)
9
16
7.60 (0.2992)
7.40 (0.2913)
1.27 (0.0500)
BSC
0.30 (0.0118)
0.10 (0.0039)
COPLANARITY
0.10
10.65 (0.4193)
10.00 (0.3937)
8
1
0.51 (0.0201)
0.31 (0.0122)
2.65 (0.1043)
2.35 (0.0925)
SEATING
PLANE
8
0.33 (0.0130) 0
0.20 (0.0079)
0.75 (0.0295)
45
0.25 (0.0098)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-013AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
REV. B
–11–
OP200
Revision History
Location
Page
2/04—Data Sheet changed from REV. A to REV. B.
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Changes to Figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4/02—Data Sheet changed from REV. 0 to REV. A.
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
–12–
REV. B
C00322–0–2/04(B)
OP200F deleted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal