a Dual Low Offset, Low Power Operational Amplifier OP200 PIN CONNECTIONS 16-Lead SOIC (S-Suffix) 16 OUT A 15 NC NC 3 14 NC V– 4 13 V+ NC 5 12 NC +IN B 6 11 NC 10 OUT B – –IN A 1 +IN A 2 + + –IN B 7 – FEATURES Low Input Offset Voltage: 75 V Max Low Offset Voltage Drift, Over –55C < TA < +125C: 0.5 V/C Max Low Supply Current (Per Amplifier): 725 A Max High Open-Loop Gain: 5000 V/mV Min Low Input Bias Current: 2 nA Max Low Noise Voltage Density: 11 nV/√Hz at 1 kHz Stable with Large Capacitive Loads: 10 nF Typ Pin Compatible to OP221, MC1458, and LT1013 with Improved Performance Available in Die Form NC 8 9 NC NC = NO CONNECT GENERAL DESCRIPTION The OP200 is the first monolithic dual operational amplifier to offer OP77 type precision performance. Available in the industrystandard 8-lead pinout, the OP200 combines precision performance with the space and cost savings offered by a dual amplifier. The OP200 features an extremely low input offset voltage of less than 75 µV with a drift below 0.5 µV/°C, guaranteed over the full military temperature range. Open-loop gain of the OP200 exceeds 5,000,000 into a 10 kΩ load; input bias current is under 2 nA; CMR is over 120 dB and PSRR below 1.8 µV/V. On-chip Zener zap trimming is used to achieve the extremely low input offset voltage of the OP200 and eliminates the need for offset pulling. Power consumption of the OP200 is very low, with each amplifier drawing less than 725 µA of supply current. The total current drawn by the dual OP200 is less than one-half that of a single OP07, yet the OP200 offers significant improvements over this industry-standard op amp. The voltage noise density of the OP200, 11 nV/√Hz at 1 kHz, is half that of most competitive devices. 8-Lead PDIP (P-Suffix) 8-Lead CERDIP (Z-Suffix) OUT A 1 –IN A 2 +IN A 3 A – + B + – V– 4 8 V+ 7 OUT B 6 –IN B 5 +IN B The OP200 is pin compatible with the OP221, LM158, MC1458/1558, and LT1013. The OP200 is an ideal choice for applications requiring multiple precision op amps and where low power consumption is critical. For a quad precision op amp, see the OP400. V+ BIAS OUT VOLTAGE LIMITING NETWORK +IN –IN V– REV. B Figure 1. Simplified Schematic (One of two amplifiers is shown.) Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © 2004 Analog Devices, Inc. All rights reserved. OP200–SPECIFICATIONS ELECTRICAL CHARACTERISTICS Parameter Symbol Input Offset Voltage VOS (VS = ±15 V, TA = 25C, unless otherwise noted.) Conditions Min OP200A/E Typ Max 25 Long-Term Input Voltage Stability Min 75 0.1 OP200G Typ Max Unit 80 200 µV µV/mo 0.1 Input Offset Current IOS VCM = 0 V 0.05 1.0 0.05 3.5 nA Input Bias Current IB VCM = 0 V 0.1 2.0 0.1 5.0 nA Input Noise Voltage en p-p 0.1 Hz to 10 Hz 0.5 Input Noise Voltage Density* en fO = 10 Hz fO = 1000 Hz 22 11 Input Noise Current in p-p 0.1 Hz to 10 Hz Input Noise Current Density in fO = 10 Hz Input Resistance Differential Mode Input Resistance Common Mode Large Signal Voltage Gain 0.5 µVp-p 22 11 nV/√Hz 15 15 pAp-p 0.4 0.4 pA/√Hz RIN 10 10 MΩ RINCM 125 125 GΩ 7000 3200 M/mV AVO VO – ± 10 V RL = 10 kΩ RL = 2 kΩ 5000 2000 12000 3700 36 18 3000 1500 *Sample tested. Specifications subject to change without notice. –2– REV. B OP200 ELECTRICAL CHARACTERISTICS (V = 15 V, –55C ≤ T ≤ +125C for OP200A, unless otherwise noted.) S Parameter Symbol Input Offset Voltage VOS Average Input Offset Voltage Drift TCVOS Input Offset Current IOS Input Bias Current Large Signal Voltage Gain A Conditions Min OP200A Typ Max Unit 45 125 µV 0.2 0.5 µV/°C VCM = 0 V 0.15 2.5 nA IB VCM = 0 V 0.9 5.0 nA AVO VO = 10 V RL = 10 Ω RL = 2 kΩ 3000 1000 9000 2700 V/mV V/mV ± 12 ± 12.5 V 115 130 dB Input Voltage Range* IVR Common-Mode Rejection CMR VCM = ± 12 V Power Supply Rejection Ratio PSRR VS = +3 V to +18 V Output Voltage Swing VO RL = 10 kΩ RL = 2 kΩ Supply Current Per Amplifier ISY No Load 600 AV = 1 8 Capacitive Load Stability 0.2 ± 12 ± 11 µV/V 3.2 ± 12.4 ± 12 V V µA 775 nF *Guaranteed by CMR test. Specifications subject to change without notice. ELECTRICAL CHARACTERISTICS (V = 15 V, T = 25C, unless otherwise noted.) S Parameter Symbol 1 Conditions Input Voltage Range IVR Common-Mode Rejection CMR VCM = ± 12 V Power Supply Rejection Ratio PSRR VS = ± 3 V to ± 18 V Output Voltage Swing VO RL= 10 kΩ RL = 2 kΩ Supply Current Per Amplifier ISY No Load Slew Rate SR Gain Bandwidth Product GBWP AV = 1 CS VO = 20 V p-p fO = 10 Hz Channel Separation2 Input Capacitance A Min OP200A/E Typ ± 12 120 ± 12 ± 11 ± 13 ± 12 ± 13 V 135 110 130 dB 1.8 ± 12.6 ± 12.2 570 0.1 0.15 0.6 ± 12 ± 11 725 0.1 123 Specifications subject to change without notice. –3– 5.6 Unit µV/V V V 725 µA 0.15 V/µS 500 kHz 145 dB 3.2 3.2 pF 10 10 nF 145 AV = 1 No Oscillations Max ± 12.6 ± 12.2 570 500 NOTES 1 Guaranteed by CMR test. 2 Guaranteed but not 100% tested. REV. B OP200G Typ 0.4 CIN Capacitive Load Stability Min Max 123 OP200–SPECIFICATIONS ELECTRICAL CHARACTERISTICS (V = ±15 V, –40C ≤ T ≤ +85C, unless otherwise noted.) S A OP200G Typ Max Unit 100 110 300 µV 0.2 0.5 0.6 2.0 µV/°C VCM = 0 V 0.08 2.5 0.1 6.0 nA IB VCM = 0 V 03 5.0 0.5 10.0 nA Large-Signal Voltage Gain AVO VO = ± 10 V RL= 10 kΩ RL = 2 kΩ Input Voltage Range* IVR Common-Mode Rejection CMR VCM = ± 12 V Power Supply Rejection Ratio PSRR VS = ± 3 V to ± 18 V Output Voltage Swing VO RL = 10 kΩ RL = 2 kΩ ISY No Load 600 AV = 1 No Oscillations 10 10 Symbol Input Offset Voltage VOS 35 Average Input Offset Voltage Drift TCVOS Input Offset Current IOS Input Bias Current Supply Current Per Amplifier Capacitive Load Stability Conditions Min OP200E Typ Parameter Max Min 3000 1500 10000 3200 2000 1000 5000 2500 V/mV V/mV ± 12 ± 12.5 ± 12 ± 12.5 V 115 130 105 130 dB 0.15 ± 12 ± 11 3.2 ± 12.4 ± 12 0.3 ± 12 ± 11 775 10.0 ± 12.4 ± 12.2 600 10 10 µV/V V V 775 µA nF nF *Guaranteed by CMR test. Specifications subject to change without notice. –4– REV. B OP200 1/2 OP200 V1 20Vp-p @ 10Hz 100 10k 50k 50 1/2 OP200 1/2 OP200 CHANNEL SEPARATION = 20 LOG 1/2 OP200 V2 eOUT TO SPECTRUM ANALYZER eOUT(nV/ Hz) = 2 eOUT(nV/ Hz) 101 V1 V2/1000 Figure 2. Channel Separation Test Circuit Figure 3. Noise Test Schematic ABSOLUTE MAXIMUM RATINGS 1 ORDERING GUIDE Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . ± 30 V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage Output Short-Circuit Duration . . . . . . . . . . . . . . Continuous Storage Temperature Range P, S, Z-Package . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300°C Junction Temperature (TJ) . . . . . . . . . . . . . –65°C to +150°C Operating Temperature Range OP200A . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C OP200E . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C OP200G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C Package TA = 25C VOS Max (V) 75 75 200 200 200 CERDIP 8-Lead Plastic Operating Temperature Range OP200GP OP200GS OP200GS-REEL MIL XIND XIND XIND XIND OP200AZ OP200EZ Package Type JA2 JC Unit For military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/programs/milspec/default.asp 8-Lead CERDIP (Z) 8-Lead Plastic DIP (P) 16-Lead SOIC (S) 148 96 92 16 37 27 °C/W °C/W °C/W SMD Part Number ADI Equivalent 5962-8859301M2A 5962-8859301MPA OP200ARCMDA OP200AZMDA NOTES 1 Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted. 2 JA is specified for worst-case mounting conditions, i.e., JA is specified for device in socket for CERDIP and PDIP packages; JA is specified for device soldered to printed circuit board for SOIC package. CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP200 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. REV. B –5– OP200 –Typical Performance Characteristics 60 1 1 2 3 TIME – Minutes 4 30 20 10 0 –75 –50 –25 0 25 50 75 TEMPERATURE – C 5 TPC 1. Warm-Up Drift INPUT BIAS CURRENT – nA 250 150 100 50 0 –75 –50 –25 0 25 50 75 TEMPERATURE – C TPC 4. Input Offset Current vs. Temperature 0.6 0.4 0.2 –1 –2 100 125 TA = 25C VS = 15V 120 100 80 60 40 20 0 –10 –5 0 5 10 COMON-MODE VOLTAGE – V 15 TPC 5. Input Bias Current vs. Common-Mode Voltage 100 1 10 100 1k FREQUENCY – Hz 10k 100k TPC 6. Common-Mode Rejection vs. Frequency 1000 1 10 100 FREQUENCY – Hz TPC 7. Voltage Noise Density vs. Frequency TA = 25C VS = 15V CURRENT NOISE DENSITY – fA/ Hz VOLTAGE NOISE DENSITY – nV/ Hz TA = 25C VS = 15V 10 0.8 0 –15 100 125 0 140 TA = 25C VS = 15V 200 1 TPC 3. Input Bias Current vs. Temperature 1.0 VS = 15V 2 –3 0 25 50 75 –75 –50 –25 TEMPERATURE – C 100 125 TPC 2. Input Offset Voltage vs. Temperature 300 INPUT OFFSET CURRENT – pA 40 COMMON-MODE REJECTION – dB 0 VS = 15V 50 INPUT BIAS CURRENT – nA 2 5 3 VS = 15V INPUT OFFSET VOLTAGE – V CHANGE IN OFFSET VOLTAGE – V TA = 25C VS = 15V 1k 100 1 10 100 FREQUENCY – Hz TPC 8. Current Noise Density vs. Frequency –6– 1k TPC 9. 0.1 to 10 Hz Noise REV. B OP200 1.12 1.10 1.08 6 10 14 SUPPLY VOLTAGE – V 1.15 1.14 1.13 1.12 1.11 –75 –50 –25 0 25 50 75 TEMPERATURE – C 16 TPC 11. Total Supply Current vs. Temperature 0.4 0.3 40 20 TA = 25C 1 10 100 1k FREQUENCY – Hz 10k 100k TA = 25C VS = 15V 120 OPEN-LOOP GAIN – dB OPEN-LOOP GAIN – V/mV 0.5 POSITIVE SUPPLY 60 140 VS = 15V RL = 2k 5000 0.6 80 TPC 12. Power Supply Rejection vs. Frequency 6000 0.7 100 0 0.1 100 125 NEGATIVE SUPPLY 120 4000 3000 2000 100 80 60 0 PHASE 90 40 GAIN 20 135 1000 0.2 180 0 –25 0 25 50 75 TEMPERATURE – C 100 125 OUTPUT SWING – V p-p AT 1% Distortion TA = 25C VS = 15V 120 100 AV = 1000 80 AV = 100 60 AV = 10 40 AV = 1 20 0 10 100 1k 10k FREQUENCY – Hz 100k TPC 16. Closed-Loop Gain vs. Frequency REV. B 1M 100 –20 10 125 TPC 14. Open-Loop Gain vs. Temperature TPC 13. Power Supply Rejection vs. Temperature 140 –25 0 25 50 75 TEMPERATURE – C 30 1 TA = 25C VS = 15V 25 100 1k 10k FREQUENCY – Hz 1M 100k TPC 15. Open-Loop Gain and Phase Shift vs. Frequency AV = 100 AV = 10 20 DISTORTION – % 0.1 –75 –50 0 –75 –50 15 10 0.1 0.01 TA = 25C VS = 15V VOUT = 10V p-p RL = 2k 5 0 10 AV = 1 100 1k 10k FREQUENCY – Hz 100k TPC 17. Maximum Output Swing vs. Frequency –7– 0.001 100 1k FREQUENCY – Hz 10k TPC 18. Total Harmonic Distortion vs. Frequency PHASE SHIFT – Degrees 1.14 TPC 10. Total Supply Current vs. Supply Voltage POWER SUPPLY REJECTION – V/V TWO AMPLIFIERS VS = 15V POWER SUPPLY REJECTION – nA 1.16 1.06 2 GAIN – dB 140 1.16 TWO AMPLIFIERS TA = 25C TOTAL SUPPLY CURRENT – mA TOTAL SUPPLY CURRENT – mA 1.18 OP200 50 29 FALLING 35 30 25 RISING 20 15 10 5 0 0 0.5 1.0 1.5 1.0 1.5 CAPACITIVE LOAD – nF 3.0 150 TA = 25C VS = 15V 28 CHANNEL SEPARATION – dB OVERSHOOT – % 40 SHORT-CIRCUIT CURRENT – mA TA = 25C VS = 15V 45 27 26 SINKING 25 24 SOURCING 23 140 130 120 110 100 90 10 22 0 1 2 3 TIME – Minutes 4 5 100 1k 10k FREQUENCY – Hz 100k TPC 19. Overshoot vs. Capacitive Load TPC 20. Short-Circuit Current vs. Time TPC 21. Channel Separation vs. Frequency TPC 22. Large Signal Transient Response TPC 23. Small Signal Transient Response TPC 24. Small Signal Transient Response CLOAD = 1 nF APPLICATIONS INFORMATION The OP200 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load driving capability of the OP200. +15V 3 VIN 5 1/2 OP200AZ 7 A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 4. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (gain = 1000). Offset voltage drift is typically 0.2 µV/°C over the military temperature range, which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low power instrumentation amplifier is a function of gain and is shown below: Gain Bandwidth 5 10 100 1000 150 kHz 67 kHz 7.5 kHz 500 Hz 20k VOUT 4 –15V APPLICATIONS VREF 1 2 6 Dual Low-Power Instrumentation Amplifier 8 1/2 OP200AZ 5k 5k 20k RG VOUT = 5 + 40000 VIN + VREF RG Figure 4. Dual Low Power Instrumentation Amplifier The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from –10 V to +10 V if required. –8– REV. B OP200 Precision Absolute Value Amplifier Precision Current Pump The circuit in Figure 5 is a precision absolute value amplifier with an input impedance of 10 MΩ. The high gain and low TCVOS of the OP200 ensure accurate operation with microvolt input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMR of the OP200 exceeds 120 dB, yielding an error of less than 2 ppm. Maximum output current of the precision current pump shown in Figure 6 is ± 10 mA. Voltage compliance is ± 10 V with ± 15 V supplies. Output impedance of the current transmitter exceeds 3 MΩ with linearity better than 16 bits. +15 C2 0.1pF VIN R1 1k 3 C1 30pF 8 D1 1N4148 1/2 1 OP200AZ VIN R1 10k 2 4 C2 0.1pF R3 10k 1/2 OP200EZ R2 10k 6 7 IOUT +15 8 R4 1k 1/2 OP200AZ R5 100 1 3 R3 1k 5 D1 1N4148 2 7 5 1/2 OP200EZ 6 VOUT 4 0V < VOUT < 10V IOUT = R2 2k VIN RS = VIN = 10mA/V 100 –15 Figure 6. Precision Current Pump Dual 12-Bit Voltage Output DAC –15 The dual output DAC shown in Figure 7 is capable of providing untrimmed 12-bit accurate operation over the entire military temperature range. Offset voltage, bias current, and gain errors of the OP200 contribute less than 1/10 of an LSB error at 12 bits over the military temperature range. Figure 5. Precision Absolute Value Amplifier 5V 21 VDD DAC-8222EW 10V REFERENCE VOLTAGE 4 VREFA DAC A 1/2 DAC8212AV RFBA 8 3 IOUTA 2 2 – 1/2 OP200AZ 1 OUTA 3 4 DAC DATA BUS PINS 6(MSB) – 17(LSB) –15V 23 RFBB 22 VREFB DAC CONTROL DAC B 1/2 DAC8212AV 6 – 1/2 OP200AZ AGND 1 18 DAC A/DAC B 19 CS 20 WR IOUTB 24 5 DGND 5 Figure 7. Dual 12-Bit Voltage Output DAC REV. B –9– 7 OUTB OP200 +5V Dual Precision Voltage Reference –2.5V A dual OP200 and a REF43, a 2.5 V reference, can be used to build a ± 2.5 V precision voltage reference. Maximum output current from each reference is ± 10 mA with load regulation under 25 µV/mA. Line regulation is better than 15 µV/V and output voltage drift is under 20 µV/°C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 µV p-p. R1 and D1 ensure correct start-up. R1 22k Programmable High Resolution Window Comparator 2 R2 10k 2 8 D1 1N914 1/2 OP200AZ 3 The programmable window comparator shown in Figure 9 is easily capable of 12-bit accuracy over the full military temperature range. A dual CMOS 12-bit DAC, the DAC8212, is used in the voltage switching mode to set the upper and lower thresholds (DAC A and DAC B, respectively). REF43A 4 6 6 1/2 OP200AZ 4 R4 5k –5V R3 10k 7 5 –2.5V Figure 8. Dual Precision Voltage Reference 15V VIN 21 VDD 8 10V REFERENCE 2 IOUTA DAC A 1/2 DAC8212AV RREFA 4 3 R1 10k 2 DAC DATA BUS PINS 6(MSB) – 17(LSB) 4 DAC CONTROL SIGNALS 1/2 OP200AZ 1 – 5V D1 1N4148 –15V R2 10k 24 IOUTB + DAC B 1/2 DAC8212AV RREFB 22 1/2 OP200AZ 5 D2 1N4148 + 7 R3 10k TTL OUT R4 10k Q1 2N2222 OUTB – 18 DAC A/DAC B 19 CS 20 WR DGND 5 AGND 1 Figure 9. Programmable High Resolution Window Comparator –10– REV. B OP200 OUTLINE DIMENSIONS 8-Lead Ceramic Dual In-Line Package [CERDIP] (Q-8) Z-Suffix 8-Lead Plastic Dual In-Line Package [PDIP] (N-8) P-Suffix Dimensions shown in inches and (millimeters) Dimensions shown in inches and (millimeters) 0.005 (0.13) MIN 8 0.055 (1.40) MAX 0.375 (9.53) 0.365 (9.27) 0.355 (9.02) 5 0.310 (7.87) 0.220 (5.59) PIN 1 1 4 8 5 1 4 0.295 (7.49) 0.285 (7.24) 0.275 (6.98) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.100 (2.54) BSC 0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 0.100 (2.54) BSC 0.320 (8.13) 0.290 (7.37) 0.405 (10.29) MAX 0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 0.015 (0.38) MIN 0.180 (4.57) MAX 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.015 (0.38) 0.008 (0.20) 15 0 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN SEATING PLANE 0.060 (1.52) 0.050 (1.27) 0.045 (1.14) 0.150 (3.81) 0.135 (3.43) 0.120 (3.05) 0.015 (0.38) 0.010 (0.25) 0.008 (0.20) COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN 16-Lead Standard Small Outline Package [SOIC] Wide Body (RW-16) S-Suffix Dimensions shown in millimeters and (inches) 10.50 (0.4134) 10.10 (0.3976) 9 16 7.60 (0.2992) 7.40 (0.2913) 1.27 (0.0500) BSC 0.30 (0.0118) 0.10 (0.0039) COPLANARITY 0.10 10.65 (0.4193) 10.00 (0.3937) 8 1 0.51 (0.0201) 0.31 (0.0122) 2.65 (0.1043) 2.35 (0.0925) SEATING PLANE 8 0.33 (0.0130) 0 0.20 (0.0079) 0.75 (0.0295) 45 0.25 (0.0098) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-013AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN REV. B –11– OP200 Revision History Location Page 2/04—Data Sheet changed from REV. A to REV. B. Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Changes to Figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4/02—Data Sheet changed from REV. 0 to REV. A. Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 –12– REV. B C00322–0–2/04(B) OP200F deleted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal