FEATURES Low Offset Voltage: 50 V max Low Offset Voltage Drift: 0.5 V/ⴗC max Very Low Bias Current 25ⴗC: 100 pA max –55ⴗC to +125ⴗC: 450 pA max Very High Open-Loop Gain: 2000 V/mV min Low Supply Current (per Amplifier): 625 A max Operates from ⴞ2 V to ⴞ20 V Supplies High Common-Mode Rejection: 120 dB min PIN CONNECTIONS 16-Lead Wide Body SOIC (S-Suffix) –IN A 2 – 15 –IN D 13 V– OP497 12 +IN C +IN B 5 – + + –IN B 6 OUT B 7 11 –IN C 10 OUT C 9 NC NC 8 NC = NO CONNECT 14-Lead Plastic Dip (P-Suffix) 14-Lead Ceramic Dip (Y-Suffix) OUT A 1 The OP497 is a quad op amp with precision performance in the space-saving, industry standard 16-lead SOlC package. Its combination of exceptional precision with low power and extremely low input bias current makes the quad OP497 useful in a wide variety of applications. –IN A 2 14 OUT D + – + – 13 –IN D 12 +IN D +IN A 3 V+ 4 OP497 11 V– 10 +IN C +IN B 5 + –IN B 6 + – – Combining precision, low power, and low bias current, the OP497 is ideal for a number of applications, including instrumentation amplifiers, log amplifiers, photo-diode preamplifiers, and long-term integrators. For a single device, see the OP97; for a dual device, see the OP297. + 14 +IN D V+ 4 GENERAL DESCRIPTION OUT B 7 9 –IN C 8 OUT C 1000 INPUT CURRENT – PA The OP497 utilizes a superbeta input stage with bias current cancellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at 25°C, but double for every 10°C rise in temperature, to reach the nanoamp range above 85°C. Input bias current of the OP497 is under 100 pA at 25°C and is under 450 pA over the military temperature range. + – +IN A 3 APPLICATIONS Strain Gage and Bridge Amplifiers High Stability Thermocouple Amplifiers Instrumentation Amplifiers Photo-Current Monitors High Gain Linearity Amplifiers Long-Term Integrators/Filters Sample-and-Hold Amplifiers Peak Detectors Logarithmic Amplifiers Battery-Powered Systems Precision performance of the OP497 includes very low offset, under 50 µV, and low drift, below 0.5 µV/°C. Open-loop gain exceeds 2000 V/mV ensuring high linearity in every application. Errors due to common-mode signals are eliminated by the OP497’s common-mode rejection of over 120 dB. The OP497’s power supply rejection of over 120 dB minimizes offset voltage changes experienced in battery-powered systems. Supply current of the OP497 is under 625 µA per amplifier, and it can operate with supply voltages as low as ± 2 V. 16 OUT D OUT A 1 – a Precision Picoampere Input Current Quad Operational Amplifier OP497 VS = ⴞ15V VCM = 0V 100 –IB +IB IOS 10 –75 –50 –25 0 25 50 75 100 125 TEMPERATURE – C Input Bias, Offset Current vs. Temperature REV. D Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 OP497–SPECIFICATIONS (@ V = 15 V, T = 25ⴗC, unless otherwise noted.) S Parameter Symbol INPUT CHARACTERISTICS Offset Voltage Vos Average Input Offset Voltage Drift Long-Term Input Offset Voltage Stability Input Bias Current Average Input Bias Current Drift Input Offset Current Average Input Offset Current Drift Input Voltage Range1 IB VCM = 0 V –40° ≤ TA ≤ +85°C –55° ≤ TA ≤ +125°C Large Signal Voltage Gain AVO POWER SUPPLY Power Supply Rejection Ratio Supply Current (per Amplifier) Supply Voltage Range Current Noise Density TMIN – TMAX VCM = ± 13 V TMIN – TMAX VO = ± 10 V, RL = 2 kΩ –40° ≤ TA ≤ +85°C –55° ≤ TA ≤ +125°C 50 100 40 70 80 75 150 150 80 150 120 250 140 300 40 0.2 0.5 0.4 1.0 0.6 0.1 30 100 80 450 0.5 15 100 35 400 0.2 +14 +13.5 140 130 +13 +13 114 108 2000 6000 µV 1.5 µV/°C 0.1 40 150 60 200 110 600 0.1 60 200 80 300 130 600 µV/Mo pA 0.3 0.7 30 50 60 0.3 0.7 50 80 90 150 200 600 0.3 tl4 +13.5 135 120 +13 +13 114 108 1500 4000 800 2000 1000 3000 1200 4000 Unit 200 300 600 0.4 +14 +13.5 135 120 1200 4000 800 2000 800 3000 pA/°C pA pA/°C V dB V/mV 30 30 30 MΩ RINCM CIN 500 3 500 3 500 3 GΩ pF RL = 2 kΩ RL = 10 kΩ TMIN – TMAX RL = 10 kΩ ISC PSRR ISY VS DYNAMIC PERFORMANCE Slew Rate SR Gain Bandwidth Product GBW Channel Separation CS NOISE PERFORMANCE Voltage Noise Voltage Noise Density + 13 +13 120 114 20 C/G Min Typ Max RIN OUTPUT CHARACTERISTICS Output Voltage Swing VO Short Circuit –40° ≤ TA ≤ +85°C –55° ≤ TA ≤ +125°C VCM = OV –40° ≤ TA ≤ +85°C –55° ≤ TA ≤ +125°C TCIOS IVR Common-Mode Rejection CMR Input Resistance Differential Mode Input Resistance Common Mode Input Capacitance –40°C ≤ +85°C –55°C ≤ +125°C TMIN – TMAX Ios A F Min Typ Max Min Typ Max Condition TCVOS TCIB A Vs = ± 2 V to ± 20 V Vs = ± 2.5 V to ± 20 V TMIN – TMAX No Load TMIN – TMAX Operating Range TMIN – TMAX ± 13 ± 13.7 ± 13 ± 14 ± 13 ± 13.7 ± 13 ± 14 ± 13 ± 13.7V ± 13 ± 14 ± 13 ± 13.5 ± 25 ± 13 ± 13.5 ± 25 ± 13 ± 13.5 ± 25 mA 120 140 114 135 114 135 dB 114 130 525 580 ±2 ± 2.5 625 750 ± 20 ± 20 108 120 525 580 ±2 ± 2.5 625 750 ± 20 ± 20 108 120 525 625 580 750 ±2 ± 20 ± 2.5 ± 20 µA V 0.05 0.15 500 0.05 0.15 500 0.05 0.15 500 150 150 150 dB 0.3 17 15 20 0.3 17 15 20 0.3 17 15 20 µV/p-p nV/√Hz nV/√Hz fA/√Hz VO = 20 Vp-p, fo = 10 Hz en p-p 0.1 Hz to 10 Hz en = 10 Hz en = 1 kHz in = 10 Hz V/µS kHz NOTE 1 Guaranteed by CMR Test. Specifications subject to change without notice. –2– REV. D OP497 ABSOLUTE MAXIMUM RATINGS 1 ORDERING GUIDE Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 V Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite Storage Temperature Range Y Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C Operating Temperature Range OP497A, C (Y) . . . . . . . . . . . . . . . . . . . . –55°C to +125°C OP497F, G (Y) . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C OP497F, G (P, S) . . . . . . . . . . . . . . . . . . . –40°C to +85°C Junction Temperature Y Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C Lead Temperature Range (Soldering 60 sec) . . . . . . . . 300°C Model Temperature Range Package Description Package Option OP497AY* OP497CY* OP497FP OP497FS OP497GP OP497GS –55°C to +125°C –55°C to +125°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C 14-Lead Cerdip 14-Lead Cerdip 14-Lead Plastic DIP 16-Lead SOIC 14-Lead Plastic DIP 16-Lead SOIC Q-14 Q-14 N-14 R-16 N-14 R-16 *Not for new design; obsolete April 2002. For a military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/ programs.milspec./default.asp. Package Type JA3 JC Unit SMD Part Number ADI Part Number 14-Pin Cerdip (Y) 14-Pin Plastic DIP (P) 16-Pin SOIC (S) 94 76 92 10 33 23 °C/W °C/W °C/W 5962–9452101M2A* 5962–9452101MCA OP497BRC OP497BY *Not for new designs; obsolete April 2002. NOTES 1 Absolute Maximum Ratings apply to both DICE and packaged parts, unless otherwise noted. 2 For supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage. 3 HIA is specified for worst-case mounting conditions, i.e., JA is specified for device in socket for cerdip, P-DIP packages; JA is specified for device soldered to printed circuit board for SOIC package. DICE CHARACTERISTICS – 1/4 V1 20V p–p @ 10Hz OP497 + 2k⍀ 50k⍀ 50⍀ – 1/4 OP497 V2 + CHANNEL SEPARATION = 20 log V1 (V2 /10000 ) Channel Separation Test Circuit CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP497 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. REV. D –3– WARNING! ESD SENSITIVE DEVICE OP497–Typical Performance Characteristics (25ⴗC, Vs = 15 V, unless otherwise noted.) 30 20 10 0 –100 –80 –60 –40 –20 0 TA = 25ⴗC VS = 15V VCM = 0V 40 30 20 10 INPUT OFFSET VOLTAGE – V TPC 1. Typical Distribution of Input Offset Voltage 0 INPUT BIAS CURRENT – pA 100 –IB +IB 10 20 30 40 50 60 TPC 3. Typical Distribution of Input Offset Current TA = 25 C VS = ⴞ15V 60 40 10 INPUT OFFSET CURRENT – pA 70 VS = ⴞ15V VCM = 0V INPUT CURRENT – pA PERCENTAGE OF UNITS 20 0 1000 VS = ⴞ15V VCM = 0V 20 30 TPC 2. Typical Distribution of Input Bias Current 50 30 40 10 0 –100 –80 –60 –40 –20 0 20 40 60 80 100 INPUT BIAS CURRENT – pA 20 40 60 80 100 TA = 25ⴗC VS = 15V VCM = 0V 50 PERCENTAGE OF UNITS 40 60 50 TA = 25ⴗC VS = 15V VCM = 0V PERCENTAGE OF UNITS PERCENTAGE OF UNITS 50 –IB 50 40 +IB 30 20 10 IOS 0 0.1 0.2 0.3 0.4 0.5 TCVOS – V/ⴗC 0.6 0.7 10 –75 –50 –25 0.8 25 50 75 0 –15 100 125 TEMPERATURE – ⴗC TPC 4. Typical Distribution of TCVOS ⴞ1 0 0 1 5 2 3 4 TIME AFTER POWER APPLIED – Minutes TPC 7. Input Offset Voltage Warm-Up Drift EFFECTIVE OFFSET VOLTAGE – V ⴞ2 100 BALANCED OR UNBALANCED VS = 15V VCM = 0V 1000 100 –55 C TA 125 C T A = +25 C 10 10 100 1k 10k 100k 1M 10M SOURCE RESISTANCE – ⍀ TPC 8. Effective Offset Voltage vs. Source Resistance –4– –5 0 5 10 15 TPC 6. Input Bias Current vs. Common-Mode Voltage 10000 TA = 25ⴗC VS = ⴞ15V VCM = 0V –10 COMMON-MODE VOLTAGE – Volts TPC 5. Input Bias, Offset Current vs. Temperature ⴞ3 DEVIATION FROM FINAL VALUE – V 0 EFFECTIVE OFFSET VOLTAGE – V/ ⴗC 0 BALANCED OR UNBALANCED VS = 15V VCM = 0V 10 1 0.1 100 1k 10k 100k 1M 10M SOURCE RESISTANCE – ⍀ 100M TPC 9. Effective TCVOS vs. Source Resistance REV. D OP497 10 CURRENT NOISE VOLTAGE NOISE 10 TOTAL NOISE DENSITY – V/ Hz 100 1 10 100 FREQUENCY – Hz 1 10Hz 1kHz 0.1 0.01 102 1000 90 20 135 0 180 –20 225 1k 10k 100k 1M FREQUENCY – Hz TA = +125ⴗC 1000 VS = ⴞ15V VO = ⴞ10V 100 10M TPC 13. Open-Loop Gain, Phase vs. Frequency 10 LOAD RESISTANCE – k⍀ 20 100 80 60 40 20 0 10 100 1k 10k FREQUENCY – Hz 100k TPC 16. Common-Mode Rejection vs. Frequency REV. D VS = 15V TA = 25ⴗC 2 4 6 TIME – Secs 1M +PSR 60 40 TA= –55ⴗC –10 –5 0 5 10 OUTPUT VOLTAGE – V 15 VS= ⴞ15V TA= 25ⴗC AVCL= +1 1%THD RL = 10k⍀ 25 20 15 10 5 20 0 TA= +25ⴗC 30 –PSR 80 TA= +125ⴗC 35 120 100 10 TPC 15. Open-Loop Gain Linearity VS = ⴞ15V TA = 25ⴗC 140 8 RL = 2k⍀ VS = ⴞ15V VCN = ⴞ10V –15 OUTPUT SWING – Vp-p 120 1 0% TPC 12. 0.1 Hz to 10 Hz Noise Voltage 160 VS = ⴞ15V TA= 25ⴗC POWER SUPPLY REJECTION – dB COMMON - MODE REJECTION – dB 1 TPC 14. Open-Loop Gain vs. Load Resistance 160 140 10 0 107 TA = +25C PHASE –40 100 106 TA = –55ⴗC OPEN - LOOP GAIN – V/ MV 40 105 TPC 11. Total Noise Density vs. Source Resistance PHASE SHIFT – DEG OPEN-LOOP GAIN – dB GAIN 60 104 10000 VS = ⴞ15V CL = 30pF RL = 1M⍀ TA = 25ⴗC 80 103 1s 90 SOURCE RESISTANCE – ⍀ TPC 10. Voltage Noise Density vs. Frequency 100 5mV 100 DIFFERENTIAL INPUT VOLTAGE – 10V/ DIV 1 TA = 25ⴗC VS = ⴞ2V TO ⴞ20V NOISE VOLTAGE – 100mV/DIV TA = 25ⴗC VS = 2V TO 20V CURRENT NOISE DENSITY – fA / Hz VOLTAGE NOISE DENSITY – nV/ Hz 1000 1 10 100 1k 10k 100k FREQUENCY – Hz TPC 17. Power Supply Rejection vs. Frequency –5– 1M 0 100 1k 10k FREQUENCY – Hz TPC 18. Maximum Output Swing vs. Frequency 100k +VS –1.0 –1.5 1.5 1.0 20 15 10 5 0.5 ⴞ5 ⴞ10 ⴞ15 SUPPLY VOLTAGE – V 0 ⴞ20 TPC 19. Input Common-Mode Voltage Range vs. Supply Voltage 700 0 10 100 1k LOAD RESISTANCE – ⍀ +125 C 10 –55 C 1 AV = +1 400 0.1 200 1.0 0.5 0 ⴞ5 ⴞ10 0.01 TPC 21. Output Voltage Swing vs. Supply Voltage TA = –55 C 25 TA = +25 C 20 TA = +125 C 15 VS = ⴞ15V OUTPUT SHORTED TO GROUND –15 TA = +125 C –20 TA = +25 C –25 –30 TA = –55 C 0 ⴞ5 ⴞ10 ⴞ15 ⴞ20 –35 0.001 1 10 100 1k 10k SUPPLY VOLTAGE – V TPC 22. Supply Current (per Amplifier) vs. Supply Voltage TPC 23. Closed-Loop Output Impedance vs. Frequency 100k 0 1 2 3 TIME FROM OUTPUT SHORT – Mins 60 4 TPC 24. Short-Circuit Current vs. Time Temperature V+ 70 OVERSHOOT – % ⴞ20 ⴞ15 30 500 300 1.5 35 VS = 15V TA = 25 C 100 +25 C –1.5 SUPPLY VOLTAGE – V 1000 600 –1.0 10k TPC 20. Maximum Output Swing vs. Load Resistance NO LOAD TA = 25ⴗC RL = 10k⍀ –0.5 –VS SHORT CIRCUIT CURRENT – mA SUPPLY CURRENT (PER AMPLIFIER) – A VS = ⴞ15V TA = 25ⴗC 30 AVCL= +1 1%THD 25 fO = 1kHz OUTPUT VOLTAGE SWING – V (REFERRED TO SUPPLY VOLTAGES) –0.5 –VS +VS 35 TA = 25ⴗC OUTPUT SWING – Vp-p INPUT COMMON-MODE VOLTAGE – Volts (REFERRED TO SUPPLY VOLTAGES) OP497 VS = ⴞ15V TA = 25 C AVCL = +1 VOUT = 100mV p–p 50 40 VOUT 30 2.5k⍀ –IN 20 10 2.5k⍀ 0 10 +IN 100 1k LOAD CAPACITANCE – pF 10k TPC 25. Small-Signal Overshoot vs. Capacitance Load V– TPC 26. Simplified Schematic Showing One Amplifier –6– REV. D OP497 APPLICATIONS INFORMATION Extremely low bias current over the full military temperature range makes the OP497 attractive for use in sample-and-hold amplifiers, peak detectors, and log amplifiers that must operate over a wide temperature range. Balancing input resistances is not necessary with the OP497. Offset voltage and TCVOS are degraded only minimally by high source resistance, even when unbalanced. 100 90 The input pins of the OP497 are protected against large differential voltage by back-to-back diodes and current-limiting resistors. Common-mode voltages at the inputs are not restricted, and may vary over the full range of the supply voltages used. The OP497 requires very little operating headroom about the supply rails, and is specified for operation with supplies as low as ± 2 V. Typically, the common-mode range extends to within 1 V of either rail. The output typically swings to within 1 V of the rails when using a 10 kΩ load. AC PERFORMANCE The OP497’s ac characteristics are highly stable over its full operating temperature range. Unity-gain small-signal response is shown in Figure 1. Extremely tolerant of capacitive loading on the output, the OP497 displays excellent response even with 1000 pF loads (Figure 2). 100 90 10 0% 2V 50s Figure 3. Large-Signal Transient Response (AVCL = 1) GUARDING AND SHIELDING To maintain the extremely high input impedances of the OP497, care must be taken in circuit board layout and manufacturing. Board surfaces must be kept scrupulously clean and free of moisture. Conformal coating is recommended to provide a humidity barrier. Even a clean PC board can have 100 pA of leakage currents between adjacent traces, so guard rings should be used around the inputs. Guard traces are operated at a voltage close to that on the inputs, as shown in Figure 4, so that leakage currents become minimal. In noninverting applications, the guard ring should be connected to the common-mode voltage at the inverting input. In inverting applications, both inputs remain at ground, so the guard trace should be grounded. Guard traces should be on both sides of the circuit board. UNITY GAIN FOLLOWER NONINVERTING AMPLIFIER – – 1/4 10 0% 1/4 OP497 OP497 + + 5s 20mV INVERTING AMPLIFIER Figure 1. Small-Signal Transient Response (CLOAD = 100 pF, AVCL = 1) MINI-DIP BOTTOM VIEW 8 – 1/4 OP497 + 1 A B 100 Figure 4. Guard Ring Layout and Connections 90 10 0% 20MV 5s Figure 2. Small-Signal Transient Response (CLOAD = 1000 pF, AVCL = 1) REV. D –7– OP497 OPEN-LOOP GAIN LINEARITY PRECISION CURRENT PUMP The OP497 has both an extremely high gain of 2000 V/mv minimum and constant gain linearity. This enhances the precision of the OP497 and provides for very high accuracy in high closed-loop gain applications. Figure 5 illustrates the typical open-loop gain linearity of the OP 497 over the military temperature range. Maximum output current of the precision current pump shown in Figure 7 is ± 10 mA. Voltage compliance is ± 10 V with ± 15 V supplies. Output impedance of the current transmitter exceeds 3 MΩ with linearity better than 16 bits. R3 10k⍀ DIFFERENTIAL INPUT VOLTAGE – 10µV/ DIV RL = 10k⍀ VS = ⴞ15V VCM = 0V R1 10k⍀ – VIN TA = +125 C + 2 1/4 R2 10k⍀ 3 OP497 8 7 5 1/4 OP497 V V IOUT = IN = IN = 10mA/ V R5 100⍀ TA = –55 C IOUT ⴞ10mA +15V R4 10k⍀ TA = +25C R5 10k⍀ 1 6 4 –15V Figure 7. Precision Current Pump PRECISION POSITIVE PEAK DETECTOR –15 –10 –5 0 5 10 15 In Figure 8, the CH must be of polystyrene, Teflon*, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the OP497. OUTPUT VOLTAGE – Volts Figure 5. Open-Loop Linearity of the OP497 APPLICATIONS 1k⍀ Precision Absolute Value Amplifier The circuit of Figure 6 is a precision absolute value amplifier with an input impedance of 30 MΩ. The high gain and low TCVOS of the OP497 ensure accurate operation with microvolt input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMR of the OP497 exceeds 120 dB, yielding an error of less than 2 ppm. 2 VIN 1/4 1k⍀ 3 OP497 6 1 2N930 1k⍀ R1 1k⍀ C1 30pF VIN 3 OP497 5 4 7 VOUT 0.1F –15V RESET C2 0.1F D1 1N4148 R3 1k⍀ SIMPLE BRIDGE CONDITIONING AMPLIFIER 1/4 1 OP497 C3 4 0.1F 5 D2 1N4148 Figure 8. Precision Positive Peak Detector 6 8 1/4 8 1/4 1k⍀ CH +15V 2 +15V 0.1F 1N4148 OP497 Figure 9 shows a simple bridge conditioning amplifier using the OP497. The transfer function is: 7 0V < VOUT < 10V ∆R RF VOUT = VREF R + ∆R R R2 2k⍀ –15V The REF43 provides an accurate and stable reference voltage for the bridge. To maintain the highest circuit accuracy, RF should be 0.1% or better with a low temperature coefficient. Figure 6. Precision Absolute Value Amplifier *Teflon is a registered trademark of the Dupont Company. –8– REV. D OP497 +5V C2 100pF 2 2.5 V VREF REF43 6 R 4 RF 6 2 1/4 R + ⌬R R 3 1 OP497 1/4 VOUT 2 Q1 5 OP497 6 3 8 1/4 IO 1 +5V 6 R2 33k⍀ R VOUT = VREF ( 7 5 7 5 VIN –5V R1 133k⍀ IIN 2 C1 100pF IREF Q4 9 Q3 1/4 12 10 1 OP497 R3 50k⍀ 4 Figure 10. Squaring Amplifier Due to its low input bias currents, the OP497 is an ideal log amplifier in nonlinear circuits such as the square and square root circuits shown in Figures 10 and 11. Using the squaring circuit of Figure 10 as an example, the analysis begins by writing a voltage-loop equation across transistors Q1, Q2, Q3, and Q4. I I I I VT 1In IN + VT 2 In IN = VT 3 In I O + VT 4 In REF IS 1 IS 2 IS 4 IS 3 All the transistors of the MAT04 are precisely matched and at the same temperature, so the IS and VT terms cancel, giving: 2InI IN = InIO + InIREF = In ( IO × IREF ) A similar analysis made for the square-root circuit of Figure 11 leads to its transfer function: VOUT = R2 (VIN )(IREF ) R1 In these circuits, IREF is a function of the negative power supply. To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a voltage reference may be used to set IREF. An important consideration for the squaring circuit is that a sufficiently large input voltage can force the output beyond the operating range of the output op amp. Resistor R4 can be changed to scale IREF, or Rl and R2 can be varied to keep the output voltage within the usable range. Exponentiating both sides of thick equation leads to: IO R2 33k⍀ 2 I IN ) ( = IO R2 VIN = IREF R1 C2 100pF 6 IREF Op amp A2 forms a current-to-voltage converter which gives VOUT = R2 × IO. Substituting (VIN/R1) for IIN and the above equation for IO, yields: VOUT R4 50k⍀ –15V V– NONLINEAR CIRCUITS 13 8 3 Figure 9. A Simple Bridge Conditioning Amplifier Using the OP497 14 MAT-04E 8 4 VOUT Q2 R ⌬R ) F R + ⌬R R V+ 7 OP497 Q1 1 2 IIN 2 7 VIN 2 8 1/4 3 6 OP497 4 V– VOUT IREF MAT-04E 14 13 V+ 7 OP497 3 C1 100pF R1 33k⍀ 1/4 5 Q4 12 8 Q3 Q2 5 10 9 1 R5 2k⍀ R3 50k⍀ R4 50k⍀ –15V Figure 11. Square-Root Amplifier Unadjusted accuracy of the square-root circuit is better than 0.1% over an input voltage range of 100 mV to 10 V. For a similar input voltage range, the accuracy of the squaring circuit is better than 0.5%. REV. D –9– OP497 OP497 SPICE MACRO-MODEL Figure 12 and Table I show the node and net list for a SPICE macro-model of the OP497. The model is a simplified version of the actual device and simulates important dc parameters such as VOS, IOS, IB, AVO, CMR, VO, and ISY. AC parameters such as slew rate, gain and phase response, and CMR change with frequency are also simulated by the model. The model uses typical parameters for the OP497. The poles and zeros in the model were determined from the actual open and closed-loop gain and phase response of the OP497. In this way, the model presents an accurate ac representation of the actual device. The model assumes an ambient temperature of 25°C. 99 V1 ⴞ R3 13 R4 D3 12 C2 5 2 –IN RIN2 6 8 Q1 R1 CIN D1 IOS D2 Q2 10 11 R5 R6 G1 14 –+ 1 7 D4 ⴞ EREF 9 EOS V2 ⴞ I1 50 CCM CNZ RNZ1 RCM1 15 16 ECM ⴞ RCM2 17 ENZ ⴞ RNZ2 20 19 18 R10 G2 C5 C5 R15 G2 98 99 R16 D7 D8 ISY G6 20 R17 D9 G4 G5 VO 27 –+ D6 26 L1 22 24 25 R18 V3 D5 23 21 –+ +IN C3 98 R2 RIN1 R7 V4 R19 G7 D10 50 Figure 12. OP497 Macro Model –10– REV. D OP497 Table I. OP497 SPICE Net-List * Node assignments * noninverting input * inverting input * positive supply * negative supply * output * *SUBCKT OP497 1 2 99 50 27 * * INPUT STAGE AND POLE AT 6 MHz * RIN1 1 7 2500 RIN2 2 8 2500 R1 8 3 6.782E8 R2 7 3 6.782E8 R3 5 99 542.57 R4 6 99 542.57 CIN 7 8 3E-12 C2 5 6 24.445E-12 I1 4 50 0.1E-3 IOS 7 8 15E-12 EOS 9 7 POLY(1) 16 21 40E-6 1 Q1 5 8 10 QX Q2 6 9 11 QX R5 10 4 25.374 R6 11 4 25.374 D1 8 9 DX D2 9 8 DX * EREF 98 0 21 0 1 * *GAIN STAGE AND DOMINANT POLE AT 0.11 Hz * R7 1 98 2.1703E9 C3 2 98 666.67E-12 G1 98 12 5 V1 99 13 1.275 V2 11 9 1.275 D3 12 13 DX D4 14 12 DX * *COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz * RCM1 15 16 1E6 CCM 15 16 3.18E-9 RCM2 16 98 1 ECM 15 98 3 21 177.83E-3 REV. D * NEGATIVE ZERO AT 1.8 MHz * E1 17 98 12 21 1E6 R8 17 18 1E6 C4 17 18 –88.419E-15 R9 18 98 1 * * POLE AT 6 MHz * G2 98 19 18 21 1E-6 R15 20 98 1E6 C8 20 98 26.526E-15 * * POLE AT 1.8 MHz * G6 98 20 19 21 1E-6 R20 20 98 1E6 C10 20 98 88.419E-15 * * OUTPUT STAGE * R16 99 21 160 k R17 21 50 160 k ISY 99 50 331E-6 V3 23 22 1.9 D5 20 23 DX V4 22 24 1.9 D6 24 20 DX D7 99 25 DX G4 25 50 20 22 5E-3 D9 50 25 DY D8 99 26 DX G5 26 50 22 20 5E-3 D10 50 26 DY G6 22 99 99 20 5E-3 R18 99 22 200 G7 50 22 20 50 5E-3 R19 22 50 200 L1 22 27 0.1E-6 * * MODELS USED * .MODEL QX NPN (BF = 1.25E6) .MODEL DX (IS = 1E-15) .MODEL DZ D(IS = 1E-15 BV = 50) .ENDS OP497 –11– OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 0.005 (0.13) MIN 16-Lead Wide-Body SOIC (S-Suffix) 0.4133 (10.50) 0.3977 (10.00) 0.098 (2.49) MAX 14 8 16 9 PIN 1 0.060 (1.52) 0.015 (0.38) C00309–0–2/02(D) 14-Lead Ceramic DIP (Y-Suffix) 0.2992 (7.60) 0.2914 (7.40) 7 1 0.310 (7.87) 0.220 (5.59) 1 8 0.785 (19.94) MAX 0.200 (5.08) MAX PIN 1 0.150 (3.81) MIN 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 0.100 (2.54) BSC 0.070 (1.78) 0.030 (0.76) 0.320 (8.13) 0.290 (7.37) 0.015 (0.38) 0.008 (0.20) 0°–15° 0.050 (1.27) BSC 0.0118 (0.30) 0.0040 (0.10) SEATING PLANE 0.4193 (10.65) 0.3937 (10.00) 0.1043 (2.65) 0.0926 (2.35) 8ⴗ 0.0192 (0.49) SEATING 0ⴗ 0.0125 (0.32) 0.0138 (0.35) PLANE 0.0091 (0.23) 0.0291 (0.74) ⴛ 45ⴗ 0.0098 (0.25) 0.0500 (1.27) 0.0157 (0.40) 14-Lead Epoxy DIP (P-Suffix) 14 8 0.280 (7.11) 0.240 (6.10) PIN 1 0.015 (0.381) MIN 7 1 0.325 (8.25) 0.300 (7.62) 0.795 (20.19) 0.725 (18.41) 0.210 (5.33) MAX 0.160 (4.06) 0.115 (2.92) 0.022 (0.558) 0.100 0.014 (0.36) (2.54) BSC 0.130 (3.30) MIN 0.070 (1.77) 0.045 (1.15) 0°–15° 0.015 (0.38) 0.008 (0.20) Location Page 11/01—Data Sheet changed from REV. C to REV. D. Edits to PIN CONNECTIONS headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Deleted WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Edits to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 –12– PRINTED IN U.S.A. Revision History