AD ADL5324

400 MHz to 4000 MHz
½ Watt RF Driver Amplifier
ADL5324
Data Sheet
FUNCTIONAL BLOCK DIAGRAM
FEATURES
GND
Operation from 400 MHz to 4000 MHz
Gain of 14.6 dB at 2140 MHz
OIP3 of 43.1 dBm at 2140 MHz
P1dB of 29.1 dBm at 2140 MHz
Noise figure of 3.8 dB
Dynamically adjustable bias
Adjustable power supply bias: 3.3 V to 5 V
Low power supply current: 62 mA to 133 mA
No bias resistor needed
Operating temperature range of −40°C to +105°C
SOT-89 package, MSL-1 rated
ESD rating of ±3 kV (Class 2)
(2)
ADL5324
2
3
RFIN
GND
RFOUT
10562-001
BIAS
1
Figure 1.
APPLICATIONS
Wireless infrastructure
Automated test equipment
ISM/AMR applications
GENERAL DESCRIPTION
–30
–35
–40
–45
–50
–55
SOURCE
VCC = 3.3V
VCC = 5V
–60
–65
–70
–75
–80
–85
–20
–15
–10
–5
0
5
10
15
20
POUT (dBm)
25
10562–055
The ADL5324 is also rated to operate across the wide temperature range of −40°C to +105°C for reliable performance
in designs that experience higher temperatures, such as power
amplifiers. The ½ W driver amplifier also covers the wide
frequency range of 400 MHz to 4000 MHz, and only requires
a few external components to be tuned to a specific band within
that wide range. This high performance broadband RF driver
amplifier is well suited for a variety of wired and wireless
applications, including cellular infrastructure, ISM band power
amplifiers, defense equipment, and instrumentation equipment.
A fully populated evaluation board is available.
The ADL5324 also delivers excellent ACPR vs. output power
and bias voltage. The driver can deliver greater than 17 dBm
of output power at 2140 MHz, while achieving an ACPR of
−55 dBc at 5 V. If the bias is reduced to 3.3 V, the −55 dBc
ACPR output power only minimally reduces to 15 dBm.
ACPR @ 5MHz CARRIER OFFSET (dBc)
The ADL5324 incorporates a dynamically adjustable biasing
circuit that allows for the customization of OIP3 and P1dB
performance from 3.3 V to 5 V, without the need for an external
bias resistor. This feature gives the designer the ability to tailor
driver amplifier performance to the specific needs of the design.
This feature also creates the opportunity for dynamic biasing of
the driver amplifier where a variable supply is used to allow for
full 5 V biasing under large signal conditions, and then reduced
supply voltage when signal levels are smaller and lower power
consumption is desirable. This scalability reduces the need to
evaluate and inventory multiple driver amplifiers for different
output power requirements, from 25 dBm to 29 dBm output
power levels.
Figure 2. ACPR vs. Output Power, Single Carrier W-CDMA,
TM1-64 at 2140 MHz
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062−9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2012 Analog Devices, Inc. All rights reserved.
ADL5324
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
High Temperature Operation ................................................... 12
Applications ....................................................................................... 1
Applications Information .............................................................. 13
Functional Block Diagram .............................................................. 1
Basic Layout Connections ......................................................... 13
General Description ......................................................................... 1
Revision History ............................................................................... 2
Soldering Information and Recommended PCB Land
Pattern .......................................................................................... 13
Specifications..................................................................................... 3
Matching Procedure ................................................................... 15
Typical Scattering Parameters..................................................... 5
W-CDMA ACPR Performance ................................................ 16
Absolute Maximum Ratings ............................................................ 6
Evaluation Board ............................................................................ 17
ESD Caution .................................................................................. 6
Outline Dimensions ....................................................................... 20
Pin Configuration and Function Descriptions ............................. 7
Ordering Guide .......................................................................... 20
Typical Performance Characteristics ............................................. 8
REVISION HISTORY
3/12—Revision 0: Initial Version
Rev. 0 | Page 2 of 20
Data Sheet
ADL5324
SPECIFICATIONS
VSUP = 5 V and TA = 25°C, unless otherwise noted.
Table 1.
Parameter
FREQUENCY = 457 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 748 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 915 MHz
Gain 1
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 1935 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 2140 MHz
Gain1
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
Test Conditions/Comments
±37 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
±20 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
±46 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
±55 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
±30 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
Rev. 0 | Page 3 of 20
Min
3.3 V
Typ
Max
Min
5V
Typ
Max
Unit
17.2
+0.0/−0.4
±0.6
±0.3
24.2
30.1
5.6
18.4
+0.0/−0.2
±0.6
±0.07
28.0
40.1
6.8
dB
dB
dB
dB
dBm
dBm
dB
16.5
+0.0/−0.2
±0.4
±0.2
24.2
36.0
4.0
17.5
+0.0/−0.2
±0.4
±0.06
28.0
45.8
5.2
dB
dB
dB
dB
dBm
dBm
dB
15.8
±0.1
±0.4
±0.2
24.2
39.3
4.1
16.0
13.9
+0.0/−0.1
±0.5
±0.2
23.2
34.6
3.1
13.6
+0.1/−0.0
±0.6
±0.2
25.3
34.4
3.2
16.8
+0.1/−0.3
±0.4
±0.06
27.7
45.6
5.1
17.6
15.0
+0.0/−0.1
±0.5
±0.07
27.2
45.5
3.6
13.5
14.6
±0.1
±0.6
±0.06
29.1
43.1
3.8
dB
dB
dB
dB
dBm
dBm
dB
dB
dB
dB
dB
dBm
dBm
dB
15.7
dB
dB
dB
dB
dBm
dBm
dB
ADL5324
Parameter
FREQUENCY = 2630 MHz
Gain1
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 3600 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
POWER INTERFACE
Supply Voltage
Supply Current
vs. Temperature
Power Dissipation
1
Data Sheet
Test Conditions/Comments
Min
3.3 V
Typ
Max
12.1
±0.1
±0.7
±0.2
23.6
32.4
3.6
±60 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
Min
11.8
11.0
+0.0/−0.7
±1.0
±0.2
25.0
29.3
3.8
±100 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
5V
Typ
13.3
+0.0/−0.2
±0.7
±0.07
27.8
42.0
4.3
Max
Unit
14.6
dB
dB
dB
dB
dBm
dBm
dB
12.0
+0.0/−0.8
±1.0
±0.05
28.5
36.6
4.4
dB
dB
dB
dB
dBm
dBm
dB
Pin RFOUT
3.15
−40°C ≤ TA ≤ +85°C
VSUP = 5 V
3.3
62
+4/−6
205
Guaranteed maximum and minimum specified limits on this parameter are based on six sigma calculations.
Rev. 0 | Page 4 of 20
3.45
4.75
5
140
+5/−7
700
5.25
V
mA
mA
mW
Data Sheet
ADL5324
TYPICAL SCATTERING PARAMETERS
VSUP = 5 V and TA = 25°C; the effects of the test fixture have been de-embedded up to the pins of the device.
Table 2.
S11
S21
Angle (°)
Magnitude (dB)
S12
Angle (°)
Magnitude (dB)
S22
Freq (MHz)
Magnitude (dB)
Angle (°)
Magnitude (dB)
Angle (°)
400
−0.73518
−178.582
13.3917
135.7023
−34.6804
12.40754
−3.04567
175.7277
500
−0.6682
178.6472
12.83594
125.9539
−34.2707
8.733014
−3.13245
175.9202
600
−0.69026
176.9348
12.14674
117.8626
−34.1019
6.416618
−3.13132
176.4634
700
−0.73622
175.8152
11.44082
111.0321
−34.0009
5.053048
−3.11375
177.3131
800
−0.78026
175.0847
10.7709
105.1552
−33.9042
3.90523
−3.08891
178.3368
900
−0.8238
174.5898
10.17296
99.91559
−33.7964
3.162531
−3.05337
179.4021
1000
−0.8703
174.2026
9.636511
95.21821
−33.6656
2.580227
−3.01719
−179.377
1100
−0.9211
173.9872
9.182607
91.01039
−33.5057
2.111382
−2.98741
−177.773
1200
−0.97114
173.3143
8.797653
86.68882
−33.3176
1.186726
−2.94972
−176.469
1300
−1.05332
172.9788
8.493785
82.89921
−33.0916
0.689198
−2.9749
−174.745
1400
−1.13807
172.418
8.268673
79.01047
−32.8261
−0.26086
−2.99624
−173.189
1500
−1.23342
171.5538
8.117951
74.96804
−32.5253
−1.43036
−3.02533
−171.783
1600
−1.34406
170.302
8.030017
70.69309
−32.1979
−3.08241
−3.04592
−170.675
1700
−1.47125
168.6736
7.998348
66.16438
−31.8306
−5.10232
−3.05748
−169.736
1800
−1.61396
166.5204
8.012977
61.23666
−31.4647
−7.75224
−3.08106
−169.23
1900
−1.78541
163.8113
8.0503
55.89288
−31.0967
−10.9203
−3.12034
−169.149
2000
−1.98158
160.6247
8.103461
50.12853
−30.7409
−14.671
−3.15588
−169.657
2100
−2.19535
157.0149
8.162658
43.95115
−30.4109
−19.0255
−3.18172
−170.862
2200
−2.43367
153.0489
8.207579
37.39437
−30.1134
−23.849
−3.19212
−172.621
2300
−2.68863
148.8413
8.231765
30.52801
−29.872
−29.1849
−3.17831
−174.879
2400
−2.95983
144.5491
8.231791
23.39294
−29.6822
−35.0026
−3.13204
−177.553
2500
−3.25472
140.354
8.199665
16.05117
−29.5353
−41.1796
−3.05541
179.4875
2600
−3.56594
136.4445
8.141897
8.510386
−29.4496
−47.7908
−2.94631
176.2481
2700
−3.90734
133.0736
8.052657
0.787456
−29.4307
−54.7743
−2.79325
172.8794
2800
−4.28173
130.4779
7.925075
−7.06584
−29.451
−62.1914
−2.57604
169.6831
2900
−4.69306
128.952
7.778394
−15.0835
−29.5362
−69.9289
−2.31023
166.7304
3000
−5.13012
128.7774
7.590076
−23.2924
−29.673
−78.1809
−2.00734
164.1571
3100
−5.54712
130.3019
7.355608
−31.6367
−29.8658
−86.8436
−1.69231
162.0214
3200
−5.86482
133.6487
7.062082
−40.2413
−30.1507
−96.2073
−1.37649
160.0906
3300
−5.98131
138.5443
6.680613
−48.9518
−30.5191
−106.08
−1.0663
158.4485
3400
−5.80159
144.0974
6.20792
−57.556
−30.9857
−116.217
−0.80053
157.172
3500
−5.34159
149.2672
5.63213
−65.9828
−31.5373
−126.686
−0.58238
156.1642
3600
−4.7127
153.2749
4.988874
−73.9355
−32.1461
−137.413
−0.41604
155.491
3700
−4.03208
155.8906
4.279792
−81.4065
−32.7942
−148.125
−0.30331
155.1641
3800
−3.37391
157.3335
3.543499
−88.1911
−33.4212
−158.775
−0.23714
155.0734
3900
−2.79798
157.8681
2.803935
−94.5028
−33.9833
−169.303
−0.20674
155.156
4000
−2.30194
157.7622
2.085365
−100.344
−34.3781
−179.983
−0.20598
155.3378
Rev. 0 | Page 5 of 20
ADL5324
Data Sheet
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 3.
Parameter
Supply Voltage, VSUP
Input Power (50 Ω Impedance)
Internal Power Dissipation (Paddle Soldered)
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
6.5 V
20 dBm
1.9 W
150°C
−40°C to +105°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Table 4 lists the junction-to-air thermal resistance (θJA) and the
junction-to-paddle thermal resistance (θJC) for the ADL5324.
Table 4. Thermal Resistance
Package Type
3-Lead SOT-89
1
θJA1
37
θJC2
9
Unit
°C/W
Measured on Analog Devices evaluation board. For more information about
board layout, see the Soldering Information and Recommended PCB Land
Pattern section.
2
Based on simulation with JEDEC standard JESD51.
ESD CAUTION
Rev. 0 | Page 6 of 20
Data Sheet
ADL5324
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
RFIN 1
ADL5324
TOP VIEW (2) GND
(Not to Scale)
RFOUT 3
10562-002
GND 2
Figure 3. Pin Configuration
Table 5. Pin Function Descriptions
Pin No.
1
2
Mnemonic
RFIN
GND
3
RFOUT
Description
RF Input. This pin requires a dc blocking capacitor.
Ground. Connect this pin to a low impedance ground plane.
Note that the paddle, which is exposed, encompasses Pin 2 and the tab at the top side of the package.
It should be soldered to a low impedance ground plane for electrical grounding and thermal transfer.
RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is connected
to the external power supply. The RF path requires a dc blocking capacitor.
Rev. 0 | Page 7 of 20
ADL5324
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
OIP3 (dBm)
34
40
33
35
48
+85°C
32
P1dB (dBm)
25
GAIN (dB)
44
42
–40°C
30
40
29
38
+25°C
15
28
10
–40°C
36
27
34
+85°C
NF (dB)
32
5
26
0
869
25
869
884
900
915
930
946
961
FREQUENCY (MHz)
884
900
915
930
30
961
946
10562-018
20
31
P1dB (dBm)
30
46
+25°C
OIP3 (dBm)
45
10562-015
NOISE FIGURE, GAIN, P1DB, OIP3 (dB, dBm)
50
35
50
FREQUENCY (MHz)
Figure 4. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
869 MHz to 961 MHz
Figure 7. OIP3 and P1dB vs. Frequency and Temperature,
869 MHz to 961 MHz
17.5
55
–40°C
53
51
17.0
49
OIP3 (dBm)
GAIN (dB)
+25°C
16.5
+85°C
47
45
43
41
16.0
39
884
900
915
930
946
961
FREQUENCY (MHz)
35
–5
10562-016
15.5
869
0
5
10
15
20
POUT PER TONE (dBm)
10562-019
869MHz
915MHz
961MHz
37
Figure 8. OIP3 vs. POUT and Frequency, 869 MHz to 961 MHz
Figure 5. Gain vs. Frequency and Temperature, 869 MHz to 961 MHz
0
7
–5
S22
–15
S11
–20
–25
S12
–30
+85°C
6
NOISE FIGURE (dB)
S-PARAMETERS (dB)
–10
+25°C
5
–40°C
4
884
900
915
930
FREQUENCY (MHz)
946
961
Figure 6. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 869 MHz to 961 MHz
Rev. 0 | Page 8 of 20
3
869
884
900
915
930
946
FREQUENCY (MHz)
Figure 9. Noise Figure vs. Frequency and Temperature,
869 MHz to 961 MHz
961
10562-020
–40
869
10562-017
–35
Data Sheet
ADL5324
45
46
34
+25°C
40
35
44
32
25
20
42
+85°C
40
31
P1dB (dBm)
P1dB (dBm)
30
30
38
–40°C
+25°C
36
29
GAIN (dB)
15
28
10
34
+85°C
27
32
26
30
NF (dB)
2120
2130
2140
2150
2160
2170
FREQUENCY (MHz)
25
2110
2120
2130
2140
2150
2160
28
2170
10562-030
5
0
2110
FREQUENCY (MHz)
Figure 10. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
2110 MHz to 2170 MHz
Figure 13. OIP3 and P1dB vs. Frequency and Temperature,
2110 MHz to 2170 MHz
16.0
50
2110MHz
2140MHz
2170MHz
48
15.5
46
–40°C
44
OIP3 (dBm)
15.0
GAIN (dB)
–40°C
33
OIP3 (dBm)
OIP3 (dBm)
10562-027
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
48
35
50
+25°C
14.5
+85°C
14.0
42
40
38
36
34
13.5
2120
2130
2140
2150
2160
2170
FREQUENCY (MHz)
30
–5
10562-028
13.0
2110
0
5
10
15
20
POUT PER TONE (dBm)
Figure 11. Gain vs. Frequency and Temperature, 2110 MHz to 2170 MHz
10562-031
32
Figure 14. OIP3 vs. POUT and Frequency, 2110 MHz to 2170 MHz
0
6
–10
S22
–15
S11
5
NOISE FIGURE (dB)
S-PARAMETERS (dB)
–5
–20
S12
–25
–30
+85°C
+25°C
4
–40°C
3
2120
2130
2140
2150
FREQUENCY (MHz)
2160
2170
Figure 12. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 2110 MHz to 2170 MHz
Rev. 0 | Page 9 of 20
2
2110
2120
2130
2140
2150
2160
FREQUENCY (MHz)
Figure 15. Noise Figure vs. Frequency and Temperature,
2110 MHz to 2170 MHz
2170
10562-032
–40
2110
10562-029
–35
ADL5324
Data Sheet
35
31
P1dB (dBm)
32
30
P1dB (dBm)
25
20
+25°C
–40°C
44
42
+85°C
40
30
38
29
–40°C
28
GAIN (dB)
15
46
33
OIP3 (dBm)
40
+25°C
36
OIP3 (dBm)
45
34
27
+85°C
NF (dB)
5
2590
2610
2630
2650
2670
2690
FREQUENCY (MHz)
26
32
25
30
24
2570
2590
2610
2630
2650
2670
28
2690
10562-036
10
0
2570
FREQUENCY (MHz)
Figure 16. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
2570 MHz to 2690 MHz
Figure 19. OIP3 and P1dB vs. Frequency and Temperature,
2570 MHz to 2690 MHz
14.5
50
2570MHz
2630MHz
2690MHz
48
–40°C
14.0
46
44
13.5
+25°C
OIP3 (dBm)
GAIN (dB)
48
34
10562-033
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
50
13.0
+85°C
12.5
42
40
38
36
34
12.0
2590
2610
2630
2650
2670
2690
FREQUENCY (MHz)
30
–5
10562-034
11.5
2570
0
5
10
15
20
POUT PER TONE (dBm)
Figure 17. Gain vs. Frequency and Temperature, 2570 MHz to 2690 MHz
10562-037
32
Figure 20. OIP3 vs. POUT and Frequency, 2570 MHz to 2690 MHz
0
7
–5
S22
–15
6
NOISE FIGURE (dB)
S-PARAMETERS (dB)
–10
S11
–20
S12
–25
–30
+85°C
5
+25°C
4
–40°C
2590
2610
2630
2650
FREQUENCY (MHz)
2670
2690
Figure 18. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 2570 MHz to 2690 MHz
Rev. 0 | Page 10 of 20
3
2570
2590
2610
2630
2650
2670
FREQUENCY (MHz)
Figure 21. Noise Figure vs. Frequency and Temperature,
2570 MHz to 2690 MHz
2690
10562-038
–40
2570
10562-035
–35
Data Sheet
ADL5324
25
30
20
20
PERCENTAGE (%)
15
10
15
10
41.2
41.6
42.0
42.4
42.8
43.2
43.6
44.0
44.4
44.8
OIP3 (dBm)
0
10562-045
0
3.45
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
NOISE FIGURE (dB)
Figure 22. OIP3 Distribution at 2140 MHz
Figure 25. Noise Figure Distribution at 2140 MHz
50
200
45
190
40
180
SUPPLY CURRENT (mA)
PERCENTAGE (%)
3.50
10562-048
5
5
35
30
25
20
15
10
170
160
5.25V
150
5V
140
4.75V
130
120
110
0
100
–40
28.2
28.4
28.6
28.8
29.0
29.2
29.4
29.6
29.8
30.0
P1dB (dBm)
10562-046
5
–20
0
20
40
60
80
TEMPERATURE (°C)
Figure 23. P1dB Distribution at 2140 MHz
10562-049
PERCENTAGE (%)
25
Figure 26. Supply Current vs. Supply Voltage and Temperature, 5 V
(Using 2140 MHz Matching Components)
100
40
90
35
20
15
40
30
5
10
14.3
14.4
14.5
14.6
14.7
14.8
14.9
15.0
15.1
GAIN (dB)
15.2
4.75V
50
20
0
5V
60
10
10562-047
PERCENTAGE (%)
25
5.25V
70
0
–40
–20
0
20
40
TEMPERATURE (°C)
60
80
10562-064
SUPPLY CURRENT (mA)
80
30
Figure 27. Supply Current vs. Supply Voltage and Temperature, 3.3 V
(Using 2140 MHz Matching Components)
Figure 24. Gain Distribution at 2140 MHz
Rev. 0 | Page 11 of 20
ADL5324
Data Sheet
HIGH TEMPERATURE OPERATION
15.0
14.5
14.5
14.0
14.0
25°C
85°C
105°C
13.5
13.0
13.0
12.5
12.5
12.0
2110
2120
2130
2140
2150
2160
2170
12.0
2110
FREQUENCY (MHz)
33
31
43
31
29
38
P1dB (dBm)
OIP3 (dBm)
33
2160
25°C
85°C
105°C
2170
43
38
29
OIP3
33
27
28
25
28
25
P1dB
2130
2140
2150
FREQUENCY (MHz)
2160
23
2170
23
2110
Figure 29. OIP3 and P1dB vs. Frequency and Temperature,
5 V Supply, 2140 MHz
2130
2140
2150
FREQUENCY (MHz)
2160
23
2170
Figure 32. OIP3 and P1dB vs. Frequency and Temperature, 3.3 V Supply,
2140 MHz
6
6
25°C
85°C
105°C
25°C
85°C
105°C
5
NOISE FIGURE (dB)
5
4
3
4
2120
2130
2140
2150
FREQUENCY (MHz)
2160
2170
2
2110
Figure 30. Noise Figure vs. Frequency and Temperature, 5 V Supply,
2140 MHz
2120
2130
2140
2150
FREQUENCY (MHz)
2160
2170
10562-139
3
10562-136
2
2110
2120
10562-138
2120
10562-135
23
2110
NOISE FIGURE (dB)
P1dB (dBm)
25°C
85°C
105°C
2150
48
OIP3
27
2140
Figure 31. Gain vs. Frequency and Temperature, 3.3 V Supply, 2140 MHz
48
P1dB
2130
FREQUENCY (MHz)
Figure 28. Gain vs. Frequency and Temperature, 5 V Supply, 2140 MHz
33
2120
OIP3 (dBm)
13.5
25°C
85°C
105°C
10562-137
GAIN (dB)
15.0
10562-134
GAIN (dB)
The ADL5324 has excellent performance at temperatures above 85°C. At 105°C, the gain and P1dB decrease by 0.2 dB, the OIP3
decreases by 0.1 dB, and the noise figure increases by 0.31 dB compared with the data at 85°C. Figure 28 through Figure 30 show the
performance at 105°C.
Figure 33. Noise Figure vs. Frequency and Temperature, 3.3 V Supply,
2140 MHz
Rev. 0 | Page 12 of 20
Data Sheet
ADL5324
APPLICATIONS INFORMATION
BASIC LAYOUT CONNECTIONS
The basic connections for operating the ADL5324 are shown
in Figure 34. Table 6 lists the required matching components.
Capacitors C1, C2, and C3 are Murata GRM615 series (0402
size) High Q capacitors and C7 is a Murata GRM155 series
(0402 size). Inductor L1 is a Coilcraft 0603CS series (0603
size). For all frequency bands, the placement of C1 and C2 are
critical. The placement of C3 becomes critical for the following
bands: 1880 MHz to 1990 MHz, 2110 MHz to 2170 MHz,
2300 MHz to 2400 MHz, 2570 MHz to 2690 MHz. and 3500 MHz
to 3600 MHz. For operation from 420 MHz to 494 MHz, 728 MHz
to 768 MHz, and 869 MHz to 960 MHz, R2 is replaced with a
Coilcraft (0402 size) High Q inductor. Table 7 lists the recommended component placement for various frequencies.
A 5 V dc bias is supplied through L1, which is connected to
RFOUT (Pin 3). In addition to C4, 10 nF and 10 μF power
supply decoupling capacitors are also required. The typical
current consumption for the ADL5324 is 140 mA.
GND
SOLDERING INFORMATION AND RECOMMENDED
PCB LAND PATTERN
Figure 35 shows the recommended land pattern for the ADL5324.
To minimize thermal impedance, the exposed paddle on the
SOT-89 package underside is soldered to a ground plane along
with Pin 2. If multiple ground layers exist, they should be
stitched together using vias. For more information on land
pattern design and layout, refer to the Application Note AN-772,
A Design and Manufacturing Guide for the Lead Frame Chip
Scale Package (LFCSP).
This land pattern, on the ADL5324 evaluation board, provides
a measured thermal resistance (θJA) of 37°C/W. To measure θJA,
the temperature at the top of the SOT-89 package is found with
an IR temperature gun. Thermal simulation suggests a junction
temperature 10°C higher than the top of package temperature.
With additional ambient temperature and I/O power measurements, θJA could be determined.
1.80mm
VSUP
(2)
GND
C6 10µF
C5 10nF
3.48mm
C4 100pF
3
0.20mm
5.56mm
R2 C7 RFOUT
0Ω 20pF
C23
2.2pF
1SEE
0.86mm
THE RECOMMENDED COMPONENTS FOR BASIC CONNECTIONS TABLE
FOR FREQUENCY-SPECIFIC COMPONENTS.
2SEE TABLE 6 FOR RECOMMENDED COMPONENT SPACING.
3C1, C2, AND C3 ARE MURATA HIGH Q CAPACITORS GRM615 SERIES.
0.62mm
1.27mm
Figure 34. Basic Connections
1.50mm
3.00mm
Figure 35. Recommended Land Pattern
Rev. 0 | Page 13 of 20
10562-051
2
L1
15nH
λ22
10562-050
C13
2pF
1
RFOUT
λ12
GND
C33
RFIN R1 2.4pF
0Ω
RFIN
ADL5324
ADL5324
Data Sheet
Table 6. Recommended Components for Basic Connections
Function/
Component
AC Coupling
Capacitors
C3 = 0402
C7 = 0402
Power Supply
Bypassing
Capacitors
C4 = 0402
C5 = 0603
C6 = 1206
DC Bias Inductor
L1 = 0603CS
Tuning
Capacitors
C1 = 0402
C2 = 0402
Jumpers
R1 = 0402
R2 = 0402
Power Supply
Connections
VSUP
GND
420 MHz to
494 MHz
728 MHz to
768 MHz
800 MHz to
960 MHz
1880 MHz to
1990 MHz
2110 MHz to
2170 MHz
(Default)
2300 MHz to
2400 MHz
2560 MHz to
2690 MHz
3500 MHz to
3700 MHz
10 pF
20 pF
10pF 1
20 pF
10 pF1
20 pF
2.4 pF1
20 pF
2.4 pF1
20 pF
2.4 pF1
20 pF
2pF1
20 pF1
1pF1
20 pF
100 pF
10 nF
10 µF
120 nH
100 pF
10 nF
10 µF
18 nH
100 pF
10 nF
10 µF
18 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
20 pF1
6.2 pF1
8 pF1
3.9 pF1
8 pF1
3.6 pF1
2.4 pF1
2.4 pF1
2.0 pF1
2.2 pF1
1.5 pF1
2.0 pF1
1.0 pF1
2.0 pF1
0.5 pF1
0.75 pF1
2Ω
5.6 nH 2
2Ω
2.4 nH 3
2Ω
2.4 nH3
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
4.7 nH3
Red test loop
Black test loop
1
Murata High Q capacitor.
Add a 1.6 nH at input (see Figure 41).
3
Coilcraft 0402CS series.
2
Table 7. Matching Component Spacing
Frequency (MHz)
420 to 494
728 to 768
869 to 961
1880 to 1990
2110 to 2170
2300 to 2400
2570 to 2690
3500 to 3700
λ1 (mils)
419
311
207
75
65
71
245
316
Rev. 0 | Page 14 of 20
λ2 (mils)
438
422
413
239
193
176
132
125
Data Sheet
ADL5324
The ADL5324 is designed to achieve excellent gain and OIP3
performance. To achieve this, both input and output matching
networks must present specific impedance to the device. The
matching components listed in Table 7 were chosen to provide
−10 dB input return loss while maximizing OIP3.
The load-pull plots (see Figure 36 and Figure 37) show the load
impedance points on the Smith chart where optimum OIP3,
gain, and output power can be achieved. These load impedance
values (that is, the impedance that the device sees when looking
into the output matching network) are listed in Table 8 and
Table 9 for maximum gain and maximum OIP3, respectively.
The contours show how each parameter degrades as it is moved
away from the optimum point.
4.
Repeat Step 3 as necessary. Once the desired gain and
return loss are realized, measure OIP3. Most likely, it will
be necessary to go back and forth between return loss/gain
and OIP3 measurements (probably compromising most on
output return loss) until an acceptable compromise is
achieved.
Fixed Load Pull
Freq = 2.1400 GHz
ZSource_2nd (Ohms) : 50.00 + j 0.00
ZSource_3rd (Ohms) : 50.00 + j 0.00
max = 16.06 dB
at 2.97 – j 2.70 Ohms
10 contours, 0.50 dB step
(11.50 to 16.00 dB)
Ip3
max = 44.18 dBm
at 9.44 + j 9.65 Ohms
10 contours, 1.00 dBm step
(35.00 to 44.00 dBm)
Specs: OFF
From the data shown in Table 8 and Table 9, it becomes clear that
maximum gain and maximum OIP3 do not occur at the same
impedance. This can also be seen on the load-pull contours in
Figure 36 and Figure 37. Thus, output matching generally
involves compromising between gain and OIP3. In addition,
the load-pull plots demonstrate that the quality of the output
impedance match must be compromised to optimize gain and/
or OIP3. In most applications where line lengths are short and
where the next device in the signal chain presents a low input
return loss, compromising on the output match is acceptable.
To adjust the output match for operation at a different
frequency, or if a different trade-off between OIP3, gain,
and output impedance is desired, a four-step procedure is
recommended.
Load
Gt
Label:
ADL5324_2P14_LP7
10562-053
MATCHING PROCEDURE
Figure 36. Load-Pull Contours, 2140 MHz
Fixed Load Pull
Freq = 2.6300 GHz
ZSource (Ohms) : 49.84 + j 4.33
ZSource_2nd (Ohms) : 37.79 + j 3.28
ZSource_3rd (Ohms) : 39.74 + j10.00
Load
For example, to optimize the ADL5324 for optimum OIP3 and
gain at 750 MHz, use the following steps:
1.
Install the recommended tuning components for an 869 MHz
to 970 MHz tuning band, but do not install C1 and C2.
2.
Connect the evaluation board to a vector network analyzer
so that input and output return loss can be viewed simultaneously.
3.
Starting with the recommended values and positions for
C1 and C2, adjust the positions of these capacitors along
the transmission line until the return loss and gain are
acceptable. In this case, push-down capacitors mounted
on small sticks can be used as an alternative to soldering.
If moving the component positions does not yield satisfactory results, then increase or decrease the values of C1
and C2 (in this case, the values are most likely increased
because the user is tuning for a lower frequency.
max = 13.83 dB
at 4.27 – j 1.99 Ohms
10 contours, 0.50 dB step
(9.00 to 13.50 dB)
Ip3
max = 45.19 dBm
at 2.84 + j 5.89 Ohms
10 contours, 1.00 dBm step
(36.00 to 45.00 dBm)
Specs: OFF
Rev. 0 | Page 15 of 20
26.37 + j30.90
Label:
ADL5324_2p63ghZ_LP3
Figure 37. Load-Pull Contours, 2600 MHz
10562-054
Gt
ADL5324
Data Sheet
ΓLoad
(Magnitude)
0.888
0.0843
ΓLoad (°)
−173.55
−175.41
GainMAX (dB)
16.1
13.83
Table 9. Load Conditions for OIP3 MAX
Frequency (MHz)
2140
2630
ΓLoad
(Magnitude)
0.654
0.894
ΓLoad (°)
+163.28
+166.52
IP3MAX (dBm)
44.18
45.19
W-CDMA ACPR PERFORMANCE
Figure 38 shows a plot of adjacent channel power ratio (ACPR)
vs. POUT for the ADL5324. The signal type used is a single
W-CDMA carrier (Test Model 1-64) at 2140 MHz. This signal is
generated by a very low ACPR source. ACPR is measured at the
output by a high dynamic range spectrum analyzer, which
incorporates an instrument noise correction function.
–30
The ADL5324 achieves an ACPR of −79 dBc at 0 dBm output,
at which point device noise and not distortion is beginning to
Rev. 0 | Page 16 of 20
–35
–40
–45
–50
–55
SOURCE
VCC = 3.3V
VCC = 5V
–60
–65
–70
–75
–80
–85
–20
–15
–10
–5
0
5
10
15
20
25
POUT (dBm)
Figure 38. ACPR vs. Output Power, Single Carrier W-CDMA,
TM1-64, at 2140 MHz
10562–155
Frequency (MHz)
2140
2630
dominate the power in the adjacent channels. At an output
power of 10 dBm, ACPR is still very low at −72 dBc, making the
device particularly suitable for PA driver applications.
ACPR @ 5MHz CARRIER OFFSET (dBc)
Table 8. Load Conditions for GainMAX
Data Sheet
ADL5324
EVALUATION BOARD
The schematic of the ADL5324 evaluation board is shown in
Figure 39. This evaluation board uses 25 mil wide traces and is
made from FR4 material. The evaluation board comes tuned for
operation in the 2110 MHz to 2170 MHz tuning band. Tuning
options for other frequency bands are also provided in Table 9.
The recommended placement for these components is provided
in Table 10. The inputs and outputs should be ac-coupled with
appropriately sized capacitors. dc bias is provided to the amplifier via an inductor connected to the RFOUT pin. A bias
voltage of 5 V is recommended.
GND
100pF
C3
2.4pF
R1
0Ω
L1
15nH
193mils
R2
0Ω
C2
2.2pF
C7
20pF
65mils
C1
2pF
VSUP
(2)
GND
C6 10µF
C5 10nF
C4 100pF
1
2
L1
15nH
3
C12
2pF
R2 C7
0Ω 20pF RFOUT
λ24
1MURATA HIGH Q CAPACITOR GRM615COG2R4B50 OR EQUIVALENT.
2MURATA HIGH Q CAPACITOR GRM615COG020B50 OR EQUIVALENT.
3MURATA HIGH Q CAPACITOR GRM615COG2R2B50 OR EQUIVALENT.
4SEE TABLE 10 FOR RECOMMENDED COMPONENT SPACING.
Figure 40. Evaluation Board Layout and Default Component Placement for
2110 MHz to 2170 MHz
10562-056
C23
2.2pF
10562-057
RFOUT
λ14
GND
1
R1 C3
RFIN 0Ω 2.4pF
RFIN
ADL5324
Figure 39. Evaluation Board, 2110 MHz to 2170 MHz
Table 10. Recommended Components for Basic Connections
Function/
Component
AC Coupling
Capacitors
C3 = 0402
C7 = 0402
Power Supply
Bypassing
Capacitors
C4 = 0402
C5 = 0603
C6 = 1206
DC Bias Inductor
L1 = 0603CS
Tuning
Capacitors
C1 = 0402
C2 = 0402
Jumpers
R1 = 0402
R2 = 0402
Power Supply
Connections
VSUP
GND
420 MHz to
494 MHz
728 MHz to
768 MHz
800 MHz to
960 MHz
1880 MHz to
1990 MHz
2110 MHz to
2170 MHz
(Default)
2300 MHz to
2400 MHz
2560 MHz to
2690 MHz
3500 MHz to
3700 MHz
10 pF
20 pF
10pF 1
20 pF
10 pF
20 pF
2.4 pF1
20 pF
2.4 pF1
20 pF
2.4 pF1
20 pF
2pF1
20 pF1
1pF1
20 pF
100 pF
10 nF
10 µF
120 nH
100 pF
10 nF
10 µF
18 nH
100 pF
10 nF
10 µF
18 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
20 pF1
6.2 pF1
8 pF1
3.9 pF1
8 pF1
3.6 pF1
2.4 pF1
2.4 pF1
2.0 pF1
2.2 pF1
1.5 pF1
2.0 pF1
1.0 pF1
2.0 pF1
0.5 pF1
0.75 pF1
2Ω
5.6 nH 2
2Ω
2.4 nH 3
2Ω
2.4 nH3
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
4.7 nH3
Red test loop
Black test loop
1
Murata High Q capacitor.
Add a 1.6 nH at input (see Figure 41).
3
Coilcraft 0402CS series.
2
Rev. 0 | Page 17 of 20
ADL5324
Data Sheet
Table 11. Recommended Component Spacing on Evaluation Board
Frequency (MHz)
420 to 494
728 to 768
869 to 961
1880 to 1990
2110 to 2170
2300 to 2400
2570 to 2690
3500 to 3700
λ1 (mils)
419
311
207
75
65
71
245
316
λ2 (mils)
438
422
413
239
193
176
132
125
100 pF
L3 R1
C1
20pF 1.6nH 2Ω
248 mils
419 mils
C7
20pF
L1
18nH
C3
10pF
C2
6.2pF
311 mils
438 mils
C1
8pF
R1
2Ω
207mils
413mils
100pF
L2
2.4nH
C7
20pF
C2
3.6pF
10562-060
10562-042
C3
10pF
L2
L1
120nH 5.6nH
Figure 43. Evaluation Board Layout and Component Placement,
869 MHz to 961 MHz Operation
Figure 41. Evaluation Board Layout and Component Placement,
420 MHz to 494 MHz Operation
100pF
C1
8pF
311 mils
L2
L1
18nH 2.4nH
422 mils
C7
20pF
C2
3.9pF
Figure 42. Evaluation Board Layout and Component Placement,
728 MHz to 768 MHz Operation
10562-061
10562-043
C3
10pF
R1
2Ω
Figure 44. Evaluation Board Layout and Component Placement,
1880 MHz to 1990 MHz Operation
Rev. 0 | Page 18 of 20
Data Sheet
ADL5324
C3
2.4pF
L1
15nH
R1
0Ω
176mils
C2
2.0pF
100pF
C1
0.5pF
R1
0Ω
C7
20pF
C3
1.0pF
316 mils
L2
L1
15nH 4.7nH
C2
0.75pF
C7
20pF
125 mils
Figure 45. Evaluation Board Layout and Component Placement,
2300 MHz to 2400 MHz Operation
C3
2.0pF
C1
1.0pF
245mils
Figure 47. Evaluation Board Layout and Component Placement,
3500 MHz to 3700 MHz Operation
100pF
C7
L1
15nH 20pF
C2
132mils 2.0pF
R2
0Ω
10562-063
R1
0Ω
10562-148
10562-062
71mils
C1
1.5pF
100pF
R2
0Ω
Figure 46. Evaluation Board Layout and Component Placement,
2560 MHz to 2690 MHz Operation
Rev. 0 | Page 19 of 20
ADL5324
Data Sheet
OUTLINE DIMENSIONS
*1.75
1.55
(2)
4.25
3.94
1
2
2.60
2.30
3
1.20
0.75
1.50 TYP
3.00 TYP
2.29
2.14
4.60
4.40
1.60
1.40
0.44
0.35
END VIEW
*0.52
0.32
*COMPLIANT TO JEDEC STANDARDS TO-243 WITH THE
EXCEPTION OF DIMENSIONS INDICATED BY AN ASTERISK.
12-18-2008-B
*0.56
0.36
Figure 48. 3-Lead Small Outline Transistor Package [SOT-89]
(RK-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADL5324ARKZ-R7
ADL5324-EVALZ
1
Temperature Range
−40°C to +105°C
Package Description
3-Lead SOT-89, 7“ Tape and Reel
Evaluation Board
Z = RoHS Compliant Part.
©2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10562-0-3/12(0)
Rev. 0 | Page 20 of 20
Package Option
RK-3