NTE NTE6860

NTE6860
Integrated Circuit
NMOS – FSK Digital Modem, 600bps
Description:
The NTE6860 is a MOS subsystem in a 24–Lead DIP type plastic package designed to be integrated
into a wide range of equipment utilizing serial data communications.
The modem provides the necessary modulation, demodulation and supervisory control functions to
implement a serial data communications link, over a voice grade channel, utilizing frequency shift keying (FSK) at bit rates up to 600 bps. The NTE6860 can be implemented into a wide range of data
handling systems, including stand alone modems, data storage devices, remote data communication
terminals and I/O interfaces for minicomputers.
N–channel silicon–gate technology permits the NTE6860 to operate using a single–voltage supply
and be fully TTL compatible.
The modem is compatible with the NTE6860 microcomputer family, interfacing directly with the
Asynchronous Communications Interface Adapter to provide low–speed data communications capability.
Features:
D Originate and Answer Mode
D Crystal or External Reference Control
D Modem Self Test
D Terminal Interfaces TTL–Compatible
D Full–Duplex or Half–Duplex Operation
D Automatic Answer and Disconnect
D Compatible Functions for 100 Series Data Sets
D Compatible Functions for 1001A/B Data Couplers
Absolute Maximum Ratings:
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to +7.0V
Input Voltage, Vin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to +7.0V
Operating Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0° to 70°C
Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55° to +150°C
Thermal Resistance, Junction–to–Ambient, RthJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +120°C/W
Note 1. This device contains circuitry to protect the inputs against damage due to high static voltages
or electric fields; however, it is advised that normal precautions be taken to avoid application
of any voltage higher than maximum rated voltages to this high impedance circuit.
Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage
level (e.g. either VSS or VCC).
Power Considerations:
The average chip–junction temperature, TJ, in °C can be obtained from:
1. TJ = TA + (PD RΘJA)
Where:
5 Ambient Temperature, °C
TA
RΘJA 5 Package Thermal Resistance, Junction to Ambient, °C/W
PD
5 PINT + PPORT
PINT 5 iCC x VCC, Watts – Chip Internal Power
PPORT 5 Port Power Dissipation, Watts – User Determined
For most applications PPORT Ơ PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.
An approximate relationship between PD and TJ (if PPORT is neglected) is:
2. PD = K B (TJ + 273°C)
Solving equations 1 and 2 for K gives:
3. K = PD (TA + 273°C) + RΘJA PD2
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K the values of PD and TJ can be obtained
by solving equations 1 and 2 iteratively for any value of TA.
DC Electrical Characteristics: (VCC = 5V ±5%, all voltages referenced to VSS = 0, TA = 0° to +70°C
unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ Max
Unit
Input High Voltage
VIH
All Inputs Except Crystal
2.0
–
VCC
V
Input Low Voltage
VIL
All Inputs Except Crystal
VSS
–
0.80
V
Crystal Input Voltage
Vin
Crystal Input Driven from an External Reference, Input
Coupling Capacitor = 200pF, Duty Cycle = 50 ±5%
1.5
–
2.0
VP–P
Input Current
Iin
Vin = VSS All Inputs Except Rx Car, Tx Data, TD, TST,
RI, SH
–
–
–0.2
mA
–
–
–1.6
mA
–
–
1.0
µA
RI, SH Inputs
Input Leakage Current
IIL
Vin = 7V, VCC = VSS, TA = +25°C
Output High Voltage
VOH1
All Outputs Except An Ph and Tx Car, IOH1 = –0.04mA,
Load A
2.4
–
VCC
V
Output Low Voltage
VOL1
All Outputs Except An Ph and Tx Car, IOL1 = 1.6mA,
Load A
VSS
–
0.40
V
VOL2
An Ph, IOL2 = 0, Load B
VSS
–
0.30
V
Output High Current
IOH2
An Ph, VOH2 = 0.8V, Load B
0.30
–
–
mA
Input Capacitance
Cin
f = 0.1Mhz, TA = +25°C
–
5.0
–
pF
Output Capacitance
Cout
f = 0.1Mhz, TA = +25°C
–
10
–
pF
Transmit Carrier Output
Voltage
VCO
Load C
0.20 0.35 0.50 VRMS
Transmit Carrier Output
2nd Harmonic
V2H
Load C
–25
–32
–
dB
All Inputs Except Crystal, Operating in the Crystal Input
Mode; from 10% to 90% Points, Note 2
–
–
1.0
µs
–
–
1.0
µs
Ctystal Input, Operating in External Input Reference
Mode
–
–
30
µs
–
–
30
µs
All Outputs Except Tx Car, From 10% to 90% Points
–
–
5.0
µs
–
–
5.0
µs
–
–
340
mW
Input Transition Times
tr
tf
tr
tf
Output Transistion Times
tr
tf
Internal Power Dissipation
PINT
All Inputs at VSS and All Outputs Open, TA = 0°C
Note 2. Maximum Input Transition Times are ≤ 0.1 x Pulse Width or the specified maximum of 1µs,
whichever is smaller.
Output Test Loads
Load A: TTL Output Load for Receive Break, Digital
Carrier, Mode, Clear–to–Send, and Receive
Data Outputs
Load B: Answer Phone Load
Test
Point
RL = 2.67k ±1%
VCC
CT
R1 = 2.5kΩ
VI
MMD6150
or Equiv
Test
Point
Load C: Transmit Carrier Load
100k
RL = 60k ±1%
CT
MMD7000
or Equiv
100k
Simulated TTL Load
–
+
1.0µF
CT
1k
NTE778A
or Equiv
CT = 20pF = total parasitic capacitance, which includes probe, wiring, and load capacitance
Pin Connection Diagram
VSS 1
24 Rx Data
Rx Brk 3
23 CTS
22 ESD
An Ph
21 SH
Tx Data 2
4
ELS 5
20 DTR
ESS 6
19 RI
TD 7
Tx Brk 8
Brk R 9
Tx Car 10
18 TST
17 Rx Car
16 ST
15 Mode
FO 11
14 Rx Rate
VCC 12
13 X’tal
24
13
1
12
1.300 (33.02)
Max
.520
(13.2)
.225
(5.73)
Max
.100 (2.54)
1.100 (27.94)
.126
(3.22)
Min
.600 (15.24)