19-1526; Rev 1; 10/99 Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps Applications Portable Battery-Powered Equipment Instruments, Terminals, and Bar-Code Readers Keyless Entry Photodiode Preamps Features ♦ Internal Gain-Setting Resistors in SOT23 Packages (MAX4074) ♦ 0.1% Gain Accuracy (RF/RG) (MAX4074/75) ♦ 54 Standard Gains Available (MAX4074/75) ♦ Open-Loop, Unity-Gain-Stable Op Amps (MAX4076/77/78) ♦ Rail-to-Rail Outputs Drive 1kΩ Load (MAX4074/75) ♦ +2.5V to +5.5V Single Supply ♦ 34µA Supply Current (MAX4074/75) ♦ Up to 4MHz GBW Product ♦ Fault-Protected Inputs Withstand ±17V (MAX4074/75) ♦ 200pA max Input Bias Current (MAX4076/77/78) ♦ Stable with Capacitive Loads up to 100pF with No Isolation Resistor Ordering Information PART TEMP. RANGE PINPACKAGE TOP MARK MAX4074__EUK-T -40°C to +70°C 5 SOT23-5 ** MAX4074__ESA -40°C to +70°C 8 SO — Ordering Information continued at end of data sheet. Note: Insert the desired gain code in the blank to complete the part number (see the Gain Selector Guide). **See the Gain Selector Guide for a list of preferred gains and top marks. Smart-Card Readers Infrared Receivers for Remote Controls Low-Side Current-Sense Amplifiers Pin Configurations/ Functional Diagrams TOP VIEW MAX4074 OUT 1 5 VCC 4 IN- RF VEE 2 Gain Selector Guide appears at end of data sheet. Typical Operating Circuit appears at end of data sheet. RG IN+ 3 †Patent pending. GainAmp is a trademark of Maxim Integrated Products. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. SOT23-5 Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769. MAX4074–MAX4078† General Description The MAX4074–MAX4078 GainAmp™ op amp family combines low-cost Rail-to-Rail® op amps with precision internal gain-setting resistors. Factory-trimmed on-chip resistors decrease design size, cost, and layout, and provide 0.1% gain accuracy. Fixed inverting gains from -0.25V/V to -100V/V or noninverting gains from +1.25V/V to +101V/V are available. These devices operate from a single +2.5V to +5.5V supply and consume just 34µA. GainAmp amplifiers are optimally compensated for each gain version, achieving gain bandwidth (GBW) products up to 4MHz (AV = +25V/V to +101V/V). High-voltage fault protection withstands ±17V at either input without damage or excessive current draw (MAX4074/MAX4075 only). Two versions are available in this amplifier family. The MAX4076/MAX4077/MAX4078 are single/dual/quad open-loop, unity-gain-stable op amps, and the MAX4074/MAX4075 are single/dual fixed-gain op amps. The input common-mode voltage range of the open-loop amplifiers extends from 150mV below the negative supply to within 1.2V of the positive supply. The GainAmp outputs can swing rail-to-rail and drive a 1kΩ load while maintaining excellent DC accuracy (MAX4074/MAX4075 only). The amplifiers are stable for capacitive loads up to 100pF. For space-critical applications, the MAX4074/MAX4076 are available in space-saving SOT23-5 packages. MAX4074–MAX4078 Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps ABSOLUTE MAXIMUM RATINGS Supply Voltages (VCC to VEE) ..................................-0.3V to +6V Voltage Inputs (IN_) MAX4076/MAX4077/MAX4078 .....(VCC + 0.3V) to (VEE - 0.3V) MAX4074/MAX4075..........................................................±17V Output Short-Circuit Duration to Either Supply (OUT_). . . . Continuous Continuous Power Dissipation (TA = +70°C) 5-Pin SOT23 (derate 7.1mW/°C above +70°C) ............571mW 14-Pin TSSOP (derate 6.3mW/°C above +70°C) ..........500mW 8-Pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—MAX4074/MAX4075 (VCC = +2.5V to +5.5V, VEE = 0, VIN+ = VIN- = VCC/2, RL = ∞ to VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5V and TA = +25°C.) (Note 1) PARAMETER SYMBOL Supply Voltage Range VCC Supply Current (per amplifier) ICC Input Offset Voltage VOS CONDITIONS Guaranteed by PSRR test MIN 55 34 50 RL = 1MΩ 0.2 3.5 0.3 IIN+_ 0.8 AV < +25V/V 300 AV ≥ +25V/V 80 Noninverting Input Resistance RIN_+ Positive Input Voltage Range IN_+ Guaranteed by functional test (Note 3) Negative Input Voltage Range IN_- Guaranteed by functional test (Note 3) Power-Supply Rejection Ratio PSRR Closed-Loop Output Impedance ROUT VCC = 2.5V to 5.5V VEE 0.15 70 pA MΩ V ±15 V 96 dB 0.2 Ω 5 Shorted to VEE -22 RL = 1kΩ mV kΩ VCC 1.2 Shorted to VCC RL = 10kΩ µA µV/°C 1000 1000 RL = 1MΩ 2 V 37 RIN_ Output Voltage Swing (Note 4) UNITS 5.5 VCC = 5V Inverting Input Resistance Output Short-Circuit Current MAX VCC = 3V Input Offset Voltage Drift Input Bias Current (Note 2) TYP 2.5 mA VCC - VOH 0.5 VOL - VEE 0.4 2.5 VCC - VOH 25 150 VOL - VEE 11 80 VCC - VOH 300 1000 VOL - VEE 100 600 _______________________________________________________________________________________ 2.5 mV Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps (VCC = +2.5V to +5.5V, VEE = 0, VIN+ = VIN- = VCC/2, RL = ∞ to VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5V and TA = +25°C.) (Note 1) PARAMETER SYMBOL Power-Up Time CONDITIONS MIN Output settling to 1% Slew Rate SR Settling Time (to 0.01%) Input Voltage Noise Density en Input Noise Current Density Capacitive Load Stability CLOAD VOUT = 4V step -3dB Bandwidth MAX UNITS 9 ms 100 V/ms VOUT = 4V step 60 µs f = 5kHz (Note 5) 150 nV/√Hz f = 5kHz 500 fA/√Hz No sustained oscillations 500 pF (VEE + 25mV) < VOUT < (VCC - 25mV), RL = 1MΩ (Note 6) DC Gain Accuracy TYP TA = +25°C 0.01 1.0 % TA = TMIN to TMAX 1.2 AV = +1.25V/V 200 AV = +3V/V 90 BW (-3dB) AV = +5V/V 80 AV = +10V/V 90 AV = +25V/V 120 kHz ELECTRICAL CHARACTERISTICS—MAX4076/MAX4077/MAX4078 (VCC = +2.5V to +5.5V, VEE = 0, VIN+ = VIN- = VCC/2, RL = ∞ to VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5V and TA = +25°C.) (Note 1) PARAMETER Supply Voltage Range SYMBOL VCC Supply Current (per amplifier) ICC Input Offset Voltage VOS CONDITIONS Guaranteed by PSRR test MIN MAX UNITS 5.5 V VCC = 5V 45 60 VCC = 3V 40 55 1.2 3.5mV RL = 1MΩ Input Offset Voltage Drift Input Bias Current (Note 2) TYP 2.5 1.5µV IIBIAS 1 Input Offset Current IOS ±0.4 Common-Mode Input Voltage Range IVR Guaranteed by CMRR 0.15 µA mV µV/°C 200 pA pA VCC 1.2 V Common-Mode Rejection Ratio CMRR (VCC - 1.2V) ≥ VCM ≥ -0.15V 70 95 dB Power-Supply Rejection Ratio PSRR VCC = 2.5V to 5.5V 70 95 dB Closed-Loop Output Impedance ROUT AV = +1V/V 0.2 Ω Shorted to VCC 4.5 Shorted to VEE 20 Output Short-Circuit Current Large-Signal Voltage Gain AVOL 0.05V < VOUT < (VCC - 0.1V), RL = 1MΩ 80 117 0.25V < VOUT < (VCC - 0.3V), RL = 10kΩ 80 95 0.25V < VOUT < (VCC - 0.3V), RL = 5kΩ 80 93 mA dB _______________________________________________________________________________________ 3 MAX4074–MAX4078 ELECTRICAL CHARACTERISTICS—MAX4074/MAX4075 (continued) ELECTRICAL CHARACTERISTICS—MAX4076/MAX4077/MAX4078 (continued) (VCC = +2.5V to +5.5V, VEE = 0, VIN+ = VIN- = VCC/2, RL = ∞ to VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5V and TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS RL = 1MΩ Output Voltage Swing VOH/VOL RL = 10kΩ RL = 5kΩ Gain-Bandwidth Product TYP MAX VCC - VOH MIN 0.23 2.5 VOL - VEE 0.22 2.5 VCC - VOH 12 50 VOL - VEE 7 50 VCC - VOH 100 100 VOL - VEE 100 100 GBW Slew Rate SR Settling Time (to 0.01%) Input Voltage Noise Density en Input Noise Current Density Capacitive Load Stability CLOAD Power-Up Time UNITS mV 230 kHz VOUT = 4V step 90 V/ms VOUT = 4V step 69 µs f = 5kHz 110 nV/√Hz f = 5kHz 1.1 fA/√Hz No sustained oscillations, AV = +1V/V 100 pF Output settling to 1% 10 ms Note 1: All devices are 100% production tested at TA = +25°C. All temperature limits are guaranteed by design. Note 2: Guaranteed by design. Note 3: The input common-mode range for IN_+ is guaranteed by a functional test. A similar test is done on the IN_- input. See the Applications Information section for more information on the input voltage range of the GainAmps. Note 4: For AV = -0.5V/V and AV = -0.25V/V, the output voltage swing may be limited by the input voltage range. Note 5: Includes noise from on-chip resistors. Note 6: The gain accuracy test is performed with the GainAmps in the noninverting configuration. The output voltage swing is limited by the input voltage range for certain gains and supply voltage conditions. For situations where the output voltage swing is limited by the valid input range, the output limits are adjusted accordingly. Typical Operating Characteristics (VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.) MAX4074/MAX4075 2 2 2 1 0 -1 GAIN (dB) AV = +1.25V/V AV = +2.25V/V -2 1 0 AV = +2.5V/V -1 AV = +4V/V -2 0 -3 -3 -4 -4 -5 -5 -5 -6 -6 -6 100k FREQUENCY (Hz) 1M 1k 10k 100k FREQUENCY (Hz) 1M AV = +9V/V -2 -4 10k AV = +5V/V -1 -3 1k VOUT = 100mVp-p 3 GAIN (dB) 1 4 VOUT = 100mVp-p 3 SMALL-SIGNAL GAIN vs. FREQUENCY 4 MAX4074-8 tocc3-4 MAX4074-8 tocc1-2 VOUT = 100mVp-p 3 SMALL-SIGNAL GAIN vs. FREQUENCY 4 MAX4074-8 tocc5-6 SMALL-SIGNAL GAIN vs. FREQUENCY 4 GAIN (dB) MAX4074–MAX4078 Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps 1k 10k 100k FREQUENCY (Hz) _______________________________________________________________________________________ 1M Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps MAX4074/MAX4075 2 1 0 AV = +10V/V -2 -3 -3 -4 -4 -5 -5 -5 -6 -6 -6 1M 1k 10k LARGE-SIGNAL GAIN vs. FREQUENCY 1M 1k 4 MAX4074-8 toc07 VOUT = 1Vp-p 2 VOUT = 1Vp-p 3 2 2 GAIN (dB) 1 0 GAIN (dB) 1 AV = +2.25V/V AV = +2.5V/V -1 AV = +4V/V -2 -2 -3 -3 -4 -4 -4 -5 -5 -5 -6 -6 -6 100k 1M 1k 10k FREQUENCY (Hz) LARGE-SIGNAL GAIN vs. FREQUENCY VOUT = 1Vp-p 3 2 1M 1k VOUT = 1Vp-p 3 2 2 -2 AV = +21V/V GAIN (dB) 0 GAIN (dB) 1 0 AV = +25V/V -2 AV = +50V/V -2 -3 -3 -4 -4 -4 -5 -5 -5 -6 -6 -6 10k 100k FREQUENCY (Hz) 1M 1k 10k 100k FREQUENCY (Hz) 1M AV = +51V/V -1 -3 1k VOUT = 1Vp-p 3 0 -1 1M LARGE-SIGNAL GAIN vs. FREQUENCY 1 AV = +10V/V 100k 4 1 -1 10k FREQUENCY (Hz) LARGE-SIGNAL GAIN vs. FREQUENCY 4 MAX4074-8 toc10 4 100k AV = +9V/V FREQUENCY (Hz) MAX4074-8 toc11 10k AV = +5V/V -1 -3 1k VOUT = 1Vp-p 3 0 AV = +1.25V/V 1M LARGE-SIGNAL GAIN vs. FREQUENCY 1 -1 100k 4 0 -2 10k FREQUENCY (Hz) LARGE-SIGNAL GAIN vs. FREQUENCY 4 3 100k FREQUENCY (Hz) MAX4074-8 toc08 100k AV = +101V/V -2 -4 10k AV = +51V/V -1 -3 FREQUENCY (Hz) GAIN (dB) AV = +25V/V AV = +50V/V MAX4074-8 toc09 -2 -1 GAIN (dB) 1 0 1k GAIN (dB) 2 1 AV = +21V/V VOUT = 100mVp-p 3 0 -1 MAX4074-8 toc06 VOUT = 100mVp-p 3 GAIN (dB) GAIN (dB) 2 SMALL-SIGNAL GAIN vs. FREQUENCY 4 MAX4074-8 toc05 MAX4074-8 toc04 VOUT = 100mVp-p 3 SMALL-SIGNAL GAIN vs. FREQUENCY 4 MAX4074-8 toc12 SMALL-SIGNAL GAIN vs. FREQUENCY 4 AV = +101V/V 1k 10k 100k 1M FREQUENCY (Hz) _______________________________________________________________________________________ 5 MAX4074–MAX4078 Typical Operating Characteristics (VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.) MAX4074/MAX4075 TOTAL HARMONIC DISTORTION vs. FREQUENCY -20 -20 THD (dB) -40 -50 -60 -40 -50 -60 -70 AV = +10V/V -80 -80 -90 -90 AV = +1.25V/V -100 1k 10k 100k -50 -60 AV = +1.25V/V AV = +25V/V -80 -90 100 1k FREQUENCY (Hz) 10k 100k 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 FREQUENCY (Hz) VOLTAGE SWING (Vp-p) VOLTAGE NOISE DENSITY vs. FREQUENCY TOTAL HARMONIC DISTORTION vs. OUTPUT VOLTAGE SWING f = 10kHz -30 -50 VOLTAGE NOISE (nV/√Hz) -40 AV = +51V/V -60 AV = +25V/V -70 MAX4074-8 toc29 1000 MAX4074-8 toc28 -20 THD (dB) AV = +10V/V -70 AV = +51V/V -100 100 AV = +3V/V -40 -30 AV = +3V/V -70 f = 10kHz -30 THD (dB) -30 VOUT = 1Vp-p -10 -20 MAX4074-8 toc26 VOUT = 1Vp-p -10 0 MAX4074-8 toc25 0 TOTAL HARMONIC DISTORTION vs. OUTPUT VOLTAGE SWING MAX4074-8 toc27 TOTAL HARMONIC DISTORTION vs. FREQUENCY THD (dB) AV = +3V/V AV = +10V/V 100 AV = +1.25V/V -80 10 -90 10 100 1k 10k 100k 1M VOLTAGE SWING (Vp-p) FREQUENCY (Hz) VOLTAGE NOISE DENSITY vs. FREQUENCY CURRENT NOISE DENSITY vs. FREQUENCY AV = +25V/V 100 AV = +51V/V 10 10 10M MAX4074 TOC31 MAX4074-8 toc30 1000 1 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) 6 1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 CURRENT NOISE DENSITY (fA/√Hz) 0 VOLTAGE NOISE (nV/√Hz) MAX4074–MAX4078 Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps 1M 10M 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) _______________________________________________________________________________________ Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps MAX4074/MAX4075 SMALL-SIGNAL PULSE RESPONSE MAX4074 TOC35 MAX4074 TOC36 LARGE-SIGNAL PULSE RESPONSE INPUT INPUT OUTPUT 50mV/div AV = +1.25V/V OUTPUT 500mV/div AV = +1.25V/V OUTPUT 50mV/div AV = +3V/V OUTPUT 500mV/div AV = +3V/V OUTPUT 50mV/div AV = +5V/V OUTPUT 500mV/div AV = +5V/V OUTPUT 50mV/div AV = +10V/V OUTPUT 500mV/div AV = +10V/V OUTPUT 50mV/div AV = +25V/V OUTPUT 500mV/div AV = +25V/V OUTPUT 50mV/div AV = +51V/V OUTPUT 500mV/div AV = +51V/V 10µs/div 10µs/div _______________________________________________________________________________________ 7 MAX4074–MAX4078 Typical Operating Characteristics (continued) (VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.) POWER-SUPPLY REJECTION vs. FREQUENCY OUTPUT IMPEDANCE vs. FREQUENCY -40 -50 -60 -70 -80 10 1 MAX4074 TOC34 200 150 100 50 VCC - VOH -90 -100 VOL - VEE 0.1 1k 10k 100k 0 100 1k FREQUENCY (Hz) 10k 100k 1 INPUT BIAS CURRENT vs. TEMPERATURE 600 MAX4074/5-toc35 50 VCC - VEE = 5.5V 500 INPUT BIAS CURRENT (pA) 75 25 0 VCC - VEE = 5.5V -25 VCC - VEE = 2.5V -50 MAX4074/4075 400 VCC - VEE = 2.5V 300 200 VCC - VEE = 5.5V 100 0 MAX4076/77/78 -75 -200 -50 -35 -20 -5 10 25 40 55 70 85 -45 -30 -15 TEMPERATURE (°C) 400 350 300 VOLTAGE (mV) 100 75 VOH, RL = 100kΩ 0 -25 VOL, RL = 10kΩ -50 VOL, RL = 100kΩ VOL, RL = 1kΩ -75 -100 -5 10 25 40 TEMPERATURE (°C) 8 55 70 85 45 60 75 90 SUPPLY CURRENT vs. TEMPERATURE VOH, RL = 1kΩ 250 200 150 100 50 VOH, RL = 10kΩ 0 -50 -100 VOL, RL = 10kΩ -150 -50 -35 -20 30 40.0 MAX4074/5-toc38 450 MAX4074/5-toc37 VOH, RL = 1kΩ VOH, RL = 10kΩ 15 VOH AND VOL vs. TEMPERATURE (VCC - VEE = 5.5V) 175 50 0 TEMPERATURE (°C) VCC - VEE = 5.5V SUPPLY CURRENT (µA) VOH AND VOL vs. TEMPERATURE (VCC - VEE = 2.5V) 25 VCC - VEE = 2.5V -100 -100 125 100 RLOAD (kΩ) INPUT OFFSET VOLTAGE vs. TEMPERATURE 150 10 FREQUENCY (Hz) 100 INPUT OFFSET VOLTAGE (µV) 1M VOH, RL = 100kΩ 37.5 VCC - VEE = 4.0V 35.0 VCC - VEE = 3.0V 32.5 -5 10 VCC - VEE = 2.5V VOL, RL = 100kΩ VOL, RL = 1kΩ -50 -35 -20 MAX4074/5-toc39 100 MAX4074/5-toc36 PSR (dB) -30 250 100 OUTPUT SWING (mV) OUTPUT IMPEDANCE (Ω) -20 300 MAX4074TOC33 -10 OUTPUT VOLTAGE SWING vs. RLOAD 1k MAX4074 TOC32 0 VOLTAGE (mV) MAX4074–MAX4078 Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps 30.0 25 40 TEMPERATURE (°C) 55 70 85 -50 -35 -20 -5 10 25 40 TEMPERATURE (°C) _______________________________________________________________________________________ 55 70 85 Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps MAX4076/MAX4077/MAX4078 SMALL-SIGNAL GAIN vs. FREQUENCY 1 0 0 -1 -2 -1 -2 -3 -3 -4 -4 -5 -5 -6 -6 1k 10k 100k 1M VOLTAGE NOISE (nV/√Hz) 2 1 10M MAX4076-8 toc3 3 GAIN (dB) 100 10 1k 10k 100k 1M 1 10M 10 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) CURRENT NOISE vs. FREQUENCY TOTAL HARMONIC DISTORTION vs. FREQUENCY MAX4077 CROSSTALK vs. FREQUENCY AV = +1V/V THD (dB) -85 -90 CROSSTALK (dB) -50 10 -80 -60 -70 1 10M MAX4076-8 toc6 -40 MAX4076-8 toc4 100 MAX4076-8 toc5 GAIN (dB) 2 VOLTAGE NOISE vs. FREQUENCY 1k MAX4076- 8 toc2 3 CURRENT NOISE (pA/√Hz) LARGE-SIGNAL GAIN vs. FREQUENCY 4 MAX4076/7/8 toc1 4 -95 -100 -105 -110 -115 -80 -120 -90 -130 -125 1k 10k 100k 100 10M 1k 10k FREQUENCY (Hz) MAX4078 ALL HOSTILE CROSSTALK vs. FREQUENCY GAIN AND PHASE vs. FREQUENCY THREE AMPLIFIERS DRIVEN, ONE OUTPUT MEASURED. -70 100k 40 GAIN 0 -80 -85 -90 -95 -100 -105 -110 1k 10k 100k FREQUENCY (Hz) 1M 270 -10 180 -20 90 -30 0 PHASE -40 -90 -80 -180 -120 -270 -160 -360 -200 -450 10M 1 10 100 1k 10k 100k FREQUENCY (Hz) 10k 100k 1M COMMON-MODE REJECTION vs. FREQUENCY 80 -75 1k FREQUENCY (Hz) MAX4076-8 toc8 120 GAIN (dB) CROSSTALK (dB) 1M FREQUENCY (Hz) 1M MAX4076-8 toc9 -65 100 MAX4076-8 toc7 -60 10 -40 CMR (dB) 1 PHASE (degrees) 0.1 -50 -60 -70 -80 -90 -100 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) _______________________________________________________________________________________ 9 MAX4074–MAX4078 Typical Operating Characteristics (continued) (VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.) MAX4074–MAX4078 Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps Pin Description PIN MAX4074/MAX4076 MAX4075 MAX4077 MAX4078 SOT23 SO µMAX/SO SO/TSSOP 1 6 1, 7 1, 7, 8, 14 2 4 4 3 3 4 NAME FUNCTION OUT_ Amplifier Output 11 VEE Negative Supply or Ground 3, 5 3, 5, 10, 12 IN_+ Noninverting Amplifier Input 2 2, 6 2, 6, 9, 13 IN_- Inverting Amplifier Input 5 7 8 4 VCC Positive Supply — 1, 5, 8 — — N.C. No Connection. Not internally connected. _______________Detailed Description Maxim’s GainAmp fixed-gain amplifiers combine a lowcost rail-to-rail op amp with internal gain-setting resistors. Factory-trimmed on-chip resistors provide 0.1% gain accuracy while decreasing design size, cost, and layout. There are two versions in this amplifier family: single/dual/quad open-loop, unity-gain-stable devices (MAX4076/MAX4077/MAX4078), and single/dual fixedgain devices (MAX4074/MAX4075). All amplifiers feature rail-to-rail outputs and drive a 10kΩ load while maintaining excellent DC accuracy. Open-Loop Op Amps The single/dual/quad MAX4076/MAX4077/MAX4078 are low-power, open-loop op amps with rail-to-rail outputs. These devices are compensated for unity-gain stability and feature a GBW product of 230kHz. The commonmode range extends from 150mV below the negative rail to within 1.2V of the positive rail. These high-performance op amps serve as the core for this family of GainAmp fixed-gain amplifiers. Although the -3dB bandwidth will not correspond to that of a fixed-gain amplifier in higher gain configurations, these open-loop op amps can be used to prototype designs. 10 VCC AV = RF RG IN- -RF RG AV = 1 + RF RG VEE OUT IN+ Figure 1. Internal Gain-Setting Resistors Internal Gain-Setting Resistors Maxim’s proprietary laser trimming techniques allow RF/RG values (Figure 1) that produce many different gain configurations. These GainAmp fixed-gain amplifiers feature a negative-feedback resistor network that is laser trimmed to provide a gain-setting feedback ratio (RF/RG) with 0.1% typical accuracy. The standard op amp pinouts allow the GainAmp fixed-gain amplifiers to plug directly into existing board designs, easily replacing op amps-plus-resistor gain blocks. ______________________________________________________________________________________ Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps High-Voltage (±17V) Input Fault Protection The MAX4074/MAX4075 family includes ±17V input fault protection. For normal operation, see the input voltage range specification in the Electrical Characteristics. Overdriven inputs up to ±17V will not cause output phase reversal. A back-to-back SCR structure at the input pins allows either input to safely swing ±17V relative to VEE (Figure 2). Additionally, the internal op amp inputs are diode clamped to both supply rails for the protection of sensitive input stage circuitry. Current through the clamp diodes is limited by a 5kΩ resistor at the noninverting input, and by RG at the inverting input. An IN+ or IN- fault voltage as high as ±17V causes less than 3.5mA to flow through the input pin, protecting both the GainAmp and the signal source from damage. Applications Information GainAmp fixed-gain amplifiers offer a precision, fixedgain amplifier in a small package that can be used in a variety of circuit board designs. GainAmp fixed-gain amplifiers can be used in many op amp circuits that use resistive negative feedback to set gain, and do not require other connections to the op amp inverting input. Both inverting and noninverting op amp configurations can be implemented easily using a GainAmp. GainAmp Input Voltage Range The MAX4074/MAX4075 combine both an op amp and gain-setting feedback resistors on the same IC. The inverting input voltage range is different from the noninverting input voltage range because the inverting input pin is connected to the RG input series resistor. Just as with a discrete design, take care not to saturate the inputs/output of the core op amp to avoid signal distortions or clipping. RF RG IN17V SCR OUT VEE VCC 5k IN+ 17V SCR VEE MAX4074 MAX4075 VEE NOTE: INPUT STAGE PROTECTION INCLUDES TWO 17V SCRs AND TWO DIODES AT THE INPUT STAGE. Figure 2. Input Protection ______________________________________________________________________________________ 11 MAX4074–MAX4078 GainAmp Bandwidth GainAmp fixed-gain amplifiers feature factory-trimmed precision resistors to provide fixed inverting gains from -0.25V/V to -100V/V or noninverting gains from +1.25V/V to +101V/V. The op amp core is decompensated strategically over the gain-set options to maximize bandwidth. Open-loop decompensation increases GBW product, ensuring that usable bandwidth is maintained with increasing closed-loop gains. A GainAmp with a fixed gain of AV = +25V/V has a -3dB bandwidth of 120kHz. By comparison, a unity-gain-stable op amp configured for AV = +25V/V would yield a -3dB bandwidth of only 8kHz. Decompensation is performed at five intermediate gain sets, as shown in the Gain Selector Guide. MAX4074–MAX4078 Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps GainAmp Signal Coupling and Configurations Common op amp configurations include both noninverting and inverting amplifiers. Figures 3–6 show various single- and dual-supply circuit configurations. In singlesupply systems, use a resistor-divider to bias the noninverting input. A lowpass filter capacitor from the op amp input to ground (Figure 5) prevents high-frequency power-supply noise from coupling into the op amp input. Dual-supply systems can have ground-referenced signals DC-coupled into the inverting or noninverting inputs. MAX4074 VCC VOUT = - VIN ( RRFG ) VEE VIN RG RF Supply Bypassing and Board Layout All devices in this GainAmp family operate from a +2.5V to +5.5V single supply or from ±1.25V to ±2.75V dual supplies. For single-supply operation, bypass the power supply with a 0.1µF capacitor to ground. For dual supplies, bypass each supply to ground. Bypass with capacitors as close to the device as possible to minimize lead inductance and noise. A printed circuit board with a low-inductance ground plane is recommended. Figure 4. Dual-Supply, DC-Coupled Inverting Amplifier MAX4074 VCC VCC Capacitive-Load Stability Driving large capacitive loads can cause instability in most low-power, rail-to-rail output amplifiers. The fixedgain amplifiers of this GainAmp family are stable with capacitive loads up to 100pF. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op amp output, as shown in Figure 7. This resistor improves the circuit’s phase margin by isolating the load capacitor from the amplifier’s output. In Figure 8, a 220pF capacitor is driven with a 100Ω isolation resistor exhibiting some overshoot but no oscillation. Figures 9 and 10 show the typical smallsignal pulse responses of GainAmp fixed-gain amplifiers with 47pF and 100pF capacitive loads and no isolation resistor VOUT = 0.1µF VCC - VIN 2 ( RRFG ) VIN RG RF Figure 5. Single-Supply, AC-Coupled Inverting Amplifier MAX4074 VCC VCC VIN R VOUT = VIN 1+ F RG ( MAX4074 ) VEE VCC RF VIN RG RF RG VOUT = -RF (VIN) RG Figure 3. Single-Supply, DC-Coupled Inverting Amplifier with Negative Input Voltage 12 Figure 6. Dual-Supply, DC-Coupled Noninverting Amplifier ______________________________________________________________________________________ Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps RG MAX4074–MAX4078 MAX4074 INPUT RF VCC RISO INPUT AV = +5V/V 50mV/div OUTPUT AV = +5V/V 500mV/div OUTPUT OUTPUT CL RL VEE Figure 7. Dual-Supply, Capacitive-Load-Driving Circuit Figure 8. Small-Signal/Large-Signal Transient Response with Excessive Capacitive Load and Isolation Resistor ______________________________________________________________________________________ 13 MAX4074–MAX4078 Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps INPUT INPUT OUTPUT 50mV/div AV = +1.25V/V OUTPUT 50mV/div AV = +1.25V/V OUTPUT 50mV/div AV = +3V/V OUTPUT 50mV/div AV = +3V/V OUTPUT 50mV/div AV = +5V/V OUTPUT 50mV/div AV = +5V/V OUTPUT 50mV/div AV = +10V/V OUTPUT 50mV/div AV = +10V/V OUTPUT 50mV/div AV = +25V/V OUTPUT 50mV/div AV = +25V/V OUTPUT 50mV/div AV = +51V/V OUTPUT 50mV/div AV = +51V/V 10µs/div Figure 9. GainAmp Small-Signal Pulse Response (CL = 340pF, RL = 100kΩ) 14 10µs/div Figure 10. GainAmp Small-Signal Pulse Response (CL = 940pF, RL = 100kΩ) ______________________________________________________________________________________ Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps GAIN CODE INVERTING GAIN (V/V) NONINVERTING GAIN (V/V) -3dB BW (kHz) TOP MARK AB 0.25 1.25 200 ADJB AC 0.5 1.5 136 ADJC AD 1 2 102 ADJD AE 1.25 2.25 70 ADJE AF 1.5 2.5 180 ADJF AG 2 3 135 ADJG AH 2.5 3.5 116 ADJH AJ 3 4 90 ADJI AK 4 5 80 ADJJ AL 5 6 71 ADJK AM 6 7 61 ADJL AN 8 9 50 ADJM AO 9 10 90 ADJN BA 10 11 79 ADJO BB 12.5 13.5 64 ADJP BC 15 16 54 ADJQ BD 20 21 40 ADJR BE 24 25 120 ADJS BF 25 26 106 ADJT BG 30 31 89 ADJU BH 40 41 67 ADJV BJ 49 50 50 ADJW BK 50 51 82 ADJX BL 60 61 66 ADJY BM 79 80 50 ADJZ BN 99 100 40 ADKA CA 100 101 38 ADKB Note: Bold indicates preferred gains. These gain versions are available as samples and in small quantities. ______________________________________________________________________________________ 15 MAX4074–MAX4078 Gain Selector Guide Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps MAX4074–MAX4078 Pin Configurations/Functional Diagrams TOP VIEW MAX4074 MAX4076 MAX4076 OUT 1 7 VCC VEE 2 IN+ 3 6 OUT IN+ 3 VEE 4 5 N.C. IN- 2 - 5 VCC + 8 N.C. N.C. 1 IN- 2 - 8 N.C. N.C. 1 7 VCC + + 4 IN- IN+ 3 6 OUT VEE 4 5 SOT23-5 SO SO MAX4077 OUTA 1 8 VCC OUTA 1 MAX4078 VCC 7 OUTB OUTA 1 14 OUTD RG RF + - + INA+ 3 RG VEE 4 INA- 2 6 INB- INA+ 3 6 INB- INB+ VEE 4 5 INB+ 5 + 13 IND12 IND+ VCC 4 11 VEE INB+ 5 10 INC+ INB- 6 + - µMAX/SO + INA+ 3 - µMAX/SO + INA- 2 - 7 OUTB - - - + - 8 RF + MAX4075 INA- 2 9 INC8 OUTC OUTB 7 SO/TSSOP 16 N.C. ______________________________________________________________________________________ Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps TOP MARK TEMP. RANGE PINPACKAGE MAX4075__EUA -40°C to +70°C 8 µMAX — MAX4075__ESA -40°C to +70°C 8 SO — MAX4076EUK-T -40°C to +70°C 5 SOT23-5 ** MAX4076ESA -40°C to +70°C 8 SO — MAX4077EUA -40°C to +70°C 8 µMAX — MAX4077ESA -40°C to +70°C 8 SO — MAX4078EUD -40°C to +70°C 14 TSSOP — MAX4078ESD -40°C to +70°C 14 SO — PART ___________________Chip Information TRANSISTOR COUNTS MAX4074: 180 MAX4077: 340 MAX4075: 360 MAX4078: 332 MAX4076: 180 Typical Operating Circuit Note: Insert the desired gain code in the blank to complete the part number (see the Gain Selector Guide). **See the Gain Selector Guide for a list of preferred gains and top marks. +5V VCC VCC 0.1µF VCC MAX4074 IN+ 0.1µF OUT INPUT 0.1µF INRF RG VEE ______________________________________________________________________________________ 17 MAX4074–MAX4078 Ordering Information (continued) Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps SOT5L.EPS MAX4074–MAX4078 Package Information 18 ______________________________________________________________________________________ Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps TSSOP.EPS ______________________________________________________________________________________ 19 MAX4074–MAX4078 Package Information (continued) Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps SOICN.EPS 8LUMAXD.EPS MAX4074–MAX4078 Package Information (continued) Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1999 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.