MAXIM MAX4000EUA

19-2288; Rev 1; 7/02
2.5GHz 45dB RF-Detecting Controllers
The input signal for the MAX4000 is internally AC-coupled
using an on-chip 5pF capacitor in series with a 2kΩ input
resistance. This highpass coupling, with a corner at
16MHz, sets the lowest operating frequency and allows
the input signal source to be DC grounded. The
MAX4001/MAX4002 require an external coupling capacitor in series with the RF input port. These PA controllers
feature a power-on delay when coming out of shutdown,
holding OUT low for approximately 5µs to ensure glitchfree controller output.
The MAX4000/MAX4001/MAX4002 family is available in
an 8-pin µMAX package and an 8-bump chip-scale package (UCSP™). The device consumes 5.9mA with a 5.5V
supply, and when powered down the typical shutdown
current is 13µA.
Applications
Features
♦ Complete RF-Detecting PA Controllers
♦ Variety of Input Ranges
MAX4000: -58dBV to -13dBV
(-45dBm to 0dBm in 50Ω)
MAX4001: -48dBV to -3dBV
(-35dBm to +10dBm in 50Ω)
MAX4002: -43dBV to +2dBV
(-30dBm to +15dBm in 50Ω)
♦ Frequency Range from 100MHz to 2.5GHz
♦ Temperature Stable Linear-in-dB Response
♦ Fast Response: 70ns 10dB Step
♦ 10mA Output Sourcing Capability
♦ Low Power: 17mW at 3V (typ)
♦ Shutdown Current 30µA (max)
♦ Available in an 8-Bump UCSP and a Small 8-Pin
µMAX Package
Ordering Information
PART
TEMP RANGE
PINPACKAGE
MAX4000EBL-T
-40°C to +85°C
8 UCSP-8
MAX4000EUA
-40°C to +85°C
8 µMAX
MAX4001EBL-T
-40°C to +85°C
8 UCSP-8
MAX4001EUA
-40°C to +85°C
8 µMAX
MAX4002EBL-T
-40°C to +85°C
8 UCSP-8
MAX4002EUA
-40°C to +85°C
8 µMAX
TOP
MARK
ABF
—
ABE
—
ABD
—
Pin Configurations appear at end of data sheet.
Transmitter Power Measurement and Control
TSSI for Wireless Terminal Devices
Functional Diagram
Cellular Handsets (TDMA, CDMA, GPRS, GSM)
RSSI for Fiber Modules
OUTPUT
ENABLE
DELAY
SHDN
VCC
DET
DET
DET
DET
DET
+
gm
-
X1
CLPF
RFIN
10dB
10dB
10dB
10dB
V-I
OFFSET
COMP
UCSP is a registered trademark of Maxim Integrated Products,
Inc.
OUT
LOWNOISE
BANDGAP
SET
MAX4000
GND
(PADDLE)
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX4000/MAX4001/MAX4002
General Description
The MAX4000/MAX4001/MAX4002 low-cost, low-power
logarithmic amplifiers are designed to control RF power
amplifiers (PA) operating in the 0.1GHz to 2.5GHz frequency range. A typical dynamic range of 45dB makes
this family of log amps useful in a variety of wireless applications including cellular handset PA control, transmitter
power measurement, and RSSI for terminal devices.
Logarithmic amplifiers provide much wider measurement
range and superior accuracy to controllers based on
diode detectors. Excellent temperature stability is
achieved over the full operating range of -40°C to +85°C.
The choice of three different input voltage ranges eliminates the need for external attenuators, thus simplifying
PA control-loop design. The logarithmic amplifier is a voltage-measuring device with a typical signal range of
-58dBV to -13dBV for the MAX4000, -48dBV to -3dBV for
the MAX4001, and -43dBV to +2dBV for the MAX4002.
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
ABSOLUTE MAXIMUM RATINGS
(Voltages Referenced to GND)
VCC ...........................................................................-0.3V to +6V
OUT, SET, SHDN, CLPF .............................-0.3V to (VCC + 0.3V)
RFIN
MAX4000 ......................................................................+6dBm
MAX4001 ....................................................................+16dBm
MAX4002 ....................................................................+19dBm
Equivalent Voltage
MAX4000 ..................................................................0.45VRMS
MAX4001 ....................................................................1.4VRMS
MAX4002 ....................................................................2.0VRMS
OUT Short Circuit to GND ..........................................Continuous
Continuous Power Dissipation (TA = +70°C)
8-Bump UCSP (derate 4.7mW/°C above +70°C).........379mW
8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering , 10s) ................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = 3V, SHDN = 1.8V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
UNITS
Supply Voltage
VCC
5.5
V
Supply Current
ICC
VCC = 5.5V
5.9
9.3
mA
Shutdown Supply Current
ICC
SHDN = 0.8V, VCC = 5.5V
13
30
µA
Shutdown Output Voltage
VOUT
Logic-High Threshold
VH
Logic-Low Threshold
VL
SHDN Input Current
ISHDN
2.7
MAX
SHDN = 0.8V
100
mV
1.8
V
0.8
SHDN = 3V
5
SHDN = 0
-0.8
Corresponding to central 40dB
0.35
20
-0.01
V
µA
SET-POINT INPUT
Voltage Range (Note 2)
Input Resistance
VSET
RIN
Slew Rate (Note 3)
1.45
V
30
MΩ
16
V/µs
MAIN OUTPUT
Voltage Range
VOUT
Output-Referred Noise
Small-Signal Bandwidth
Slew Rate
2
BW
High, ISOURCE = 10mA
Low, ISINK = 350µA
2.65
2.75
0.15
V
From CLPF
8
nV/√Hz
From CLPF
20
MHz
VOUT = 0.2V to 2.6V
8
V/µs
_______________________________________________________________________________________
2.5GHz 45dB RF-Detecting Controllers
(VCC = 3V, SHDN = 1.8V, fRF = 100MHz to 2.5GHz, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
SYMBOL
RF Input Frequency
fRF
RF Input Voltage Range
(Note 4)
VRF
Equivalent Power Range
(50Ω Terminated) (Note 4)
Logarithmic Slope
PRF
VS
CONDITIONS
MAX
UNITS
100
2500
MHz
MAX4000
-58
-13
MAX4001
-48
-3
MAX4002
-43
+2
MAX4000
-45
0
MAX4001
-35
+10
MAX4002
-30
+15
fRF = 100MHz
22.5
25.5
25
fRF = 1900MHz
29
fRF = 900MHz
fRF = 1900MHz
dBV
dBm
28.5
mV/dB
MAX4000
-62
-55
MAX4001
-52
-45
-39
MAX4002
-47
-40
-34
MAX4000
PX
TYP
fRF = 900MHz
fRF = 100MHz
Logarithmic Intercept
MIN
-49
-57
MAX4001
-48
MAX4002
-43
MAX4000
-56
MAX4001
-45
MAX4002
-41
dBm
RF INPUT INTERFACE
DC Resistance
RDC
Inband Resistance
RIB
Inband Capacitance
CIB
MAX4001/MAX4002, connected to VCC
(Note 5)
MAX4000, internally AC-coupled
(Note 6)
2
kΩ
2
kΩ
0.5
pF
Note 1: All devices are 100% production tested at TA = +25°C and are guaranteed by design for TA = -40°C to +85°C as specified.
All production AC testing is done at 100MHz.
Note 2: Typical value only, set-point input voltage range determined by logarithmic slope and logarithmic intercept.
Note 3: Set-point slew rate is the rate at which the reference level voltage, applied to the inverting input of the gm stage, responds to
a voltage step at the SET pin (see Figure 1).
Note 4: Typical min/max range for detector.
Note 5: MAX4000 internally AC-coupled.
Note 6: MAX4001/MAX4002 are internally resistive-coupled to VCC.
_______________________________________________________________________________________
3
MAX4000/MAX4001/MAX4002
ELECTRICAL CHARACTERISTICS
Typical Operating Characteristics
(VCC = 3V, SHDN = VCC, TA = +25°C, unless otherwise specified.)
2.5GHz
1.4
0.9GHz
1.2
0.9GHz
1.0
0.1GHz
0.8
0.1GHz
0.8
0.6
0.6
0.4
0.4
0.4
0.2
-50
-40
-30
-20
-10
0
10
0.2
-50
-40
-30
-20
-10
0
10
20
-40
0
10
20
MAX4000
SET vs. INPUT POWER (UCSP)
MAX4001
SET vs. INPUT POWER (UCSP)
MAX4002
SET vs. INPUT POWER (UCSP)
1.6
0.1GHz
1.4
1.9GHz
1.4
1.2
1.0
SET (V)
0.1GHz
0.9GHz
1.2
1.9GHz
0.9GHz
1.0
0.8
0.8
0.6
0.4
0.4
0.4
0.2
0.2
0.2
0.6
2.5GHz
0
-50
-40
-30
-20
-10
0
10
0.9GHz
1.9GHz
1.0
0.6
0
2.5GHz
1.6
SET (V)
1.2
1.8
0.1GHz
0
-50
-40
-30
-20
-10
0
10
20
-40
-30
-20
-10
0
10
20
INPUT POWER (dBm)
INPUT POWER (dBm)
INPUT POWER (dBm)
MAX4000 LOG CONFORMANCE
vs. INPUT POWER (µMAX)
MAX4001 LOG CONFORMANCE
vs. INPUT POWER (µMAX)
MAX4002 LOG CONFORMANCE
vs. INPUT POWER (µMAX)
ERROR (dB)
0
-1
-2
1.9GHz
1
0
0.9GHz
-20
0
-1
-1
-2
-2
-3
-3
-4
-4
-30
1
1.9GHz
0.1GHz
-3
-40
0.1GHz
2
ERROR (dB)
1.9GHz
2.5GHz
3
2
1
0.9GHz
0.1GHz
30
MAX4000 toc09
2.5GHz
2.5GHz
3
4
MAX4000 toc08
3
2
4
MAX4000 toc07
4
30
MAX4000 toc06
1.4
1.8
MAX4000 toc04
2.5GHz
-50
-10
INPUT POWER (dBm)
1.6
-60
-20
INPUT POWER (dBm)
1.8
0.8
-30
INPUT POWER (dBm)
MAX4000 toc05
-60
0.9GHz
1.0
0.6
0.2
2.5GHz
1.4
SET (V)
SET (V)
SET (V)
1.0
1.9GHz
1.6
1.2
0.1GHz
0.8
SET (V)
1.8
2.5GHz
1.4
1.2
-10
INPUT POWER (dBm)
4
1.9GHz
1.6
MAX4002
SET vs. INPUT POWER (µMAX)
MAX4000 toc02
1.9GHz
1.6
1.8
MAX4000 toc01
1.8
MAX4001
SET vs. INPUT POWER (µMAX)
MAX4000 toc03
MAX4000
SET vs. INPUT POWER (µMAX)
ERROR (dB)
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
0
10
0.9GHz
-4
-40
-30
-20
-10
0
INPUT POWER (dBm)
10
20
-35
-25
-15
-5
5
INPUT POWER (dBm)
_______________________________________________________________________________________
15
25
2.5GHz 45dB RF-Detecting Controllers
0.1GHz
MAX4000 toc12
3
2
2
4
MAX4000 toc11
3
3
2.5GHz
0.1GHz
2
0.9GHz
2.5GHz
0.9GHz
1
0
ERROR (dB)
1
ERROR (dB)
ERROR (dB)
4
MAX4000 toc10
4
MAX4002 LOG CONFORMANCE
vs. INPUT POWER (UCSP)
MAX4001 LOG CONFORMANCE
vs. INPUT POWER (UCSP)
MAX4000 LOG CONFORMANCE
vs. INPUT POWER (UCSP)
0
-1
-1
0.1GHz
1.9GHz
-2
0
0.9GHz
-1
2.5GHz
-2
1.9GHz
-2
1
1.9GHz
-4
-40
-30
-20
-10
0
-40
10
-30
-10
0
10
-35
20
-25
-15
-5
5
15
25
INPUT POWER (dBm)
INPUT POWER (dBm)
INPUT POWER (dBm)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (µMAX)
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (µMAX)
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (µMAX)
3
1.6
3
1.4
2
1.4
2
1
1.2
1
1.4
2
0
TA = +85°C
-1
TA = +25°C
-2
0.6
-3
0.4
-4
10
0.2
0.4
0.2
-40
-30
-20
-10
0.8
0
TA = -40°C
-40
-30
INPUT POWER (dBm)
MAX4000 toc16
0.6
-3
0.4
-20
-10
0
10
-4
20
0.2
-3
-35
-25
1.4
1.2
TA = +85°C
5
15
-4
25
INPUT POWER (dBm)
MAX4000 toc17
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (UCSP)
MAX4000 toc18
3
1.6
3
2
1.4
2
1.4
2
1
1.2
1
1.2
1
1.0
0
-1
TA = +25°C
-5
1.6
0
1.0
-15
1.8
SET (V)
3
1.6
-2
TA = -40°C
4
ERROR (dB)
1.8
-1
TA = +25°C
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (UCSP)
4
0.8
-2
TA = +85°C
INPUT POWER (dBm)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.1GHz (UCSP)
1.8
0.8
4
0
1.0
-1
TA = +25°C
TA = -40°C
-50
TA = +85°C
0
1.0
TA = +85°C
0.8
SET (V)
0.6
0
1.0
ERROR (dB)
0.8
1.2
SET (V)
1.0
ERROR (dB)
3
SET (V)
1.6
1.6
1
MAX4000 toc15
1.8
1.8
1.2
MAX4000 toc14
4
4
ERROR (dB)
MAX4000 toc13
1.8
SET (V)
-20
-1
0.8
-2
TA = +25°C
4
-1
TA = +85°C
-2
0.6
0.6
TA = +25°C
-2
0.4
-3
0.4
-3
0.4
TA = -40°C
-3
0.2
-4
10
0.2
-4
20
0.2
0.6
TA = -40°C
-50
-40
-30
-20
-10
INPUT POWER (dBm)
0
TA = -40°C
-40
-30
-20
-10
0
INPUT POWER (dBm)
10
-35
-25
-15
-5
5
15
-4
25
INPUT POWER (dBm)
_______________________________________________________________________________________
5
ERROR (dB)
-50
ERROR (dB)
-4
-4
SET (V)
-3
-3
-3
MAX4000/MAX4001/MAX4002
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA = +25°C, unless otherwise specified.)
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA = +25°C, unless otherwise specified.)
0
TA = +85°C
0.8
1.2
SET (V)
1.0
TA = +85°C
-1
0
0.8
-2
0.2
-10
0
-3
0.4
-4
10
0.2
0
1.0
-1
0.8
-2
0.6
-1
-2
TA = -40°C
-30
-20
-10
0
10
-3
0.4
-4
20
0.2
-3
-35
-25
-15
-5
5
15
-4
25
INPUT POWER (dBm)
INPUT POWER (dBm)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (UCSP)
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (UCSP)
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (UCSP)
1.6
3
1.6
3
1.4
2
1.4
2
1.4
2
-1
0.8
-2
0.6
-3
0.4
-4
10
0.2
TA = -40°C
TA = +25°C
0.4
0.2
-50
-40
-30
-20
-10
0
-1
0.8
-1
-2
0.6
-3
0.4
-4
20
0.2
TA = +25°C
TA = -40°C
-40
-30
-20
-10
0
10
INPUT POWER (dBm)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (µMAX)
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (µMAX)
MAX4000 toc25
MAX4000 toc26
TA = +85°C
1.6
1.8
4
1
1.0
0
TA = +85°C
0.8
SET (V)
1.2
ERROR (dB)
1.4
TA = -40°C
1
1.2
0
TA = +85°C
0.2
-30
-20
-10
INPUT POWER (dBm)
0
-3
0.4
-4
10
0.2
-40
-30
-20
-10
15
TA = +85°C
-4
25
4
3
0
INPUT POWER (dBm)
10
2
TA = -40°C
1
0
1.0
-1
0.8
-2
0.6
TA = -40°C
0.4
5
MAX4000 toc27
TA = +85°C
TA = +25°C
TA = -40°C
-40
-5
TA = +25°C
1.0
0.6
-15
1.6
1.2
-2
-25
1.8
3
TA = -40°C
TA = +25°C
0.6
-50
4
1.4
0.8
-3
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (µMAX)
2
-1
-2
TA = -40°C
-35
TA = +25°C
2
1.4
TA = +85°C
1.6
3
TA = +25°C
TA = +25°C
INPUT POWER (dBm)
INPUT POWER (dBm)
1.8
1
TA = +85°C
0
TA = +85°C
SET (V)
0.6
4
1.0
0
1.0
ERROR (dB)
0.8
SET (V)
0
TA = +85°C
1
1.2
1.2
SET (V)
3
ERROR (dB)
1.6
1.0
MAX4000 toc24
1.8
1.8
1
MAX4000 toc23
4
4
ERROR (dB)
MAX4000 toc22
1.2
SET (V)
-40
1
INPUT POWER (dBm)
1.8
6
1.2
TA = -40°C
0.4
-20
2
TA = +85°C
TA = +25°C
0.6
TA = -40°C
-30
3
TA = +25°C
0.6
-40
1.4
1
1.0
TA = +25°C
-50
2
4
ERROR (dB)
1.4
3
1.6
MAX4000 toc21
ERROR (dB)
2
1.8
-1
TA = +25°C
-3
0.4
-4
20
0.2
-2
TA = -40°C
-35
-25
-15
-5
5
INPUT POWER (dBm)
_______________________________________________________________________________________
-3
15
-4
25
ERROR (dB)
1.4
4
SET (V)
1.6
ERROR (dB)
3
1
MAX4000 toc20
1.8
1.6
1.2
SET (V)
4
ERROR (dB)
MAX4000 toc19
1.8
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (µMAX)
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (µMAX)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 0.9GHz (µMAX)
SET (V)
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
2.5GHz 45dB RF-Detecting Controllers
TA = -40°C
1.0
2
1.4
1
1.2
0
TA = +85°C
TA = -40°C
1.0
1.4
1
1.2
0.6
-2
TA = -40°C
0
-1
0.8
-1
-2
0.6
-3
0.4
-3
0.4
-4
10
0.2
-4
20
0.2
-20
-10
0
-40
-30
-20
-10
0
10
INPUT POWER (dBm)
INPUT POWER (dBm)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (µMAX)
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (µMAX)
MAX4000 toc31
MAX4000 toc32
1.8
3
1.6
2
1.4
1
1.2
TA = -40°C
0
1.0
0.8
TA = +85°C
0.6
TA = +25°C
0.4
0.2
-40
-30
-20
-10
-15
TA = +25°C
TA = -40°C
1.0
-1
0.8
-2
0.6
-3
0.4
0
-4
10
0.2
-20
-10
0
15
-4
25
MAX4000 toc33
1.8
4
TA = +85°C
TA = +25°C
10
1.6
2
1.4
1
1.2
1
1.0
0
0.8
-2
0.6
-3
0.4
-4
20
0.2
3
2
TA = -40°C
-1
TA = +85°C
-2
TA = +25°C
-3
TA = -40°C
-35
-25
-15
-5
5
15
-4
25
INPUT POWER (dBm)
INPUT POWER (dBm)
INPUT POWER (dBm)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (UCSP)
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (UCSP)
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (UCSP)
MAX4000 toc34
1.8
TA = +85°C
1.6
MAX4000 toc35
1.8
4
3
1.6
2
1.4
TA = +85°C
TA = +25°C
TA = -40°C
1.2
1
0
1.0
0.8
-1
TA = +85°C
0.6
TA = -40°C
1.2
SET (V)
1.4
ERROR (dB)
TA = +25°C
1.0
-2
0.6
TA = -40°C
-3
0.4
0.2
-50
-40
-30
-20
-10
INPUT POWER (dBm)
0
-4
10
0.2
3
1.6
3
2
1.4
2
1
1.2
TA = +25°C
1.0
0.6
-3
0.4
-4
20
0.2
1
0
0.8
-2
4
-1
TA = +85°C
-2
TA = +25°C
TA = +25°C
0.4
1.8
-1
TA = +85°C
MAX4000 toc36
4
0
0.8
4
3
-1
TA = +25°C
-30
5
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 2.5GHz (µMAX)
0
TA = +85°C
-40
-5
-3
INPUT POWER (dBm)
TA = -40°C
TA = -40°C
-50
SET (V)
1.4
ERROR (dB)
TA = +25°C
1.2
-25
TA = +85°C
TA = +85°C
1.6
1.8
4
TA = -40°C
-35
ERROR (dB)
SET (V)
-30
-2
TA = -40°C
0.2
-40
1
1.0
0.4
-50
2
TA = -40°C
TA = +25°C
0.6
SET (V)
2
3
TA = +25°C
TA = -40°C
-40
-30
-20
-10
0
INPUT POWER (dBm)
10
ERROR (dB)
TA = +25°C
SET (V)
1.6
0
TA = +85°C
0.8
-1
3
TA = -40°C
-35
-25
-15
-5
5
-3
15
-4
25
INPUT POWER (dBm)
_______________________________________________________________________________________
7
ERROR (dB)
0.8
TA = +25°C
ERROR (dB)
SET (V)
SET (V)
1.2
SET (V)
1.4
4
TA = +85°C
TA = +85°C
1.6
3
TA = +25°C
ERROR (dB)
1.6
MAX4000 toc30
1.8
4
ERROR (dB)
TA = +85°C
MAX4000 toc29
1.8
4
MAX4002 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (UCSP)
SET (V)
MAX4000 toc28
1.8
MAX4001 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (UCSP)
ERROR (dB)
MAX4000 SET AND LOG CONFORMANCE
vs. INPUT POWER AT 1.9GHz (UCSP)
MAX4000/MAX4001/MAX4002
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA = +25°C, unless otherwise specified.)
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA = +25°C, unless otherwise specified.)
MAX4001
LOG SLOPE vs. FREQUENCY (µMAX)
TA = +25°C
28
TA = -40°C
28
TA = +25°C
27
26
TA = -40°C
28
26
25
24
23
1.5
2.0
24
0
2.5
0.5
1.0
1.5
2.0
2.5
0
1.0
1.5
2.5
2.0
FREQUENCY (GHz)
FREQUENCY (GHz)
MAX4000
LOG SLOPE vs. FREQUENCY (UCSP)
MAX4001
LOG SLOPE vs. FREQUENCY (UCSP)
MAX4002
LOG SLOPE vs. FREQUENCY (UCSP)
26
25
TA = -40°C
24
28
TA = +85°C
27
TA = +25°C
26
31
TA = +85°C
TA = -40°C
1.0
1.5
2.0
25
2.5
24
0
0.5
1.0
1.5
2.0
MAX4000
LOG SLOPE vs. VCC (µMAX)
MAX4001
LOG SLOPE vs. VCC (µMAX)
29
1.9GHz
28
27
0.9GHz
26
1.9GHz
28
27
0.9GHz
0.1GHz
3.0
3.5
4.0
VCC (V)
4.5
5.0
2.0
2.5
2.5GHz
33
32
1.9GHz
31
30
29
28
0.1GHz
27
25
0.1GHz
24
5.5
1.5
26
25
24
1.0
34
MAX4000 toc44
30
29
0.5
MAX4002
LOG SLOPE vs. VCC (µMAX)
26
25
0
LOG SLOPE (mV/dB)
LOG SLOPE (mV/dB)
30
2.5GHz
31
2.5
FREQUENCY (GHz)
32
MAX4000 toc43
31
27
24
FREQUENCY (GHz)
2.5GHz
TA = -40°C
28
26
FREQUENCY (GHz)
32
TA = +25°C
29
25
23
0.5
30
MAX4000 toc45
TA = +25°C
29
MAX4000 toc42
30
LOG SLOPE (mV/dB)
28
27
31
LOG SLOPE (mV/dB)
TA = +85°C
32
MAX4000 toc41
32
MAX4000 toc40
29
2.5
0.5
FREQUENCY (GHz)
30
0
TA = -40°C
27
24
1.0
TA = +25°C
29
25
0.5
TA = +85°C
30
25
31
8
29
32
31
TA = +85°C
26
0
LOG SLOPE (mV/dB)
30
LOG SLOPE (mV/dB)
29
31
LOG SLOPE (mV/dB)
LOG SLOPE (mV/dB)
TA = +85°C
33
MAX4000 toc38
30
27
32
MAX4000 toc37
31
MAX4002
LOG SLOPE vs. FREQUENCY (µMAX)
MAX4000 toc39
MAX4000
LOG SLOPE vs. FREQUENCY (µMAX)
LOG SLOPE (mV/dB)
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
0.9GHz
24
2.5
3.0
3.5
4.0
VCC (V)
4.5
5.0
5.5
2.5
3.0
3.5
4.0
VCC (V)
_______________________________________________________________________________________
4.5
5.0
5.5
2.5GHz 45dB RF-Detecting Controllers
MAX4001
LOG SLOPE vs. VCC (UCSP)
1.9GHz
27
0.1GHz
26
0.1GHz
3.0
3.5
4.0
4.5
5.0
1.9GHz
27
0.1GHz
25
0.9GHz
23
2.5
29
0.9GHz
0.9GHz
24
5.5
23
2.5
3.0
3.5
4.0
4.5
5.0
5.5
2.5
3.0
3.5
4.0
4.5
5.0
5.5
VCC (V)
VCC (V)
VCC (V)
MAX4000
LOG INTERCEPT vs. FREQUENCY (µMAX)
MAX4001
LOG INTERCEPT vs. FREQUENCY (µMAX)
MAX4002
LOG INTERCEPT vs. FREQUENCY (µMAX)
-53
TA = +85°C
-54
TA = +25°C
-55
TA = -40°C
-56
-57
-32
TA = +85°C
-42
TA = +25°C
-43
-44
TA = -40°C
-45
-46
MAX4000 toc51
-41
LOG INTERCEPT (dBm)
-52
-40
-34
LOG INTERCEPT (dBm)
-51
MAX4000 toc50
-39
MAX4000 toc49
-50
TA = +85°C
-36
TA = +25°C
-38
-40
TA = -40°C
-42
-47
-58
-44
-48
-59
-49
0
0.5
1.0
1.5
2.0
2.5
-46
0
0.5
1.0
1.5
2.0
2.5
0
0.5
1.0
1.5
2.0
2.5
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
MAX4000
LOG INTERCEPT vs. FREQUENCY (UCSP)
MAX4001
LOG INTERCEPT vs. FREQUENCY (UCSP)
MAX4002
LOG INTERCEPT vs. FREQUENCY (UCSP)
-57
-58
TA = +25°C
-59
-44
-46
-48
TA = +25°C
TA = +85°C
-50
-60
0
0.5
1.0
1.5
FREQUENCY (GHz)
2.0
2.5
-38
-40
TA = +25°C
-42
TA = -40°C
TA = +85°C
-46
-52
-61
-36
-44
TA = -40°C
TA = +85°C
TA = -40°C
-34
LOG INTERCEPT (dB)
-42
LOG INTERCEPT (dBm)
-56
-32
MAX4000 toc54
-40
MAX4000 toc52
-55
MAX4000 toc53
LOG INTERCEPT (dBm)
1.9GHz
25
25
LOG INTERCEPT (dBm)
29
27
2.5GHz
31
LOG SLOPE (mV/dB)
29
28
2.5GHz
31
LOG SLOPE (mV/dB)
LOG SLOPE (mV/dB)
30
33
MAX4000 toc47
2.5GHz
31
33
MAX4000 toc46
32
MAX4002
LOG SLOPE vs. VCC (UCSP)
MAX4000 toc48
MAX4000
LOG SLOPE vs. VCC (UCSP)
0
0.5
1.0
1.5
FREQUENCY (GHz)
2.0
2.5
0
0.5
1.0
1.5
2.0
2.5
FREQUENCY (GHz)
_______________________________________________________________________________________
9
MAX4000/MAX4001/MAX4002
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA = +25°C, unless otherwise specified.)
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA = +25°C, unless otherwise specified.)
LOG INTERCEPT (dBm)
-52
-53
-54
0.1GHz
-55
-56
1.9GHz
-57
-40
-42
-44
1.9GHz
-46
2.5GHz
-37
-39
0.1GHz
-41
1.9GHz
-43
0.1GHz
-45
-48
0.9GHz
-59
0.9GHz
0.9GHz
-47
-50
-60
3.0
3.5
4.0
4.5
5.0
2.5
5.5
3.0
3.5
4.0
4.5
5.0
2.5
5.5
3.0
3.5
4.0
4.5
VCC (V)
VCC (V)
MAX4000
LOG INTERCEPT vs. VCC (UCSP)
MAX4001
LOG INTERCEPT vs. VCC (UCSP)
MAX4002
LOG INTERCEPT vs. VCC (UCSP)
0.1GHz
-58
0.9GHz
-59
-34
-36
LOG INTERCEPT (dBm)
-57
2.5GHz
-44
-46
1.9GHz
-48
2.5GHz
-38
-40
0.1GHz
-42
0.1GHz
-60
1.9GHz
-50
1.9GHz
-44
0.9GHz
0.9GHz
-61
-46
-52
3.0
3.5
4.0
4.5
5.0
5.5
2.5
3.0
3.5
4.0
4.5
5.0
3.5
4.0
4.5
5.0
VCC (V)
MAX4000 INPUT IMPEDANCE
vs. FREQUENCY (µMAX)
MAX4001 INPUT IMPEDANCE
vs. FREQUENCY (µMAX)
MAX4002 INPUT IMPEDANCE
vs. FREQUENCY (µMAX)
MAX4000 toc62
2500
-100
-500
RESISTANCE (Ω)
-400
1000
REACTANCE (Ω)
-300
-200
FREQUENCY (GHz) R JXΩ
0.1
2144 -1205
0.9
959
-121
1.9
104
-36
2.5
47
-29
1500
-300
-400
1000
-500
-600
500
-600
500
R
-700
-800
0
0.5
R
1.0
1.5
FREQUENCY (GHz)
2.0
2.5
-800
0
0.5
1.0
1.5
2.0
2.5
-300
-400
1000
-500
-600
500
R
-700
0
-200
FREQUENCY (GHz) R JXΩ
0.1
2309 -1137
0.9
943
-120
1.9
129
-36
2.5
30
-26
1500
0
-100
X
2000
2000
-200
FREQUENCY (GHz) R JXΩ
0.1
2100 -794
0.9
500 -91
1.9
52 -35
2.5
27 -366
-100
X
5.5
MAX4000 toc63
2500
0
RESISTANCE (Ω)
2000
1500
0
REACTANCE (Ω)
X
10
3.0
VCC (V)
MAX4000 toc61
0
2.5
5.5
VCC (V)
2500
5.5
MAX4000 toc60
-42
LOG INTERCEPT (dBm)
2.5GHz
-56
-40
MAX4000 toc58
-55
2.5
5.0
VCC (V)
MAX4000 toc59
2.5
-700
-800
0
0
0.5
FREQUENCY (GHz)
______________________________________________________________________________________
1.0
1.5
FREQUENCY (GHz)
2.0
2.5
REACTANCE (Ω)
-58
LOG INTERCEPT (dBm)
-35
LOG INTERCEPT (dBm)
2.5GHz
MAX4000 toc58
-38
2.5GHz
-33
MAX4000 toc56
-50
LOG INTERCEPT (dBm)
-36
MAX4000 toc55
-49
-51
MAX4002
LOG INTERCEPT vs. VCC (µMAX)
MAX4001
LOG INTERCEPT vs. VCC (µMAX)
MAX4000
LOG INTERCEPT vs. VCC (µMAX)
RESISTANCE (Ω)
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
2.5GHz 45dB RF-Detecting Controllers
MAX4001 INPUT IMPEDANCE
vs. FREQUENCY (UCSP)
MAX4000 INPUT IMPEDANCE
vs. FREQUENCY (UCSP)
2500
-100
X
FREQUENCY (GHz) R JXΩ
0.1
1916 -839
0.9
909 -125
1.9
228 -48
2.5
102
-29
-400
1000
-500
-200
FREQUENCY (GHz) R JXΩ
0.1
1942 -927
0.9
1009 -136
1.9
314
-57
2.5
139 -37
1500
-300
-400
-500
-600
1000
-700
-600
R
500
RESISTANCE (Ω)
1500
-100
X
-200
-300
0
2000
REACTANCE (Ω)
RESISTANCE (Ω)
2000
MAX4000 toc65
2500
0
R
500
-800
-700
0.5
1.0
1.5
2.0
0
2.5
0.5
1.0
1.5
2.0
FREQUENCY (GHz)
MAX4002 INPUT IMPEDANCE
vs. FREQUENCY (UCSP)
SUPPLY CURRENT
vs. SHDN VOLTAGE
MAX4000 toc66
2000
FREQUENCY (GHz) R JXΩ
0.1
1961 -1137
0.9
1130
-120
1.9
315
-36
2.5
163
-26
1500
7
-100
6
-200
-300
-400
-500
-600
1000
VCC = 5.5V
-700
500
-800
R
0
0.5
1.0
1.5
2.0
SUPPLY CURRENT (mA)
X
0
5
4
3
2
1
1.2V
-900
0
-1000
2.5
-1
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
SHDN (V)
SHDN POWER-ON DELAY RESPONSE TIME
SHDN RESPONSE TIME
1.5V/div
MAX4000 toc69
MAX4000 toc68
FREQUENCY (GHz)
SHDN
2.5
MAX4000 toc67
FREQUENCY (GHz)
2500
0
-1000
0
REACTANCE (Ω)
0
RESISTANCE (Ω)
-900
-800
0
REACTANCE (Ω)
MAX4000 toc64
1.5V/div
SHDN
5µs
OUT
500mV/div
2µs/div
OUT
500mV/div
2µs/div
______________________________________________________________________________________
11
MAX4000/MAX4001/MAX4002
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA = +25°C, unless otherwise specified.)
Typical Operating Characteristics (continued)
(VCC = 3V, SHDN = VCC, TA = +25°C, unless otherwise specified.)
MAXIMUM OUT VOLTAGE
vs. VCC BY LOAD CURRENT
MAIN OUTPUT NOISE SPECTRAL DENSITY
5.5
5.0
0
4.5
OUT VOLTAGE (V)
4
3
MAX4000 toc71
10
9
8
7
6
5
MAX4000 toc70
NOISE SPECTRAL DENSITY (nV/√HZ)
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
5mA
4.0
10mA
3.5
2
3.0
2.5
2.0
1
100
1k
10k
100k
1M
2.5
10M
3.0
3.5
4.0
4.5
5.0
5.5
VCC (V)
FREQUENCY (Hz)
Pin Description
PIN
NAME
µMAX
UCSP
1
A1
RFIN
2
A2
SHDN
3
A3
SET
12
FUNCTION
RF Input
Shutdown. Connect to VCC for normal operation.
Set-Point Input for Controller Mode Operation
4
B3
CLPF
Lowpass Filter Connection. Connect external capacitor between CLPF and GND to set
control-loop bandwidth.
5
C3
GND
Ground
6
—
N.C.
No Connection. Not internally connected.
7
C2
OUT
Output to PA Gain-Control Pin
8
B1, C1
VCC
Supply Voltage. VCC = 2.7V to 5.5V.
______________________________________________________________________________________
2.5GHz 45dB RF-Detecting Controllers
VCC
DET
DET
DET
DET
DET
POWER AMPLIFIER
+
gm
-
X1
OUT
50Ω
CLPF
RFIN
10dB
10dB
10dB
RFIN
MAX4000
VCC
10dB
V-I
LOWNOISE
BANDGAP
OFFSET
COMP
RF INPUT
XX
SET
VCC
SHDN
DAC
MAX4000
GND
(PADDLE)
OUT
SET
N.C.
CLPF
GND
VCC
0.1µF
CF
Figure 1. Functional Diagram
Detailed Description
The MAX4000/MAX4001/MAX4002 family of logarithmic
amplifiers (log amps) is comprised of four main amplifier/limiter stages each with a small-signal gain of 10dB.
The output stage of each amplifier is applied to a fullwave rectifier (detector). A detector stage also precedes the first gain stage. In total, five detectors each
separated by 10dB, comprise the log amp strip. Figure
1 shows the functional diagram of the log amps.
A portion of the PA output power is coupled to RFIN of
the log amp controller, and is applied to the log amp
strip. Each detector cell outputs a rectified current and
all cell currents are summed and form a logarithmic
output. The detected output is applied to a high-gain
gm stage, which is buffered and then applied to OUT.
OUT is applied to the gain-control pin of the PA to close
the control loop. The voltage applied to SET determines
the output power of the PA in the control loop. The voltage applied to SET relates to an input power level
determined by the log amp detector characteristics.
Extrapolating a straight-line fit of the graph of SET vs.
RFIN provides the logarithmic intercept. Logarithmic
slope, the amount SET changes for each dB change of
RF input, is generally independent of waveform or termination impedance. The MAX4000/MAX4001/
MAX4002 slope at low frequencies is about 25mV/dB.
Variance in temperature and supply voltage does not
alter the slope significantly as shown in the Typical
Operating Characteristics.
The MAX4000/MAX4001/MAX4002 are specifically designed for use in PA control applications. In a control
loop, the output starts at approximately 2.9V (with supply voltage of 3V) for the minimum input signal and falls
to a value close to ground at the maximum input. With a
portion of the PA output power coupled to RFIN, apply
a voltage to SET and connect OUT to the gain-control
pin of the PA to control its output power. An external
Figure 2. Controller Mode Application Circuit Block
capacitor from the CLPF pin to ground sets the bandwidth of the PA control loop.
Transfer Function
Logarithmic slope and intercept determine the transfer
function of the MAX4000/MAX4001/MAX4002 family of
log amps. The change in SET voltage per dB change in
RF input defines the logarithmic slope. Therefore, a
10dB change in RF input results in a 250mV change at
SET. The Log-Conformance plots (see Typical Operating Characteristics) show the dynamic range of the
log amp family. Dynamic range is the range for which
the error remains within a band of ±1dB.
The intercept is defined as the point where the linear
response, when extrapolated, intersects the y-axis of
the Log-Conformance plot. Using these parameters,
the input power can be calculated at any SET voltage
level within the specified input range with the following
equation:
SET
RFIN =
+ IP
SLOPE
where SET is the set-point voltage, SLOPE is the logarithmic slope (V/dB), RFIN is in either dBm or dBV and
IP is the logarithmic intercept point utilizing the same
units as RFIN.
Applications Information
Controller Mode
Figure 2 provides a circuit example of the MAX4000/
MAX4001/MAX4002 configured as a controller. The
MAX4000/MAX4001/MAX4002 require a 2.7V to 5.5V
supply voltage. Place a 0.1µF low-ESR, surface-mount
ceramic capacitor close to VCC to decouple the supply.
Electrically isolate the RF input from other pins (especially SET) to maximize performance at high frequencies
(especially at the high-power levels of the MAX4002).
The MAX4000 has an internal input-coupling capacitor
______________________________________________________________________________________
13
MAX4000/MAX4001/MAX4002
ANTENNA
OUTPUT
ENABLE
DELAY
SHDN
and does not require external AC-coupling. Achieve
50Ω input matching by connecting a 50Ω resistor
between RFIN and ground. See the Typical Operating
Characteristics section for a plot of Input Impedance vs.
Frequency. See the Additional Input Coupling section
for other coupling methods.
SHDN and Power-On
The MAX4000/MAX4001/MAX4002 can be placed in
shutdown by pulling SHDN to ground. SHDN reduces
supply current to typically 13µA. A graph of SHDN
Response is included in the Typical Operating
Characteristics section. Connect SHDN and V CC
together for continuous on-operation.
Power Convention
Expressing power in dBm, decibels above 1mW, is the
most common convention in RF systems. Log amp
input levels specified in terms of power are a result of
following common convention. Note that input power
does not refer to power, but rather to input voltage relative to a 50Ω impedance. Use of dBV, decibels with
respect to a 1VRMS sine wave, yields a less ambiguous
result. The dBV convention has its own pitfalls in that
log amp response is also dependent on waveform. A
complex input such as CDMA does not have the exact
same output response as the sinusoidal signal. The
MAX4000/MAX4001/MAX4002 performance specifications are in both dBV and dBm, with equivalent dBm
levels for a 50Ω environment. To convert dBV values
into dBm in a 50Ω network, add 13dB.
14
MAX4000 fig03
GAIN
60
180
135
CF = 2000pF
40
90
20
CF = 200pF
CF = 200pF
0
45
0
-20
-45
-40
-90
CF = 2000pF
-60
-135
-80
PHASE
-100
10
100
1k
PHASE (DEGREES)
The MAX4000/MAX4001/MAX4002 log amps function
as both the detector and controller in power-control
loops. Use a directional coupler to couple a portion of
the PA’s output power to the log amp’s RF input. In
applications requiring dual-mode operation where there
are two PAs and two directional couplers, passively
combine the outputs of the directional couplers before
applying to the log amp. Apply a set-point voltage to
SET from a controlling source (usually a DAC). OUT,
which drives the automatic gain-control pin of the PA,
corrects any inequality between the RF input level and
the corresponding set-point level. This is valid assuming the gain control of the variable gain element is positive, such that increasing OUT voltage increases gain.
OUT voltage can range from 150mV to within 250mV of
the supply rail while sourcing 10mA. Use a suitable
load resistor between OUT and GND for PA control
inputs that source current. The Typical Operating
Characteristics section has a plot of the sourcing capabilities and output swing of OUT.
GAIN AND PHASE vs. FREQUENCY
80
GAIN (dB)
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
10k
100k
1M
-180
-225
10M 100M
FREQUENCY (Hz)
Figure 3. Gain and Phase vs. Frequency Graph
Filter Capacitor and Transient Response
In general, the choice of filter capacitor only partially
determines the time-domain response of a PA control
loop. However, some simple conventions can be
applied to affect transient response. A large filter
capacitor, CF, dominates time-domain response, but
the loop bandwidth remains a factor of the PA gaincontrol range. The bandwidth is maximized at power
outputs near the center of the PA’s range, and minimized at the low and high power levels, where the
slope of the gain-control curve is lowest.
A smaller valued CF results in an increased loop bandwidth inversely proportional to the capacitor value.
Inherent phase lag in the PA’s control path, usually
caused by parasitics at the OUT pin, ultimately results
in the addition of complex poles in the AC loop equation. To avoid this secondary effect, experimentally
determine the lowest usable CF for the power amplifier
of interest. This requires full consideration to the intricacies of the PA control function. The worst-case condition, where the PA output is smallest (gain function is
steepest), should be used because the PA control
function is typically nonlinear. An additional zero can
be added to improve loop dynamics by placing a resistor in series with CF. See Figure 3 for the gain and
phase response for different CF values.
Additional Input Coupling
There are three common methods for input coupling:
broadband resistive, narrowband reactive, and series
attenuation. A broadband resistive match is implemented
by connecting a resistor to ground at RFIN as shown in
Figure 4a. A 50Ω resistor (use other values for different
input impedances) in this configuration in parallel with the
input impedance of the MAX4000 presents an input
______________________________________________________________________________________
2.5GHz 45dB RF-Detecting Controllers
For high frequencies, use narrowband reactive coupling.
This implementation is shown in Figure 4b. The matching
components are drawn as reactances since these can
be either capacitors or inductors depending on the input
impedance at the desired frequency and available standard value components. A Smith Chart is used to obtain
the input impedance at the desired frequency and then
matching reactive components are chosen. Table 1 provides standard component values at some common frequencies for the MAX4001. Note that these inductors
must have a high SRF (self-resonant frequency), much
higher than the intended frequency of operation to implement this matching scheme.
Device sensitivity is increased by the use of a reactive
matching network, because a voltage gain occurs
before being applied to RFIN. The associated gain is
calculated with the following equation:
Voltage GaindB = 20 log10
MAX4000
MAX4001
MAX4002
50Ω SOURCE
CC**
RFIN
50Ω
CC*
CIN
RS
50Ω
VCC
*MAX4000 ONLY INTERNALLY COUPLED
**MAX4001/MAX4002 REQUIRE EXTERNAL COUPLING
Figure 4a. Broadband Resistive Matching
MAX4000
MAX4001
MAX4002
50Ω SOURCE
50Ω
CC**
RFIN
jX1
R2
R1
CC*
CIN
jX2
where R1 is the source impedance to which the device
is being matched, and R2 is the input resistance of the
device. The gain is the best-case scenario for a perfect
match. However, component tolerance and standard
value choice often result in a reduced gain.
Figure 4c demonstrates series attenuation coupling.
This method is intended for use in applications where
the RF input signal is greater than the input range of the
device. The input signal is thus resistively divided by
the use of a series resistor connected to the RF source.
Since the MAX4000/MAX4001/MAX4002 log amps offer
a wide selection of RF input ranges, series attenuation
coupling is not needed for typical applications.
jX1 (nH)
jX2 (nH)
VOLTAGE
GAIN (dB)
0.9
38
47
12.8
1.9
4.4
4.7
3.2
2.5
—
1.8
-0.3
RIN
VCC
*MAX4000 ONLY INTERNALLY COUPLED
**MAX4001/MAX4002 REQUIRE EXTERNAL COUPLING
Figure 4b. Narrowband Reactive Matching
MAX4000
MAX4001
MAX4002
STRIPLINE
RATTN
CC**
RFIN
CC*
Table 1. Suggested Components for
MAX4001 Reactive Matching Network
FREQUENCY
(GHz)
RIN
CIN
RIN
VCC
*MAX4000 ONLY INTERNALLY COUPLED
**MAX4001/MAX4002 REQUIRE EXTERNAL COUPLING
Figure 4c. Series Attenuation Network
______________________________________________________________________________________
15
MAX4000/MAX4001/MAX4002
impedance of approximately 50Ω. See the Typical
Operating Characteristics for the input impedance plot to
determine the required external termination at the frequency of interest. The MAX4001/MAX4002 require an
additional external coupling capacitor in series with the
RF input. As the operating frequency increases over
2GHz, input impedance is reduced, resulting in the need
for a larger-valued shunt resistor. Use a Smith Chart for
calculating the ideal shunt resistor value.
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
Waveform Considerations
The MAX4000/MAX4001/MAX4002 family of log amps
respond to voltage, not power, even though input levels
are specified in dBm. It is important to realize that input
signals with identical RMS power but unique waveforms
results in different log amp outputs.
Differing signal waveforms result in either an upward or
downward shift in the logarithmic intercept. However,
the logarithmic slope remains the same.
Layout Considerations
As with any RF circuit, the layout of the MAX4000/
MAX4001/MAX4002 circuits affects performance. Use a
short 50Ω line at the input with multiple ground vias
along the length of the line. The input capacitor and
resistor should both be placed as close to the IC as
possible. VCC should be bypassed as close as possible to the IC with multiple vias connecting the capacitor
to the ground plane. It is recommended that good RF
components be chosen for the desired operating frequency range. Electrically isolate RF input from
other pins (especially SET) to maximize performance at high frequencies (especially at the high
power levels of the MAX4002).
Pin Configurations
TOP VIEW
TOP VIEW
(BUMPS ON BOTTOM)
RFIN
1
8
SHDN
2
7
OUT
SET
3
6
N.C.
CLPF
4
5
GND
MAX4000
MAX4001
MAX4002
VCC
µMAX
1
2
3
A
RFIN
SHDN
SET
B
VCC
MAX4000
MAX4001
MAX4002
CLPF
C
VCC
OUT
GND
UCSP
UCSP Reliability
The UCSP represents a unique package that greatly
reduces board space compared to other packages.
UCSP reliability is integrally linked to the user’s assembly methods, circuit board material, and usage environment. The user should closely review these areas when
considering use of a UCSP. This form factor may not
perform equally to a packaged product through traditional mechanical reliability tests. Performance through
operating life test and moisture resistance remains
uncompromised as it is primarily determined by the
wafer fabrication process. Mechanical stress performance is a greater consideration for a UCSP. UCSP solder joint contact integrity must be considered since the
package is attached through direct solder contact to
the user’s PC board. Testing done to characterize the
UCSP reliability performance shows that it is capable of
performing reliably through environmental stresses.
Results of environmental stress tests and additional
usage data and recommendations are detailed in the
UCSP application note, which can be found on Maxim’s
website, www.maxim-ic.com.
16
Chip Information
TRANSISTOR COUNT: 358
PROCESS: Bipolar
______________________________________________________________________________________
2.5GHz 45dB RF-Detecting Controllers
9LUCSP, 3x3.EPS
______________________________________________________________________________________
17
MAX4000/MAX4001/MAX4002
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
4X S
8
E
ÿ 0.50±0.1
8
INCHES
DIM
A
A1
A2
b
H
c
D
e
E
H
0.6±0.1
1
L
1
α
0.6±0.1
S
BOTTOM VIEW
D
MIN
0.002
0.030
MAX
0.043
0.006
0.037
0.014
0.010
0.007
0.005
0.120
0.116
0.0256 BSC
0.120
0.116
0.198
0.188
0.026
0.016
6∞
0∞
0.0207 BSC
8LUMAXD EPS
MAX4000/MAX4001/MAX4002
2.5GHz 45dB RF-Detecting Controllers
MILLIMETERS
MAX
MIN
0.05
0.75
1.10
0.15
0.95
0.25
0.36
0.13
0.18
2.95
3.05
0.65 BSC
2.95
3.05
4.78
5.03
0.41
0.66
0∞
6∞
0.5250 BSC
TOP VIEW
A1
A2
e
A
α
c
b
L
SIDE VIEW
FRONT VIEW
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, 8L uMAX/uSOP
APPROVAL
DOCUMENT CONTROL NO.
21-0036
REV.
J
1
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2002 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.