IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM . Features • 8Mb: 256K x 36 or 512K x 18 organizations 4Mb: 128K x 36 or 256K x 18 organizations • 0.25 Micron CMOS technology • Registered outputs • Common I/O • Asynchronous output enable • Synchronous pipeline mode of operation with self-timed late write • Synchronous power down input • Single differential high-speed transceiver logic (HSTL) Clock • Boundary scan using limited set of JTAG 1149.1 functions • +3.3V power supply, ground, 2.1V VDDQ, and • Byte write capability and global write enable 1.0V VREF • HSTL input and output levels • 7 x 17 bump ball grid array package with SRAM JEDEC standard pinout and boundary SCAN order • Registered addresses, write enables, synchronous select, and data-ins Description The 4Mb and 8Mb SRAMs—IBM0436A41DLAB, IBM0418A41DLAB, IBM0418A81DLAB, and IBM0436A81DLAB—are synchronous pipeline mode, high-performance CMOS static random access memories that are versatile, have wide I/O, and can achieve 3ns cycle times. Dual differential K clocks are used to initiate the read/write operation and all internal operations are self-timed. At the ris- crrh3319.10.fm.00 June 12, 2002 ing edge of the K clock, all addresses, writeenables, synchronous select, and data ins are registered internally. Data outs are updated from output registers on the next rising edge of the K clock. An internal write buffer allows write data to follow one cycle after addresses and controls. The SRAM is operated with a single +3.3V power supply and is compatible with HSTL I/O interfaces. Page 1 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM x36 BGA Pinout (Top View) 1 2 3 4 5 6 7 A VDDQ SA SA NC SA SA VDDQ B NC NC SA NC SA NC,SA(8Mb) NC C NC SA SA VDD SA SA NC D DQ19 DQ18 VSS ZQ VSS DQ9 DQb10 E DQ22 DQ20 VSS SS VSS DQ11 DQb13 F VDDQ DQ21 VSS G VSS DQ12 VDDQ G DQ24 DQ23 SBWc NC SBWb DQ14 DQb15 H DQ25 DQ26 VSS NC VSS DQ17 DQb16 J VDDQ VDD VREF VDD VREF VDD VDDQ K DQ34 DQ35 VSS K VSS DQ8 DQ7 L DQ33 DQ32 SBWd K SBWa DQ5 DQ6 M VDDQ DQ30 VSS SW VSS DQ3 VDDQ N DQ31 DQ29 VSS SA0 VSS DQ2 DQ4 VSS SA1 VSS DQ0 DQ1 1 VDD 1 SA NC P DQ28 DQ27 R NC SA M1 M2 T NC NC SA SA SA NC ZZ U VDDQ TMS TDI TCK TDO NC VDDQ 1. M1 and M2 are clock mode pins. For this application, M1 and M2 need to connect to VSS and VDD, respectively. x18 BGA Pinout (Top View) 1 2 3 4 5 6 7 A VDDQ SA SA NC SA SA VDDQ B NC NC SA NC SA NC,SA(8Mb) NC C NC SA SA VDD SA SA NC D DQ14 NC VSS ZQ VSS DQ0 NC NC DQ1 DQ2 VDDQ E NC DQ15 VSS SS VSS F VDDQ NC VSS G VSS G NC DQ16 SBWb NC NC NC DQ3 H DQ17 NC VSS NC VSS DQ4 NC J VDDQ VDD VREF VDD VREF VDD VDDQ K NC DQ13 VSS K VSS NC DQ8 L DQ12 NC NC K SBWa DQ7 NC M VDDQ DQ10 VSS SW VSS NC VDDQ N DQ11 NC VSS SA0 VSS DQ6 NC P NC DQ9 VSS SA1 VSS NC DQ5 R NC SA M11 VDD M21 SA NC T NC SA SA NC SA SA ZZ U VDDQ TMS TDI TCK TDO NC VDDQ 1. M1 and M2 are clock mode pins. For this application, M1 and M2 need to connect to VSS and VDD respectively. Page 2 of 25 crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Pin Description SA0-SA18 Address Input SA0-SA18 for 512K x 18 SA0-SA17 for 256K x 36 SA0-SA17 for 256K x 18 SA0-SA16 for 128K x 36 G Asynchronous Output Enable DQ0-DQ35 Data I/O DQ0-DQ17 for 512K x 18 DQ0-DQ35 for 256K x 36 SS Synchronous Select K, K Differential Input Register Clocks M1, M2 Clock Mode Inputs - Selects Single or Dual Clock Operation. SW Write Enable, Global VREF(2) HSTL Input Reference Voltage SBWa Write Enable, Byte a (DQ0-DQ8) VDD Power Supply (+3.3V) SBWb Write Enable, Byte b (DQ9-DQ17) VSS Ground SBWc Write Enable, Byte c (DQ18-DQ26) VDDQ SBWd Write Enable, Byte d (DQ27-DQ35) ZZ Synchronous Sleep Mode IEEE® 1149.1 Test Inputs (LVTTL levels) ZQ Output Driver Impedance Control IEEE 1149.1 Test Output (LVTTL level) NC No Connect TMS,TDI,TCK TDO Output Power Supply Ordering Information (All possible types are listed; some may not be qualified.) Part Number Organization Speed Leads IBM0418A41DLAB - 3 256K x 18 1.7ns Access / 3.0ns Cycle 7 x 17 BGA IBM0418A41DLAB - 3F 256K x 18 1.8ns Access / 3.3ns Cycle 7 x 17 BGA IBM0418A41DLAB - 4 256K x 18 2.0ns Access / 4.0ns Cycle 7 x 17 BGA IBM0418A41DLAB - 5 256K x 18 2.25ns Access /5.0ns Cycle 7 x 17 BGA IBM0436A41DLAB - 3 128K x 36 1.7ns Access / 3.0ns Cycle 7 x 17 BGA IBM0436A41DLAB - 3F 128K x 36 2.0ns Access / 3.3ns Cycle 7 x 17 BGA IBM0436A41DLAB - 4 128K x 36 2.0ns Access / 4.0ns Cycle 7 x 17 BGA IBM0436A41DLAB - 5 128K x 36 2.25ns Access /5.0ns Cycle 7 x 17 BGA IBM0418A81DLAB - 3 512K x 18 1.7ns Access / 3.0ns Cycle 7 x 17 BGA IBM0418A81DLAB - 3F 512K x 18 1.8ns Access / 3.3ns Cycle 7 x 17 BGA IBM0418A81DLAB - 4 512K x 18 2.0ns Access / 4.0ns Cycle 7 x 17 BGA IBM0418A81DLAB - 5 512K x 18 2.25ns Access /5.0ns Cycle 7 x 17 BGA IBM0436A81DLAB - 3 256K x 36 1.7ns Access / 3.0ns Cycle 7 x 17 BGA IBM0436A81DLAB -3F 256K x 36 1.8ns Access / 3.3ns Cycle 7 x 17 BGA IBM0436A81DLAB - 4 256K x 36 2.0ns Access / 4.0ns Cycle 7 x 17 BGA IBM0436A81DLAB - 5 256K x 36 2.25ns Access /5.0ns Cycle 7 x 17 BGA crrh3319.10.fm.00 June 12, 2002 Page 3 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Row Decode ZZ WR_BUF0 WR_BUF1 MATCH1 MATCH LATCH DOC_Array0 Col Decode Read/Wr Amp WRITE SS DOC_MUX0 2:1 MUX SBW0 REG READ K WRITE1 ADD REG SA0-SA18 SBW REG READ ADD REG SBW WRITE0 ADD REG Block Diagram SW DOC_MUX2 2:1 MUX LATCH0 SW0 REG SW1 REG DOC_MUX1 2:1 MUX SS0 REG G Page 4 of 25 SS1 REG DOC_ DOUT0 DQ0-DQ35 crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM SRAM Features Late Write The late write function allows write data to be registered one cycle after addresses and controls. This feature eliminates one bus-turnaround cycle, necessary when going from a read to a write operation. Late write is accomplished by buffering write addresses and data so that the write operation occurs during the next write cycle. When a read cycle occurs after a write cycle, the address and write data information are stored temporarily in holding registers. During the first write cycle preceded by a read cycle, the SRAM array will be updated with address and data from the holding registers. Read cycle addresses are monitored to determine if read data is to be supplied from the SRAM array or the write buffer. The bypassing of the SRAM array occurs on a byte-by-byte basis. When only one byte is written during a write cycle, read data from the last written address will have new byte data from the write buffer and remaining bytes from the SRAM array. Mode Control Mode control pins M1 and M2 are used to select four different JEDEC-standard read protocols. This SRAM supports a single clock pipeline (M1 = VSS, M2 = VDD). This datasheet only describes single clock pipeline functionality. Mode control inputs must be set at power up and must not change during SRAM operation. This SRAM is tested only in the pipeline mode. Sleep Mode Sleep mode is enabled by switching synchronous signal ZZ high. When the SRAM is in sleep mode, the outputs will go to a High-Z state and the SRAM will draw standby current. SRAM data will be preserved and a recovery time (tZZR) is required before the SRAM resumes normal operation. RQ Programmable Impedance An external resistor, RQ, must be connected between the ZQ pin on the SRAM and VSS to allow the SRAM to adjust its output driver impedance. The value of RQ must be five times the value of the intended line impedance driven by the SRAM. The allowable range of RQ to guarantee impedance matching is between 175Ω and 350Ω, with the tolerance described in Programmable Impedance Output Driver DC Electrical Characteristics on page 9. The RQ resistor should be placed less than two inches away from the ZQ ball on the SRAM module. The total external capacitance (including wiring) seen by the ZQ ball should be minimized (less than 7.5 pF). Programmable Impedance and Power-Up Requirements Periodic readjustment of the output driver impedance is necessary as the impedance is greatly affected by drifts in supply voltage and temperature. One evaluation occurs every 64 clock cycles and each evaluation may move the output driver impedance level only one step at a time towards the optimum level. The output driver has 32 discrete binary weighted steps. The impedance update of the output driver occurs when the SRAM is in High-Z. Write and deselect operations will synchronously switch the SRAM into and out of High-Z, thereby triggering an update. The user may choose to invoke asynchronous G updates by providing a G setup and hold times around the K clock to guarantee the proper update. There are no power-up requirements for the SRAM; however, to guarantee optimum output driver impedance after power up, the SRAM needs 4096 clock cycles followed by a Low-Z to High-Z transition. Power-Up and Power-Down Sequencing The power supplies need to be powered up in the following order: VDD, VDDQ, VREF, and inputs. The powerdown sequencing must be in the reverse order. VDDQ can be allowed to exceed VDD by no more than 0.6V. crrh3319.10.fm.00 June 12, 2002 Page 5 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Clock Truth Table K ZZ SS SW SBWa SBWb SBWc SBWd DQ (n) DQ (n+1) Mode L→H L L H X X X X X DOUT 0-35 Read Cycle All Bytes L→H L L L L H H H X DIN 0-8 Write Cycle 1st Byte L→H L L L H L H H X DIN 9-17 Write Cycle 2nd Byte L→H L L L H H L H X DIN 18-26 Write Cycle 3rd Byte L→H L L L H H H L X DIN 27-35 Write Cycle 4th Byte L→H L L L L L L L X DIN 0-35 Write Cycle All Bytes L→H L L L H H H H X High-Z Abort Write Cycle L→H L H X X X X X X High-Z Deselect Cycle X H X X X X X X High-Z High-Z Sleep Mode Output Enable Truth Table Operation (n, n+1) G (n) DQ (n) DQ (n+1) Read L DOUT 0-35 DOUT 0-35 Read H High-Z High-Z Sleep (ZZ = H) X High-Z High-Z Write (SW = L) X X High-Z Deselect (SS = H) X X High-Z Absolute Maximum Ratings Item Symbol Rating Units Notes VDD -0.5 to 4.3 V 1 VDDQ -0.5 to 2.825 V 1 VIN -0.5 to 4.3 V 1, 2 VDQIN -0.5 to 2.825 V 1 Operating Temperature TA 0 to 85 °C 1 Junction Temperature TJ 110 °C 1 Storage Temperature TSTG -55 to +125 °C 1 Short Circuit Output Current IOUT 25 mA 1 Power Supply Voltage Output Power Supply Voltage Input Voltage DQ Input Voltage 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Excludes DQ inputs. Page 6 of 25 crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Recommended DC Operating Conditions (TA = 0 to +85°C) Parameter Symbol Min. Typ. Max. Units Notes VDD 3.3 - 5% 3.3 3.3 + 5% V 1 VDDQ 1.4 1.8 2.1 V 1 Input High Voltage VIH VREF +0.1 — VDDQ + 0.3 V 1, 2 Input Low Voltage VIL -0.3 — VREF - 0.1 V 1, 3 VREF 0.68 0.90 1.0 V 1, 6 Clocks Signal Voltage VIN - CLK -0.3 — VDDQ + 0.3 V 1, 4 Differential Clocks Signal Voltage VDIF - CLK 0.1 — VDDQ + 0.6 V 1, 5 Clocks Common Mode Voltage VCM - CLK 0.55 — 1.0 V 1 Supply Voltage Output Driver Supply Voltage Input Reference Voltage 1. 2. 3. 4. 5. 6. All voltages referenced to VSS. All VDD, VDDQ, and VSS pins must be connected. VIH(Max)DC = VDDQ + 0.3 V, VIH(Max)AC = VDDQ + 0.85 V (pulse width ≤ 4.0ns). VIL(Min)DC = -0.3 V, VIL(Min)AC = -1.5 V (pulse width ≤ 4.0ns). VIN-CLK specifies the maximum allowable DC excursions of each differential clock (K, K). VDIF-CLK specifies the minimum clock differential voltage required for switching. Peak-to-peak AC component superimposed on VREF may not exceed 5% of VREF. crrh3319.10.fm.00 June 12, 2002 Page 7 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM DC Electrical Characteristics (TA = 0 to +85°C, VDD = 3.3V -5%, +5%) Parameter Symbol Min. Max. Units Notes Average Power Supply Operating Current - x36 (IOUT = 0, VIN = VIH or VIL, ZZ & SS = VIL) IDD3 IDD3F IDD4 IDD5 — — 0.470 0.450 0.420 0.370 A 1, 3 Average Power Supply Operating Current - x18 (IOUT = 0, VIN = VIH or VIL, ZZ & SS = VIL) IDD3 IDD3F IDD4 IDD5 — — 0.450 0.430 0.400 0.350 A 1, 3 Power Supply Standby Current (SS = VIH, ZZ = VIL. All other inputs = VIH or VIH, IIH = 0) ISBSS — 120 mA 1 Power Supply Sleep Current (ZZ = VIH, All other inputs = VIH or VIL, IOUT = 0) ISBZZ — 65 mA 1, 5 Input Leakage Current, any input (except JTAG) (VIN = VSS or VDD) ILI -2 +2 µA Output Leakage Current (VOUT = VSS or VDD, DQ in High-Z) ILO -5 +5 µA Output “High” Level Voltage (IOH = -8mA) VOH VDDQ -.4 VDDQ V 2, 4 Output “Low” Level Voltage (IOL = +8mA) VOL VSS VSS+.4 V 2, 4 ILIJTAG -50 +10 µA 6 JTAG Leakage Current (VIN = VSS or VDD) 1. IOUT = Chip Output Current. 2. Minimum Impedance Output Driver. 3. The numeric suffix indicates part operating at speed indicated in AC Characteristics on page 11 (that is, IDD3 indicates 3ns cycle time). 4. JEDEC Standard JESD8-6 Class 1 Compatible. 5. When ZZ = high, specification is guaranteed at 75°C junction temperature. 6. For JTAG inputs only. PBGA Thermal Characteristics Item Thermal Resistance Junction to Case Symbol Rating Units RΘJC 1 °C/W Capacitance (TA = 0 to +85°C, VDD = 3.3V -5%, +5%, f = 1MHz) Parameter Input Capacitance Data I/O Capacitance (DQ0-DQ35) Page 8 of 25 Symbol Test Condition Max. Units CIN VIN = 0V 4 pF COUT VOUT = 0V 4 pF crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM AC Input Characteristics Item Symbol Min. AC Input Logic High VIH (ac) VREF + 04V AC Input Logic Low VIL (ac) Clock Input Differential Voltage VDIF (ac) VREF peak-to-peak ac Voltage VREF (ac) Max. Notes 3 VREF - 0.4V 3 0.7V 2 5% VREF (dc) 1 1. The peak to peak AC component superimposed on VREF may not exceed 5% of the DC component of VREF. 2. Performance is a function of VIH and VIL levels to clock inputs. 3. See the AC Input Definition figure below. AC Input Definition VIH (ac) VREF VIL (ac) Programmable Impedance Output Driver DC Electrical Characteristics (TA = 0 to +85°C, VDD = 3.3V -5%, +5%, VDDQ = 1.5V) Parameter Symbol Min. Max. Units Notes Output “High” Level Voltage VOH VDDQ / 2 VDDQ V 1, 3 Output “Low” Level Voltage VOL VSS VDDQ / 2 V 2, 3 VDDQ- ⁄ RQ --------- + 5 ± 15% @ V 1. For 175Ω ≤ RQ ≤ 350Ω, IOH = ----------------OH = VDDQ / 2. 2 5 VDDQ- ⁄ RQ --------- 2. For 175Ω ≤ RQ ≤ 350Ω, IOL = ----------------2 5 ± 15% @ VOL = VDDQ / 2. 3. Parameter tested with RQ = 250Ω and VDDQ = 1.5V. crrh3319.10.fm.00 June 12, 2002 Page 9 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM AC Test Conditions (TA = 0 to +85°C, VDD = 3.3V -5%, +5%, VDDQ = 1.8V) Parameter Symbol Conditions VDDQ 1.8 Input High Level VIH 1.5 V Input Low Level VIL 0.3 V VREF 0.90 V Differential Clocks Voltage VDIF-CLK 0.75 V Clocks Common Mode Voltage VCM-CLK 0.9 V Input Rise Time TR 0.5 ns Input Fall Time TF 0.5 ns 0.9 V Differential Cross Point V Output Driver Supply Voltage Input Reference Voltage I/O Signals Reference Level (except K, C Clocks) Clocks Reference Level Units Output Load Conditions Notes 1, 2 1. See the AC Test Loading figure below. 2. Parameter tested with RQ = 250Ω and VDDQ = 1.8V. AC Test Loading 50 Ω 50 Ω 0.9V 5pF 25 Ω DQ 0.9V 50 Ω 50 Ω 0.9V 5pF Page 10 of 25 crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM AC Characteristics (TA = 0 to +85°C, VDD = 3.3V -5%, +5%) 3 Parameter 3F 4 5 Symbol Units Min. Max. Min. Max. Min. Max. Min. Max. Notes Cycle Time tKHKH 3.0 — 3.3 — 4.0 — 5.0 — ns Clock High Pulse Width tKHKL 1.2 — 1.5 — 1.5 — 1.5 — ns Clock Low Pulse Width tKLKH 1.2 — 1.5 — 1.5 — 1.5 — ns Clock to Output Valid tKHQV — 1.7 — 1.8 — 2.0 — 2.25 ns 1 Address Setup Time tAVKH 0.5 — 0.5 — 0.5 — 0.5 — ns 3 Address Hold Time tKHAX 0.5 — 0.5 — 0.5 — 1.0 — ns 3 Sync Select Setup Time tSVKH 0.5 — 0.5 — 0.5 — 0.5 — ns 3 Sync Select Hold Time tKHSX 0.5 — 0.5 — 0.5 — 1.0 — ns 3 Write Enables Setup Time tWVKH 0.5 — 0.5 — 0.5 — 0.5 — ns 3 Write Enables Hold Time tKHWX 0.5 — 0.5 — 0.5 — 1.0 — ns 3 Data In Setup Time tDVKH 0.5 — 0.5 — 0.5 — 0.5 — ns 3 Data In Hold Time tKHDX 0.5 — 0.5 — 0.5 — 1.0 — ns 3 Data Out Hold Time tKHQX 0.5 — 0.5 — 0.5 — 0.5 — ns 1 Clock High to Output High-Z tKHQZ — 2.25 — 2.25 — 2.25 — 2.5 ns 1 Clock High to Output Active tKHQX4 0.5 — 0.5 — 0.5 — 0.5 — ns 1 Output Enable to High-Z tGHQZ — 2.0 2.0 — 2.5 ns 1 Output Enable to Low-Z tGLQX 0.5 — 0.5 — 0.5 — 0.5 — ns 1 Output Enable to Output Valid tGLQV — 2.0 — 2.0 — 2.0 — 2.5 ns 1 Output Enable Setup Time tGHKH 0.5 — 0.5 — 0.5 — 0.5 — ns 1, 2 Output Enable Hold TIme tKHGX 1.5 — 1.5 — 1.5 — 1.5 — ns 1, 2 Sleep Mode Setup Time tZVKH 1.0 — 1.0 — 1.0 — 1.0 — ns Sleep Mode Hold Time tKHZX 1.0 — 1.0 — 1.0 — 1.0 — ns Sleep Mode Recovery TIme tZZR 200 — 200 — 200 — 200 — ns Sleep Mode Enable TIme tZZE — 6 — 6.6 — 8 — 10 ns 2.0 4 1. See the AC Test Loading figure on page 10. 2. Output driver impedance update specifications for G induced updates. Write and deselect cycles will also induce output driver updates during High-Z. 3. During normal operation, VIH, VIL, TRISE, and TFALL of inputs must be within 20% of VIH, VIL, TRISE, and TFALL of clock. 4. For tZZR < 200ns, access time will be equal to twice tKHQV. crrh3319.10.fm.00 June 12, 2002 Page 11 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Read and Deselect Cycles Timing Diagram tKLKH tKHKH tKHKL K tAVKH SA A1 A2 A3 tKHAX A3 A4 tKHSX SS tSVKH tWVKH SW tGLQV tKHWX G tGHQZ tKHQX Q1 DQ tGLQX Page 12 of 25 tKHQZ tKHQV Q4 Q3 Q2 tKHQX4 tKHQV crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Read Write Cycles Timing Diagram tKLKH tKHKL tKHKH K tAVKH SA A2 A1 tSVKH A3 A2 A4 tKHAX SS tKHSX tKHWX tKHWX SW tWVKH tWVKH tKHWX tKHWX SBW tWVKH tWVKH G tGHQZ tKHQV tKHQZ tKHDX Q1 DQ tKHQV Q3 D2 tDVKH tKHQX4 Q2 D4 tDVKH tKHDX Notes: 1. D2 is the input data written in memory location A2. 2. Q2 is output data read from the write buffer, as a result of address A2 being a match from the last write cycle address. crrh3319.10.fm.00 June 12, 2002 Page 13 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Synchronous Sleep Mode Timing Diagram tKHKH tZVKH tZVKH K tKHZX tKHZX ZZ tZZE tZZR DQ Q1 tAVKH tKHQV ADDR A1 tKHAX Note: For tZZR < 200ns, access time will be equal to 2 x tKHQV. Page 14 of 25 crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM IEEE 1149.1 TAP and Boundary Scan The SRAM provides a limited set of JTAG functions intended to test the interconnection between SRAM I/Os and printed circuit-board traces or other components. There is no multiplexer in the path from I/O pins to the RAM core. In conformance with IEEE Standard 1149.1, the SRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up; therefore, TRST signal is not required. Signal List • • • • TCK: TMS: TDI: TDO: Test Clock Test Mode Select Test Data In Test Data Out JTAG DC Operating Characteristics (TA = 0 to +85°C) Operates with JEDEC Standard JESD8A (3.3V) logic signal levels Parameter Symbol Min. Typ. Max. Units Notes JTAG Input High Voltage VIH1 2.2 — VDD + 0.3 V 1 JTAG Input Low Voltage VIL1 -0.3 — 0.8 V 1 JTAG Output High Level VOH1 2.4 — — V 1, 2 JTAG Output Low Level VOL1 — — 0.4 V 1, 3 Symbol Conditions Units Notes Input Pulse High Level VIH1 3.0 V Input Pulse Low Level VIL1 0.0 V Input Rise Time TR1 2.0 ns Input Fall Time TF1 2.0 ns 1.5 V 1. All JTAG inputs and outputs are LVTTL compatible only. 2. IOH1 ≥ -|8mA|. 3. IOL1 ≥ +|8mA|. JTAG AC Test Conditions (TA = 0 to +85°C, VDD = 3.3V -5%, +5%) Parameter Input and Output Timing Reference Level 1 1. See the AC Test Loading figure on page 10. crrh3319.10.fm.00 June 12, 2002 Page 15 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM JTAG AC Characteristics (TA = 0 to +85°C, VDD = 3.3V -5%, +5%) Parameter Symbol Min. Max. Units TCK Cycle Time tTHTH 20 — ns TCK High Pulse Width tTHTL 7 — ns TCK Low Pulse Width tTLTH 7 — ns TMS Setup tMVTH 4 — ns TMS Hold tTHMX 4 — ns TDI Setup tDVTH 4 — ns TDI Hold tTHDX 4 — ns TCK Low to Valid Data tTLOV — 7 ns Notes 1 1. See the AC Test Loading figure on page 10. JTAG Timing Diagram tTHTL tTLTH tTHTH TCK tTHMX TMS tMVTH tTHDX TDI tDVTH TDO tTLOV Page 16 of 25 crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Scan Register Definition Register Name Bit Size x18 Bit Size x36 Instruction 3 3 Bypass 1 1 ID 32 32 Boundary Scan1, 2 51 70 1. The boundary scan chain consists of the following bits: • 36 or 18 bits for data inputs, depending on x18 or x36 configuration • 18 bits for SA0 - SA14 in x36, 19 bits for SA0 - SA15 in x18 • 4 bits for SBWa - SBWd in x36, 2 bits for SBWa and SBWb in x18 • 9 bits for K, K, ZQ, SS, G, SW, ZZ, M1 and M2 • 3 bits for place holders for 8 Mb, 4 bits for place holders for 4Mb 2. K and K clocks connect to a differential receiver that generates a single-ended clock signal. This signal and its inverted value are used for boundary scan sampling. ID Register Definition Field Bit Number and Description Part Revision Number (31:28) Device Density and Configuration (27:18) Vendor Definition (17:12) Manufacturer JEDEC Code (11:1) Start Bit(0) 128K x 36 xxxx 011 010 1100 xxxxxx 000 101 001 00 1 256K x 18 xxxx 011 100 1011 xxxxxx 000 101 001 00 1 512K x 18 xxxx 101 111 0011 xxxxxx 000 101 001 00 1 256K x 36 xxxx 101 101 0100 xxxxxx 000 101 001 00 1 crrh3319.10.fm.00 June 12, 2002 Page 17 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Instruction Set Code Instruction Notes 000 SAMPLE-Z 1, 2 001 IDCODE 010 SAMPLE-Z 1, 2 011 PRIVATE 5 100 SAMPLE 4 101 PRIVATE 5 110 PRIVATE 5 111 BYPASS 3 1. Places DQs in High-Z in order to sample all input data regardless of other SRAM inputs. 2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data. 3. The BYPASS register is initiated to VSS when the BYPASS instruction is invoked. The BYPASS register also holds the last serially loaded TDI when exiting the Shift DR state. 4. The SAMPLE instruction does not place DQs in High-Z. 5. This instruction is reserved for the exclusive use of IBM. Invoking this instruction will cause improper SRAM functionality. This part is not designed to comply with the following sections of IEEE 1149.1: • 7.2.1.b, e • 7.7.1.a-f • 10.1.1.b, e • 10.7.1.a-d • 6.1.1.d Page 18 of 25 crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Boundary Scan Order (128K x 36), (256K x 36) (PH = Place Holder) Exit Order Signal Bump # Exit Order Signal Bump # Exit Order Signal Bump # 1 M2 5R 25 DQ12 6F 49 DQ26 2H 2 SA 4P 26 DQ13 7E 50 DQ25 1H 3 SA 4T 27 DQ11 6E 51 SBWc 3G 4 SA 6R 28 DQ10 7D 52 ZQ 4D 5 SA 5T 29 DQ9 6D 53 SS 4E 6 ZZ 7T 30 SA 6A 54 PH1 4G 7 DQ0 6P 31 SA 6C 55 PH2 4H 8 DQ1 7P 32 SA 5C 56 SW 4M 9 DQ2 6N 33 SA 5A 57 SBWd 3L 10 DQ4 7N 34 PH1(4Mb), SA(8Mb) 6B 58 DQ34 1K 11 DQ3 6M 35 SA 5B 59 DQ35 2K 12 DQ5 6L 36 SA 3B 60 DQ33 1L 13 DQ6 7L 37 PH1 2B 61 DQ32 2L 14 DQ8 6K 38 SA 3A 62 DQ30 2M 15 DQ7 7K 39 SA 3C 63 DQ29 1N 16 SBWa 5L 40 SA 2C 64 DQ31 2N 17 K 4L 41 SA 2A 65 DQ28 1P 18 K 4K 42 DQ18 2D 66 DQ27 2P 19 G 4F 43 DQ19 1D 67 SA 3T 20 SBWb 5G 44 DQ20 2E 68 SA 2R 21 DQ16 7H 45 DQ22 1E 69 SA 4N 22 DQ17 6H 46 DQ21 2F 70 M1 3R 23 DQ15 7G 47 DQ23 2G 24 DQ14 6G 48 DQ24 1G 1. Input of PH register connected to VSS. 2. Input of PH register connected to VDD. crrh3319.10.fm.00 June 12, 2002 Page 19 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Boundary Scan Order (256K x 18), (512K x 18) (PH = Place Holder) Exit Order Signal Bump # Exit Order Signal Bump # 1 M2 5R 27 PH1 2B 2 SA 6T 28 SA 3A 3 SA 4P 29 SA 3C 4 SA 6R 30 SA 2C 5 SA 5T 31 SA 2A 6 ZZ 7T 32 DQ14 1D 7 DQ5 7P 33 DQ15 2E 8 DQ6 6N 34 DQ16 2G 9 DQ7 6L 35 DQ17 1H 10 DQ8 7K 36 SBWb 3G 11 SBWa 5L 37 ZQ 4D 12 K 4L 38 SS 4E 13 K 4K 39 PH1 4G 14 G 4F 40 PH2 4H 15 DQ4 6H 41 SW 4M 16 DQ3 7G 42 DQ13 2K 17 DQ2 6F 43 DQ12 1L 18 DQ1 7E 44 DQ10 2M 19 DQ0 6D 45 DQ11 1N 20 SA 6A 46 DQ9 2P 21 SA 6C 47 SA 3T 22 SA 5C 48 SA 2R 23 SA 5A 49 SA 4N 24 PH1(4Mb), SA(8Mb) 6B 50 SA 2T 25 SA 5B 51 M1 3R 26 SA 3B 1. Input of PH register connected to VSS. 2. Input of PH register connected to VDD. Page 20 of 25 crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM TAP Controller State Machine 1 Test Logic Reset 0 0 Run Test Idle 1 1 Select DR 0 0 1 1 Select IR 1 Capture IR Capture DR 0 0 0 Shift IR 0 Shift DR 1 1 1 1 Exit1 IR Exit1 DR 0 0 0 0 Pause DR Pause IR 1 1 Exit2 DR Exit2 IR 0 0 1 1 Update DR 0 crrh3319.10.fm.00 June 12, 2002 1 Update IR 1 0 Page 21 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM 7 x17 BGA Dimensions Top View 22.00 16.764 12.294 12.7 Ref 14.00 Indicates A1 Location Plate Die 0.625 ± .254 Underfill Side View Structural Adhesive 0.1778 Ref Plate Ello’ Guv’na! Underfill 2.549 ± 0.13 0.701 ± 0.099 0.71 ± 0.05 Typ Bottom View 0.84 Ref 20.32 1.27 7.62 0.889 ± 0.04 diam. Solder Ball 1 2 3 4 5 6 7 3.19 Ref A B C D E F G H J K L M N P R T U Note: All dimensions are in millimeters. Page 22 of 25 crrh3319.10.fm.00 June 12, 2002 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM References The following document provides recommendations, restrictions, and limitations for the second-level attachment process: Double Sided 4Mb SRAM Coupled Cap PBGA Card Assembly Guide Qualification information, including the scope of application conditions qualified, is available from your marketing representative. crrh3319.10.fm.00 June 12, 2002 Page 23 of 25 IBM0436A41DLAB IBM0418A41DLAB IBM0418A81DLAB IBM0436A81DLAB 8Mb (256Kx36 & 512x18) and 4Mb (128Kx36 & 256Kx18) SRAM Revision Log Revision Contents of Modification 9/1998 Initial release. 11/1998 Updated package diagram. Changed part numbers from Rev A to B. See Programmable Impedance Output Driver DC Electrical Characteristics: 2/16/1999 IOH = (VDDQ ÷ 2) ÷ ((RQ ÷ 5) + 5)± 15% @ VOH = VDDQ / 2 For: 175Ω ≤ RQ ≤ 350Ω. IOL = (VDDQ ÷ 2) ÷ (RQ ÷ 5) ± 15% @ VOL = VDDQ / 2 For: 175Ω ≤ RQ ≤ 350Ω 7/13/1999 9/30/1999 Corrected 7 x17 BGA Dimensions on page 22. Added 3F speed sort. In Recommended DC Operating Conditions on page 7: - VDDQ max changed from 1.9V to 2.0V Replaced Sleep Mode Timing Diagram on page 14. 2/9/2000 Added Sleep Mode Setup Time and Sleep Mode Hold Time to AC Characteristics on page 11. Replaced BGA dimensions diagram on page 22. 5/09/2000 12/05/2000 In Recommended DC Operating Conditions on page 7: - VDDQ max changed to 2.1V. Made various minor editorial changes and format refinements. Removed the document’s Preliminary labels and statements. 02/07/2001 In Recommended DC Operating Conditions on page 7: - VCM - CLK max changed to 1.0V. 01/08/2002 Indicated that the programmable impedance multiplier is 5X. 04/19/2002 Matched the DQ BGA pinout on page 2 with Boundary Scan Order on pages 19 and 20. June 12, 2002 Page 24 of 25 Changed footers, and minor changes to wording and formatting. crrh3319.10.fm.00 June 12, 2002 copyright and Disclaimer Copyright International Business Machines Corporation 1998, 2002 All Rights Reserved Printed in the United States of America June 2002. The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both. IBM IBM Logo IEEE and IEEE 802 are registered trademarks in the United States, owned by the Institute of Electrical and Electronics Engineers. Other company, product and service names may be trademarks or service marks of others. All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation, life support, space, nuclear, or military applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document. IBM Microelectronics Division 1580 Route 52, Bldg. 504 Hopewell Junction, NY 12533-6351 The IBM home page can be found at http://www.ibm.com The IBM Microelectronics Division home page can be found at http://www.chips.ibm.com crrh3319.10 June 12, 2002