LATTICE ISPLSI2032VE110LT48

®
ispLSI 2032VE
LeadFree
Package
Options
Available!
Functional Block Diagram
Global Routing Pool
(GRP)
Input Bus
• 3.3V LOW VOLTAGE 2032 ARCHITECTURE
— Interfaces With Standard 5V TTL Devices
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY
— fmax = 300 MHz Maximum Operating Frequency
— tpd = 3.0 ns Propagation Delay
— Electrically Erasable and Reprogrammable
— Non-Volatile
— 100% Tested at Time of Manufacture
— Unused Product Term Shutdown Saves Power
Output Routing Pool (ORP)
A0
A1
A2
D Q
GLB
Logic
Array
A7
A6
D Q
D Q
A5
D Q
A3
Input Bus
• SuperFAST HIGH DENSITY IN-SYSTEM
PROGRAMMABLE LOGIC
— 1000 PLD Gates
— 32 I/O Pins, Two Dedicated Inputs
— 32 Registers
— High Speed Global Interconnect
— Wide Input Gating for Fast Counters, State
Machines, Address Decoders, etc.
— Small Logic Block Size for Random Logic
— 100% Functional, JEDEC and Pinout Compatible
with ispLSI 2032V Devices
Output Routing Pool (ORP)
Features
3.3V In-System Programmable
High Density SuperFAST™ PLD
A4
0139Bisp/2000
• IN-SYSTEM PROGRAMMABLE
— 3.3V In-System Programmability Using Boundary
Scan Test Access Port (TAP)
— Open-Drain Output Option for Flexible Bus Interface
Capability, Allowing Easy Implementation of
Wired-OR or Bus Arbitration Logic
— Increased Manufacturing Yields, Reduced Time-toMarket and Improved Product Quality
— Reprogram Soldered Devices for Faster Prototyping
Description
The ispLSI 2032VE is a High Density Programmable
Logic Device that can be used in both 3.3V and 5V
systems. The device contains 32 Registers, 32 Universal
I/O pins, two Dedicated Input Pins, three Dedicated
Clock Input Pins, one dedicated Global OE input pin and
a Global Routing Pool (GRP). The GRP provides
complete interconnectivity between all of these elements.
The ispLSI 2032VE features in-system programmability
through the Boundary Scan Test Access Port (TAP) and
is 100% IEEE 1149.1 Boundary Scan Testable. The
ispLSI 2032VE offers non-volatile reprogrammability of
the logic, as well as the interconnect to provide truly
reconfigurable systems.
• 100% IEEE 1149.1 BOUNDARY SCAN TESTABLE
• THE EASE OF USE AND FAST SYSTEM SPEED OF
PLDs WITH THE DENSITY AND FLEXIBILITY OF FPGAs
— Enhanced Pin Locking Capability
— Three Dedicated Clock Input Pins
— Synchronous and Asynchronous Clocks
— Programmable Output Slew Rate Control
— Flexible Pin Placement
— Optimized Global Routing Pool Provides Global
Interconnectivity
— Lead-Free Package Options
The basic unit of logic on the ispLSI 2032VE device is the
Generic Logic Block (GLB). The GLBs are labeled A0, A1
.. A7 (see Figure 1). There are a total of eight GLBs in the
ispLSI 2032VE device. Each GLB is made up of four
macrocells. Each GLB has 18 inputs, a programmable
AND/OR/Exclusive OR array, and four outputs which can
be configured to be either combinatorial or registered.
Inputs to the GLB come from the GRP and dedicated
inputs. All of the GLB outputs are brought back into the
GRP so that they can be connected to the inputs of any
GLB on the device.
Copyright © 2006 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject
to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
2032ve_11
1
August 2006
Specifications ispLSI 2032VE
Functional Block Diagram
Figure 1. ispLSI 2032VE Functional Block Diagram
GOE 0
I/O 12
I/O 13
I/O 14
I/O 15
A1
I/O 31
I/O 30
I/O 29
I/O 28
A7
Global Routing Pool
(GRP)
A6
A2
A5
A3
A4
I/O 27
Input Bus
I/O 9
I/O 10
I/O 11
Output Routing Pool (ORP)
I/O 8
Input Bus
I/O 4
I/O 5
I/O 6
I/O 7
A0
Output Routing Pool (ORP)
I/O 0
I/O 1
I/O 2
I/O 3
I/O 26
I/O 25
I/O 24
I/O 23
I/O 22
I/O 21
I/O 20
I/O 19
I/O 18
I/O 17
I/O 16
TDI/IN 0
TDO/IN 1
CLK 0
CLK 1
CLK 2
Generic Logic
Blocks (GLBs)
TMS/NC
BSCAN
Y0
Y1*
TCK/Y2
Note: *Y1 and RESET are multiplexed on the same pin
0139B/2032VE
Clocks in the ispLSI 2032VE device are selected using
the dedicated clock pins. Three dedicated clock pins (Y0,
Y1, Y2) or an asynchronous clock can be selected on a
GLB basis. The asynchronous or Product Term clock
can be generated in any GLB for its own clock.
The device also has 32 I/O cells, each of which is directly
connected to an I/O pin. Each I/O cell can be individually
programmed to be a combinatorial input, output or bidirectional I/O pin with 3-state control. The signal levels
are TTL compatible voltages and the output drivers can
source 4 mA or sink 8 mA. Each output can be programmed independently for fast or slow output slew rate
to minimize overall output switching noise. Device pins
can be safely driven to 5 Volt signal levels to support
mixed-voltage systems.
Programmable Open-Drain Outputs
In addition to the standard output configuration, the
outputs of the ispLSI 2032VE are individually programmable, either as a standard totem-pole output or an
open-drain output. The totem-pole output drives the
specified Voh and Vol levels, whereas the open-drain
output drives only the specified Vol. The Voh level on the
open-drain output depends on the external loading and
pull-up. This output configuration is controlled by a programmable fuse. The default configuration when the
device is in bulk erased state is the totem-pole configuration. The open-drain/totem-pole option is selectable
through the Lattice design tools.
Eight GLBs, 32 I/O cells, two dedicated inputs and two
ORPs are connected together to make a Megablock (see
Figure 1). The outputs of the eight GLBs are connected
to a set of 32 universal I/O cells by the ORPs. Each
ispLSI 2032VE device contains one Megablock.
The GRP has as its inputs the outputs from all of the GLBs
and all of the inputs from the bi-directional I/O cells. All of
these signals are made available to the inputs of the
GLBs. Delays through the GRP have been equalized to
minimize timing skew.
2
Specifications ispLSI 2032VE
Absolute Maximum Ratings 1
Supply Voltage Vcc .................................. -0.5 to +5.4V
Input Voltage Applied ............................... -0.5 to +5.6V
Off-State Output Voltage Applied ............ -0.5 to +5.6V
Storage Temperature .............................. -65 to +150°C
Case Temp. with Power Applied .............. -55 to 125°C
Max. Junction Temp. (TJ) with Power Applied ... 150°C
1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, follow the programming specifications).
DC Recommended Operating Condition
PARAMETER
SYMBOL
Commercial
VCC
Supply Voltage
VIL
VIH
Input Low Voltage
Industrial
MIN.
MAX.
UNITS
TA = 0°C to + 70°C
3.0
3.6
V
TA = -40°C to + 85°C
3.0
3.6
V
0.8
V
5.25
V
VSS – 0.5
Input High Voltage
2.0
Table 2-0005/2032VE
Capacitance (TA=25°C, f=1.0 MHz)
TYPICAL
UNITS
8
pf
VCC = 3.3V, VIN = 0.0V
I/O Capacitance
6
pf
VCC = 3.3V, VI/O = 0.0V
Clock Capacitance
10
pf
VCC = 3.3V, VY = 0.0V
SYMBOL
C1
C2
C3
PARAMETER
Dedicated Input Capacitance
TEST CONDITIONS
Table 2-0006/2032VE
Erase Reprogram Specifications
PARAMETER
MINIMUM
MAXIMUM
UNITS
10,000
–
Cycles
Erase/Reprogram Cycles
Table 2-0008A/2032VE
3
Specifications ispLSI 2032VE
Switching Test Conditions
Input Pulse Levels
Figure 2. Test Load
GND to 3.0V
≤ 1.5 ns
Input Rise and Fall Time
10% to 90%
Input Timing Reference Levels
1.5V
Output Timing Reference Levels
1.5V
Output Load
+ 3.3V
R1
Device
Output
See Figure 2
Table 2-0003/2032VE
3-state levels are measured 0.5V from
steady-state active level.
R2
Output Load Conditions (see Figure 2)
TEST CONDITION
A
B
C
Test
Point
R1
R2
CL
316Ω
348Ω
35pF
Active High
∞
348Ω
35pF
Active Low
316Ω
348Ω
35pF
Active High to Z
at VOH -0.5V
∞
348Ω
5pF
Active Low to Z
at VOL +0.5V
316Ω
348Ω
5pF
CL*
*CL includes Test Fixture and Probe Capacitance.
0213A/2032VE
Table 2-0004A/2032VE
DC Electrical Characteristics
Over Recommended Operating Conditions
SYMBOL
VOL
VOH
IIL
IIH
IIL-isp
IIL-PU
IOS1
ICC2, 4, 5
CONDITION
PARAMETER
3
MIN.
TYP.
MAX. UNITS
Output Low Voltage
IOL= 8 mA
–
–
0.4
V
Output High Voltage
IOH = -4 mA
2.4
–
–
V
Input or I/O Low Leakage Current
0V ≤ VIN ≤ VIL (Max.)
–
–
-10
μA
Input or I/O High Leakage Current
(VCC - 0.2)V ≤ VIN ≤ VCC
–
–
10
μA
VCC ≤ VIN ≤ 5.25V
–
–
10
μA
BSCAN Input Low Leakage Current
0V ≤ VIN ≤ VIL
–
–
-150
μA
I/O Active Pull-Up Current
0V ≤ VIN ≤ VIL
–
–
-150
μA
Output Short Circuit Current
VCC = 3.3V, VOUT = 0.5V
–
–
-100
mA
Operating Power Supply Current
VIL = 0.0V, VIH = 3.0V -300/-225
–
80
–
mA
fCLOCK = 1MHz
–
65
–
mA
Others
Table 2-0007/2032VE
1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test problems
by tester ground degradation. Characterized but not 100% tested.
2. Measured using two 16-bit counters.
3. Typical values are at VCC = 3.3V and TA = 25°C.
4. Maximum ICC varies widely with specific device configuration and operating frequency. Refer to Power Consumption section
of this data sheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate
maximum ICC .
5. Unused inputs at VIL = 0V.
4
Specifications ispLSI 2032VE
External Timing Parameters
Over Recommended Operating Conditions
3
tpd1
tpd2
fmax
fmax (Ext.)
fmax (Tog.)
tsu1
tco1
th1
tsu2
tco2
th2
tr1
trw1
tptoeen
tptoedis
tgoeen
tgoedis
twh
twl
-225
-300
TEST
COND.
#
A
1
Data Propagation Delay, 4PT Bypass, ORP Bypass
–
3.0
–
4.0
ns
A
2
Data Propagation Delay
–
4.5
–
6.0
ns
DESCRIPTION
1
MIN. MAX. MIN. MAX.
2
A
3
Clock Frequency with Internal Feedback
300
–
–
4
Clock Frequency with External Feedback ( tsu2 + tco1)
208
–
–
5
Clock Frequency, Max. Toggle
333
–
–
6
GLB Reg. Setup Time before Clock, 4 PT Bypass
2.0
–
1
A
7
GLB Reg. Clock to Output Delay, ORP Bypass
–
2.0
–
8
GLB Reg. Hold Time after Clock, 4 PT Bypass
0.0
–
–
9
GLB Reg. Setup Time before Clock
2.8
–
A
10 GLB Reg. Clock to Output Delay
–
2.5
–
11 GLB Reg. Hold Time after Clock
0.0
–
A
12 Ext. Reset Pin to Output Delay, ORP Bypass
–
4.5
UNITS
225
–
MHz
154
–
MHz
250
–
MHz
2.5
–
ns
USE 2032VE-3
00 FOR
NEW DESIGNS
PARAMETER
–
3.0
ns
0.0
–
ns
3.5
–
ns
–
4.0
ns
0.0
–
ns
–
5.0
ns
3.5
–
ns
–
7.0
ns
–
7.0
ns
–
3.5
ns
–
13 Ext. Reset Pulse Duration
3.0
–
B
14 Input to Output Enable
–
5.0
C
15 Input to Output Disable
–
5.0
B
16 Global OE Output Enable
–
3.0
C
17 Global OE Output Disable
–
3.0
–
3.5
ns
–
18 External Synchronous Clock Pulse Duration, High
1.5
–
2.0
–
ns
–
19 External Synchronous Clock Pulse Duration, Low
1.5
–
2.0
–
ns
1. Unless noted otherwise, all parameters use a GRP load of 4, 20 PTXOR path, ORP and Y0 clock.
2. Standard 16-bit counter using GRP feedback.
3. Reference Switching Test Conditions section.
5
Table 2-0030A/2032VE
v.0.1
Specifications ispLSI 2032VE
External Timing Parameters
Over Recommended Operating Conditions
3
PARAMETER
tpd1
tpd2
fmax
fmax (Ext.)
fmax (Tog.)
tsu1
tco1
th1
tsu2
tco2
th2
tr1
trw1
tptoeen
tptoedis
tgoeen
tgoedis
twh
twl
-180
TEST
COND.
#
A
1
Data Propagation Delay, 4PT Bypass, ORP Bypass
A
2
Data Propagation Delay
DESCRIPTION
1
-135
-110
MIN. MAX. MIN. MAX. MIN. MAX.
2
UNITS
–
5.0
–
7.5
–
10.0
ns
–
13.0
ns
–
7.5
–
10.0
180
–
A
3
Clock Frequency with Internal Feedback
135
–
111
–
MHz
–
4
Clock Frequency with External Feedback ( tsu2 + tco1)
118
–
100
–
77.0
–
MHz
–
5
Clock Frequency, Max. Toggle
200
–
167
–
125
–
MHz
–
6
GLB Reg. Setup Time before Clock, 4 PT Bypass
3.0
–
4.0
–
5.5
–
ns
A
7
GLB Reg. Clock to Output Delay, ORP Bypass
–
4.0
–
4.5
–
5.0
ns
–
8
GLB Reg. Hold Time after Clock, 4 PT Bypass
0.0
–
0.0
–
0.0
–
ns
–
9
GLB Reg. Setup Time before Clock
4.0
–
5.5
–
7.5
–
ns
A
10 GLB Reg. Clock to Output Delay
–
5.0
–
5.5
–
6.5
ns
–
11 GLB Reg. Hold Time after Clock
0.0
–
0.0
–
0.0
–
ns
A
12 Ext. Reset Pin to Output Delay, ORP Bypass
–
6.0
–
9.0
–
12.5
ns
1
–
13 Ext. Reset Pulse Duration
4.0
–
5.0
–
6.5
–
ns
B
14 Input to Output Enable
–
10.0
–
12.0
–
14.5
ns
C
15 Input to Output Disable
–
10.0
–
12.0
–
14.5
ns
B
16 Global OE Output Enable
–
5.0
–
6.0
–
7.0
ns
C
17 Global OE Output Disable
–
5.0
–
6.0
–
7.0
ns
–
18 External Synchronous Clock Pulse Duration, High
2.5
–
3.0
–
4.0
–
ns
–
19 External Synchronous Clock Pulse Duration, Low
2.5
–
3.0
–
4.0
–
ns
1. Unless noted otherwise, all parameters use a GRP load of 4, 20 PTXOR path, ORP and Y0 clock.
2. Standard 16-bit counter using GRP feedback.
3. Reference Switching Test Conditions section.
6
Table 2-0030B/2032VE
v.0.1
Specifications ispLSI 2032VE
Internal Timing Parameters1
Over Recommended Operating Conditions
PARAMETER
#2
DESCRIPTION
-225
-300
MIN. MAX. MIN. MAX.
UNITS
Inputs
tio
tdin
20 Input Buffer Delay
–
0.4
–
0.6
ns
21 Dedicated Input Delay
–
1.0
–
1.3
ns
22 GRP Delay
–
0.6
–
0.7
ns
23 4 Product Term Bypass Path Delay (Combinatorial)
–
0.9
–
24 4 Product Term Bypass Path Delay (Registered)
–
1.1
–
25 1 Product Term/XOR Path Delay
–
1.9
–
26 20 Product Term/XOR Path Delay
–
1.9
–
27 XOR Adjacent Path Delay 3
–
1.9
–
28 GLB Register Bypass Delay
–
0.0
–
29 GLB Register Setup Time before Clock
0.5
–
0.8
30 GLB Register Hold Time after Clock
1.5
–
31 GLB Register Clock to Output Delay
–
0.3
32 GLB Register Reset to Output Delay
–
1.3
–
33 GLB Product Term Reset to Register Delay
–
2.5
–
GRP
tgrp
ns
2.2
ns
2.2
ns
2.2
ns
0.0
ns
–
ns
1.7
–
ns
–
0.7
ns
1.3
ns
3.2
ns
4.2
ns
2.8
ns
–
3.0
–
2.3
0.5
36 ORP Delay
–
0.6
37 ORP Bypass Delay
–
0.1
38 Output Buffer Delay
–
1.0
39 Output Slew Limited Delay Adder
–
2.0
40 I/O Cell OE to Output Enabled
–
1.0
41 I/O Cell OE to Output Disabled
–
1.0
42 Global Output Enable
–
2.0
43 Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)
0.6
44 Clock Delay, Y1 or Y2 to Global GLB Clock Line
0.8
–
–
1.3
ns
–
0.3
ns
–
1.2
ns
–
2.0
ns
–
1.5
ns
–
1.5
ns
–
2.0
ns
0.6
0.8
0.8
ns
0.8
1.0
1.0
ns
2.1
–
2.2
ns
Outputs
tob
tsl
toen
todis
tgoe
1.2
0.4
35 GLB Product Term Clock Delay
ORP
torp
torpbp
ns
00 FOR NEW D
34 GLB Product Term Output Enable to I/O Cell Delay
1.2
USE 2032VE-3
t4ptbpc
t4ptbpr
t1ptxor
t20ptxor
txoradj
tgbp
tgsu
tgh
tgco
tgro
tptre
tptoe
tptck
ESIGNS
GLB
Clocks
tgy0
tgy1/2
Global Reset
tgr
45 Global Reset to GLB
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
3. The XOR adjacent path can only be used by hard macros.
7
Table 2-0036A/2032VE
v.0.1
Specifications ispLSI 2032VE
Internal Timing Parameters1
Over Recommended Operating Conditions
PARAMETER
#2
-135
-180
DESCRIPTION
-110
MIN. MAX. MIN. MAX. MIN. MAX.
UNITS
Inputs
tio
tdin
20 Input Buffer Delay
–
0.8
–
0.8
–
1.3
ns
21 Dedicated Input Delay
–
1.5
–
1.7
–
2.5
ns
22 GRP Delay
–
0.7
–
0.9
–
1.2
ns
23 4 Product Term Bypass Path Delay (Combinatorial)
–
1.8
–
3.9
–
4.8
ns
24 4 Product Term Bypass Path Delay (Registered)
–
2.1
–
2.9
–
3.4
ns
25 1 Product Term/XOR Path Delay
–
3.1
–
4.4
–
5.4
ns
26 20 Product Term/XOR Path Delay
–
3.1
–
4.4
–
5.4
ns
–
3.1
–
4.4
–
5.4
ns
–
0.2
–
1.0
–
1.4
ns
29 GLB Register Setup Time before Clock
0.9
–
1.1
–
1.4
–
ns
30 GLB Register Hold Time after Clock
2.1
–
2.9
–
4.1
–
ns
31 GLB Register Clock to Output Delay
–
0.8
–
0.9
–
1.0
ns
32 GLB Register Reset to Output Delay
–
1.3
–
1.8
–
2.7
ns
33 GLB Product Term Reset to Register Delay
–
4.0
–
6.1
–
7.1
ns
34 GLB Product Term Output Enable to I/O Cell Delay
–
5.7
–
6.9
–
8.6
ns
1.4
3.6
1.7
4.1
2.5
4.4
ns
36 ORP Delay
–
1.4
–
1.5
–
1.9
ns
37 ORP Bypass Delay
–
0.4
–
0.5
–
0.9
ns
38 Output Buffer Delay
–
1.3
–
1.4
–
1.8
ns
39 Output Slew Limited Delay Adder
–
2.0
–
2.0
–
2.0
ns
40 I/O Cell OE to Output Enabled
–
2.8
–
3.4
–
3.4
ns
41 I/O Cell OE to Output Disabled
–
2.8
–
3.4
–
3.4
ns
42 Global Output Enable
–
2.2
–
2.6
–
3.6
ns
43 Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)
1.5
1.5
1.7
1.7
1.8
1.8
ns
44 Clock Delay, Y1 or Y2 to Global GLB Clock Line
1.7
1.7
1.9
1.9
2.0
2.0
ns
–
3.0
–
5.3
–
7.1
ns
GRP
tgrp
GLB
t4ptbpc
t4ptbpr
t1ptxor
t20ptxor
txoradj
tgbp
tgsu
tgh
tgco
tgro
tptre
tptoe
tptck
27 XOR Adjacent Path Delay
3
28 GLB Register Bypass Delay
35 GLB Product Term Clock Delay
ORP
torp
torpbp
Outputs
tob
tsl
toen
todis
tgoe
Clocks
tgy0
tgy1/2
Global Reset
tgr
45 Global Reset to GLB
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
3. The XOR adjacent path can only be used by hard macros.
8
Table 2-0036A/2032VE
v.0.1
Specifications ispLSI 2032VE
ispLSI 2032VE Timing Model
I/O Cell
GRP
GLB
ORP
I/O Cell
Feedback
Ded. In
I/O Pin
(Input)
Comb 4 PT Bypass #23
#21
I/O Delay
GRP
Reg 4 PT Bypass
GLB Reg Bypass
ORP Bypass
#20
#22
#24
#28
#37
20 PT
XOR Delays
GLB Reg
Delay
ORP
Delay
#25, 26, 27
D
Q
#38,
39
#36
RST
#45
Reset
#29, 30,
31, 32
Control RE
PTs
OE
#33, 34, CK
35
#40, 41
#43, 44
Y0,1,2
#42
GOE 0
0491/2000
Derivations of tsu, th and tco from the Product Term Clock
tsu
=
=
=
2.0ns =
Logic + Reg su - Clock (min)
(tio + tgrp + t20ptxor) + (tgsu) - (tio + tgrp + tptck(min))
(#20 + #22 + #26) + (#29) - (#20 + #22 + #35)
(0.4 + 0.6 + 1.9) + (0.5) - (0.4 + 0.6 + 0.4)
th
=
=
=
1.9ns =
Clock (max) + Reg h - Logic
(tio + tgrp + tptck(max)) + (tgh) - (tio + tgrp + t20ptxor)
(#20 + #22 + #35) + (#30) - (#20 + #22 + #26)
(0.4 + 0.6 + 2.3) + (1.5) - (0.4 + 0.6 + 1.9)
tco
=
=
=
5.2ns =
Clock (max) + Reg co + Output
(tio + tgrp + tptck(max)) + (tgco) + (torp + tob)
(#20 + #22 + #35) + (#31) + (#36 + #38)
(0.4 + 0.6 + 2.3) + (0.3) + (0.6 + 1.0)
Note: Calculations are based on timing specifications for the ispLSI 2032VE-300L.
Table 2-0042/2032VE
9
I/O Pin
(Output)
Specifications ispLSI 2032VE
Power Consumption
Power consumption in the ispLSI 2032VE device depends on two primary factors: the speed at which the
device is operating and the number of product terms
used. Figure 3 shows the relationship between power
and operating speed.
Figure 3. Typical Device Power Consumption vs fmax
150
125
ispLSI 2032VE-300 and -225
ICC (mA)
100
75
ispLSI 2032VE-180
and slower
50
25
0
25
50
75
100
125
150
175
200
225
250
275
300
fmax (MHz)
Notes: Configuration of two 16-bit counters
Typical current at 3.3V, 25° C
ICC can be estimated for the ispLSI 2032VE using the following equation:
For ispLSI 2032VE-300 and -225: ICC(mA) = 4.5 + (# of PTs * 1.29) + (# of nets * Fmax * 0.0068)
For ispLSI 2032VE-180 and slower: ICC(mA) = 4.5 + (# of PTs * 1.05) + (# of nets * Fmax * 0.0068)
Where:
# of PTs = Number of product terms used in design
# of nets = Number of signals used in device
Max freq = Highest clock frequency to the device (in MHz)
The ICC estimate is based on typical conditions (VCC = 3.3V, room temperature) and an assumption of two
GLB loads on average exists. These values are for estimates only. Since the value of ICC is sensitive to
operating conditions and the program in the device, the actual ICC should be verified.
0127A/2032VE
10
Specifications ispLSI 2032VE
Signal Descriptions
Signal Name
Description
GOE 0
Global Output Enable input pin
Y0
Dedicated Clock input. This clock input is connected to one of the clock inputs of all the GLBs in the
device.
RESET/Y1
This pin performs two functions: (1) Active Low (0) Reset pin which resets all of the registers in the
device. (2) Dedicated Clock input.
BSCAN
Input – Dedicated in-system programming Boundary Scan enable input pin. This pin is brought low to
enable the programming mode. The TMS, TDI, TDO and TCK controls become active.
TDI/IN 0
Input – This pin performs two functions. (1) When BSCAN is logic low, it functions as a serial data input
pin to load programming data into the device. (2) When BSCAN is high, it functions as a dedicated input
pin.
TMS/NC1
Input – This pin performs two functions. (1) When BSCAN is logic low, it functions as a mode control pin
for the Boundary Scan state machine. (2) When BSCAN is high, this pin is not to be connected to any
active signals, VCC or GND.
TDO/IN 1
Output/Input – This pin performs two functions. (1) When BSCAN is logic low, it functions as an output
pin to read serial shift register data. (2) When BSCAN is high, it functions as a dedicated input pin.
TCK/Y2
Input – This pin performs two functions. (1) When BSCAN is logic low, it functions as a clock pin for the
Boundary Scan state machine. (2) When BSCAN is high, it functions as a Dedicated Clock input.
GND
Ground (GND)
VCC
Vcc
NC1
No Connect
I/O
Input/Output pins – These are the general purpose I/O pins used by the logic array.
Signal Locations
Signal
44-Pin TQFP
44-Pin PLCC
48-Pin TQFP
49-Ball caBGA
GOE 0
40
2
43
Y0
5
11
5
A4
C1
RESET/Y1
29
35
31
D7
BSCAN
7
13
7
D1
TDI/IN 0
8
14
8
E2
TMS/NC1
30
36
32
C6
TDO/IN 1
18
24
19
G4
TCK/Y2
27
33
29
E7
GND
17, 39
1, 23
18, 42
C4, E4
VCC
6, 28
12, 34
6, 30
D3, D5
NC1
—
—
12, 24, 36, 48
A1, A7, D4, G1, G7
I/O Locations
Signal
44-Pin TQFP
44-Pin PLCC
15, 16, 17, 18, 19, 20, 21
48-Pin TQFP
49-Ball caBGA
I/O 0 - I/O 6
9, 10, 11, 12, 13, 14, 15
9, 10, 11, 13, 14, 15, 16
E1, F2, F1, E3, F3, G2, F4
I/O 7 - I/O 13
16, 19, 20, 21, 22, 23, 24 22, 25, 26, 27, 28, 29, 30
17, 20, 21, 22, 23, 25, 26
G3, F5, G5, F6, G6, E5, E6
I/O 14 - I/O 20
25, 26, 31, 32, 33, 34, 35 31, 32, 37, 38, 39, 40, 41
27, 28, 33, 34, 35, 37, 38
F7, D6, C7, B6, B7, C5, B5
I/O 21 - I/O 27
36, 37, 38, 41, 42, 43, 44 42, 43, 44, 3, 4, 5, 6
39, 40, 41, 44, 45, 46, 47
A6, B4, A5, B3, A3, B2, A2
I/O 28 - I/O 31
1, 2, 3, 4
1, 2, 3, 4
C3, C2, B1, D2
7, 8, 9, 10
1. NC pins are not to be connected to any active signals, VCC or GND.
11
Specifications ispLSI 2032VE
Pin Configuration
I/O 21
I/O 20
I/O 19
I/O 22
GND
I/O 23
GOE 0
I/O 24
I/O 26
I/O 25
I/O 27
ispLSI 2032VE 44-Pin TQFP Pinout Diagram (0.8mm Lead Pitch/10.0 x 10.0mm Body Size)
44 43 42 41 40 39 38 37 36 35 34
I/O 28
I/O 29
I/O 30
I/O 31
1
2
3
4
5
33
I/O 18
32
31
I/O 17
I/O 16
30
TMS/NC1
RESET/Y1
VCC
6
ispLSI 2032VE
29
28
BSCAN
7
Top View
27
TCK/Y2
TDI/IN 0
8
26
I/O 15
9
10
11
25
24
23
I/O 14
I/O 13
I/O 12
Y0
VCC
I/O 0
I/O 1
I/O 2
I/O 9
I/O 10
I/O 11
I/O 8
GND
TDO/IN 1
I/O 7
I/O 6
I/O 4
I/O 5
I/O 3
12 13 14 15 16 17 18 19 20 21 22
0851/2032VE
1. NC pins are not to be connected to any active signals, VCC or GND.
Pin Configuration
I/O 21
I/O 20
I/O 19
I/O 22
GND
I/O 23
GOE 0
I/O 24
I/O 26
I/O 25
I/O 27
ispLSI 2032VE 44-Pin PLCC Pinout Diagram (0.5in Lead Pitch/0.65 x 0.65in Body Size)
6 5 4 3 2 1 44 43 42 41 40
I/O 28
I/O 29
I/O 30
I/O 31
Y0
VCC
7
8
9
10
11
39
I/O 18
38
37
I/O 17
I/O 16
36
TMS/NC1
RESET/Y1
VCC
12
ispLSI 2032VE
35
34
Top View
BSCAN
13
33
TCK/Y2
TDI/IN 0
14
32
I/O 15
I/O 0
I/O 1
I/O 2
15
16
17
31
30
29
I/O 14
I/O 13
I/O 12
I/O 9
I/O 10
I/O 11
I/O 8
TDO/IN 1
GND
I/O 7
I/O 6
I/O 4
I/O 5
I/O 3
18 19 20 21 22 23 24 25 26 27 28
0123/2032VE
1. NC pins are not to be connected to any active signals, VCC or GND.
12
Specifications ispLSI 2032VE
Pin Configuration
I/O 21
I/O 20
I/O 19
I/O 22
GND
I/O 23
GOE 0
I/O 24
I/O 26
I/O 25
I/O 27
NC2
ispLSI 2032VE 48-Pin TQFP Pinout Diagram (0.5mm Lead Pitch/7.0 x 7.0mm Body Size)
48 47 46 45 44 43 42 41 40 39 38 37
I/O 28
I/O 29
I/O 30
I/O 31
Y0
VCC
BSCAN
1TDI/IN
0
I/O 0
I/O 1
I/O 2
2NC
36
NC2
35
I/O 18
34
33
I/O 17
I/O 16
32
TMS/NC2
31
30
RESET/Y11
VCC
8
29
TCK/Y21
9
10
11
12
28
I/O 15
27
26
25
I/O 14
I/O 13
I/O 12
1
2
3
4
5
6
ispLSI 2032VE
7
Top View
I/O 9
I/O 10
I/O 11
2NC
I/O 8
I/O 7
GND
1TDO/IN 1
I/O 6
I/O 4
I/O 5
I/O 3
13 14 15 16 17 18 19 20 21 22 23 24
48TQFP/2032VE
1. Pins have dual function capability.
2. NC pins are not to be connected to any active signals, VCC or GND.
Signal Configuration
ispLSI 2032VE 49-Ball caBGA Signal Diagram (0.8mm Lead Pitch/7.0 x 7.0mm Body Size)
7
6
5
4
3
2
1
A
NC1
I/O
21
I/O
23
GOE
0
I/O
25
I/O
27
NC1
A
B
I/O
18
I/O
17
I/O
20
I/O
22
I/O
24
I/O
26
I/O
30
B
C
I/O
16
TMS/
NC1
I/O
19
GND
I/O
28
I/O
29
Y0
C
D
RESET/
Y1
I/O
15
VCC
NC1
VCC
I/O
31
BSCAN
D
E
TCK/
Y2
I/O
13
I/O
12
GND
I/O
3
TDI/
IN0
I/O
0
E
F
I/O
14
I/O
10
I/O
8
I/O
6
I/O
4
I/O
1
I/O
2
F
G
NC1
I/O
11
I/O
9
TDO/
IN1
I/O
7
I/O
5
NC1
G
2
1
ispLSI 2032VE
Bottom View
7
6
5
4
3
49-BGA/2032VE
1. NCs are not to be connected to any active signals, VCC or GND.
Note: Ball A1 indicator dot on top side of package.
13
Specifications ispLSI 2032VE
Part Number Description
ispLSI 2032VE – XXX
X
XXXX X
Device Family
Grade
Blank = Commercial
I = Industrial
Device Number
2032VE
Package
T44 = 44-Pin TQFP
T48 = 48-Pin TQFP
J44 = 44-Pin PLCC
B49 = 49-Ball caBGA
TN44 = Lead-Free 44-Pin TQFP
TN48 = Lead-Free 48-Pin TQFP
Speed
300 = 300 MHz fmax
225 = 225 MHz fmax
180 = 180 MHz fmax
135 = 135 MHz fmax
110 = 110 MHz fmax
Power
L = Low
ispLSI 2032VE Ordering Information
Conventional Packaging
FAMILY
ispLSI
COMMERCIAL
fmax (MHz)
tpd (ns)
ORDERING NUMBER
PACKAGE
300
300
3.0
3.0
ispLSI 2032VE-300LT44
ispLSI 2032VE-300LT48
44-Pin TQFP
48-Pin TQFP
300
3.0
ispLSI 2032VE-300LB49
49-Ball caBGA
225
225
4.0
4.0
ispLSI 2032VE-225LT44*
ispLSI 2032VE-225LT48*
44-Pin TQFP
48-Pin TQFP
225
225
4.0
4.0
ispLSI 2032VE-225LJ44
ispLSI 2032VE-225LB49*
44-Pin PLCC
49-Ball caBGA
180
5.0
ispLSI 2032VE-180LT44
44-Pin TQFP
180
5.0
180
180
5.0
5.0
ispLSI 2032VE-180LT48
ispLSI 2032VE-180LJ44
ispLSI 2032VE-180LB49
48-Pin TQFP
44-Pin PLCC
49-Ball caBGA
135
7.5
ispLSI 2032VE-135LT44
44-Pin TQFP
135
7.5
ispLSI 2032VE-135LT48
48-Pin TQFP
135
7.5
ispLSI 2032VE-135LJ44
44-Pin PLCC
135
7.5
ispLSI 2032VE-135LB49
49-Ball caBGA
110
110
10
10
ispLSI 2032VE-110LT44
ispLSI 2032VE-110LT48
44-Pin TQFP
48-Pin TQFP
110
10
ispLSI 2032VE-110LJ44
44-Pin PLCC
ispLSI 2032VE-110LB49
49-Ball caBGA
110
10
*2032VE-300 recommended for new designs
Table 2-0041A/2032VE
INDUSTRIAL
FAMILY
fmax (MHz)
tpd (ns)
ORDERING NUMBER
PACKAGE
ispLSI
180
5.0
ispLSI 2032VE-180LT44I
44-Pin TQFP
Table 2-0041B/2032VE
14
Specifications ispLSI 2032VE
ispLSI 2032VE Ordering Information (Cont.)
Lead-Free Packaging
COMMERCIAL
FAMILY
fmax (MHz)
tpd (ns)
ORDERING NUMBER
PACKAGE
300
300
3.0
3.0
ispLSI 2032VE-300LTN44
ispLSI 2032VE-300LTN48
Lead-Free 44-Pin TQFP
Lead-Free 48-Pin TQFP
180
5.0
ispLSI 2032VE-180LTN44
Lead-Free 44-Pin TQFP
180
135
5.0
7.5
ispLSI 2032VE-180LTN48
ispLSI 2032VE-135LTN44
Lead-Free 48-Pin TQFP
Lead-Free 44-Pin TQFP
135
7.5
ispLSI 2032VE-135LTN48
Lead-Free 48-Pin TQFP
110
110
10
10
ispLSI 2032VE-110LTN44
ispLSI 2032VE-110LTN48
Lead-Free 44-Pin TQFP
Lead-Free 48-Pin TQFP
ispLSI
INDUSTRIAL
FAMILY
fmax (MHz)
tpd (ns)
ORDERING NUMBER
PACKAGE
ispLSI
180
5.0
ispLSI 2032VE-180LTN44I
Lead-Free 44-Pin TQFP
Revision History
Date
Version
Change Summary
—
10
Previous Lattice release.
August 2006
11
Updated for 48-pin TQFP lead-free package option.
15