K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM Document Title 256Kx36 & 512Kx18 Synchronous Pipelined SRAM Revision History Rev. No. History Draft Date Remark Rev. 0.0 - Initial Document. June. 2000 Advance Rev. 0.1 - ZQ tolerance changed from 10% to 15% Aug. 2000 Advance Rev. 0.2 - VDDQ changed to support wide range from 1.4V to 2.0V Dec. 2000 Advance Rev. 0.3 - Functional Block diagram changed. - Absolute Maximum ratings VDDQ changed from 3.13V to 2.825V - Recommended DC Operating Conditions for V REF and VCM-CLK changed from Min 0.6V to 0.68V, from Max 0.9V to 1.0V Feb. 2001 Preliminary Rev. 1.0 - Package thermal characteristics added. May. 2001 Final Rev. 2.0 - Absolute Maximum Rating VDDQ changed from 2.825V to 2.4V Jan. 2002 Final Rev. 3.0 - Function Description modified Mar. 2002 Final The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters. -1- March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM 256Kx36 & 512Kx18 Synchronous Pipelined SRAM FEATURES • 256Kx36 or 512Kx18 Organizations. • 2.5V VDD/1.5V VDDQ (2.0V max VDDQ). • HSTL Input and Output Levels. • Differential, HSTL Clock Inputs K, K. • Synchronous Read and Write Operation • Registered Input and Registered Output • Internal Pipeline Latches to Support Late Write. • Byte Write Capability(four byte write selects, one for each 9bits) • Synchronous or Asynchronous Output Enable. • Power Down Mode via ZZ Signal. • Programmable Impedance Output Drivers. • JTAG Boundary Scan (subset of IEEE std. 1149.1). • 119(7x17)Pin Ball Grid Array Package(14mmx22mm). Part Number Maximum Frequency Access Time K7P803666B-HC33 333MHz 1.5 K7P803666B-HC30 300MHz 1.6 K7P803666B-HC25 250MHz 2.0 K7P801866B-HC33 333MHz 1.5 K7P801866B-HC30 300MHz 1.6 K7P801866B-HC25 250MHz 2.0 Organization 256Kx36 512Kx18 FUNCTIONAL BLOCK DIAGRAM 18 or 19 SA[0:17] or [0:18] Read Address Register 2:1 MUX Dec. Clock Buffer K,K Data Out Memory Array 256Kx36 512Kx18 36 or 18 36 or 18 18 or 19 Write Address Register Data In W/D Array S/A Array 36 or 18 36 or 18 MUX0 36 or 18 36 or 18 WAY SS Control Logic Control Register SW Data Out Register E Data In Register (2 stage) 36 or 18 ZZ OE G 36 or 18 36 or 18 Internal Clock Generator XDIN DQ PIN DESCRIPTION Pin Name Pin Description Pin Name Pin Description K, K Differential Clocks ZZ Asynchronous Power Down SAn Synchronous Address Input ZQ Output Driver Impedance Control DQn Bi-directional Data Bus TCK JTAG Test Clock Synchronous Select TMS JTAG Test Mode Select SW Synchronous Global Write Enable TDI JTAG Test Data Input SWa Synchronous Byte a Write Enable TDO JTAG Test Data Output SWb Synchronous Byte b Write Enable VREF HSTL Input Reference Voltage Power Supply SS SWc Synchronous Byte c Write Enable VDD SWd Synchronous Byte d Write Enable VDDQ M 1, M 2 G Output Power Supply Read Protocol Mode Pins (M1=VSS, M2=VDDQ) VSS GND Asynchronous Output Enable NC No Connection -2- March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM PACKAGE PIN CONFIGURATIONS (TOP VIEW) K7P803666B(256Kx36) A 1 2 3 4 5 6 7 VDDQ SA13 SA10 NC SA7 SA4 VDDQ B NC NC SA9 NC SA8 SA17 NC C NC SA12 SA11 VDD SA6 SA5 NC D DQc8 DQc9 VSS ZQ VSS DQb9 DQb8 E DQc6 DQc7 VSS SS VSS DQb7 DQb6 F VDDQ DQc5 VSS G VSS DQb5 VDDQ G DQc3 DQc4 SWc NC SWb DQb4 DQb3 H DQc1 DQc2 VSS NC VSS DQb2 DQb1 J VDDQ VDD VREF VDD VREF VDD VDDQ K DQd 1 DQd2 VSS K VSS DQa2 DQa1 L DQd 3 DQd4 SWd K SWa DQa4 DQa3 M VDDQ DQd5 VSS SW VSS DQa5 VDDQ N DQd 6 DQd7 VSS SA0 VSS DQa7 DQa6 P DQd 8 DQd9 VSS SA1 VSS DQa9 DQa8 R NC SA15 M1 VDD M2 SA2 NC T NC NC SA14 SA16 SA3 NC ZZ U VDDQ TMS TDI TCK TDO NC VDDQ K7P801866B(512Kx18) A 1 2 3 4 5 6 7 VDDQ SA13 SA10 NC SA7 SA4 VDDQ B NC NC SA9 NC SA8 SA17 NC C NC SA12 SA11 VDD SA6 SA5 NC D DQb 1 NC VSS ZQ VSS DQa9 NC E NC DQb2 VSS SS VSS NC DQa8 F VDDQ NC VSS G VSS DQa7 VDDQ G NC DQb3 SWb NC NC NC DQa6 H DQb 4 NC VSS NC VSS DQa5 NC J VDDQ VDD VREF VDD VREF VDD VDDQ K NC DQb5 VSS K VSS NC DQa4 L DQb 6 NC NC K SWa DQa3 NC M VDDQ DQb7 VSS SW VSS NC VDDQ N DQb 8 NC VSS SA0 VSS DQa2 NC P NC DQb9 VSS SA1 VSS NC DQa1 R NC SA15 M1 VDD M2 SA2 NC T NC SA18 SA14 NC SA3 SA16 ZZ U VDDQ TMS TDI TCK TDO NC VDDQ -3- March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM FUNCTION DESCRIPTION The K7P803666B and K7P801866B are 9,437,184 bit Synchronous Pipeline Burst Mode SRAM devices. They are organized as 262,144 words by 36 bits for K7P803666B and 524,288 words by 18 bits for K7P801866B, fabricated using Samsung's advanced CMOS technology. Single differential HSTL level K clocks are used to initiate read/write operation and all internal operations are self-timed. At the rising edge of K clock, Addresses, Write Enables, Synchronous Select and Data Ins are registered internally. Data outs are updated from output registers at the next rising edge of K clock. An internal write data buffer allows write data to follow one cycle after addresses and controls. The package is 119(7x17) Ball Grid Array with balls on a 1.27mm pitch. Read Operation During read operations, addresses and controls are registered during the first rising edge of K clock and then the internal array is read between first and second edges of K clock. Data outputs are updated from output registers off the second rising edge of K clock. During consecutive read operations where the address is the same, the data output must be held constant without any glitches. This characteristic is because the SRAM will be read by devices that will operate slower than the SRAM frequency and will require multiple SRAM cycles to perform a single read operation. Write Operation(Late Write) During write operations, addresses and controls are registered at the first rising edge of K clock and data inputs are registered at the following rising edge of K clock. Write addresses and data inputs are stored in the data in registers until the next write operation, and only at the next write opeation are data inputs fully written into SRAM array. Byte write operation is supported using SW[a:d] and the timing of SW[a:d] is the same as the SW signal. Bypass Read Operation Bypass read operation occurs when the last write operation is followed by a read operation where write and read addresses are identical. For this case, data outputs are from the data in registers instead of SRAM array. Bypass read operation occurs on a byte to byte basis. If only one byte is written during a write operation but a read operation is required on the same address, a partial bypass read operation occurs since the new byte data is from the data in registers while the remaing bytes are from SRAM arry. Sleep Mode Sleep mode is a low power mode initiated by bringing the asynchronous ZZ pin high. During sleep mode, all other inputs are ignored and outputs are brought to a High-Impedance state. Sleep mode current and output High-Z are guaranteed after the specified sleep mode enable time. During sleep mode the memory array data content is preserved. Sleep mode must not be initiated until after all pending operations have completed, since any pending operation will not guaranteed once sleep mode is initiated. Normal operations can be resumed by bringing the ZZ pin low, but only after the specified sleep mode recovery time. Mode Control There are two mode control select pins (M1 and M2) used to set the proper read protocol. This SRAM supports single clock pipelined operating mode. For proper specified device operation, M1 must be connected to VSS and M2 must be connected to VDDQ. These mode pins must be set at power-up and must not change during device operation. Programmable Impedance Output Driver The data output driver impedance is adjusted by an external resistor, RQ, connected between ZQ pin and VSS, and is equal to RQ/5. For example, 250Ω resistor will give an output impedance of 50Ω. Output driver impedance tolerance is 15% by test(10% by design) and is periodically readjusted to reflect the changes in supply voltage and temperature. Impedance updates occur early in cycles that do not activate the outputs, such as deselect cycles. They may also occur in cycles initiated with G high. In all cases impedance updates are transparent to the user and do not produce access time "push-outs" or other anomalous behavior in the SRAM. Impedance updates occur no more often than every 32 clock cycles. Clock cycles are counted whether the SRAM is selected or not and proceed regardless of the type of cycle being executed. Therefore, the user can be assured that after 33 continuous read cycles have occurred, an impedance update will occur the next time G are high at a rising edge of the K clock. There are no power up requirements for the SRAM. However, to guarantee optimum output driver impedance after power up, the SRAM needs 1024 nonread cycles. The output buffers can also be programmed in a minimum impedance configuration by connecting ZQ to VSS or VDDQ. Power-Up/Power-Down Supply Voltage Sequencing The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then V IN. VDD and V DDQ can be applied simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-down. -4- March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM TRUTH TABLE K ZZ G SS SW SWa SWb SWc SWd DQa DQb DQc DQd Operation X H X X X X X X X Hi-Z Hi-Z Hi-Z Hi-Z Power Down Mode. No Operation X L H X X X X X X Hi-Z Hi-Z Hi-Z Hi-Z Output Disabled. ↑ L L H X X X X X Hi-Z Hi-Z Hi-Z Hi-Z Output Disabled. No Operation ↑ L L L H X X X X DOUT DOUT DOUT DOUT Read Cycle ↑ L X L L H H H H Hi-Z Hi-Z Hi-Z Hi-Z No Bytes Written ↑ L X L L L H H H DIN Hi-Z Hi-Z Hi-Z Write first byte ↑ L X L L H L H H Hi-Z DIN Hi-Z Hi-Z Write second byte ↑ L X L L H H L H Hi-Z Hi-Z DIN Hi-Z Write third byte ↑ L X L L H H H L Hi-Z Hi-Z Hi-Z DIN Write fourth byte ↑ L X L L L L L L DIN DIN DIN DIN Write all bytes NOTE : K & K are complementary ABSOLUTE MAXIMUM RATINGS Parameter Symbol Value Unit VDD -0.5 to 3.13 V VDDQ -0.5 to 2.4 V VIN -0.5 to VDDQ+0.5 (2.4V MAX) V Core Supply Voltage Relative to V SS Output Supply Voltage Relative to VSS Voltage on any pin Relative to VSS Output Short-Circuit Current(per I/O) IOUT 25 mA Storage Temperature TSTR -55 to 125 °C NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data. Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. RECOMMENDED DC OPERATING CONDITIONS Parameter Core Power Supply Voltage Symbol Min Typ Max Unit VDD 2.37 2.5 2.63 V VDDQ 1.4 1.5 2.0 V Input High Level VIH VREF+0.1 - VDDQ+0.3 V Input Low Level VIL -0.3 - VREF-0.1 V Output Power Supply Voltage Input Reference Voltage VREF 0.68 0.75 1.0 V Clock Input Signal Voltage VIN-CLK -0.3 - VDDQ+0.3 V Clock Input Differential Voltage VDIF-CLK 0.1 - VDDQ+0.3 V Clock Input Common Mode Voltage VCM-CLK 0.68 0.75 1.0 V -5- Note March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM PIN CAPACITANCE Parameter Input Capacitance Data Output Capacitance Symbol Test Condition Min Max Unit CIN VIN=0V - 4 pF C OUT VOUT=0V - 5 pF NOTE : Periodically sampled and not 100% tested.(TA=25°C, f=1MHz) DC CHARACTERISTICS Parameter Symbol Min Max Unit Note Average Power Supply Operating Current-x36 (VIN=VIH or VIL, ZZ & SS=VIL) IDD33 IDD30 IDD25 - 700 620 550 mA 1, 2 Average Power Supply Operating Current-x18 (VIN=VIH or VIL, ZZ & SS=VIL) IDD33 IDD30 IDD25 - 650 570 500 mA 1, 2 Power Supply Standby Current (VIN=VIH or VIL, ZZ=VIH) ISBZZ - 70 mA 1 Active Standby Power Supply Current (VIN=VIH or VIL, SS=VIH, ZZ=VIL) ISBSS - 200 mA 1 Input Leakage Current (VIN=VSS or VDDQ) ILI -1 1 µA Output Leakage Current (VOUT=VSS or VDDQ, DQ in High-Z) ILO -1 1 µA Output High Voltage(Programmable Impedance Mode) VOH1 VDDQ/2 VDDQ V 3,5 Output Low Voltage(Programmable Impedance Mode) VOL1 VSS VDDQ/2 V 4,5 Output High Voltage(IOH=-0.1mA) VOH2 VDDQ-0.2 VDDQ V 6 Output Low Voltage(I OL=0.1mA) VOL2 VSS 0.2 V 6 Output High Voltage(IOH=-6mA) VOH3 VDDQ-0.4 VDDQ V 6 Output Low Voltage(I OL=6mA) VOL3 VSS 0.4 V 6 NOTE :1. Minimum cycle. IOUT=0mA. 2. 50% read cycles. 3. |I OH|=(VDDQ /2)/(RQ/5)±15% @VOH =VDDQ/2 for 175Ω ≤ RQ ≤ 350Ω. 4. |I OL|=(VDDQ/2)/(RQ/5)±15% @VOL =VDDQ/2 for 175Ω ≤ RQ ≤ 350Ω. 5. Programmable Impedance Output Buffer Mode. The ZQ pin is connected to VSS through RQ. 6. Minimum Impedance Output Buffer Mode. The ZQ pin is connected to VSS or VDDQ. -6- March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM AC TEST CONDITIONS (TA=0 to 70°C, VDD=2.37 -2.63V, VDDQ=1.5V) Symbol Value Unit Core Power Supply Voltage Parameter VDD 2.37~2.63 V Output Power Supply Voltage VDDQ 1.5 V Input High/Low Level VIH/VIL 1.25/0.25 V Input Reference Level VREF 0.75 V Input Rise/Fall Time TR/TF 0.5/0.5 ns 0.75 V Cross Point V Input and Out Timing Reference Level Clock Input Timing Reference Level NOTE : Parameters are tested with RQ=250Ω and VDDQ=1.5V. AC TEST OUTPUT LOAD 50Ω 50Ω VDDQ/2 5pF 25Ω DQ VDDQ/2 50Ω 50Ω VDDQ/2 5pF AC CHARACTERISTICS Parameter Symbol -33 -30 -25 Min Max Min Max Min Max Unit Clock Cycle Time tKHKH 3.0 - 3.3 - 4.0 - ns Clock High Pulse Width tKHKL 1.2 - 1.3 - 1.6 - ns Clock Low Pulse Width tKLKH 1.2 - 1.3 - 1.6 - ns Clock High to Output Valid tKHQV - 1.5 - 1.6 - 2.0 ns Clock High to Output Hold tKHQX 0.5 - 0.5 - 0.5 - ns Address Setup Time tAVKH 0.4 - 0.4 - 0.4 - ns Address Hold Time tKHAX 0.5 - 0.6 - 0.7 - ns Write Data Setup Time tDVKH 0.4 - 0.4 - 0.4 - ns Write Data Hold Time tKHDX 0.5 - 0.6 - 0.7 - ns SW, SW[a:d] Setup Time tWVKH 0.4 - 0.4 - 0.4 - ns SW, SW[a:d] Hold Time tKHWX 0.5 - 0.6 - 0.7 - ns SS Setup Time tSVKH 0.4 - 0.4 - 0.4 - ns SS Hold Time tKHSX 0.5 - 0.6 - 0.7 - ns Clock High to Output Hi-Z tKHQZ - 1.5 - 1.6 - 2.0 ns Clock High to Output Low-Z tKHQX1 0.5 - 0.5 - 0.5 - ns G High to Output High-Z tGHQZ - 1.5 - 1.6 - 2.0 ns G Low to Output Low-Z tGLQX 0.5 - 0.5 - 0.5 - ns G Low to Output Valid tGLQV - 1.5 - 1.6 - 2.0 ns ZZ High to Power Down(Sleep Time) tZZE - 15 - 15 - 15 ns ZZ Low to Recovery(Wake-up Time) tZZR - 20 - 20 - 20 ns -7- Note March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (SS Controlled, G=Low) 1 2 3 4 5 6 7 8 K tKHKH tAVKH SAn A1 tKHAX tKHKL tKLKH A2 tSVKH A3 A4 A5 A4 A6 A7 tKHSX SS tWVKH tKHWX tWVKH tKHWX tKHWX tWVKH SW SWx tKHQZ tKHQV Q2 Q1 DQn tKHDX tDVKH tKHDX tKHQX tKHQX1 D4 D3 Q5 Q4 NOTE 1. D 3 is the input data written in memory location A3. 2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A 4 being a match from the last write cycle address. TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (G Controlled, SS=Low) 1 2 3 4 5 6 7 8 K tKHKH SAn A1 A3 A2 A4 A5 A4 A6 A7 G SW SWx t GHQZ tGLQV tGLQX DQn Q1 Q2 D3 D4 Q5 Q4 NOTE 1. D3 is the input data written in memory location A 3. 2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the last write cycle address. -8- March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM TIMING WAVEFORMS OF STANDBY CYCLES 1 2 3 4 5 6 7 8 K t KHKH SAn A1 A2 A1 A2 A3 SS SW SWx tZZR tZZE ZZ tKHQV DQn t KHQV Q1 Q2 Q1 -9- March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG The SRAM provides a limited set of IEEE standard 1149.1 JTAG functions. This is to test the connectivity during manufacturing between SRAM, printed circuit board and other components. Internal data is not driven out of SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must be tied to VSS to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the application of a logic 1, and therefore can be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left unconnected. JTAG Block Diagram JTAG Instruction Coding IR2 IR1 IR0 Instruction SRAM CORE M1 M2 TDI BYPASS Reg. TDO Identification Reg. Instruction Reg. Control Signals TMS TCK TDO Output Notes 0 0 0 SAMPLE-Z Boundary Scan Register 1 0 0 1 IDCODE 2 0 1 0 SAMPLE-Z Boundary Scan Register 1 0 1 1 BYPASS Bypass Register 3 1 0 0 SAMPLE Boundary Scan Register 4 1 0 1 BYPASS Bypass Register 3 1 1 0 BYPASS Bypass Register 3 1 1 1 BYPASS Bypass Register 3 Identification Register NOTE : 1. Places DQs in Hi-Z in order to sample all input data regardless of other SRAM inputs. 2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data. 3. Bypass register is initiated to V SS when BYPASS instruction is invoked. The Bypass Register also holds serially loaded TDI when exiting the Shift DR states. 4. SAMPLE instruction does not places DQs in Hi-Z. TAP Controller TAP Controller State Diagram 1 Test Logic Reset 0 0 Run Test Idle 1 Select DR 0 1 1 Exit2 DR 1 Update DR 0 - 10 1 Capture IR 0 0 1 Exit1 DR 0 Pause DR 1 Select IR 0 1 Capture DR 0 Shift DR 1 1 1 0 0 Shift IR 1 0 Exit1 IR 0 Pause IR 1 Exit2 IR 1 Update IR 1 0 0 0 March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM SCAN REGISTER DEFINITION Part Instruction Register Bypass Register ID Register Boundary Scan 256Kx36 3 bits 1 bits 32 bits 70 bits 512Kx18 3 bits 1 bits 32 bits 51 bits ID REGISTER DEFINITION Part Revision Number (31:28) Part Configuration (27:18) Vendor Definition (17:12) Samsung JEDEC Code (11: 1) Start Bit(0) 256Kx36 0000 00110 00100 XXXXXX 00001001110 1 512Kx18 0000 00111 00011 XXXXXX 00001001110 1 BOUNDARY SCAN EXIT ORDER(x36) BOUNDARY SCAN EXIT ORDER(x18) 36 3B SA9 SA8 5B 35 26 3B SA9 SA8 5B 37 2B NC SA17 6B 34 27 2B NC SA17 6B 24 38 3A SA10 SA7 5A 33 28 3A SA10 SA7 5A 23 39 3C SA11 SA6 5C 32 29 3C SA11 SA6 5C 22 40 2C SA12 SA5 6C 31 30 2C SA12 SA5 6C 21 41 2A SA13 SA4 6A 30 31 2A SA13 SA4 6A 20 42 2D DQc9 DQb9 6D 29 DQa9 6D 19 43 1D DQc8 DQb8 7D 28 32 1D DQb 1 44 2E DQc7 DQb7 6E 27 33 2E DQb 2 45 1E DQc6 DQb6 7E 26 DQa8 7E 18 46 2F DQc5 DQb5 6F 25 DQa7 6F 17 47 2G DQc4 DQb4 6G 24 48 1G DQc3 DQb3 7G 23 DQa6 7G 16 49 2H DQc2 DQb2 6H 22 DQa5 6H 15 50 1H DQc1 DQb1 7H 21 35 1H DQb 4 51 3G SWc SWb 5G 20 36 3G SWb 52 4D ZQ G 4F 19 37 4D ZQ G 4F 14 53 4E SS K 4K 18 38 4E SS K 4K 13 54 4G NC K 4L 17 39 4G NC K 4L 12 55 4H NC SWa 5L 16 40 4H NC SWa 5L 11 56 4M SW DQa1 7K 15 41 4M SW DQa4 7K 10 57 3L SWd DQa2 6K 14 58 1K DQd1 DQa3 7L 13 59 2K DQd2 DQa4 6L 12 42 2K DQb 5 DQa3 6L 9 60 1L DQd3 DQa5 6M 11 43 1L DQb 6 61 2L DQd4 DQa6 7N 10 62 2M DQd5 DQa7 6N 9 44 2M DQb 7 DQa2 6N 8 63 1N DQd6 DQa8 7P 8 45 1N DQb 8 DQa1 7P 7 64 2N DQd7 DQa9 6P 7 65 1P DQd8 ZZ 7T 6 ZZ 7T 6 66 2P DQd9 SA3 5T 5 46 2P DQb 9 SA3 5T 5 67 3T SA14 SA2 6R 4 47 3T SA14 SA2 6R 4 68 2R SA15 SA16 4T 3 48 2R SA15 69 4N SA0 SA1 4P 2 49 4N SA0 SA1 4P 3 50 2T SA18 SA16 6T 2 51 3R M1 M2 5R 1 70 3R M1 M2 5R 34 1 2G 25 DQb 3 NOTE : 1. Pin 2B is a no connection pin to internal chip. This pin is a place holder for 16M part and the scanned data is fixed to "0" for this 8M part. 2. Pins 4G and 4H are no connection pin to internal chip. The scanned data are fixed to "0" and "1" respectively. - 11 March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM JTAG DC OPERATING CONDITIONS Symbol Min Typ Max Unit Power Supply Voltage Parameter VDD 2.37 2.5 2.63 V Input High Level VIH 1.7 - VDD+0.3 V Input Low Level VIL -0.3 - 0.8 V Output High Voltage(IOH=-2mA) VOH 2.1 - VDD V Output Low Voltage(IOL=2mA) VOL VSS - 0.2 V Note NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification. JTAG AC TEST CONDITIONS Symbol Min Unit Input High/Low Level Parameter VIH/VIL 2.5/0.0 V Input Rise/Fall Time TR/TF 1.0/1.0 ns 1.25 V Input and Output Timing Reference Level Note 1 NOTE : 1. See SRAM AC test output load on page 7. JTAG AC Characteristics Symbol Min Max Unit TCK Cycle Time Parameter tCHCH 50 - ns TCK High Pulse Width tCHCL 20 - ns TCK Low Pulse Width tCLCH 20 - ns TMS Input Setup Time tMVCH 5 - ns TMS Input Hold Time tCHMX 5 - ns TDI Input Setup Time tDVCH 5 - ns TDI Input Hold Time tCHDX 5 - ns SRAM Input Setup Time tSVCH 5 - ns SRAM Input Hold Time tCHSX 5 - ns Clock Low to Output Valid tCLQV 0 10 ns Note JTAG TIMING DIAGRAM TCK tCHCH tCHCL tMVCH tCHMX tDVCH tCHDX tSVCH tCHSX t CLCH TMS TDI PI (SRAM) tCLQV TDO - 12 March. 2002 Rev 3.0 K7P803666B K7P801866B 256Kx36 & 512Kx18 SRAM 119 BGA PACKAGE DIMENSIONS 14.00±0.10 1.27 1.27 22.00±0.10 Indicator of Ball(1A) Location 20.50±0.10 C0.70 C1.00 0.750±0.15 1.50REF 0.60±0.10 NOTE : 1. All Dimensions are in Millimeters. 2. Solder Ball to PCB Offset : 0.10 MAX. 3. PCB to Cavity Offset : 0.10 MAX. 0.60±0.10 12.50±0.10 119 BGA PACKAGE THERMAL CHARACTERISTICS Symbol Thermal Resistance Unit Note Junction to Ambient(at still air) Parameter Theta_JA 30.2 °C/W 1W Heating Junction to Case Theta_JC 5.9 °C/W Junction to Board Theta_JB 4.8 °C/W 2W Heating NOTE : 1. Junction temperature can be calculated by : T J = TA + PD x Theta_JA. - 13 March. 2002 Rev 3.0