SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 D 1.8-V, 2.7-V, and 5-V Specifications D Rail-to-Rail Output Swing D D D D D D − 600-Ω Load . . . 80 mV From Rail − 2-kΩ Load . . . 30 mV From Rail VICR . . . 200 mV Beyond Rails Gain Bandwidth . . . 1.4 MHz Supply Current . . . 100 µA/Amplifier Max VIO . . . 4 mV Space-Saving Packages − LMV931: SOT-23 and SC-70 − LMV932: MSOP and SOIC − LMV934: SOIC and TSSOP Applications − Industrial (Utility/Energy Metering) − Automotive − Communications (Optical Telecom, Data/Voice Cable Modems) − Consumer Electronics (PDAs, PCs, CDR/W, Portable Audio) − Supply-Current Monitoring − Battery Monitoring LMV931 . . . DBV (SOT23-5) OR DCK (SC-70) PACKAGE (TOP VIEW) IN+ VCC− IN− 1 5 VCC+ 4 OUTPUT 2 3 LMV932 . . . D (SOIC) OR DGK (VSSOP/MSOP) PACKAGE (TOP VIEW) 1OUT 1IN− 1IN+ VCC− 1 8 2 7 3 6 4 5 VCC+ 2OUT 2IN− 2IN+ LMV934 . . . D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW) 1OUT 1IN− 1IN+ VCC+ 2IN+ 2IN− 2OUT description/ordering information 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN− 4IN+ VCC− 3IN+ 3IN− 3OUT ORDERING INFORMATION SOT-23 (DBV) Single SC-70 (DCK) MSOP/VSSOP (DGK) −40°C to 125°C ORDERABLE PART NUMBER PACKAGE† TA Dual SOIC (D) SOIC (D) Quad TSSOP (PW) Reel of 3000 LMV931IDBVR Reel of 250 LMV931IDBVT Reel of 3000 LMV931IDCKR Reel of 250 LMV931IDCKT Reel of 2500 LMV932IDGKR Reel of 250 LMV932IDGKT Tube of 75 LMV932ID Reel of 2500 LMV932IDR Tube of 50 LMV934ID Reel of 2500 LMV934IDR Tube of 90 LMV934IPW Reel of 2000 LMV934IPWR TOP-SIDE MARKING‡ RBB_ PREVIEW RB_ PREVIEW PREVIEW PREVIEW PREVIEW PREVIEW † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DCK/DGK: The actual top-side marking has one additional character that designates the assembly/test site. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2005, Texas Instruments Incorporated !"#$%&" ' ()##*& %' "! +),-(%&" .%&* #".)(&' ("!"#$ &" '+*(!(%&"' +*# &/* &*#$' "! *0%' '&#)$*&' '&%.%#. 1%##%&2 #".)(&" +#"(*''3 ."*' "& *(*''%#-2 (-).* &*'&3 "! %-- +%#%$*&*#' POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 description/ordering information (continued) The LMV93x devices are low-voltage, low-power, operational amplifiers that are well suited for today’s low-voltage and/or portable applications. Specified for operation of 1.8 V to 5 V, they can be used in portable applications that are powered from a single-cell Li-ion or two-cell batteries. They have rail-to-rail input and output capability for maximum signal swings in low-voltage applications. The LMV93x input common-mode voltage extends 200 mV beyond the rails for increased flexibility. The output can swing rail-to-rail unloaded and typically can reach 80 mV from the rails, while driving a 600-Ω load (at 1.8-V operation). During 1.8-V operation, the devices typically consume a quiescent current of 103 mA per channel, and yet they are able to achieve excellent electrical specifications, such as 101-dB open-loop DC gain and 1.4-MHz gain bandwidth. Furthermore, the amplifiers offer good output drive characteristics, with the ability to drive a 600-Ω load and 1000-pF capacitance with minimal ringing. The LMV93x devices are offered in the latest packaging technology to meet the most demanding space-constraint applications. The LMV931 is offered in standard SOT-23 and SC-70 packages. The LMV932 is available in the traditional MSOP and SOIC packages. The LMV934 is available in the traditional SOIC and TSSOP packages. The LMV93x devices are characterized for operation from −40°C to 125°C, making the part universally suited for commercial, industrial, and automotive applications. simplified schematic VCC+ VBIAS1 IP I1 I2 M5 M1 Q1 IN− M6 M2 Class AB Control Q4 OUT Q2 IN+ Q3 M3 IN VBIAS2 I3 M4 M7 M8 I4 VCC− 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 absolute maximum ratings over free-air temperature range (unless otherwise noted)† Supply voltage, VCC+ − VCC− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply voltage Input voltage range, VI (either input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC− − 0.2 V to VCC+ + 0.2 V Duration of output short circuit (one amplifier) to VCC± (see Notes 3 and 4) . . . . . . . . . . . . . . . . . . . . Unlimited Package thermal impedance, θJA (see Notes 4 and 5): D package (8 pin) . . . . . . . . . . . . . . . . . . . . . . 97°C/W D package (14 pin) . . . . . . . . . . . . . . . . . . . . . 86°C/W DBV package . . . . . . . . . . . . . . . . . . . . . . . . 206°C/W DCK package . . . . . . . . . . . . . . . . . . . . . . . . 252°C/W DGK package . . . . . . . . . . . . . . . . . . . . . . . . 172°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65 to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND. 2. Differential voltages are at IN+ with respect to IN−. 3. Applies to both single-supply and split-supply operation. Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. 4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. 5. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions MIN VCC TA MAX UNIT Supply voltage (VCC+ − VCC−) 1.8 5 V Operating free-air temperature −40 125 °C TYP UNIT 2000 V 200 V ESD protection TEST CONDITIONS Human-Body Model Machine Model POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 electrical characteristics at TA = 25°C, VCC+ = 1.8 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and RL > 1 MΩ (unless otherwise noted) PARAMETER TEST CONDITIONS TA 25°C LMV931 (single) VIO IIB Input bias current ICC Supply current (per channel) Common-mode rejection ratio 25°C 5.5 25°C 15 Supply-voltage rejection ratio VICR Common-mode input voltage range 1.8 V ≤ VCC+ ≤ 5 V, VIC = 0.5 V 65 75 LMV931 AV 4 Largesignal voltage gain RL = 600 Ω to 0.9 V, VO = 0.2 V to 1.6 V, VIC = 0.5 V RL = 2 kΩ to 0.9 V, VO = 0.2 V to 1.6 V, VIC = 0.5 V LMV932 , LMV934 13 103 RL = 600 Ω to 0.9 V, VO = 0.2 V to 1.6 V, VIC = 0.5 V RL = 2 kΩ to 0.9 V, VO = 0.2 V to 1.6 V, VIC = 0.5 V POST OFFICE BOX 655303 60 55 −40°C to 125°C 55 25°C 50 72 25°C 75 100 Full range 70 −40°C to 85°C VCC− − 0.2 VCC− −40°C to 125°C VCC− + 0.2 25°C 77 Full range 73 25°C 80 Full range 75 25°C 75 Full range 72 25°C 78 Full range 75 • DALLAS, TEXAS 75265 185 205 25°C nA 25 40 −40°C to 85°C 25°C CMRR ≥ 50 dB 35 Full range Full range 0.2 V ≤ VIC ≤ 0.6 V, 1.4 V ≤ VIC ≤ 1.6 V mV mV/°C 25°C 25°C −0.2 V ≤ VIC ≤ 0 V, 1.8 V ≤ VIC ≤ 2 V kSVR 5.5 Full range 0 ≤ VIC ≤ 0.6 V, 1.4 V ≤ VIC ≤ 1.8 V CMRR 1 UNIT 7.5 25°C Input offset current 4 Full range VIC = VCC+ − 0.8 V IIO MAX 1 6 25°C LMV932 (dual), LMV934 (quad) Average temperature coefficient of input offset voltage TYP Full range Input offset voltage αV IO MIN nA mA A 78 dB dB −0.2 to 2.1 VCC+ + 0.2 VCC+ V VCC+ − 0.2 101 105 90 100 dB SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 electrical characteristics at TA = 25°C, VCC+ = 1.8 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and RL > 1 MΩ (unless otherwise noted)(continued) PARAMETER TEST CONDITIONS High level RL = 600 Ω to 0.9 V, VID = ±100 mV VO Low level High level RL = 2 kΩ to 0.9 V, VID = ±100 mV IOS GBW Gain bandwidth product SR Slew rate Fm MIN TYP 1.65 1.72 Full range 1.63 25°C Output swing Output short-circuit current TA 25°C 0.077 Full range 25°C 1.75 Full range 1.74 VO = 0 V, VID = 100 mV Sourcing VO = 1.8 V, VID = −100 mV Sinking Full range 0.105 V 1.77 0.024 Full range 25°C UNIT 0.120 25°C Low level MAX 0.035 0.04 4 8 3.3 25°C 7 Full range 5 9 mA 25°C 1.4 MHz 25°C 0.35 V/mS Phase margin 25°C 67 ° Gain margin 25°C 7 dB See Note 6 Vn Equivalent input noise voltage f = 1 kHz, VIC = 0.5 V 25°C 60 nV/√Hz In Equivalent input noise current f = 1 kHz 25°C 0.06 pA/√Hz THD Total harmonic distortion f = 1 kHz, AV = 1, RL = 600 Ω, VID = 1 Vp-p 25°C 0.023 % Amp-to-amp isolation See Note 7 25°C 123 dB NOTES: 6. Number specified is the slower of the positive and negative slew rates. 7. Input referred, VCC+ = 5 V and RL = 100 kΩ connected to 2.5 V. Each amp is excited, in turn, with a 1-kHz signal to produce VO = 3 Vp-p. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 electrical characteristics at TA = 25°C, VCC+ = 2.7 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and RL > 1 MΩ (unless otherwise noted) PARAMETER TEST CONDITIONS TA 25°C LMV931 (single) VIO IIB Input bias current ICC Supply current (per channel) Common-mode rejection ratio kSVR Supply-voltage rejection ratio VICR Common-mode input voltage range 25°C 5.5 25°C 15 65 75 AV 6 Largesignal voltage gain 105 60 55 0.2 ≤ VIC ≤ 1.5 V, 2.3 V ≤ VIC ≤ 2.5 V −40°C to 125°C 55 −0.2 V ≤ VIC ≤ 0 V, 2.7 V ≤ VIC ≤ 2.9 V 25°C 50 74 25°C 75 100 Full range 70 RL = 600 Ω to 1.35 V, VO = 0.2 V to 2.5 V RL = 600 Ω to 1.35 V, VO = 0.2 V to 2.5 V RL = 2 kΩ to 1.35 V, VO = 0.2 V to 2.5 V POST OFFICE BOX 655303 −40°C to 85°C VCC− − 0.2 VCC− −40°C to 125°C VCC− + 0.2 25°C 87 Full range 86 25°C 92 Full range 91 25°C 78 Full range 75 25°C 81 Full range 78 • DALLAS, TEXAS 75265 190 210 25°C nA 25 40 −40°C to 85°C RL = 2 kΩ to 1.35 V, VO = 0.2 V to 2.5 V LMV932, LMV934 8 Full range CMRR ≥ 50 dB 35 Full range 25°C 1.8 V ≤ VCC+ ≤ 5 V, VIC = 0.5 V mV mV/°C 25°C 25°C LMV931 5.5 Full range 0 ≤ VIC ≤ 1.5 V, 2.3 V ≤ VIC ≤ 2.7 V CMRR 1 UNIT 7.5 25°C Input offset current 4 Full range VIC = VCC+ − 0.8 V IIO MAX 1 6 25°C LMV932 (dual), LMV934 (quad) Average temperature coefficient of input offset voltage TYP Full range Input offset voltage αV IO MIN nA mA A 81 dB dB −0.2 to 3.0 VCC+ + 0.2 VCC+ V VCC+ − 0.2 104 110 90 100 dB SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 electrical characteristics at TA = 25°C, VCC+ = 2.7 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and RL > 1 MΩ (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS High level RL = 600 Ω to 1.35 V, VID = ±100 mV VO Low level High level RL = 2 kΩ to 1.35 V, VID = ±100 mV IOS GBW Gain bandwidth product SR Slew rate Fm MIN TYP 2.55 2.62 Full range 2.53 25°C Output swing Output short-circuit current TA 25°C 0.083 Full range VO = 0 V, VID = 100 mV Sourcing VO = 2.7 V, VID = −100 mV Sinking UNIT 0.11 0.13 25°C 2.65 Full range 2.64 25°C Low level MAX V 2.675 0.025 Full range 0.04 0.045 25°C 20 Full range 15 25°C 18 Full range 12 30 25 mA 25°C 1.4 MHz 25°C 0.4 V/mS Phase margin 25°C 70 ° Gain margin 25°C 7.5 dB See Note 6 Vn Equivalent input noise voltage f = 1 kHz, VIC = 0.5 V 25°C 57 nV/√Hz In Equivalent input noise current f = 1 kHz 25°C 0.082 pA/√Hz THD Total harmonic distortion f = 1 kHz, AV = 1, RL = 600 Ω, VID = 1 Vp-p 25°C 0.022 % Amp-to-amp isolation See Note 7 25°C 123 dB NOTES: 6. Number specified is the slower of the positive and negative slew rates. 7. Input referred, VCC+ = 5 V and RL = 100 kΩ connected to 2.5 V. Each amp is excited, in turn, with a 1-kHz signal to produce VO = 3 Vp-p. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 electrical characteristics at TA = 25°C, VCC+ = 5 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and RL > 1 MΩ (unless otherwise noted) PARAMETER TEST CONDITIONS LMV931 (single) VIO αV IO Input offset voltage LMV932 (dual), LMV934 (quad) Average temperature coefficient of input offset voltage VIC = VCC+ − 0.8 V IIB Input bias current TA 25°C MIN Input offset current ICC Supply current (per channel) kSVR Common-mode rejection ratio Supply-voltage rejection ratio Common-mode input voltage range LMV931 AV 8 Largesignal voltage gain LMV932, LMV934 1 5.5 Full range 25°C 5.5 25°C 15 65 75 9 116 55 0.3 ≤ VIC ≤ 3.8 V, 4.6 V ≤ VIC ≤ 4.7 V −40°C to 125°C 55 −0.2 V ≤ VIC ≤ 0 V, 5 V ≤ VIC ≤ 5.2 V 25°C 50 78 25°C 75 100 Full range 70 −40°C to 85°C VCC− − 0.2 VCC− −40°C to 125°C VCC− + 0.3 RL = 600 Ω to 2.5 V, VO = 0.2 V to 4.8 V 25°C 88 Full range 87 RL = 2 kΩ to 2.5 V, VO = 0.2 V to 4.8 V 25°C 94 Full range 93 25°C 81 Full range 78 25°C 85 Full range 82 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 210 230 60 nA 25 40 25°C RL = 2 kΩ to 2.5 V, VO = 0.2 V to 4.8 V 35 25°C −40°C to 85°C RL = 600 Ω to 2.5 V, VO = 0.2 V to 4.8 V mV/°C Full range 25°C CMRR ≥ 50 dB mV 7.5 Full range 1.8 V ≤ VCC+ ≤ 5 V, VIC = 0.5 V UNIT 6 25°C 25°C VICR 4 Full range 0 ≤ VIC ≤ 3.8 V, 4.6 V ≤ VIC ≤ 5 V CMRR MAX 1 Full range 25°C IIO TYP nA mA A 86 dB dB −0.2 to 5.3 VCC+ + 0.2 VCC+ V VCC+ − 0.3 102 113 90 100 dB SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 electrical characteristics at TA= 25°C, VCC+ = 5 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and RL > 1 MΩ (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS High level RL = 600 Ω to 2.5 V, VID = ±100 mV VO Low level Output swing Output short-circuit current GBW Gain bandwidth product SR Slew rate Fm MIN TYP 4.855 4.89 Full range 4.835 25°C High level RL = 2 kΩ to 2.5 V, VID = ±100 mV IOS TA 25°C 0.12 Full range VO = 0 V, VID = 100 mV Sourcing VO = 5 V, VID = −100 mV Sinking UNIT 0.16 0.18 25°C 4.945 Full range 4.935 25°C Low level MAX V 4.967 0.037 Full range 0.065 0.075 25°C 80 Full range 68 25°C 58 Full range 45 100 65 mA 25°C 1.5 MHz 25°C 0.42 V/mS Phase margin 25°C 71 ° Gain margin 25°C 8 dB See Note 6 Vn Equivalent input noise voltage f = 1 kHz, VIC = 1 V 25°C 50 nV/√Hz In Equivalent input noise current f = 1 kHz 25°C 0.07 pA/√Hz THD Total harmonic distortion f = 1 kHz, AV = 1, RL = 600 Ω, VID = 1 Vp-p 25°C 0.022 % Amp-to-amp isolation See Note 7 25°C 123 dB NOTES: 6. Number specified is the slower of the positive and negative slew rates. 7. Input referred, VCC+ = 5 V and RL = 100 kΩ connected to 2.5 V. Each amp is excited, in turn, with a 1-kHz signal to produce VO = 3 Vp-p. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 TYPICAL PERFORMANCE CHARACTERISTICS Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C SLEW RATE vs SUPPLY VOLTAGE SUPPLY CURRENT vs SUPPLY VOLTAGE 0.6 0.17 RL = 2 kΩ AV = 1 VI = 1 Vpp 125°C 85°C 0.55 25°C 0.5 Falling Edge 0.13 0.11 Slew Rate − V/µs Supply Current − mA 0.15 −40°C 0.09 0.07 0.05 0.4 0.35 0.03 0.01 −0.01 Rising Edge 0.45 0.3 0 1 2 3 4 5 0.25 Supply Voltage − V 0 1 2 3 4 5 Figure 1 Figure 2 SINK CURRENT vs OUTPUT VOLTAGE SOURCE CURRENT vs OUTPUT VOLTAGE 1000 1000 5-V Sink 5-V Source 100 2.7-V Source 10 1.8-V Source 1 Sink Current − mA Source Current − mA 100 2.7-V Sink 10 1 0.01 0.1 1 Output Voltage Referenced to V+ (V) 10 0.01 0.001 0.01 0.1 Figure 4 POST OFFICE BOX 655303 1 Output Voltage Referenced to V− (V) Figure 3 10 1.8-V Sink 0.1 0.1 0.01 0.001 6 Supply Voltage − V • DALLAS, TEXAS 75265 10 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 TYPICAL PERFORMANCE CHARACTERISTICS Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE 45 RL = 600 Ω Voltage From Supply Voltage − mV Absolute Voltage From Supply Voltage − mV Absolute 140 120 100 Negative Swing 80 60 Positive Swing 40 20 0 0 1 2 3 4 5 6 RL = 2 kΩ 40 35 Negative Swing 30 25 20 15 Positive Swing 10 5 0 0 1 2 Supply Voltage − V 3 4 5 6 Supply Voltage − V Figure 6 Figure 5 SHORT-CIRCUIT CURRENT (SINK) vs TEMPERATURE SHORT-CIRCUIT CURRENT (SOURCE) vs TEMPERATURE 160 160 5-V Source 140 5-V Sink Short-Circuit Current (Source) − mA Short-Circuit Current (Sink) − mA 140 120 100 80 60 2.7-V Sink 40 20 0 −40 1.8-V Sink −20 120 100 80 60 2.7-V Source 40 20 0 20 40 60 80 100 120 1.8-V Source 0 −40 −20 0 20 40 60 80 100 120 Temperature − °C Temperature − °C Figure 7 Figure 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 TYPICAL PERFORMANCE CHARACTERISTICS Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C 1.8-V FREQUENCY RESPONSE vs CL Phase Gain − dB 110 VS = 1.8 V RL = 600 Ω 50 90 40 70 50 Gain 30 20 30 10 10 −10 CL = 0 pF CL = 300 pF CL = 1000 pF 0 −10 10k Phase Margin − Deg 60 100k 1M −30 10M Frequency − Hz Figure 9 Phase 50 Gain − dB 90 Gain 50 20 30 10 10 0 −10 10k CL = 0 pF CL = 300 pF CL = 1000 pF −10 1M 100k Frequency − Hz Figure 10 12 110 70 40 30 VS = 5 V RL = 600 Ω POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 −30 10M Phase Margin − Deg 60 5-V FREQUENCY RESPONSE vs CL SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 TYPICAL PERFORMANCE CHARACTERISTICS Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C 1.8-V FREQUENCY RESPONSE vs TEMPERATURE 60 110 Phase 50 Gain − dB 40 90 70 30 25°C Gain −40°C 20 25°C 85°C 85°C 125°C 10 50 30 Phase Margin − Deg VS = 1.8 V RL = 600 Ω CL = 150 pF 10 125°C 0 −10 −40°C −10 10k 100k −30 10M 1M Frequency − Hz Figure 11 5-V FREQUENCY RESPONSE vs TEMPERATURE 110 VS = 5 V RL = 600 Ω CL = 150 pF Phase 50 Gain − dB 40 90 70 30 25°C Gain 20 85°C 125°C 85°C 125°C 10 −40°C 0 −10 10k 50 25°C −40°C 100k 1M 30 Phase Margin − Deg 60 10 −10 −30 10M Frequency − Hz Figure 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 TYPICAL PERFORMANCE CHARACTERISTICS Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C PSRR vs FREQUENCY CMRR vs FREQUENCY 100 100 1.8 V 2.7 V 5V 90 90 +PSRR 80 CMRR − dB −PSRR Gain − dB 80 70 70 60 50 60 40 30 50 10 100 1k 10k 100k 10 100 10k Frequency − Hz Frequency − Hz Figure 13 Figure 14 THD vs FREQUENCY 10 THD vs FREQUENCY 10 RL = 600 Ω AV = 10 RL = 600 Ω AV = 1 1 THD − % 1 THD − % 1k 0.1 0.01 0.1 0.01 1.8 V 2.7 V 5V 1.8 V 2.7 V 5V 0.001 10 100 1k Frequency − Hz 10k 100k 0.001 10 Figure 15 14 100 1k Frequency − Hz Figure 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10k 100k SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 TYPICAL PERFORMANCE CHARACTERISTICS Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C SMALL-SIGNAL NONINVERTING RESPONSE 0.25 SMALL-SIGNAL NONINVERTING RESPONSE 0.1 VS = 1.8 V RL = 2 kΩ 0.25 0.05 0.2 0.1 VS = 2.7 V RL = 2 kΩ Input Input 0.2 −0.1 −0.15 0 Output 0.05 −0.1 −0.15 0 −0.2 −0.05 −0.05 −0.25 −0.1 −0.2 −0.25 −0.1 0.25 µs/div" 0.25 µs/div" Figure 17 Figure 18 SMALL-SIGNAL NONINVERTING RESPONSE VS = 5 V RL = 2 kΩ LARGE-SIGNAL NONINVERTING RESPONSE 0.1 4.5 0.05 3.6 0 2.7 0 1.8 −0.9 0.15 −0.05 0.1 Output 0.05 −0.1 −0.15 0 −0.2 −0.05 −0.25 −0.1 0.25 µs/div" Output Voltage − V Input 0.2 Input Voltage − V 0.25 1.8 VS = 1.8 V RL = 2 kΩ AV = 1 Input 0.9 Output 0.9 −1.8 0 −2.7 −0.9 −3.6 Input Voltage − V 0.05 −0.05 0.1 Input Voltage − V Output 0 0.15 Output Voltage − V Output Voltage − V −0.05 0.1 Input Voltage − V 0 0.15 Output Voltage − V 0.05 −4.5 −1.8 10 µs/div" Figure 19 Figure 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 TYPICAL PERFORMANCE CHARACTERISTICS Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C LARGE-SIGNAL NONINVERTING RESPONSE VS = 2.7 V RL = 2 kΩ AV = 1 Input 1.35 10 0 7.5 −1.35 2.7 Output 1.35 −2.7 0 Output Voltage − V 4.05 Output Voltage − V 12.5 Input Voltage − V 5.4 LARGE-SIGNAL NONINVERTING RESPONSE 2.7 0 −2.5 Output −7.5 0 −10 −5 Figure 21 Figure 22 OFFSET VOLTAGE vs COMMON-MODE RANGE 1 1 VS = 1.8 V VS = 2.7 V 0.5 0 0 −0.5 −0.5 VIO − mV 0.5 VIO − mV −12.5 10 µs/div" OFFSET VOLTAGE vs COMMON-MODE RANGE −1 −2 −2 125°C 85°C 25°C −40°C −2.5 −3 −0.4 −1 −1.5 −1.5 0 0.4 125°C 85°C 25°C −40°C −2.5 0.8 1.2 1.6 2 2.4 −3 −0.4 0.1 VIC − V 0.6 1.1 1.6 VIC − V Figure 24 Figure 23 16 −5 2.5 −6.75 10 µs/div" 2.5 −2.5 −5.4 −2.7 Input 5 −4.05 −1.35 5 VS = 5 V RL = 2 kΩ AV = 1 Input Voltage − V 6.75 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2.1 2.6 3.1 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005 TYPICAL PERFORMANCE CHARACTERISTICS Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C OFFSET VOLTAGE vs COMMON-MODE RANGE 1 VS = 5 V 0.5 VIO − mV 0 −0.5 −1 −1.5 −2 −2.5 −3 −0.4 125°C 85°C 25°C −40°C 0.6 1.6 2.6 3.6 4.6 5.6 VIC − V Figure 25 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 PACKAGE OPTION ADDENDUM www.ti.com 5-Dec-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty LMV931IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV931IDBVRE4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV931IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV931IDCKRE4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV931IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV932ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV932IDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV932IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV932IDGKR ACTIVE MSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV932IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV932IDRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV932IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV934ID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV934IDE4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV934IDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV934IDRE4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV934IPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV934IPWE4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV934IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM LMV934IPWRE4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & http://www.ti.com/productcontent for the latest availability information and additional product content details. Addendum-Page 1 no Sb/Br) - please check PACKAGE OPTION ADDENDUM www.ti.com 5-Dec-2005 TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated