STMICROELECTRONICS M28C64C

M28C64C
M28C64X
64 Kbit (8Kb x8) Parallel EEPROM
FAST ACCESS TIME: 150ns
SINGLE 5V ± 10% SUPPLY VOLTAGE
LOW POWER CONSUMPTION
FAST WRITE CYCLE
– 32 Bytes Page Write Operation
– Byte or Page Write Cycle: 5ms
ENHANCED END OF WRITE DETECTION
– Ready/Busy Open Drain Output
(for M28C64C product only)
– Data Polling
– Toggle Bit
PAGE LOAD TIMER STATUS BIT
HIGH RELIABILITY SINGLE POLYSILICON,
CMOS TECHNOLOGY
– Endurance >100,000 Erase/Write Cycles
– Data Retention >40 Years
JEDEC APPROVED BYTEWIDE PIN OUT
DESCRIPTION
The M28C64C is an 8 Kbit x8 low power Parallel
EEPROM fabricated with STMicroelectronics proprietary single polysilicon CMOS technology. The
device offers fast access time with low power dissipation and requires a 5V power supply.
The circuit has been designed to offer a flexible
microcontroller interface featuring both hardware
and software handshakingmode with Ready/Busy,
Data Polling and Toggle Bit. The M28C64C supports 32 byte page write operation.
Table 1. Signal Names
A0 - A12
Address Input
DQ0 - DQ7
Data Input / Output
W
Write Enable
E
Chip Enable
G
Output Enable
RB
Ready / Busy
VCC
Supply Voltage
VSS
Ground
February 1999
28
1
PDIP28 (P)
PLCC32 (K)
28
1
SO28 (MS)
300 mils
TSOP28 (N)
8 x13.4mm
Figure 1. Logic Diagram
VCC
13
8
A0-A12
W
DQ0-DQ7
M28C64C
E
RB
G
VSS
AI00746B
1/15
M28C64C, M28C64X
VCC
W
DU
A8
A9
A11
G
A10
E
DQ7
DQ6
DQ5
DQ4
DQ3
RB
DU
VCC
W
DU
1
28
2
27
3
26
4
25
5
24
6
23
7
22
M28C64C
8
21
9
20
10
19
11
18
12
17
13
16
14
15
A7
A12
RB
A12
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
VSS
Figure 2B. LCC Pin Connections
1 32
A6
A5
A4
A3
A2
A1
A0
NC
DQ0
9
M28C64C
25
A8
A9
A11
NC
G
A10
E
DQ7
DQ6
17
DQ1
DQ2
VSS
DU
DQ3
DQ4
DQ5
Figure 2A. DIP Pin Connections
AI00747C
AI00748D
Warning: DU = Don’t Use.
Warning: NC = Not Connected, DU = Don’t Use.
Figure 2C. SO Pin Connections
Figure 2D. TSOP Pin Connections
RB
A12
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
VSS
1
2
3
4
5
6
7
M28C64C
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
VCC
W
DU
A8
A9
A11
G
A10
E
DQ7
DQ6
DQ5
DQ4
DQ3
G
A11
A9
A8
DU
W
VCC
RB
A12
A7
A6
A5
A4
A3
22
28
1
21
M28C64C
7
AI00876C
15
14
8
A10
E
DQ7
DQ6
DQ5
DQ4
DQ3
VSS
DQ2
DQ1
DQ0
A0
A1
A2
AI01016D
Warning: DU = Don’t Use.
Warning: DU = Don’t Use.
PIN DESCRITPION
Addresses (A0-A12). The address inputs select
an 8-bit memory location during a read or write
operation.
Chip Enable (E). The chip enable input must be
low to enable all read/write operations. When Chip
Enable is high, power consumption is reduced.
Output Enable (G). The Output Enable input controls the data output buffers and is used to initiate
read operations.
2/15
M28C64C, M28C64X
Table 2. Absolute Maximum Ratings
Symbol
Parameter
Value
Unit
Ambient Operating Temperature
– 40 to 125
°C
T STG
Storage Temperature Range
– 65 to 150
°C
VCC
Supply Voltage
– 0.3 to 6.5
V
V IO
Input/Output Voltage
– 0.3 to VCC +0.6
V
VI
Input Voltage
– 0.3 to 6.5
V
2000
V
TA
VESD
Electrostatic Discharge Voltage (Human Body model)
Note: Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above
those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended
periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
Table 3. Operating Modes
Mode
E
G
W
DQ0 - DQ7
Read
VIL
VIL
VIH
Data Out
Write
VIL
VIH
VIL
Data In
Standby / Write Inhibit
VIH
X
X
Hi-Z
Write Inhibit
X
X
VIH
Data Out or Hi-Z
Write Inhibit
X
VIL
X
Data Out or Hi-Z
Output Disable
X
VIH
X
Hi-Z
Note: X = VIH or VIL
Data In/ Out (DQ0 - DQ7). Data is written to or read
from the M28C64C through the I/O pins.
Write Enable (W). The Write Enable input controls
the writing of data to the M28C64C.
Ready/Busy (RB). Ready/Busy is an open drain
output that can be used to detect the end of the
internal write cycle.
OPERATION
In order to prevent data corruption and inadvertent
write operations during power-up, a Power On
Reset (POR) circuit resets all internal programming
cicuitry. Access to the memory in write mode is
allowed after a power-up as specified in Table 6.
Read
The M28C64C is accessed like a static RAM.
When E and G are low with W high, the data
addressed is presented on the I/O pins. The I/O
pins are high impedancewhen either G or E is high.
Write
Write operations are initiated when both W and E
are low and G is high.The M28C64C supports both
E and W controlled write cycles. The Address is
latched by the falling edge of E or W which ever
occurs last and the Data on the rising edge of E or
W which ever occurs first. Once initiated the write
operation is internally timed until completion.
Page Write
Page write allows up to 32 bytes to be consecutively latched into the memory prior to initiating a
programming cycle. All bytes must be located in a
single page address, that is A5 - A12 must be the
same for all bytes. The page write can be initiated
during any byte write operation.
Following the first byte write instruction the host
may send another address and data up to a maximum of 100µs after the rising edge of E or W which
ever occurs first (t BLC). If a transition of E or W is
not detected within 100µs, the internal programming cycle will start.
3/15
M28C64C, M28C64X
Figure 3. Block Diagram
RB
VPP GEN
A0-A4
ADDRESS
LATCH
X DECODE
A5-A12
(Page Address)
RESET
E
G
W
ATD & CONTROL LOGIC
64K ARRAY
ADDRESS
LATCH
Y DECODE
SENSE AND DATA LATCH
I/O BUFFERS
PAGE LOAD
TIMER STATUS
TOGGLE BIT
DATA POLLING
DQ0-DQ7
AI00877C
Microcontroller Control Interface
The M28C64C provides two write operation status
bits and one status pin that can be used to minimize
the system write cycle. These signals are available
on the I/O port bits DQ7 or DQ6 of the memory
during programming cycle only, or as the RB signal
on a separate pin.
Figure 4. Status Bit Assignment
DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0
DP
TB
PLTS Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
DP = Data Polling
TB = Toggle Bit
PLTS = Page Load Timer Status
Data Polling bit (DQ7). During the internal write
cycle, any attempt to read the last byte written will
produce on DQ7 the complementary value of the
previously latched bit. Once the write cycle is finished the true logic value appears on DQ7 in the
read cycle.
4/15
Toggle bit (DQ6). The M28C64C offers another
way for determining when the internal write cycle
is completed. Duringthe internal Erase/Write cycle,
DQ6 will toggle from ”0” to ”1” and ”1” to ”0” (the
first read value is ”0”) on subsequent attempts to
read any address in the memory. When the internal
cycle is completed the toggling will stop and the
device will be accessible for a new Read or Write
operation.
Page Load Timer Status bit (DQ5). In the Page
Write mode data may be latched by E or W up to
100µs after the previous byte. Up to 32 bytes may
be input. The Data output (DQ5) indicates the
status of the internal Page Load Timer. DQ5 may
be read by asserting Output Enable Low (tPLTS).
DQ5 Low indicates the timer is running, High
indicates time-out after which the write cycle will
start and no new data may be input.
Ready/Busy pin. The RB pin provides a signal at
its open drain output which is low during the
erase/write cycle, but which is released at the
completion of the programming cycle.
M28C64C, M28C64X
Table 4. AC Measurement Conditions
Figure 6. AC Testing Equivalent Load Circuit
Input Rise and Fall Times
≤ 20ns
Input Pulse Voltages
0.4V to 2.4V
Input and Output Timing Ref. Voltages
0.8V to 2.0V
1.3V
1N914
Note that Output Hi-Z is defined as the point where data is no
longer driven.
3.3kΩ
Figure 5. AC Testing Input Output Waveforms
2.4V
DEVICE
UNDER
TEST
OUT
CL = 30pF
2.0V
0.8V
0.4V
CL includes JIG capacitance
AI00826
AI01129
Table 5. Capacitance (1) (TA = 25 °C, f = 1 MHz )
Symbol
Parameter
Test Condition
Input Capacitance
CIN
Output Capacitance
C OUT
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
12
pF
Note: 1. Sampled only, not 100% tested.
Table 6. Read Mode DC Characteristics (TA = 0 to 70°C or –40 to 85°C, VCC = 4.5V to 5.5V)
Symbol
Parameter
Test Condition
Min
Max
Unit
ILI
Input Leakage Current
0V ≤ VIN ≤ VCC
10
µA
ILO
Output Leakage Current
0V ≤ VIN ≤ VCC
10
µA
E = VIL, G = VIL , f = 5 MHz
30
mA
E = VIH
2
mA
E > VCC –0.3V
100
µA
ICC
(1)
Supply Current (TTL and CMOS inputs)
ICC1
(1)
Supply Current (Standby) TTL
ICC2
(1)
Supply Current (Standby) CMOS
VIL
Input Low Voltage
– 0.3
0.8
V
VIH
Input High Voltage
2
VCC +0.5
V
VOL
Output Low Voltage
IOL = 2.1 mA
0.4
V
VOH
Output High Voltage
IOH = –400 µA
2.4
V
Note: 1. All I/O’s open circuit.
Table 7. Power Up Timing (1) (TA = 0 to 70°C or –40 to 85°C, VCC = 4.5V to 5.5V)
Symbol
Parameter
Min
Max
Unit
tPUR
Time Delay to Read Operation
1
µs
tPUW
Time Delay to Write Operation
10
ms
Note: 1. Sampled only, not 100% tested.
5/15
M28C64C, M28C64X
Table 8. Read Mode AC Characteristics
(TA = 0 to 70°C or –40 to 85°C, VCC = 4.5V to 5.5V)
M28C64C
Symbol
Alt
Parameter
Test Condition
-150
min
tAVQV
tACC
Address Valid to
Output Valid
tELQV
tCE
tGLQV
-200
max
min
Unit
-250
max
min
max
E = VIL, G = VIL
150
200
250
ns
Chip Enable Low to
Output Valid
G = VIL
150
200
250
ns
tOE
Output Enable Low to
Output Valid
E = VIL
75
100
110
ns
tEHQZ (1)
tDF
Chip Enable High to
Output Hi-Z
G = VIL
0
50
0
60
0
65
ns
tGHQZ (1)
tDF
Output Enable High to
Output Hi-Z
E = VIL
0
50
0
60
0
65
ns
tAXQX
tOH
Address Transition to
Output Transition
E = VIL, G = VIL
0
0
0
ns
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.
Figure 7. Read Mode AC Waveforms
A0-A12
VALID
tAVQV
tAXQX
E
tGLQV
tEHQZ
G
tELQV
DQ0-DQ7
tGHQZ
DATA OUT
Hi-Z
AI00749B
Note: Write Enable (W) = High
6/15
M28C64C, M28C64X
Table 9. Write Mode AC Characteristics
(TA = 0 to 70°C or –40 to 85°C, VCC = 4.5V to 5.5V)
Symbol
Alt
tAVWL
tAS
tAVEL
Parameter
Test Condition
Min
Max
Unit
Address Valid to Write Enable Low
E = VIL, G = VIH
0
ns
tAS
Address Valid to Chip Enable Low
G = VIH, W = VIL
0
ns
tELWL
tCES
Chip Enable Low to Write Enable Low
G = VIH
0
ns
tGHWL
tOES
Output Enable High to Write Enable
Low
E = VIL
0
ns
tGHEL
tOES
Output Enable High to Chip Enable Low
W = VIL
0
ns
tWLEL
tWES
Write Enable Low to Chip Enable Low
G = VIH
0
ns
tWLAX
tAH
Write Enable Low to Address Transition
150
ns
tELAX
tAH
Chip Enable Low to Address Transition
150
ns
tWLDV
tDV
Write Enable Low to Input Valid
E = VIL, G = VIH
1
µs
tELDV
tDV
Chip Enable Low to Input Valid
G = VIH, W = VIL
1
µs
tWLWH
tWP
Write Enable Low to Write Enable High
150
ns
tELEH
tWP
Chip Enable Low to Chip Enable High
150
ns
tWHEH
tCEH
Write Enable High to Chip Enable High
0
ns
tWHGL
tOEH
Write Enable High to Output Enable
Low
10
ns
tEHGL
tOEH
Chip Enable High to Output Enable Low
10
ns
tEHWH
tWEH
Chip Enable High to Write Enable High
0
ns
tWHDX
tDH
Write Enable High to Input Transition
0
ns
tEHDX
tDH
Chip Enable High to Input Transition
0
ns
tWHWL
tWPH
Write Enable High to Write Enable Low
200
ns
tWHWH
tBLC
Byte Load Repeat Cycle Time
0.35
tWHRH
tWC
Write Cycle Time
tWHRL
tDB
Write Enable High to Ready/Busy Low
tEHRL
tDB
Chip Enable High to Ready/Busy Low
tDVWH
tDS
Data Valid before Write Enable High
50
ns
tDVEH
tDS
Data Valid before Chip Enable High
50
ns
50
µs
5
ms
Note 1
220
ns
Note 1
220
ns
Note: 1. With a 3.3 kΩ external pull-up resistor.
7/15
M28C64C, M28C64X
Figure 8. Write Mode AC Waveforms - Write Enable Controlled
A0-A12
VALID
tAVWL
tWLAX
E
tELWL
tWHEH
G
tGHWL
tWLWH
tWHGL
W
tWLDV
tWHWL
DATA IN
DQ0-DQ7
tDVWH
tWHDX
RB
tWHRL
AI00750
Figure 9. Write Mode AC Waveforms - Chip Enable Controlled
A0-A12
VALID
tAVEL
tELAX
E
tGHEL
tELEH
G
tWLEL
tEHGL
W
tELDV
DQ0-DQ7
tEHWH
DATA IN
tDVEH
tEHDX
RB
tEHRL
AI00751
8/15
M28C64C, M28C64X
Figure 10. Page Write Mode AC Waveforms - Write Enable Controlled
A0-A12
Addr 0
Addr 1
Addr 2
Addr n
E
tPLTS
G
tWHWL
tWHRH
W
tWLWH
tWHWH
Byte 0
DQ0-DQ7
Byte 1
Byte 2
tWHWH
Byte n
DQ5
Byte n
tWHRL
RB
AI00752C
Figure 11. Data Polling Waveform Sequence
A0-A12
Address of the last byte of the Page Write instruction
E
G
W
DQ7
DQ7
LAST WRITE
DQ7
DQ7
DQ7
INTERNAL WRITE SEQUENCE
DQ7
READY
AI00753C
9/15
M28C64C, M28C64X
Figure 12. Toggle Bit Waveform Sequence
A0-A12
E
G
W
DQ6
(1)
LAST WRITE
TOGGLE
INTERNAL WRITE SEQUENCE
READY
AI00754D
Note: 1. First Toggle bit is forced to ’0’
ORDERING INFORMATION SCHEME
Example:
M28C64C
-150
K
Package
Speed
Version
1
Temperature Range
C RB available
-150
150 ns
P
PDIP28
1
0 to 70 °C
X RB not bonded
(pin NC)
-200
200 ns
K
PLCC32
6
–40 to 85 °C
-250
250 ns
MS SO28 300 mils
N TSOP28
8 x 13.4mm
For a listof availableoptions (Speed, Package,etc... ) or for further information on any aspect of this device,
please contact the STMicroelectronics Sales Office nearest to you.
10/15
M28C64C, M28C64X
PDIP28 - 28 pin Plastic DIP, 600 mils width
mm
Symb
Typ
inches
Min
Max
A
Typ
Min
5.08
Max
0.200
A1
0.38
A2
3.56
4.06
0.140
0.160
B
0.38
0.51
0.015
0.020
B1
0.015
1.52
0.060
C
0.20
0.30
0.008
0.012
D
36.83
37.34
1.450
1.470
0.535
0.545
D2
33.02
1.300
E
15.24
0.600
E1
13.59
13.84
e1
2.54
0.100
eA
14.99
0.590
eB
15.24
17.78
0.600
0.700
L
3.18
3.43
0.125
0.135
S
1.78
2.08
0.070
0.082
α
0°
10°
0°
10°
N
28
28
A2
A1
B1
B
A
L
e1
α
eA
D2
C
eB
D
S
N
E1
E
1
PDIP
Drawing is not to scale.
11/15
M28C64C, M28C64X
PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular
mm
Symb
Typ
inches
Min
Max
A
2.54
A1
Typ
Min
Max
3.56
0.100
0.140
1.52
2.41
0.060
0.095
A2
–
0.38
–
0.015
B
0.33
0.53
0.013
0.021
B1
0.66
0.81
0.026
0.032
D
12.32
12.57
0.485
0.495
D1
11.35
11.56
0.447
0.455
D2
9.91
10.92
0.390
0.430
E
14.86
15.11
0.585
0.595
E1
13.89
14.10
0.547
0.555
E2
12.45
13.46
0.490
0.530
–
–
–
–
0.00
0.25
0.000
0.010
–
–
–
–
e
1.27
F
R
0.89
0.050
0.035
N
32
32
Nd
7
7
Ne
9
9
CP
0.10
0.004
D
D1
A1
A2
1 N
B1
E1 E
Ne
e
D2/E2
F
B
0.51 (.020)
1.14 (.045)
A
Nd
R
PLCC
Drawing is not to scale.
12/15
CP
M28C64C, M28C64X
SO28 - 28 lead Plastic Small Outline, 300 mils body width
mm
Symb
Typ
inches
Min
Max
A
2.46
A1
Min
Max
2.64
0.097
0.104
0.13
0.29
0.005
0.011
A2
2.29
2.39
0.090
0.094
B
0.35
0.48
0.014
0.019
C
0.23
0.32
0.009
0.013
D
17.81
18.06
0.701
0.711
E
7.42
7.59
0.292
0.299
–
–
–
–
H
10.16
10.41
0.400
0.410
L
0.61
1.02
0.024
0.040
α
0°
8°
0°
8°
N
28
e
1.27
CP
Typ
0.050
28
0.10
A2
0.004
A
C
B
CP
e
D
N
E
H
1
A1
α
L
SO-b
Drawing is not to scale.
13/15
M28C64C, M28C64X
TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4mm
mm
Symb
Typ
inches
Min
Max
Typ
Min
A
1.25
0.049
A1
0.20
0.008
A2
0.95
1.15
0.037
0.045
B
0.17
0.27
0.007
0.011
C
0.10
0.21
0.004
0.008
D
13.20
13.60
0.520
0.535
D1
11.70
11.90
0.461
0.469
E
7.90
8.10
0.311
0.319
–
–
–
–
L
0.50
0.70
0.020
0.028
α
0°
5°
0°
5°
N
28
e
0.55
0.022
28
CP
0.10
0.004
A2
22
21
e
28
1
E
B
7
8
D1
A
CP
D
DIE
C
TSOP-c
Drawing is not to scale.
14/15
Max
A1
α
L
M28C64C, M28C64X
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Spec ifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 1999 STMicroelectronics - All Rights Reserved
All other names are the property of their respective owners
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com
15/15