STMICROELECTRONICS M28W160BT100ZB6T

M28W160BT
M28W160BB
16 Mbit (1Mb x16, Boot Block)
3V Supply Flash Memory
FEATURES SUMMARY
■ SUPPLY VOLTAGE
Figure 1. Packages
– VDD = 2.7V to 3.6V Core Power Supply
– VDDQ= 1.65V to 3.6V for Input/Output
– VPP = 12V for fast Program (optional)
■
ACCESS TIME: 70, 85, 90,100ns
■
PROGRAMMING TIME
– 10µs typical
µBGA
µBGA46 (GB)
6.39 x 6.37mm
– Double Word Programming Option
■
COMMON FLASH INTERFACE
– 64 bit Security Code
■
MEMORY BLOCKS
– Parameter Blocks (Top or Bottom location)
– Main Blocks
■
FBGA
TFBGA46 (ZB)
6.39 x 6.37mm
BLOCK PROTECTION on TWO PARAMETER
BLOCKS
– WP for Block Protection
■
AUTOMATIC STAND-BY MODE
■
PROGRAM and ERASE SUSPEND
■
100,000 PROGRAM/ERASE CYCLES per
BLOCK
■
ELECTRONIC SIGNATURE
TSOP48 (N)
12 x 20mm
– Manufacturer Code: 20h
– Top Device Code, M28W160BT: 90h
– Bottom Device Code, M28W160BB: 91h
May 2002
1/45
M28W160BT, M28W160BB
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. µBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Address Inputs (A0-A19). . . . . . . .
Data Input/Output (DQ0-DQ15). . .
Chip Enable (E). . . . . . . . . . . . . . .
Output Enable (G). . . . . . . . . . . . .
Write Enable (W). . . . . . . . . . . . . .
Write Protect (WP). . . . . . . . . . . . .
Reset (RP). . . . . . . . . . . . . . . . . . .
VDD Supply Voltage . . . . . . . . . . . .
VDDQ Supply Voltage. . . . . . . . . . .
VPP Program Supply Voltage . . . .
VSS Ground. . . . . . . . . . . . . . . . . .
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
......
......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
......
......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
. . . . 10
. . . . 10
. . . . 10
. . . . 10
. . . . 10
. . . . 10
. . . . 10
. . . . 10
. . . . 10
. . . . 10
. . . . 10
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read. . . . . . . . . . . . . . . . . .
Write. . . . . . . . . . . . . . . . . .
Output Disable. . . . . . . . . .
Standby. . . . . . . . . . . . . . .
Automatic Standby. . . . . . .
Reset. . . . . . . . . . . . . . . . .
Table 2. Bus Operations . .
......
......
......
......
......
......
......
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
. . . . . . . . . . 11
. . . . . . . . . . 11
. . . . . . . . . . 11
. . . . . . . . . . 11
. . . . . . . . . . 11
. . . . . . . . . . 11
. . . . . . . . . . 11
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read Memory Array command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2/45
M28W160BT, M28W160BB
Table 5. Memory Blocks Protection Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 15
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Program/Erase Controller Status (Bit 7) . . .
Erase Suspend Status (Bit 6) . . . . . . . . . . .
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . .
Program Status (Bit 4) . . . . . . . . . . . . . . . . .
VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . .
Program Suspend Status (Bit 2) . . . . . . . . .
Block Protection Status (Bit 1). . . . . . . . . . .
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . .
Table 7. Status Register Bits . . . . . . . . . . . .
......
......
......
......
......
......
......
......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
. . . . 16
. . . . 16
. . . . 16
. . . . 16
. . . . 16
. . . . 16
. . . . 17
. . . . 17
. . . . 17
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 9. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 11. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 9. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 10. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 11. Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 14. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 12. Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 15. Power-Up and Reset AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . 27
Table 16. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 27
Figure 14. µBGA46 6.39x6.37mm - 8 x 6 ball array, 0.75 mm pitch, Bottom View Package Outline28
Table 17. µBGA46 6.39x6.37mm - 8 x 6 ball array, 0.75 mm pitch, Package Mechanical Data . . . 28
Figure 15. µBGA46 Daisy Chain - Package Connections (Top view through package) . . . . . . . . . 29
Figure 16. µBGA46 Daisy Chain - PCB Connections proposal (Top view through package) . . . . . 29
Figure 17. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline30
Table 18. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . . 30
Figure 18. TFBGA46 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 31
Figure 19. TFBGA46 Daisy Chain - PCB Connections proposal (Top view through package) . . . . 31
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3/45
M28W160BT, M28W160BB
Table 19. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 20. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 21. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
APPENDIX A. BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 22. Top Boot Block Addresses, M28W160BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 23. Bottom Boot Block Addresses, M28W160BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 24. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 25. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 26. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 27. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 28. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 29. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
APPENDIX C. FLOWCHARTS AND PSEUDO CODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 20. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 21. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 22. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 41
Figure 23. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 24. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 43
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE . . . . . . . 44
Table 30. Write State Machine Current/Next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4/45
M28W160BT, M28W160BB
SUMMARY DESCRIPTION
The M28W160B is a 16 Mbit (1 Mbit x 16) non-volatile Flash memory that can be erased electrically
at the block level and programmed in-system on a
Word-by-Word basis. These operations can be
performed using a single low voltage (2.7 to 3.6V)
supply. VDDQ allows to drive the I/O pin down to
1.65V. An optional 12V VPP power supply is provided to speed up customer programming.
The device features an asymmetrical blocked architecture. The M28W160B has an array of 39
blocks: 8 Parameter Blocks of 4 KWord and 31
Main Blocks of 32 KWord. M28W160BT has the
Parameter Blocks at the top of the memory address space while the M28W160BB locates the
Parameter Blocks starting from the bottom. The
memory maps are shown in Figure 6, Block Addresses.
Parameter blocks 0 and 1 can be protected from
accidental programming or erasure. Each block
can be erased separately. Erase can be suspended in order to perform either read or program in
any other block and then resumed. Program can
be suspended to read data in any other block and
then resumed. Each block can be programmed
and erased over 100,000 cycles.
Program and Erase commands are written to the
Command Interface of the memory. An on-chip
Program/Erase Controller takes care of the timings necessary for program and erase operations.
The end of a program or erase operation can be
detected and any error conditions identified. The
command set required to control the memory is
consistent with JEDEC standards.
The memory is offered in TSOP48 (10 X 20mm),
µBGA46 (6.39 x 6.37mm, 0.75mm pitch) and
TFBGA46 (6.39 x 6.37mm, 0.75mm pitch) packages and is supplied with all the bits erased (set to
’1’).
Figure 2. Logic Diagram
VDD VDDQ VPP
20
16
A0-A19
DQ0-DQ15
W
E
G
M28W160BT
M28W160BB
RP
WP
VSS
AI02628
Table 1. Signal Names
A0-A19
Address Inputs
DQ0-DQ15
Data Input/Output
E
Chip Enable
G
Output Enable
W
Write Enable
RP
Reset
WP
Write Protect
VDD
Core Power Supply
VDDQ
Power Supply for
Input/Output
VPP
Optional Supply Voltage for
Fast Program & Erase
VSS
Ground
5/45
M28W160BT, M28W160BB
Figure 3. TSOP Connections
A15
A14
A13
A12
A11
A10
A9
A8
NC
NC
W
RP
VPP
WP
A19
A18
A17
A7
A6
A5
A4
A3
A2
A1
1
48
12 M28W160BT 37
13 M28W160BB 36
24
25
A16
VDDQ
VSS
DQ15
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VDD
DQ11
DQ3
DQ10
DQ2
DQ9
DQ1
DQ8
DQ0
G
VSS
E
A0
AI02630
6/45
M28W160BT, M28W160BB
Figure 4. µBGA Connections (Top view through package)
1
2
3
4
5
6
7
8
A
A13
A11
A8
VPP
WP
A19
A7
A4
B
A14
A10
W
RP
A18
A17
A5
A2
C
A15
A12
A9
A6
A3
A1
D
A16
DQ14
DQ5
DQ11
DQ2
DQ8
E
A0
E
VDDQ
DQ15
DQ6
DQ12
DQ3
DQ9
DQ0
VSS
F
VSS
DQ7
DQ13
DQ4
VDD
DQ10
DQ1
G
AI02629
7/45
M28W160BT, M28W160BB
Figure 5. TFBGA Connections (Top view through package)
1
2
3
4
5
6
7
8
A
A13
A11
A8
VPP
WP
A19
A7
A4
B
A14
A10
W
RP
A18
A17
A5
A2
C
A15
A12
A9
A6
A3
A1
D
A16
DQ14
DQ5
DQ11
DQ2
DQ8
E
A0
E
VDDQ
DQ15
DQ6
DQ12
DQ3
DQ9
DQ0
VSS
F
VSS
DQ7
DQ13
DQ4
VDD
DQ10
DQ1
G
AI03804
8/45
M28W160BT, M28W160BB
Figure 6. Block Addresses
M28W160BB
Bottom Boot Block Addresses
M28W160BT
Top Boot Block Addresses
FFFFF
FFFFF
32 KWords
4 KWords
F8000
F7FFF
FF000
Total of 8
4 KWord Blocks
32 KWords
F0000
Total of 31
32 KWord Blocks
F8FFF
4 KWords
F8000
F7FFF
32 KWords
0FFFF
F0000
32 KWords
08000
07FFF
4 KWords
Total of 31
32 KWord Blocks
07000
Total of 8
4 KWord Blocks
0FFFF
32 KWords
08000
07FFF
00FFF
32 KWords
00000
4 KWords
00000
AI04310
Note: Also see Appendix A, Tables 22 and 23 for a full listing of the Block Addresses.
9/45
M28W160BT, M28W160BB
SIGNAL DESCRIPTIONS
See Figure 2 Logic Diagram and Table 1,Signal
Names, for a brief overview of the signals connected to this device.
Address Inputs (A0-A19). The Address Inputs
select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the
Command Interface of the internal state machine.
Data Input/Output (DQ0-DQ15). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation or inputs a command
or data to be programmed during a Write Bus operation.
Chip Enable (E). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is
at VILand Reset is at VIH the device is in active
mode. When Chip Enable is at VIH the memory is
deselected, the outputs are high impedance and
the power consumption is reduced to the stand-by
level.
Output Enable (G). The Output Enable controls
data outputs during the Bus Read operation of the
memory.
Write Enable (W). The Write Enable controls the
Bus Write operation of the memory’s Command
Interface. The data and address inputs are latched
on the rising edge of Chip Enable, E, or Write Enable, W, whichever occurs first.
Write Protect (WP). Write Protect is an input to
protect or unprotect the two lockable parameter
blocks. When Write Protect is at VIL, the lockable
blocks are protected and Program or Erase operations are not possible. When Write Protect is at
VIH, the lockable blocks are unprotected and can
be programmed or erased (refer to Table 4, Memory Blocks Protection Truth).
Reset (RP). The Reset input provides a hardware reset of the memory. When Reset is at VIL,
the memory is in reset mode: the outputs are high
impedance and the current consumption is mini-
10/45
mized. When Reset is at VIH, the device is in normal operation. Exiting reset mode the device
enters read array mode, but a negative transition
of Chip Enable or a change of the address is required to ensure valid data outputs.
V DD Supply Voltage. VDD provides the power
supply to the internal core of the memory device.
It is the main power supply for all operations
(Read, Program and Erase).
V DDQ Supply Voltage. VDDQ provides the
power supply to the I/O pins and enables all Outputs to be powered independently from VDD. VDDQ
can be tied to VDD or can use a separate supply.
V PP Program Supply Voltage. VPP is both a
control input and a power supply pin. The two
functions are selected by the voltage range applied to the pin. The Supply Voltage VDD and the
Program Supply Voltage VPP can be applied in
any order.
If VPP is kept in a low voltage range (0V to 3.6V)
VPP is seen as a control input. In this case a voltage lower than VPPLK gives an absolute protection
against program or erase, while VPP > VPP1 enables these functions (see Table 11, DC Characteristics for the relevant values). VPP is only
sampled at the beginning of a program or erase; a
change in its value after the operation has started
does not have any effect and program or erase operations continue.
If VPP is in the range 11.4V to 12.6V it acts as a
power supply pin. In this condition VPP must be
stable until the Program/Erase algorithm is completed (see Table 13 and 14).
VSS Ground. VSS is the reference for all voltage
measurements.
Note: Each device in a system should have
VDD,VDDQ and VPP decoupled with a 0.1µF capacitor close to the pin. See Figure 8, AC Measurement Load Circuit. The PCB trace widths
should be sufficient to carry the required VPP
Program and Erase currents.
M28W160BT, M28W160BB
BUS OPERATIONS
There are six standard bus operations that control
the device. These are Bus Read, Bus Write, Output Disable, Standby, Automatic Standby and Reset. See Table 2, Bus Operations, for a summary.
Typically glitches of less than 5ns on Chip Enable
or Write Enable are ignored by the memory and do
not affect bus operations.
Read. Read Bus operations are used to output
the contents of the Memory Array, the Electronic
Signature, the Status Register and the Common
Flash Interface. Both Chip Enable and Output Enable must be at VIL in order to perform a read operation. The Chip Enable input should be used to
enable the device. Output Enable should be used
to gate data onto the output. The data read depends on the previous command written to the
memory (see Command Interface section). See
Figure 9, Read Mode AC Waveforms, and Table
12, Read AC Characteristics, for details of when
the output becomes valid.
Read mode is the default state of the device when
exiting Reset or after power-up.
Write. Bus Write operations write Commands to
the memory or latch Input Data to be programmed.
A write operation is initiated when Chip Enable
and Write Enable are at VIL with Output Enable at
VIH. Commands, Input Data and Addresses are
latched on the rising edge of Write Enable or Chip
Enable, whichever occurs first.
See Figures 10 and 11, Write AC Waveforms, and
Tables 13 and 14, Write AC Characteristics, for
details of the timing requirements.
Output Disable. The data outputs are high impedance when the Output Enable is at VIH.
Standby. Standby disables most of the internal
circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by
when Chip Enable is at VIH and the device is in
read mode. The power consumption is reduced to
the stand-by level and the outputs are set to high
impedance, independently from the Output Enable
or Write Enable inputs. If Chip Enable switches to
VIH during a program or erase operation, the device enters Standby mode when finished.
Automatic Standby. Automatic Standby provides a low power consumption state during Read
mode. Following a read operation, the device enters Automatic Standby after 150ns of bus inactivity, even if Chip Enable is low, VIL, and the supply
current is reduced to IDD1. The data Inputs/Outputs will still output data.
Reset. During Reset mode, when Output Enable
is low, VIL, the memory is deselected and the outputs are high impedance. The memory is in Reset
mode when Reset is at VIL. The power consumption is reduced to the Standby level, independently
from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to VSS during a Program or Erase, this operation is aborted and the
memory content is no longer valid.
Table 2. Bus Operations
E
G
W
RP
WP
VPP
DQ0-DQ15
Read
VIL
VIL
VIH
VIH
X
Don't Care
Data Output
Write
VIL
VIH
VIL
VIH
X
VDD or VPPH
Data Input
Output Disable
VIL
VIH
VIH
VIH
X
Don't Care
Hi-Z
Standby
VIH
X
X
VIH
X
Don't Care
Hi-Z
X
X
X
VIL
X
Don't Care
Hi-Z
Operation
Reset
Note: X = VIL or VIH, VPPH = 12V ± 5%.
11/45
M28W160BT, M28W160BB
COMMAND INTERFACE
All Bus Write operations to the memory are interpreted by the Command Interface. Commands
consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution
of the Program and Erase commands. The Program/Erase Controller provides a Status Register
whose output may be read at any time, to monitor
the progress of an operation, or the Program/
Erase states. See Appendix D, Table 30, Write
State Machine Current/Next, for a summary of the
Command Interface.
The Command Interface is reset to Read mode
when power is first applied, when exiting from Reset or whenever VDD is lower than VLKO. Command sequences must be followed exactly. Any
invalid combination of commands will reset the device to Read mode. Refer to Table 3, Commands,
in conjunction with the text descriptions below.
Read Memory Array command
The Read command returns the memory to its
Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return
the memory to Read mode. Subsequent read operations will read the addressed location and output the data. When a device Reset occurs, the
memory defaults to Read mode.
Read Status Register Command
The Status Register indicates when a program or
erase operation is complete and the success or
failure of the operation itself. Issue a Read Status
Register command to read the Status Register’s
contents. Subsequent Bus Read operations read
the Status Register, at any address, until another
command is issued. See Table 7, Status Register
Bits, for details on the definitions of the bits.
The Read Status Register command may be issued at any time, even during a Program/Erase
operation. Any Read attempt during a Program/
Erase operation will automatically output the content of the Status Register.
Read Electronic Signature Command
The Read Electronic Signature command reads
the Manufacturer and Device Codes.
The Read Electronic Signature command consists
of one write cycle, a subsequent read will output
the Manufacturer or the Device Code depending
on the levels of A0. The Manufacturer Code is output when the address line A0 is at VIL, the Device
Code is output when A0 is at VIH. Addresses A1A7 must be kept to VIL, other addresses are ignored. The codes are output on DQ0-DQ7 with
DQ8-DQ15 at 00h. (see Table 4)
12/45
Read CFI Query Command
The Read Query Command is used to read data
from the Common Flash Interface (CFI) Memory
Area, allowing programming equipment or applications to automatically match their interface to
the characteristics of the device.
One Bus Write cycle is required to issue the Read
Query Command. Once the command is issued
subsequent Bus Read operations read from the
Common Flash Interface Memory Area. See Appendix B, Common Flash Interface, Tables 24, 25,
26, 27, 28 and 29 for details on the information
contained in the Common Flash Interface memory
area.
Block Erase Command
The Block Erase command can be used to erase
a block. It sets all the bits within the selected block
to ’1’. All previous data in the block is lost. If the
block is protected then the Erase operation will
abort, the data in the block will not be changed and
the Status Register will output the error.
Two Bus Write cycles are required to issue the
command.
■ The first bus cycle sets up the Erase command.
■ The second latches the block address in the
internal state machine and starts the Program/
Erase Controller.
If the second bus cycle is not Write Erase Confirm
(D0h), Status Register bits b4 and b5 are set and
the command aborts.
Erase aborts if Reset turns to VIL. As data integrity
cannot be guaranteed when the Erase operation is
aborted, the block must be erased again.
During Erase operations the memory will only accept the Read Status Register command and the
Program/Erase Suspend command, all other commands will be ignored. Typical Erase times are
given in Table 6, Program, Erase Times and Program/Erase Endurance Cycles.
See Appendix C, Figure 23, Erase Flowchart and
Pseudo Code, for the flowchart for using the Erase
command.
Program Command
The memory array can be programmed word-byword. Two bus write cycles are required to issue
the Program command.
■ The first bus cycle sets up the Program
command.
■ The second latches the Address and the Data to
be written and starts the Program/Erase
Controller.
During Program operations the memory will only
accept the Read Status Register command and
the Program/Erase Suspend command. All other
M28W160BT, M28W160BB
commands will be ignored. Typical Program times
are given in Table 6, Program, Erase Times and
Program/Erase Endurance Cycles.
Programming aborts if Reset goes to VIL. As data
integrity cannot be guaranteed when the program
operation is aborted, the block containing the
memory location must be erased and reprogrammed.
See Appendix C, Figure 20, Program Flowchart
and Pseudo Code, for the flowchart for using the
Program command.
Double Word Program Command
This feature is offered to improve the programming
throughput, writing a page of two adjacent words
in parallel.The two words must differ only for the
address A0. Programming should not be attempted when VPP is not at VPPH. The command can be
executed if VPP is below VPPH but the result is not
guaranteed.
Three bus write cycles are necessary to issue the
Double Word Program command.
■ The first bus cycle sets up the Double Word
Program command.
■ The second bus cycle latches the Address and
the Data of the first word to be written.
■ The third bus cycle latches the Address and the
Data of the second word to be written and starts
the Program/Erase Controller.
Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program operation is aborted, the block containing the memory
location must be erased and reprogrammed.
See Appendix C, Figure 21, Double Word Program Flowchart and Pseudo Code, for the flowchart for using the Double Word Program
command.
Clear Status Register Command
The Clear Status Register command can be used
to reset bits 1, 3, 4 and 5 in the Status Register to
‘0’. One bus write cycle is required to issue the
Clear Status Register command.
The bits in the Status Register do not automatically return to ‘0’ when a new Program or Erase command is issued. The error bits in the Status
Register should be cleared before attempting a
new Program or Erase command.
Program/Erase Suspend Command
The Program/Erase Suspend command is used to
pause a Program or Erase operation. One bus
write cycle is required to issue the Program/Erase
command and pause the Program/Erase controller.
During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume,
Read Array, Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then
the Program command will also be accepted. Only
the blocks not being erased may be read or programmed correctly.
During a Program/Erase Suspend, the device can
be placed in a pseudo-standby mode by taking
Chip Enable to VIH. Program/Erase is aborted if
Reset turns to VIL.
See Appendix C, Figure 22, Program Suspend &
Resume Flowchart and Pseudo Code, and Figure
24, Erase Suspend & Resume Flowchart and
Pseudo Code for flowcharts for using the Program/
Erase Suspend command.
Program/Erase Resume Command
The Program/Erase Resume command can be
used to restart the Program/Erase Controller after
a Program/Erase Suspend operation has paused
it. One Bus Write cycle is required to issue the
command. Once the command is issued subsequent Bus Read operations read the Status Register.
See Appendix C, Figure 22, Program or Double
Word Program Suspend & Resume Flowchart and
Pseudo Code, and Figure 24, Erase Suspend &
Resume Flowchart and Pseudo Code for flowcharts for using the Program/Erase Resume command.
Block Protection
Two parameter/lockable blocks (blocks #0 and #1)
can be protected against Program or Erase operations. Unprotected blocks can be programmed or
erased.
To protect the two lockable blocks set Write Protect to VIL. When VPP is below VPPLK all blocks are
protected. Any attempt to Program or Erase protected blocks will abort, the data in the block will
not be changed and the Status Register outputs
the error.
Table 5, Memory Blocks Protection Truth Table,
defines the protection methods.
13/45
M28W160BT, M28W160BB
Table 3. Commands
Bus Write Operations
No. of
Cycles
Commands
1st Cycle
2nd Cycle
3nd Cycle
Bus
Op.
Addr
Data
Bus
Op.
Addr
Data
Read Memory Array
1+
Write
X
FFh
Read
Read
Addr
Data
Read Status Register
1+
Write
X
70h
Read
X
Status
Register
Read Electronic Signature
1+
Write
X
90h
Read
Signature
Addr (2)
Signature
Read CFI Query
1+
Write
X
98h
Read
CFI Addr
Query
Erase
2
Write
X
20h
Write
Block
Addr
D0h
Program
2
Write
X
40h or
10h
Write
Addr
Data Input
Double Word Program (3)
3
Write
X
30h
Write
Addr 1
Data Input
Clear Status Register
1
Write
X
50h
Program/Erase Suspend
1
Write
X
B0h
Program/Erase Resume
1
Write
X
D0h
Bus
Op.
Addr
Data
Write
Addr 2
Data
Input
Note: 1. X = Don't Care.
2. A0=VIL outputs Manufacturer code, A0=VIH outputs Device code. Address A7-A1 must be VIL.
3. Addr 1 and Addr 2 must be consecutive Addresses differing only for A0.
Table 4. Read Electronic Signature
Code
Device
E
G
W
A0
A1-A7
A8-A19
DQ0-DQ15
VIL
VIL
VIH
VIL
VIL
Don't Care
20h
M28W160BT
VIL
VIL
VIH
VIH
VIL
Don't Care
90h
M28W160BB
VIL
VIL
VIH
VIH
VIL
Don't Care
91h
Manufact. Code
Device Code
Note:
RP = VIH.
Table 5. Memory Blocks Protection Truth Table
VPP (1)
RP
WP (1)
Lockable Blocks
(blocks #0 and #1)
Other Blocks
X
VIL
X
Protected
Protected
VIL
VIH
X
Protected
Protected
VDD or VPPH (2)
VIH
VIL
Protected
Unprotected
VDD or VPPH (2)
VIH
VIH
Unprotected
Unprotected
Note: 1. X = Don't Care
2. VPP must also be greater than the Program Voltage Lock Out VPPLK.
14/45
M28W160BT, M28W160BB
Table 6. Program, Erase Times and Program/Erase Endurance Cycles
M28W160B
Parameter
Word Program
Double Word Program
Test Conditions
Unit
Min
Typ
Max
VPP = VDD
10
200
µs
VPP = 12V ±5%
10
200
µs
VPP = 12V ±5%
0.16
5
s
VPP = VDD
0.32
5
s
VPP = 12V ±5%
0.02
4
s
VPP = VDD
0.04
4
s
VPP = 12V ±5%
1
10
s
VPP = VDD
1
10
s
VPP = 12V ±5%
0.8
10
s
VPP = VDD
0.8
10
s
Main Block Program
Parameter Block Program
Main Block Erase
Parameter Block Erase
Program/Erase Cycles (per Block)
100,000
cycles
15/45
M28W160BT, M28W160BB
STATUS REGISTER
The Status Register provides information on the
current or previous Program or Erase operation.
The various bits convey information and errors on
the operation. To read the Status register the
Read Status Register command can be issued, refer to the Read Status Register Command section.
To output the contents, the Status Register is
latched on the falling edge of the Chip Enable or
Output Enable signals, and can be read until Chip
Enable or Output Enable returns to VIH. Either
Chip Enable or Output Enable must be toggled to
update the latched data.
Bus Read operations from any address always
read the Status Register during Program and
Erase operations.
The bits in the Status Register are summarized in
Table 7, Status Register Bits. Refer to Table 7 in
conjunction with the following text descriptions.
Program/Erase Controller Status (Bit 7). The Program/Erase Controller Status bit indicates whether
the Program/Erase Controller is active or inactive.
When the Program/Erase Controller Status bit is
Low (set to ‘0’), the Program/Erase Controller is
active; when the bit is High (set to ‘1’), the Program/Erase Controller is inactive, and the device
is ready to process a new command.
The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller
pauses. After the Program/Erase Controller pauses the bit is High .
During Program, Erase, operations the Program/
Erase Controller Status bit can be polled to find the
end of the operation. Other bits in the Status Register should not be tested until the Program/Erase
Controller completes the operation and the bit is
High.
After the Program/Erase Controller completes its
operation the Erase Status, Program Status, VPP
Status and Block Protection Status bits should be
tested for errors.
Erase Suspend Status (Bit 6). The Erase Suspend Status bit (set to ‘1’) indicates that an Erase
operation has been suspended or is going to be
suspended.
The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).
Bit 7 is set within 30µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than
entering the Suspend mode.
When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low.
16/45
Erase Status (Bit 5). The Erase Status bit can be
used to identify if the memory has failed to verify
that the block has erased correctly. When the
Erase Status bit is High (set to ‘1’), the Program/
Erase Controller has applied the maximum number of pulses to the block and still failed to verify
that the block has erased correctly. The Erase Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Controller inactive).
Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a
hardware reset. If set High it should be reset before a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Status (Bit 4). The Program Status bit
is used to identify a Program failure. When the
Program Status bit is High (set to ‘1’), the Program/Erase Controller has applied the maximum
number of pulses to the byte and still failed to verify that it has programmed correctly. The Program
Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Controller inactive).
Once set High, the Program Status bit can only be
reset Low by a Clear Status Register command or
a hardware reset. If set High it should be reset before a new command is issued, otherwise the new
command will appear to fail.
VPP Status (Bit 3). The VPP Status bit can be
used to identify an invalid voltage on the VPP pin
during Program and Erase operations. The VPP
pin is only sampled at the beginning of a Program
or Erase operation. Indeterminate results can occur if VPP becomes invalid during an operation.
When the VPP Status bit is Low (set to ‘0’), the voltage on the VPP pin was sampled at a valid voltage;
when the VPP Status bit is High (set to ‘1’), the VPP
pin has a voltage that is below the VPP Lockout
Voltage, VPPLK, the memory is protected and Program and Erase operations cannot be performed.
Once set High, the VPP Status bit can only be reset
Low by a Clear Status Register command or a
hardware reset. If set High it should be reset before a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Suspend Status (Bit 2). The Program
Suspend Status bit (set to ‘1’) indicates that a Program operation has been suspended or is going to
be suspended.
The Program Suspend Status should only be considered valid when the Program/Erase Controller
Status bit is High (Program/Erase Controller inactive). Bit 2 is set within 5µs of the Program/Erase
Suspend command being issued therefore the
M28W160BT, M28W160BB
memory may still complete the operation rather
than
entering
the
Suspend
mode.
When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low.
Block Protection Status (Bit 1). The Block Protection Status bit can be used to identify if a Program or Erase operation has tried to modify the
contents of a protected block.
When the Block Protection Status bit is High (set
to ‘1’), a Program or Erase operation has been attempted on a protected block.
Once set High, the Block Protection Status bit can
only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be
reset before a new command is issued, otherwise
the new command will appear to fail.
Reserved (Bit 0). Bit 0 of the Status Register is
reserved. Its value must be masked.
Note: Refer to Appendix C, Flowcharts and
Pseudo Codes, for using the Status Register.
Table 7. Status Register Bits
Bit
7
6
5
4
3
2
1
0
Name
Logic Level
Definition
'1'
Ready
'0'
Busy
'1'
Suspended
'0'
In progress or Completed
'1'
Erase Error
'0'
Erase Success
'1'
Program Error
'0'
Program Success
'1'
VPP Invalid, Abort
'0'
VPP OK
'1'
Suspended
'0'
In Progress or Completed
'1'
Program/Erase on protected Block, Abort
'0'
No operation to protected blocks
P/E.C. Status
Erase Suspend Status
Erase Status
Program Status
VPP Status
Program Suspend Status
Block Protection Status
Reserved
Note: Logic level '1' is High, '0' is Low.
17/45
M28W160BT, M28W160BB
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions for extended
periods may affect device reliability. These are
stress ratings only and operation of the device at
these or any other conditions above those indicated in the Operating sections of this specification is
not implied. Refer also to the STMicroelectronics
SURE Program and other relevant quality documents.
Table 8. Absolute Maximum Ratings
Value
Symbol
Parameter
Max
Ambient Operating Temperature (1)
–40
85
°C
TBIAS
Temperature Under Bias
–40
125
°C
TSTG
Storage Temperature
–55
155
°C
Input or Output Voltage
–0.6
VDDQ+0.6
V
Supply Voltage
–0.6
4.1
V
Program Voltage
–0.6
13
V
TA
VIO
VDD, VDDQ
VPP
Note: 1. Depends on range.
18/45
Unit
Min
M28W160BT, M28W160BB
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC
and AC characteristics Tables that follow, are derived from tests performed under the Measure-
ment Conditions summarized in Table 9,
Operating and AC Measurement Conditions. Designers should check that the operating conditions
in their circuit match the measurement conditions
when relying on the quoted parameters.
Table 9. Operating and AC Measurement Conditions
M28W160BT, M28W160BB
70
85
90
100
Parameter
Units
Min
Max
Min
Max
Min
Max
Min
Max
VDD Supply Voltage
2.7
3.6
2.7
3.6
2.7
3.6
2.7
3.6
V
VDDQ Supply Voltage (VDDQ ≤ VDD)
2.7
3.6
2.7
3.6
2.7
3.6
1.65
3.6
V
Ambient Operating Temperature
– 40
85
– 40
85
– 40
85
– 40
85
°C
Load Capacitance (CL)
50
Input Rise and Fall Times
Input Pulse Voltages
Input and Output Timing Ref.
Voltages
50
50
50
pF
5
5
5
5
ns
0 to VDDQ
0 to VDDQ
0 to VDDQ
0 to VDDQ
V
VDDQ/2
VDDQ/2
VDDQ/2
VDDQ/2
V
Figure 7. AC Measurement I/O Waveform
Figure 8. AC Measurement Load Circuit
VDDQ
VDDQ
VDDQ/2
VDDQ
VDD
0V
25kΩ
AI00610
DEVICE
UNDER
TEST
CL
0.1µF
25kΩ
0.1µF
CL includes JIG capacitance
AI00609C
Table 10. Device Capacitance
Symbol
CIN
COUT
Parameter
Input Capacitance
Output Capacitance
Test Condition
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
12
pF
Note: Sampled only, not 100% tested.
19/45
M28W160BT, M28W160BB
Table 11. DC Characteristics
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
ILI
Input Leakage Current
0V≤ VIN ≤ VDDQ
±1
µA
ILO
Output Leakage Current
0V≤ VOUT ≤VDDQ
±10
µA
IDD
Supply Current (Read)
IDD1
Supply Current (Stand-by or
Automatic Stand-by)
IDD2
Supply Current
(Reset)
IDD3
IDD4
Supply Current (Program)
Supply Current (Erase)
E = VSS, G = VIH, f = 5MHz
10
20
mA
E = VDDQ ± 0.2V,
RP = VDDQ ± 0.2V
15
50
µA
RP = VSS ± 0.2V
15
50
µA
Program in progress
VPP = 12V ± 5%
10
20
mA
Program in progress
VPP = VDD
10
20
mA
Erase in progress
VPP = 12V ± 5%
5
20
mA
Erase in progress
VPP = VDD
5
20
mA
E = VDDQ ± 0.2V,
Erase suspended
50
µA
IDD5
Supply Current
(Program/Erase Suspend)
IPP
Program Current
(Read or Stand-by)
VPP > VDD
400
µA
IPP1
Program Current
(Read or Stand-by)
VPP ≤ VDD
5
µA
IPP2
Program Current (Reset)
RP = VSS ± 0.2V
5
µA
Program in progress
VPP = 12V ± 5%
10
mA
Program in progress
VPP = VDD
5
µA
Erase in progress
VPP = 12V ± 5%
10
mA
Erase in progress
VPP = VDD
5
µA
0.4
V
IPP3
IPP4
VIL
Program Current (Program)
Program Current (Erase)
Input Low Voltage
–0.5
VDDQ ≥ 2.7V
–0.5
0.8
V
VDDQ –0.4
VDDQ +0.4
V
0.7 VDDQ
VDDQ +0.4
V
0.1
V
VIH
Input High Voltage
VOL
Output Low Voltage
IOL = 100µA, VDD = VDD min,
VDDQ = VDDQ min
VOH
Output High Voltage
IOH = –100µA, VDD = VDD min,
VDDQ = VDDQ min
VPP1
Program Voltage (Program or
Erase operations)
1.65
3.6
V
VPPH
Program Voltage
(Program or Erase
operations)
11.4
12.6
V
VPPLK
Program Voltage
(Program and Erase lock-out)
1
V
VLKO
VDD Supply Voltage (Program
and Erase lock-out)
2
V
20/45
VDDQ ≥ 2.7V
VDDQ –0.1
V
M28W160BT, M28W160BB
Figure 9. Read Mode AC Waveforms
tAVAV
VALID
A0-A19
tAVQV
tAXQX
E
tELQV
tELQX
tEHQX
tEHQZ
G
tGLQV
tGHQX
tGLQX
tGHQZ
VALID
DQ0-DQ15
ADDR. VALID
CHIP ENABLE
OUTPUTS
ENABLED
DATA VALID
STANDBY
AI00619
Table 12. Read AC Characteristics
M28W160B
Symbol
Alt
Parameter
Unit
70
85
90
100
tAVAV
tRC
Address Valid to Next Address Valid
Min
70
85
90
100
ns
tAVQV
tACC
Address Valid to Output Valid
Max
70
85
90
100
ns
tAXQX (1)
tOH
Address Transition to Output Transition
Min
0
0
0
0
ns
tEHQX (1)
tOH
Chip Enable High to Output Transition
Min
0
0
0
0
ns
tEHQZ (1)
tHZ
Chip Enable High to Output Hi-Z
Max
20
20
25
30
ns
tELQV (2)
tCE
Chip Enable Low to Output Valid
Max
70
85
90
100
ns
tELQX (1)
tLZ
Chip Enable Low to Output Transition
Min
0
0
0
0
ns
tGHQX (1)
tOH
Output Enable High to Output Transition
Min
0
0
0
0
ns
tGHQZ (1)
tDF
Output Enable High to Output Hi-Z
Max
20
20
25
30
ns
tGLQV (2)
tOE
Output Enable Low to Output Valid
Max
20
20
30
35
ns
tGLQX (1)
tOLZ
Output Enable Low to Output Transition
Min
0
0
0
0
ns
Note: 1. Sampled only, not 100% tested.
2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV.
21/45
22/45
VPP
WP
DQ0-DQ15
W
G
E
A0-A19
tWLWH
COMMAND
SET-UP COMMAND
tDVWH
tELWL
tWHDX
tWHWL
tWHEH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHWH
tWPHWH
tAVWH
VALID
tAVAV
tWHEL
tWHGL
tWHAX
PROGRAM OR ERASE
AI03572
tQVVPL
tQVWPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
M28W160BT, M28W160BB
Figure 10. Write AC Waveforms, Write Enable Controlled
M28W160BT, M28W160BB
Table 13. Write AC Characteristics, Write Enable Controlled
M28W160B
Symbol
Alt
Parameter
Unit
70
85
90
100
tAVAV
tWC
Write Cycle Time
Min
70
85
90
100
ns
tAVWH
tAS
Address Valid to Write Enable High
Min
45
45
50
50
ns
tDVWH
tDS
Data Valid to Write Enable High
Min
45
45
50
50
ns
tELWL
tCS
Chip Enable Low to Write Enable Low
Min
0
0
0
0
ns
Chip Enable Low to Output Valid
Min
70
85
90
100
ns
Output Valid to VPP Low
Min
0
0
0
0
ns
Output Valid to Write Protect Low
Min
0
0
0
0
ns
tELQV
tQVVPL (1,2)
tQVWPL
tVPHWH (1)
tVPS
VPP High to Write Enable High
Min
200
200
200
200
ns
tWHAX
tAH
Write Enable High to Address Transition
Min
0
0
0
0
ns
tWHDX
tDH
Write Enable High to Data Transition
Min
0
0
0
0
ns
tWHEH
tCH
Write Enable High to Chip Enable High
Min
0
0
0
0
ns
tWHEL
Write Enable High to Chip Enable Low
Min
25
25
30
30
ns
tWHGL
Write Enable High to Output Enable Low
Min
20
20
30
30
ns
tWHWL
tWPH
Write Enable High to Write Enable Low
Min
25
25
30
30
ns
tWLWH
tWP
Write Enable Low to Write Enable High
Min
45
45
50
50
ns
Write Protect High to Write Enable High
Min
45
45
50
50
ns
tWPHWH
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
23/45
24/45
VPP
WP
DQ0-DQ15
E
G
W
A0-A19
tELEH
COMMAND
POWER-UP AND
SET-UP COMMAND
tDVEH
tWLEL
tEHDX
tEHEL
tEHWH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHEH
tWPHEH
tAVEH
VALID
tAVAV
tEHGL
tEHAX
PROGRAM OR ERASE
AI03573
tQVVPL
tQVWPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
M28W160BT, M28W160BB
Figure 11. Write AC Waveforms, Chip Enable Controlled
M28W160BT, M28W160BB
Table 14. Write AC Characteristics, Chip Enable Controlled
M28W160B
Symbol
Alt
Parameter
Unit
70
85
90
100
tAVAV
tWC
Write Cycle Time
Min
70
85
90
100
ns
tAVEH
tAS
Address Valid to Chip Enable High
Min
45
45
50
50
ns
tDVEH
tDS
Data Valid to Chip Enable High
Min
45
45
50
50
ns
tEHAX
tAH
Chip Enable High to Address Transition
Min
0
0
0
0
ns
tEHDX
tDH
Chip Enable High to Data Transition
Min
0
0
0
0
ns
tEHEL
tCPH
Chip Enable High to Chip Enable Low
Min
25
25
30
30
ns
Chip Enable High to Output Enable Low
Min
25
25
30
30
ns
tEHGL
tEHWH
tWH
Chip Enable High to Write Enable High
Min
0
0
0
0
ns
tELEH
tCP
Chip Enable Low to Chip Enable High
Min
45
45
50
50
ns
Chip Enable Low to Output Valid
Min
70
85
90
100
ns
Output Valid to VPP Low
Min
0
0
0
0
ns
Data Valid to Write Protect Low
Min
0
0
0
0
ns
tELQV
tQVVPL (1,2)
tQVWPL
tVPHEH (1)
tVPS
VPP High to Chip Enable High
Min
200
200
200
200
ns
tWLEL
tCS
Write Enable Low to Chip Enable Low
Min
0
0
0
0
ns
Write Protect High to Chip Enable High
Min
45
45
50
50
ns
tWPHEH
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
25/45
M28W160BT, M28W160BB
Figure 12. Power-Up and Reset AC Waveforms
W, E, G
tPHWL
tPHEL
tPHGL
tPHWL
tPHEL
tPHGL
RP
tVDHPH
tPLPH
VDD, VDDQ
Power-Up
Reset
AI03453b
Table 15. Power-Up and Reset AC Characteristics
M28W160B
Symbol
tPHWL
tPHEL
tPHGL
Parameter
Reset High to Write Enable Low, Chip
Enable Low, Output Enable Low
Test Condition
Unit
70
85
90
100
During
Program
and Erase
Min
50
50
50
50
µs
others
Min
30
30
30
30
ns
tPLPH(1,2)
Reset Low to Reset High
Min
100
100
100
100
ns
tVDHPH(3)
Supply Voltages High to Reset High
Min
50
50
50
50
µs
Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns.
2. Sampled only, not 100% tested.
3. It is important to assert RP in order to allow proper CPU initialization during power up or reset.
26/45
M28W160BT, M28W160BB
PACKAGE MECHANICAL
Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline
A2
1
N
e
E
B
N/2
D1
A
CP
D
DIE
C
A1
TSOP-a
α
L
Note: Drawing is not to scale.
Table 16. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data
Symbol
mm
Typ
Min
A
inches
Max
Typ
Min
1.20
Max
0.0472
A1
0.05
0.15
0.0020
0.0059
A2
0.95
1.05
0.0374
0.0413
B
0.17
0.27
0.0067
0.0106
C
0.10
0.21
0.0039
0.0083
D
19.80
20.20
0.7795
0.7953
D1
18.30
18.50
0.7205
0.7283
E
11.90
12.10
0.4685
0.4764
–
–
–
–
e
0.50
0.0197
L
0.50
0.70
0.0197
0.0279
α
0°
5°
0°
5°
N
48
CP
48
0.10
0.0039
27/45
M28W160BT, M28W160BB
Figure 14. µBGA46 6.39x6.37mm - 8 x 6 ball array, 0.75 mm pitch, Bottom View Package Outline
D
D1
FD
SD
FE
SE
E
E1
e
ddd
BALL "A1"
e
b
A
A2
A1
BGA-G05
Note: Drawing is not to scale
Table 17. µBGA46 6.39x6.37mm - 8 x 6 ball array, 0.75 mm pitch, Package Mechanical Data
mm
inch
Symbol
Typ
Min
A
Typ
Min
1.000
A1
Max
0.0394
0.180
0.0071
A2
0.700
–
–
0.0276
–
–
b
0.350
0.300
0.400
0.0138
0.0118
0.0157
D
6.390
6.340
6.440
0.2516
0.2496
0.2535
D1
5.250
–
–
0.2067
–
–
ddd
28/45
Max
0.008
0.0003
e
0.750
–
–
0.0295
–
–
E
6.370
6.320
6.420
0.2508
0.2488
0.2528
E1
3.750
–
–
0.1476
–
–
FD
0.570
–
–
0.0224
–
–
FE
1.310
–
–
0.0516
–
–
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
M28W160BT, M28W160BB
Figure 15. µBGA46 Daisy Chain - Package Connections (Top view through package)
1
2
3
4
5
6
7
8
A
B
C
D
E
F
AI03298
Figure 16. µBGA46 Daisy Chain - PCB Connections proposal (Top view through package)
1
2
3
4
5
6
7
8
START
POINT
A
B
C
D
E
END
POINT
F
AI3299
29/45
M28W160BT, M28W160BB
Figure 17. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline
D
D1
FD
SD
FE
SE
E
E1
e
ddd
BALL "A1"
e
b
A
A2
A1
BGA-Z13
Drawing is not to scale.
Table 18. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Typ
Min
1.200
A1
Max
0.0472
0.200
A2
0.0079
1.000
0.0394
b
0.400
0.350
0.450
0.0157
0.0138
0.0177
D
6.390
6.290
6.490
0.2516
0.2476
0.2555
D1
5.250
–
–
0.2067
–
–
ddd
30/45
Max
0.100
0.0039
E
6.370
6.270
6.470
0.2508
0.2469
0.2547
e
0.750
–
–
0.0295
–
–
E1
3.750
–
–
0.1476
–
–
FD
0.570
–
–
0.0224
–
–
FE
1.310
–
–
0.0516
–
–
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
M28W160BT, M28W160BB
Figure 18. TFBGA46 Daisy Chain - Package Connections (Top view through package)
1
2
3
4
5
6
7
8
A
B
C
D
E
F
AI03298
Figure 19. TFBGA46 Daisy Chain - PCB Connections proposal (Top view through package)
1
2
3
4
5
6
7
8
START
POINT
A
B
C
D
E
END
POINT
F
AI3299
31/45
M28W160BT, M28W160BB
PART NUMBERING
Table 19. Ordering Information Scheme
Example:
M28W160BT
90
N
6
T
Device Type
M28
Operating Voltage
W = VDD = 2.7V to 3.6V; VDDQ = 1.65V to 3.6V
Device Function
160B = 16 Mbit (x16), Boot Block
Array Matrix
T = Top Boot
B = Bottom Boot
Speed
70 = 70 ns
85 = 85 ns
90 = 90 ns
100 = 100 ns
Package
N = TSOP48: 12 x 20 mm
GB = µBGA46: 6.39 x 6.37mm, 0.75 mm pitch
ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch
Temperature Range
1 = 0 to 70 °C
6 = –40 to 85 °C
Option
T = Tape & Reel Packing
Table 20. Daisy Chain Ordering Scheme
Example:
M28W160B
-GB T
Device Type
M28W160B
Daisy Chain
-GB = µBGA46: 6.39 x 6.37mm, 0.75 mm pitch
-ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch
Option
T = Tape & Reel Packing
Note:Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available
options (Speed, Package, etc...) or for further information on any aspect of this device, please contact
the ST Sales Office nearest to you.
32/45
M28W160BT, M28W160BB
REVISION HISTORY
Table 21. Document Revision History
Date
Version
Revision Details
July 1999
-01
First Issue
9/21/99
-02
Parameter Block Erase Typ. specification change
Added tWHGL and tEHGL
10/20/99
-03
µBGA Package Mechanical Data change
Daisy Chain diagrams, Package and PCB Connections, added
2/09/00
-04
Access Time conditions change
Reset mode function change to remove Power Down mode
Instructions description clarification
Change of Parameter Block Erase value
Block Protections description clarification
Security Code Area definition change
IDD2 and IDD3 value change
tPLRH value change
Program, Erase, Command Interface flowcharts clarification
Package Mechanical Data change
µBGA Package Outline diagram change
4/19/00
-05
Daisy Chain part numbering defined
µBGA Daisy Chain diagrams, Package and PCB Connections re-designed
5/17/00
-06
µBGA Package Outline diagram change
1/15/01
-07
TFBGA Package added
CFI specification clarification
3/06/01
-08
Document type : from Preliminary Data to Data Sheet
70ns Speed Class added
3/12/01
-09
4/13/01
-10
Completely rewritten and restructured, 85ns speed class added.
5/29/01
-11
Corrections made to CFI data.
31-May-2001
-12
Corrections to TFBGA46 package dimensions.
30-Oct-2001
-13
VDDQ Maximum changed to 3.3V
Commands Table, Read CFI Query Address on 1st cycle changed to ‘X’ (Table 3)
tWHEL description clarified (Table 13)
16-May-2002
-14
VDDQ Maximum changed to 3.6V, TFBGA and µBGA package dimensions added to
descriptions.
33/45
M28W160BT, M28W160BB
APPENDIX A. BLOCK ADDRESS TABLES
Table 22. Top Boot Block Addresses,
M28W160BT
Table 23. Bottom Boot Block Addresses,
M28W160BB
#
Size
(KWord)
Address Range
#
Size
(KWord)
Address Range
0
4
FF000-FFFFF
38
32
F8000-FFFFF
1
4
FE000-FEFFF
37
32
F0000-F7FFF
2
4
FD000-FDFFF
36
32
E8000-EFFFF
3
4
FC000-FCFFF
35
32
E0000-E7FFF
4
4
FB000-FBFFF
34
32
D8000-DFFFF
5
4
FA000-FAFFF
33
32
D0000-D7FFF
6
4
F9000-F9FFF
32
32
C8000-CFFFF
7
4
F8000-F8FFF
31
32
C0000-C7FFF
8
32
F0000-F7FFF
30
32
B8000-BFFFF
9
32
E8000-EFFFF
29
32
B0000-B7FFF
10
32
E0000-E7FFF
28
32
A8000-AFFFF
11
32
D8000-DFFFF
27
32
A0000-A7FFF
12
32
D0000-D7FFF
26
32
98000-9FFFF
13
32
C8000-CFFFF
25
32
90000-97FFF
14
32
C0000-C7FFF
24
32
88000-8FFFF
15
32
B8000-BFFFF
23
32
80000-87FFF
16
32
B0000-B7FFF
22
32
78000-7FFFF
17
32
A8000-AFFFF
21
32
70000-77FFF
18
32
A0000-A7FFF
20
32
68000-6FFFF
19
32
98000-9FFFF
19
32
60000-67FFF
20
32
90000-97FFF
18
32
58000-5FFFF
21
32
88000-8FFFF
17
32
50000-57FFF
22
32
80000-87FFF
16
32
48000-4FFFF
23
32
78000-7FFFF
15
32
40000-47FFF
24
32
70000-77FFF
14
32
38000-3FFFF
25
32
68000-6FFFF
13
32
30000-37FFF
26
32
60000-67FFF
12
32
28000-2FFFF
27
32
58000-5FFFF
11
32
20000-27FFF
28
32
50000-57FFF
10
32
18000-1FFFF
29
32
48000-4FFFF
9
32
10000-17FFF
30
32
40000-47FFF
8
32
08000-0FFFF
31
32
38000-3FFFF
7
4
07000-07FFF
32
32
30000-37FFF
6
4
06000-06FFF
33
32
28000-2FFFF
5
4
05000-05FFF
34
32
20000-27FFF
4
4
04000-04FFF
35
32
18000-1FFFF
3
4
03000-03FFF
36
32
10000-17FFF
2
4
02000-02FFF
37
32
08000-0FFFF
1
4
01000-01FFF
38
32
00000-07FFF
0
4
00000-00FFF
34/45
M28W160BT, M28W160BB
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC approved, standardized data structure that can be
read from the Flash memory device. It allows a
system software to query the device to determine
various electrical and timing parameters, density
information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when
necessary.
When the CFI Query Command (RCFI) is issued
the device enters CFI Query mode and the data
structure is read from the memory. Tables 24, 25,
26, 27, 28 and 29 show the addresses used to retrieve the data.
The CFI data structure also contains a security
area where a 64 bit unique security number is written (see Table 29, Security Code area). This area
can be accessed only in Read mode by the final
user. It is impossible to change the security number after it has been written by ST. Issue a Read
command to return to Read mode.
Table 24. Query Structure Overview
Offset
Sub-section Name
Description
00h
Reserved
Reserved for algorithm-specific information
10h
CFI Query Identification String
Command set ID and algorithm data offset
1Bh
System Interface Information
Device timing & voltage information
27h
Device Geometry Definition
Flash device layout
P
Primary Algorithm-specific Extended Query table
Additional information specific to the Primary
Algorithm (optional)
A
Alternate Algorithm-specific Extended Query table
Additional information specific to the Alternate
Algorithm (optional)
Note: Query data are always presented on the lowest order data outputs.
Table 25. CFI Query Identification String
Offset
Data
Description
Value
00h
0020h
Manufacturer Code
01h
0090h
0091h
Device Code
02h-0Fh
reserved
10h
0051h
Query Unique ASCII String "QRY"
“Q”
11h
0052h
Query Unique ASCII String "QRY"
“R”
12h
0059h
Query Unique ASCII String "QRY"
“Y”
13h
0003h
14h
0000h
Primary Algorithm Command Set and Control Interface ID code 16 bit ID
code defining a specific algorithm
15h
offset = P =
0035h
16h
0000h
17h
0000h
18h
0000h
19h
value = A =
0000h
1Ah
0000h
ST
Top
Bottom
Reserved
Address for Primary Algorithm extended Query table
Intel
Compatible
P=35h
Alternate Vendor Command Set and Control Interface ID Code second
vendor - specified algorithm supported (note: 0000h means none exists)
NA
Address for Alternate Algorithm extended Query table
note: 0000h means none exists
NA
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
35/45
M28W160BT, M28W160BB
Table 26. CFI Query System Interface Information
Offset
Data
1Bh
0027h
VDD Logic Supply Minimum Program/Erase or Write voltage
bit 7 to 4
BCD value in volts
bit 3 to 0
BCD value in 100 mV
2.7V
1Ch
0036h
VDD Logic Supply Maximum Program/Erase or Write voltage
bit 7 to 4
BCD value in volts
bit 3 to 0
BCD value in 100 mV
3.6V
1Dh
00B4h
VPP [Programming] Supply Minimum Program/Erase voltage
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
11.4V
1Eh
00C6h
VPP [Programming] Supply Maximum Program/Erase voltage
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
12.6V
1Fh
0004h
Typical timeout per single word program = 2n µs
16µs
20h
0004h
Typical timeout for Double Word Program = 2n µs
16µs
21h
000Ah
Typical timeout per individual block erase = 2n ms
1s
22h
0000h
Typical timeout for full chip erase = 2n ms
NA
23h
0005h
Maximum timeout for word program = 2n times typical
512µs
24h
0005h
Maximum timeout for Double Word Program = 2n times typical
512µs
25h
0003h
Maximum timeout per individual block erase = 2n times typical
8s
26h
0000h
Maximum timeout for chip erase = 2n times typical
NA
36/45
Description
Value
M28W160BT, M28W160BB
Table 27. Device Geometry Definition
Data
27h
0015h
Device Size = 2n in number of bytes
28h
29h
0001h
0000h
Flash Device Interface Code description
2Ah
2Bh
0002h
0000h
Maximum number of bytes in multi-byte program or page = 2n
4
2Ch
0002h
Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous
Erase Blocks of the same size.
2
2Dh
2Eh
001Eh
0000h
Region 1 Information
Number of identical-size erase block = 001Eh+1
2Fh
30h
0000h
0001h
Region 1 Information
Block size in Region 1 = 0100h * 256 byte
31h
32h
0007h
0000h
Region 2 Information
Number of identical-size erase block = 0007h+1
33h
34h
0020h
0000h
Region 2 Information
Block size in Region 2 = 0020h * 256 byte
2Dh
2Eh
0007h
0000h
Region 1 Information
Number of identical-size erase block = 0007h+1
2Fh
30h
0020h
0000h
Region 1 Information
Block size in Region 1 = 0020h * 256 byte
31h
32h
001Eh
0000h
Region 2 Information
Number of identical-size erase block = 001Eh+1
33h
34h
0000h
0001h
Region 2 Information
Block size in Region 2 = 0100h * 256 byte
M28W160BB
M28W160BT
Offset Word
Mode
Description
Value
2MByte
x16
Async
31
64KByte
8
8KByte
8
8KByte
31
64KByte
37/45
M28W160BT, M28W160BB
Table 28. Primary Algorithm-Specific Extended Query Table
Offset
P = 35h (1)
Data
(P+0)h = 35h
0050h
(P+1)h = 36h
0052h
(P+2)h = 37h
0049h
(P+3)h = 38h
0031h
Major version number, ASCII
"1"
(P+4)h = 39h
0030h
Minor version number, ASCII
"0"
(P+5)h = 3Ah
0006h
(P+6)h = 3Bh
0000h
Extended Query table contents for Primary Algorithm. Address (P+5)h
contains less significant byte.
(P+7)h = 3Ch
0000h
(P+8)h = 3Dh
0000h
(P+9)h = 3Eh
0001h
Description
"P"
Primary Algorithm extended Query table unique ASCII string “PRI”
0000h
(P+B)h = 40h
0000h
"R"
"I"
bit 0
bit 1
bit 2
bit 3
bit 4
bit 31 to 5
Chip Erase supported
Erase Suspend supported
Program Suspend
Lock/Unlock supported
Queued Erase supported
Reserved; undefined bits are ‘0’
(1
(1
(1
(1
(1
= Yes, 0 = No)
= Yes, 0 = No)
= Yes, 0 = No)
= Yes, 0 = No)
= Yes, 0 = No)
No
Yes
Yes
No
No
Supported Functions after Suspend
Read Array, Read Status Register and CFI Query are always supported
during Erase or Program operation
bit 0
bit 7 to 1
(P+A)h = 3Fh
Value
Program supported after Erase Suspend (1 = Yes, 0 = No)
Reserved; undefined bits are ‘0’
Block Lock Status
Defines which bits in the Block Status Register section of the Query are
implemented.
Yes
NA
bit 0 Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No)
bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)
bit 15 to 2 Reserved for future use; undefined bits are ‘0’
(P+C)h = 41h
0030h
VDD Logic Supply Optimum Program/Erase voltage (highest performance)
bit 7 to 4
bit 3 to 0
(P+D)h = 42h
00C0h
(P+E)h
0000h
HEX value in volts
BCD value in 100 mV
VPP Supply Optimum Program/Erase voltage
bit 7 to 4
bit 3 to 0
HEX value in volts
BCD value in 100 mV
Reserved
Note: 1. See Table 25, offset 15h for P pointer definition.
Table 29. Security Code Area
Offset
Data
81h
XXXX
82h
XXXX
83h
XXXX
84h
XXXX
38/45
3V
Description
64 bits unique device number.
12V
M28W160BT, M28W160BB
APPENDIX C. FLOWCHARTS AND PSEUDO CODES
Figure 20. Program Flowchart and Pseudo Code
Start
program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0x40) ;
/*or writeToFlash (any_address, 0x10) ; */
Write 40h or 10h
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
Write Address
& Data
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03538b
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
39/45
M28W160BT, M28W160BB
Figure 21. Double Word Program Flowchart and Pseudo Code
Start
Write 30h
double_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2)
{
writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
/*Memory enters read status state after
the Program command*/
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03539b
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.
40/45
M28W160BT, M28W160BB
Figure 22. Program Suspend & Resume Flowchart and Pseudo Code
Start
program_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
Write B0h
writeToFlash (any_address, 0x70) ;
/* read status register to check if
program has already completed */
Write 70h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b2 = 1
NO
Program Complete
YES
Write FFh
}
Read data from
another address
Write D0h
if (status_register.b2==0) /*program completed */
{ writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
else
{ writeToFlash (any_address, 0xFF) ;
read_data ( ); /*read data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume program*/
}
Write FFh
}
Program Continues
Read Data
AI03540b
41/45
M28W160BT, M28W160BB
Figure 23. Erase Flowchart and Pseudo Code
Start
erase_command ( blockToErase ) {
writeToFlash (any_address, 0x20) ;
Write 20h
writeToFlash (blockToErase, 0xD0) ;
/* only A12-A20 are significannt */
/* Memory enters read status state after
the Erase Command */
Write Block
Address & D0h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1)
YES
Command
Sequence Error (1)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
YES
b4, b5 = 1
if ( (status_register.b4==1) && (status_register.b5==1) )
/* command sequence error */
error_handler ( ) ;
NO
b5 = 0
NO
Erase Error (1)
if ( (status_register.b5==1) )
/* erase error */
error_handler ( ) ;
YES
b1 = 0
NO
Erase to Protected
Block Error (1)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03541b
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.
42/45
M28W160BT, M28W160BB
Figure 24. Erase Suspend & Resume Flowchart and Pseudo Code
Start
Write B0h
erase_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
writeToFlash (any_address, 0x70) ;
/* read status register to check if
erase has already completed */
Write 70h
Read Status
Register
b7 = 1
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
NO
} while (status_register.b7== 0) ;
YES
b6 = 1
NO
Erase Complete
if (status_register.b6==0) /*erase completed */
{ writeToFlash (any_address, 0xFF) ;
YES
read_data ( ) ;
/*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
Write FFh
Read data from
another block
or
Program
}
else
Write D0h
Write FFh
Erase Continues
Read Data
{ writeToFlash (any_address, 0xFF) ;
read_program_data ( );
/*read or program data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume erase*/
}
}
AI03549b
43/45
M28W160BT, M28W160BB
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE
Table 30. Write State Machine Current/Next
Command Input (and Next State)
Current
State
SR
bit 7
Data
When
Read
Read
Array
“1”
Read
Status
Erase
Confirm
(D0h)
Program/ Program/
Erase
Erase
Suspend Resume
(B0h)
(D0h)
Read
Array
(FFh)
Program
Setup
(10/40h)
Erase
Setup
(20h)
Array
Read
Array
Program
Setup
Erase
Setup
“1”
Status
Read
Array
Program
Setup
Read
Elect.Sg.
“1”
Electronic
Signature
Read
Array
Program
Setup
Program
Setup
“1”
Status
Program (Command input = Data to be Programmed)
Program
Suspend
to Read
Status
Read
Status
(70h)
Clear
Status
(50h)
Read
Elect.Sg.
(90h)
Read Array
Read
Status
Read
Array
Read
Elect.Sg.
Erase
Setup
Read Array
Read
Status
Read
Array
Read
Elect.Sg.
Erase
Setup
Read Array
Read
Status
Read
Array
Read
Elect.Sg.
Program
(continue)
“0”
Status
Program
Suspend
to Read
Status
“1”
Status
Program
Suspend
to Read
Array
Program Suspend to
Read Array
Program
(continue)
Program
Suspend
to Read
Array
Program
(continue)
Program
Suspend
to Read
Status
Program
Suspend
to Read
Array
Program
Suspend
to Read
Elect.Sg.
Program
Suspend
to Read
Array
“1”
Array
Program
Suspend
to Read
Array
Program Suspend to
Read Array
Program
(continue)
Program
Suspend
to Read
Array
Program
(continue)
Program
Suspend
to Read
Status
Program
Suspend
to Read
Array
Program
Suspend
to Read
Elect.Sg.
Program
Suspend
to Read
Elect.Sg.
“1”
Electronic
Signature
Program
Suspend
to Read
Array
Program Suspend to
Read Array
Program
(continue)
Program
Suspend
to Read
Array
Program
(continue)
Program
Suspend
to Read
Status
Program
Suspend
to Read
Array
Program
Suspend
to Read
Elect.Sg.
Program
(complete)
“1”
Status
Read
Array
Read
Status
Read
Array
Read
Elect.Sg.
Erase
Setup
“1”
Status
Erase
Cmd.
Error
“0”
Status
Program (continue)
Program
Setup
Erase
Setup
Erase Command Error
Read
Array
Program
Setup
Program (continue)
Read Array
Erase
Erase
Erase
Command
(continue)
(continue)
Error
Erase
Setup
Erase Command Error
Read
Status
Read Array
Erase
Suspend
to Read
Status
Read
Array
Read
Elect.Sg.
Erase
(continue)
“1”
Status
Erase
Suspend
to Read
Status
“1”
Status
Erase
Suspend
to Read
Array
Program
Setup
Erase
Suspend
to Read
Array
Erase
(continue)
Erase
Suspend
to Read
Array
Erase
(continue)
Erase
Suspend
to Read
Status
Erase
Suspend
to Read
Array
Erase
Suspend
to Read
Elect.Sg.
Erase
Suspend
to Read
Array
“1”
Array
Erase
Suspend
to Read
Array
Program
Setup
Erase
Suspend
to Read
Array
Erase
(continue)
Erase
Suspend
to Read
Array
Erase
(continue)
Erase
Suspend
to Read
Status
Erase
Suspend
to Read
Array
Erase
Suspend
to Read
Elect.Sg.
Erase
Suspend
to Read
Elect.Sg.
“1”
Electronic
Signature
Erase
Suspend
to Read
Array
Program
Setup
Erase
Suspend
to Read
Array
Erase
(continue)
Erase
Suspend
to Read
Array
Erase
(continue)
Erase
Suspend
to Read
Status
Erase
Suspend
to Read
Array
Erase
Suspend
to Read
Elect.Sg.
Erase
(complete)
“1”
Status
Read
Array
Program
Setup
Erase
Setup
Read
Status
Read
Array
Read
Elect.Sg.
Erase (continue)
Note: Elect.Sg. = Electronic Signature.
44/45
Read Array
Erase (continue)
M28W160BT, M28W160BB
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
45/45