RENESAS M30302MC

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
Rev.1.0
Mitsubishi microcomputers
M16C / 30 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Description
The M16C/30 group of single-chip microcomputers are built using the high-performance silicon gate CMOS
process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP. These
single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction
efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. They
also feature a built-in multiplier and DMAC, making them ideal for controlling office, communications, industrial equipment, and other high-speed processing applications.
The M16C/30 group includes a wide range of products with different internal memory sizes and various
package types.
Features
• Memory capacity .................................. ROM (See Figure 1.1.4. ROM Expansion)
RAM 2K to 3K bytes
• Shortest instruction execution time ...... 62.5ns (f(XIN)=16MHZ, VCC=5V)
100ns (f(XIN)=10MHZ, VCC=3V, with software one-wait)
• Supply voltage ..................................... 4.2V to 5.5V (f(XIN)=16MHZ, without software wait)
2.7V to 5.5V (f(XIN)=10MHZ with software one-wait)
• Low power consumption ...................... 25.5mW ( f(XIN)=10MHZ, with software one-wait, VCC = 3V)
• Interrupts .............................................. 16 internal and 5 external interrupt sources, 4 software
interrupt sources; 7 levels (including key input interrupt)
• Multifunction 16-bit timer ...................... 3 output timers + 2 input timers
• Serial I/O .............................................. 3 channels (3 for UART or clock synchronous)
• DMAC .................................................. 1 channels (trigger: 14 sources)
• A-D converter ....................................... 10 bits X 8 channels (Expandable up to 10 channels)
• Watchdog timer .................................... 1 line
• Programmable I/O port ........................ 87 lines
_______
• Input port .............................................. 1 line (P85 shared with NMI pin)
• Memory expansion .............................. Available (to a maximum of 1M bytes)
• Chip select output ................................ 4 lines
• Clock generating circuit ....................... 2 built-in clock generation circuits
(built-in feedback resistor, and external ceramic or quartz oscillator)
Applications
Audio, cameras, office equipment, communications equipment, portable equipment
------Table of Contents-----Central Processing Unit (CPU) ..................... 11
Reset ............................................................. 14
Processor Mode ............................................ 21
Clock Generating Circuit ............................... 34
Protection ...................................................... 43
Interrupt ......................................................... 44
Watchdog Timer ............................................ 64
DMAC ........................................................... 66
Timer ............................................................. 75
Serial I/O ....................................................... 93
A-D Converter ............................................. 130
Programmable I/O Ports ............................. 136
Electrical characteristics ............................. 146
1
Mitsubishi microcomputers
M16C / 30 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pin Configuration
Figures 1.1.1 and 1.1.2 show the pin configurations (top view).
P10/D8
P11/D9
P12/D10
P13/D11
P14/D12
P15/D13
P16/D14
P17/D15
P20/A0(/D0/-)
P21/A1(/D1/D0)
P22/A2(/D2/D1)
P23/A3(/D3/D2)
P24/A4(/D4/D3)
P25/A5(/D5/D4)
P26/A6(/D6/D5)
P27/A7(/D7/D6)
Vss
P30/A8(/-/D7)
Vcc
P31/A9
P32/A10
P33/A11
P34/A12
P35/A13
P36/A14
P37/A15
P40/A16
P41/A17
P42/A18
P43/A19
PIN CONFIGURATION (top view)
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
P07/D7
P06/D6
P05/D5
P04/D4
P03/D3
P02/D2
P01/D1
P00/D0
P107/AN7/KI3
P106/AN6/KI2
P105/AN5/KI1
P104/AN4/KI0
P103/AN3
P102/AN2
P101/AN1
AVSS
P100/AN0
VREF
AVcc
P97/ADTRG
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
M16C/30 Group
97
98
99
100
2 3
4 5
P44/CS0
P45/CS1
P46/CS2
P47/CS3
P50/WRL/WR
P51/WRH/BHE
P52/RD
P53/BCLK
P54/HLDA
P55/HOLD
P56/ALE
P57/RDY/CLKOUT
P60/CTS0/RTS0
P61/CLK0
P62/RxD0
P63/TXD0
P64/CTS1/RTS1/CLKS1
P65/CLK1
P66/RxD1
P67/TXD1
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
P96/ANEX1
P95/ANEX0
P94
P93
P92/TB2IN
P91/TB1IN
P90
BYTE
CNVss
P87/XCIN
P86/XCOUT
RESET
XOUT
VSS
XIN
VCC
P85/NMI
P84/INT2
P83/INT1
P82/INT0
P81
P80
P77
P76
P75/TA2IN
P74/TA2OUT
P73/CTS2/RTS2/TA1IN
P72/CLK2/TA1OUT
P71/RxD2/SCL/TA0IN (Note)
P70/TXD2/SDA/TA0OUT (Note)
1
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
Note: P70 and P71 are N channel open-drain output pin.
Package: 100P6S-A
Figure 1.1.1. Pin configuration (top view)
2
Mitsubishi microcomputers
M16C / 30 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
P13/D11
P14/D12
P15/D13
P16/D14
P17/D15
P20/A0(/D0/-)
P21/A1(/D1/D0)
P22/A2(/D2/D1)
P23/A3(/D3/D2)
P24/A4(/D4/D3)
P25/A5(/D5/D4)
P26/A6(/D6/D5)
P27/A7(/D7/D6)
Vss
P30/A8(/-/D7)
Vcc
P31/A9
P32/A10
P33/A11
P34/A12
P35/A13
P36/A14
P37/A15
P40/A16
P41/A17
PIN CONFIGURATION (top view)
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
P12/D10
P11/D9
P10/D8
P07/D7
P06/D6
P05/D5
P04/D4
P03/D3
P02/D2
P01/D1
P00/D0
P107/AN7/KI3
P106/AN6/KI2
P105/AN5/KI1
P104/AN4/KI0
P103/AN3
P102/AN2
P101/AN1
AVSS
P100/AN0
VREF
AVcc
P97/ADTRG
P96/ANEX1
P95/ANEX0
76
77
78
79
80
50
49
48
47
46
45
44
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
M16C/30 Group
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
97
98
99
100
28
27
26
3 4 5 6 7
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
P94
P93
P92/TB2IN
P91/TB1IN
P90
BYTE
CNVss
P87/XCIN
P86/XCOUT
RESET
XOUT
VSS
XIN
VCC
P85/NMI
P84/INT2
P83/INT1
P82/INT0
P81
P80
P77
P76
P75/TA2IN
P74/TA2OUT
P73/CTS2/RTS2/TA1IN
1 2
P42/A18
P43/A19
P44/CS0
P45/CS1
P46/CS2
P47/CS3
P50/WRL/WR
P51/WRH/BHE
P52/RD
P53/BCLK
P54/HLDA
P55/HOLD
P56/ALE
P57/RDY/CLKOUT
P60/CTS0/RTS0
P61/CLK0
P62/RxD0
P63/TXD0
P64/CTS1/RTS1/CLKS1
P65/CLK1
P66/RxD1
P67/TXD1
P70/TXD2/SDA/TA0OUT (Note)
P71/RxD2/SCL/TA0IN (Note)
P72/CLK2/TA1OUT
Note: P70 and P71 are N channel open-drain output pin.
Package: 100P6Q-A
Figure 1.1.2. Pin configuration (top view)
3
Mitsubishi microcomputers
M16C / 30 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Block Diagram
Figure 1.1.3 is a block diagram of the M16C/30 group.
8
I/O ports
Port P0
8
8
Port P1
Port P2
8
Port P3
Port P4
Port P5
Expandable up to 10 channels)
XIN-XOUT
XCIN-XCOUT
UART/clock synchronous SI/O
(8 bits X 3 channels)
(15 bits)
(1 channel)
Figure 1.1.3. Block diagram of M16C/30 group
ISP
USP
Vector table
INTB
Flag register
FLG
RAM
(Note 2)
Multiplier
8
Note 1: ROM size depends on MCU type.
Note 2: RAM size depends on MCU type.
Stack pointer
ROM
(Note 1)
Port P10
SB
PC
8
DMAC
Program counter
Port P9
Watchdog timer
R0H
R0L
R0H
R0L
R1H
R1L
R1H
R1L
R2
R2
R3
R3
A0
A0
A1
A1
FB
FB
Memory
Port P85
Registers
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAA
AAAA
7
(10 bits X 8 channels
Timer TA0 (16 bits)
Timer TA1 (16 bits)
Timer TA2 (16 bits)
Timer TB1 (16 bits)
Timer TB2 (16 bits)
8
System clock generator
Port P6
Port P8
A-D converter
Timer
M16C/60 series16-bit CPU core
4
8
8
Port P7
Internal peripheral functions
8
Mitsubishi microcomputers
M16C / 30 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Performance Outline
Table 1.1.1 is a performance outline of M16C/30 group.
Table 1.1.1. Performance outline of M16C/30 group
Item
Number of basic instructions
Shortest instruction execution time
Memory
capacity
I/O port
Input port
Multifunction
timer
Serial I/O
A-D converter
ROM
RAM
P0 to P10 (except P85)
P85
TA0, TA1, TA2
TB1, TB2
UART0, UART1, UART2
DMAC
Watchdog timer
Interrupt
Clock generating circuit
Supply voltage
Power consumption
I/O
I/O withstand voltage
characteristics Output current
Memory expansion
Device configuration
Package
Performance
91 instructions
62.5ns(f(XIN)=16MHZ, VCC=5V)
100ns (f(XIN)=10MHZ, VCC=3V, with software one-wait)
(See the figure 1.1.4. ROM Expansion)
2K to 3K bytes
8 bits x 10, 7 bits x 1
1 bit x 1
16 bits x 3
16 bits x 2
(UART or clock synchronous) x 3
10 bits x (8+2) channels
1 channels (trigger: 14 sources)
15 bits x 1 (with prescaler)
16 internal and 5 external sources, 4 software sources, 7 levels
2 built-in clock generation circuits
(built-in feedback resistor, and external ceramic or quartz oscillator)
4.2V to 5.5V (f(XIN)=16MHZ, without software wait)
2.7V to 5.5V (f(XIN)=10MHZ with software one-wait)
25.5mW (f(XIN) = 10MHZ, VCC=3V with software one-wait)
5V
5mA
Available (to a maximum of 1M bytes)
CMOS high performance silicon gate
100-pin plastic mold QFP
5
Mitsubishi microcomputers
M16C / 30 Group
Description
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Mitsubishi plans to release the following products in the M16C/30 group:
(1) Support for mask ROM version
(2) ROM capacity
(3) Package
100P6S-A : Plastic molded QFP
100P6Q-A : Plastic molded QFP
ROM Size
(Byte)
128K
M30302MC-XXXFP/GP
96K
M30302MA-XXXFP/GP
64K
M30302M8-XXXFP/GP
32K
M30302M4-XXXFP/GP
Mask ROM version
Figure 1.1.4. ROM expansion
The M16C/30 group products currently supported are listed in Table 1.1.2.
Table 1.1.2. M16C/30 group
Type No.
M30302M4-XXXFP
M30302M4-XXXGP
M30302M8-XXXFP
M30302M8-XXXGP
M30302MA-XXXFP
M30302MA-XXXGP
M30302MC-XXXFP
M30302MC-XXXGP
**: Under development
* : New product
6
June, 2002
ROM capacity RAM capacity
**
**
**
**
**
**
*
*
Package type
100P6S-A
32K byte
2K byte
100P6Q-A
100P6S-A
64K byte
100P6Q-A
100P6S-A
96K byte
100P6Q-A
3K byte
128K byte
Remarks
100P6S-A
100P6Q-A
Mask ROM version
Mitsubishi microcomputers
M16C / 30 Group
Description
Type No.
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
M30302 M 8 – XXX GP
Package type:
FP : Package
GP :
100P6S-A
100P6Q-A
ROM No.
ROM capacity:
4 : 32K bytes
8 : 64K bytes
A : 96K bytes
C : 128K bytes
Memory type:
M : Mask ROM version
Shows RAM capacity, pin count, etc
(The value itself has no specific meaning)
M16C/30 Group
M16C Family
Figure 1.1.5. Type No., memory size, and package
7
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pin Description
Pin Description
Pin name
Signal name
Function
VCC, VSS
Power supply
input
CNVSS
CNVSS
Input
This pin switches between processor modes. Connect this pin to the
VSS pin when after a reset you want to start operation in single-chip
mode (memory expansion mode) or the VCC pin when starting
operation in microprocessor mode.
RESET
Reset input
Input
A “L” on this input resets the microcomputer.
XIN
Clock input
Input
XOUT
Clock output
Output
These pins are provided for the main clock generating circuit.Connect
a ceramic resonator or crystal between the XIN and the XOUT pins. To
use an externally derived clock, input it to the XIN pin and leave the
XOUT pin open.
BYTE
External data
bus width
select input
Input
AVCC
Analog power
supply input
This pin is a power supply input for the A-D converter. Connect this
pin to VCC.
AVSS
Analog power
supply input
This pin is a power supply input for the A-D converter. Connect this
pin to VSS.
VREF
Reference
voltage input
Input
This pin is a reference voltage input for the A-D converter.
P00 to P07
I/O port P0
Input/output
This is an 8-bit CMOS I/O port. It has an input/output port direction
register that allows the user to set each pin for input or output
individually. When used for input in single-chip mode, the port can be
set to have or not have a pull-up resistor in units of four bits by
software. In memory expansion and microprocessor modes, selection
of the internal pull-resistor is not available.
Input/output
When set as a separate bus, these pins input and output data (D0–D7).
Input/output
This is an 8-bit I/O port equivalent to P0.
Input/output
When set as a separate bus, these pins input and output data (D8–D15).
Input/output
This is an 8-bit I/O port equivalent to P0.
A0 to A7
Output
These pins output 8 low-order address bits (A0–A7).
A0/D0 to
A7/D7
Input/output
If the external bus is set as an 8-bit wide multiplexed bus, these pins
input and output data (D0–D7) and output 8 low-order address bits
(A0–A7) separated in time by multiplexing.
A0
A1/D0
to A7/D6
Output
Input/output
If the external bus is set as a 16-bit wide multiplexed bus, these pins
input and output data (D0–D6) and output address (A1–A7) separated
in time by multiplexing. They also output address (A0).
Input/output
This is an 8-bit I/O port equivalent to P0.
A8 to A15
Output
These pins output 8 middle-order address bits (A8–A15).
A8/D7,
A9 to A15
Input/output
Output
If the external bus is set as a 16-bit wide multiplexed bus, these pins
input and output data (D7) and output address (A8) separated in time
by multiplexing. They also output address (A9–A15).
Input/output
This is an 8-bit I/O port equivalent to P0.
Output
Output
These pins output A16–A19 and CS0–CS3 signals. A16–A19 are 4 highorder address bits. CS0–CS3 are chip select signals used to specify an
access space.
D0 to D7
P10 to P17
I/O port P1
D8 to D15
P20 to P27
P30 to P37
P40 to P47
A16 to A19,
CS0 to CS3
8
I/O type
I/O port P2
I/O port P3
I/O port P4
Supply 2.7V to 5.5 V to the VCC pin. Supply 0 V to the VSS pin.
This pin selects the width of an external data bus. A 16-bit width is
selected when this input is “L”; an 8-bit width is selected when this
input is “H”. This input must be fixed to either “H” or “L”. Connect this
pin to the VSS pin when not using external data bus.
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pin Description
Pin Description
Pin name
Signal name
I/O type
Function
Input/output
This is an 8-bit I/O port equivalent to P0. In single-chip mode, P57 in
this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of
the same frequency as XCIN as selected by software.
WRL / WR,
WRH / BHE,
RD,
BCLK,
HLDA,
HOLD,
Output
Output
Output
Output
Output
Input
ALE,
RDY
Output
Input
Output WRL, WRH (WR and BHE), RD, BCLK, HLDA, and ALE
signals. WRL and WRH, and BHE and WR can be switched using
software control.
WRL, WRH, and RD selected
With a 16-bit external data bus, data is written to even addresses
when the WRL signal is “L” and to the odd addresses when the WRH
signal is “L”. Data is read when RD is “L”.
WR, BHE, and RD selected
Data is written when WR is “L”. Data is read when RD is “L”. Odd
addresses are accessed when BHE is “L”. Use this mode when using
an 8-bit external data bus.
While the input level at the HOLD pin is “L”, the microcomputer is
placed in the hold state. While in the hold state, HLDA outputs a “L”
level. ALE is used to latch the address. While the input level of the
RDY pin is “L”, the microcomputer is in the ready state.
P50 to P57
I/O port P5
P60 to P67
I/O port P6
Input/output
This is an 8-bit I/O port equivalent to P0. When used for input in singlechip, memory expansion, and microprocessor modes, the port can be
set to have or not have a pull-up resistor in units of four bits by
software. Pins in this port also function as UART0 and UART1 I/O pins
as selected by software.
P70 to P77
I/O port P7
Input/output
This is an 8-bit I/O port equivalent to P6 (P70 and P71 are N channel
open-drain output). Pins in this port also function as timer A0–A2, or
UART2 I/O pins as selected by software.
P80 to P84,
P86,
I/O port P8
Input/output
Input/output
P80 to P84, P86, and P87 are I/O ports with the same functions as P6.
Using software, they can be made to function as the I/O pins for the
input pins for external interrupts. P86 and P87 can be set using
software to function as the I/O pins for a sub clock generation
circuit. In this case, connect a quartz oscillator between P86 (XCOUT
pin) and P87 (XCIN pin). P85 is an input-only port that also functions
for NMI. The NMI interrupt is generated when the input at this pin
changes from “H” to “L”. The NMI function cannot be cancelled using
software. The pull-up cannot be set for this pin.
Input/output
P87,
P85
I/O port P85
Input
P90 to P97
I/O port P9
Input/output
This is an 8-bit I/O port equivalent to P6. Pins in this port also function
as, timer B1, B2 input pins, A-D converter extended input pins, or A-D
trigger input pins as selected by software.
P100 to P107
I/O port P10
Input/output
This is an 8-bit I/O port equivalent to P6. Pins in this port also function
as A-D converter input pins as selected by software. Furthermore, P104
–P107 also function as input pins for the key input interrupt function.
9
Mitsubishi microcomputers
M16C / 30 Group
Memory
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Operation of Functional Blocks
The M16C/30 group accommodates certain units in a single chip. These units include ROM and RAM to
store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations.
Also included are peripheral units such as timers, serial I/O, DMAC, A-D converter, and I/O ports.
The following explains each unit.
Memory
Figure 1.3.1 is a memory map of the M16C/30 group. The address space extends the 1M bytes from
address 0000016 to FFFFF16. From FFFFF16 down is ROM. For example, in the M30302MC-XXXGP,
there is 128K bytes of internal ROM from E000016 to FFFFF16. The vector table for fixed interrupts such as
_______
the reset and NMI are mapped to FFFDC16 to FFFFF16. The starting address of the interrupt routine is
stored here. The address of the vector table for timer interrupts, etc., can be set as desired using the
internal register (INTB). See the section on interrupts for details.
From 0040016 up is RAM. For example, in the M30302MC-XXXGP, 3K bytes of internal RAM is mapped to
the space from 0040016 to 00FFF16. In addition to storing data, the RAM also stores the stack used when
calling subroutines and when interrupts are generated.
The SFR area is mapped to 0000016 to 003FF16. This area accommodates the control registers for peripheral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Figures 1.6.1 to 1.6.3 are location
of peripheral unit control registers. Any part of the SFR area that is not occupied is reserved and cannot be
used for other purposes.
The special page vector table is mapped to FFE0016 to FFFDB16. If the starting addresses of subroutines
or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions
can be used as 2-byte instructions, reducing the number of program steps.
In memory expansion mode and microprocessor mode, a part of the spaces are reserved and cannot be
used. For example, in the M30302MC-XXXGP, the following spaces cannot be used.
• The space between 0180016 and 03FFF16 (Memory expansion and microprocessor modes)
• The space between D000016 and DFFFF16 (Memory expansion mode)
0000016
SFR area
For details, see Figures
1.6.1 to 1.6.3
FFE0016
0040016
Internal RAM area
Special page
vector table
XXXXX16
RAM size
Address XXXXX16
2K bytes
00BFF16
3K bytes
00FFF16
ROM size
Address YYYYY16
32K bytes
F800016
64K bytes
F000016
96K bytes
E800016
128K bytes
E000016
AAAAAA
AAAAAA
AAAAAA
AAAAAA
Internal reserved
area (Note 1)
0400016
External area
D000016
FFFDC16
Undefined instruction
FFFFF16
BRK instruction
Address match
Single step
Watchdog timer
DBC
NMI
Reset
Overflow
Internal reserved
area (Note 2)
YYYYY16
Internal ROM area
FFFFF16
Note 1: During memory expansion and microprocessor modes, can not be used.
Note 2: In memory expansion mode, can not be used.
Figure 1.3.1. Memory map
10
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
CPU
Central Processing Unit (CPU)
The CPU has a total of 13 registers shown in Figure 1.4.1. Seven of these registers (R0, R1, R2, R3, A0,
A1, and FB) come in two sets; therefore, these have two register banks.
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
b15
R0(Note)
b8 b7
b15
R1(Note)
b15
R3(Note)
b15
A0(Note)
b15
FB(Note)
b19
b0
L
Program counter
Data
registers
b19
INTB
b0
Interrupt table
register
L
H
b15
b0
b0
User stack pointer
USP
b15
b0
b0
b0
PC
b0
AAAAAAA
AAAAAAA
AAAAAAA
b15
A1(Note)
b8 b7
H
b15
R2(Note)
b0
L
H
b0
Interrupt stack
pointer
ISP
Address
registers
b15
b0
Static base
register
SB
b15
b0
Frame base
registers
b0
FLG
Flag register
A
AAAAAAA
AA
A
AA
A
AA
AA
AA
A
AAAAAAAAAAAAAA
A
AAAAAA
IPL
U
I O B S Z D C
Note: These registers consist of two register banks.
Figure 1.4.1. Central processing unit register
(1) Data registers (R0, R1, R1H, R2, and R3)
Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and
arithmetic/logic operations.
Register R0 can be used as separate 8-bit data registers, R0H and R0L. Register R1 can be used as
separate 8-bit data registers, R1H and R1L. In some instructions, registers R2 and R0, as well as R3 and
R1 can use as 32-bit data registers (R2R0 or R3R1).
(2) Address registers (A0 and A1)
Address registers (A0 and A1) are configured with 16 bits, and have functions equivalent to those of data
registers. These registers can also be used for address register indirect addressing and address register
relative addressing.
In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).
11
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
CPU
(3) Frame base register (FB)
Frame base register (FB) is configured with 16 bits, and is used for FB relative addressing.
(4) Program counter (PC)
Program counter (PC) is configured with 20 bits, indicating the address of an instruction to be executed.
(5) Interrupt table register (INTB)
Interrupt table register (INTB) is configured with 20 bits, indicating the start address of an interrupt vector
table.
(6) Stack pointer (USP or ISP)
Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each configured with 16 bits.
Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag).
This flag is located at the position of bit 7 in the flag register (FLG).
(7) Static base register (SB)
Static base register (SB) is configured with 16 bits, and is used for SB relative addressing.
(8) Flag register (FLG)
Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 1.4.2 shows the flag
register (FLG). The following explains the function of each flag:
• Bit 0: Carry flag (C flag)
This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.
• Bit 1: Debug flag (D flag)
This flag enables a single-step interrupt.
When this flag is “1”, a single-step interrupt is generated after instruction execution. This flag is
cleared to “0” when the interrupt is acknowledged.
• Bit 2: Zero flag (Z flag)
This flag is set to “1” when an arithmetic operation resulted in 0; otherwise, cleared to “0”.
• Bit 3: Sign flag (S flag)
This flag is set to “1” when an arithmetic operation resulted in a negative value; otherwise, cleared to “0”.
• Bit 4: Register bank select flag (B flag)
This flag chooses a register bank. Register bank 0 is selected when this flag is “0” ; register bank 1 is
selected when this flag is “1”.
• Bit 5: Overflow flag (O flag)
This flag is set to “1” when an arithmetic operation resulted in overflow; otherwise, cleared to “0”.
• Bit 6: Interrupt enable flag (I flag)
This flag enables a maskable interrupt.
An interrupt is disabled when this flag is “0”, and is enabled when this flag is “1”. This flag is cleared to
“0” when the interrupt is acknowledged.
12
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
CPU
• Bit 7: Stack pointer select flag (U flag)
Interrupt stack pointer (ISP) is selected when this flag is “0” ; user stack pointer (USP) is selected
when this flag is “1”.
This flag is cleared to “0” when a hardware interrupt is acknowledged or an INT instruction of software
interrupt Nos. 0 to 31 is executed.
• Bits 8 to 11: Reserved area
• Bits 12 to 14: Processor interrupt priority level (IPL)
Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight
processor interrupt priority levels from level 0 to level 7.
If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt
is enabled.
• Bit 15: Reserved area
The C, Z, S, and O flags are changed when instructions are executed. See the software manual for
details.
AA
AAAAAAA
AA
AA
A
AA
AA
AA
A
AA
AAAAAAAAAAAAAA
AA
AA
AA
A
AA
b15
b0
IPL
U
I
O B S Z D C
Flag register (FLG)
Carry flag
Debug flag
Zero flag
Sign flag
Register bank select flag
Overflow flag
Interrupt enable flag
Stack pointer select flag
Reserved area
Processor interrupt priority level
Reserved area
Figure 1.4.2. Flag register (FLG)
13
Mitsubishi microcomputers
M16C / 30 Group
Reset
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Reset
There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset.
(See “Software Reset” for details of software resets.) This section explains on hardware resets.
When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the
reset pin level “L” (0.2VCC max.) for at least 20 cycles. When the reset pin level is then returned to the “H”
level while main clock is stable, the reset status is cancelled and program execution resumes from the
address in the reset vector table.
The RAM is undefined at power on. The initial value must therefore be set. When a reset signal is applied
while the CPU is writing a value to the RAM, the value may be set as unknown due to the termination of the
CPU access.
Figure 1.5.1 shows the example reset circuit. Figure 1.5.2 shows the reset sequence.
5V
4.0V
VCC
RESET
0V
5V
VCC
RESET
0.8V
0V
More than 20 cycles of XIN are needed.
Example when VCC = 5V.
Figure 1.5.1. Example reset circuit
XIN
More than 20 cycles are needed
Microprocessor
mode BYTE = “H”
RESET
BCLK
24cycles
BCLK
Content of reset vector
Address
FFFFC16
FFFFD16
FFFFE16
RD
WR
CS0
Microprocessor
mode BYTE = “L”
Address
Content of reset vector
FFFFC16
FFFFE16
RD
WR
CS0
Single chip
mode
Address
Figure 1.5.2. Reset sequence
14
FFFFC16
Content of reset vector
FFFFE16
Mitsubishi microcomputers
M16C / 30 Group
Reset
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
____________
Table 1.5.1 shows the statuses of the other pins while the RESET pin level is “L”. Figures 1.5.3 and 1.5.4
show the internal status of the microcomputer immediately after the reset is cancelled.
____________
Table 1.5.1. Pin status when RESET pin level is “L”
Status
Pin name
CNVSS = VCC
CNVSS = VSS
BYTE = VSS
BYTE = VCC
P0
Input port (floating)
Data input (floating)
Data input (floating)
P1
Input port (floating)
Data input (floating)
Input port (floating)
P2, P3, P40 to P43
Input port (floating)
Address output (undefined)
Address output (undefined)
P44
Input port (floating)
CS0 output (“H” level is output)
CS0 output (“H” level is output)
P45 to P47
Input port (floating)
Input port (floating)
(pull-up resistor is on)
Input port (floating)
(pull-up resistor is on)
P50
Input port (floating)
WR output (“H” level is output)
WR output (“H” level is output)
P51
Input port (floating)
BHE output (undefined)
BHE output (undefined)
P52
Input port (floating)
RD output (“H” level is output)
RD output (“H” level is output)
P53
Input port (floating)
BCLK output
BCLK output
P54
Input port (floating)
HLDA output (The output value HLDA output (The output value
depends on the input to the
depends on the input to the
HOLD pin)
HOLD pin)
P55
Input port (floating)
HOLD input (floating)
HOLD input (floating)
P56
Input port (floating)
ALE output (“L” level is output)
ALE output (“L” level is output)
P57
Input port (floating)
RDY input (floating)
RDY input (floating)
Input port (floating)
Input port (floating)
P6, P7, P80 to P84,
P86, P87, P9, P10 Input port (floating)
15
Mitsubishi microcomputers
M16C / 30 Group
Reset
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
0016
(1) Processor mode register 0 (Note 1)
(000416)···
(2) Processor mode register 1
(000516)··· 0 0 0 0 0
(3) System clock control register 0
(000616)··· 0 1 0 0 1 0 0 0
(4) System clock control register 1
(000716)··· 0 0 1 0 0 0 0 0
(5) Chip select control register
(000816)··· 0 0 0 0 0 0 0 1
(6) Address match interrupt enable register
(000916)···
(7) Protect register
(000A16)···
(8) Watchdog timer control register
(000F16)··· 0 0 0 ? ? ? ? ?
(9) Address match interrupt register 0
(001016)···
0016
(001116)···
0016
(001216)···
(10) Address match interrupt register 1
(005316)···
? 0 0 0
(21) UART1 receive interrupt control register
(005416)···
? 0 0 0
(22) Timer A0 interrupt control register
(005516)···
? 0 0 0
(23) Timer A1 interrupt control register
(005616)···
? 0 0 0
(24) Timer A2 interrupt control register
(005716)···
? 0 0 0
0 0
(25) Timer B1 interrupt control register
(005B16)···
? 0 0 0
0 0 0
(26) Timer B2 interrupt control register
(005C16)···
? 0 0 0
(27) INT0 interrupt control register
(005D16)···
0 0 ? 0 0 0
(28) INT1 interrupt control register
(005E16)···
0 0 ? 0 0 0
0 0 ? 0 0 0
0
0 0 0 0
(29) INT2 interrupt control register
(005F16)···
(30) Interrupt cause select register
(035F16)···
0016
(001416)···
0016
(31) UART2 special mode register 3 (Note 2)
(037516)···
?
(001516)···
0016
(32) UART2 special mode register 2
(037616)···
0016
(33) UART2 special mode register
(037716)···
0016
(34) UART2 transmit/receive mode register
(037816)···
0016
(001616)···
(11) DMA0 control register
(20) UART1 transmit interrupt control register
0 0 0 0
(002C16)··· 0 0 0 0 0 ? 0 0
(12) Bus collision detection interrupt
control register
(13) DMA0 interrupt control register
(004A16)···
? 0 0 0
(35) UART2 transmit/receive control register 0 (037C16)··· 0 0 0 0 1 0 0 0
(004B16)···
? 0 0 0
(36) UART2 transmit/receive control register 1 (037D16)··· 0 0 0 0 0 0 1 0
(14) Key input interrupt control register
(004D16)···
? 0 0 0
(37) Count start flag
(038016)···
(15) A-D conversion interrupt control register
(004E16)···
? 0 0 0
(38) Clock prescaler reset flag
(038116)··· 0
(16) UART2 transmit interrupt control register
(004F16)···
? 0 0 0
(39) One-shot start flag
(038216)··· 0 0
0 0 0 0 0
(17) UART2 receive interrupt control register
(005016)···
? 0 0 0
(40) Trigger select flag
(038316)···
0016
(18) UART0 transmit interrupt control register
(005116)···
? 0 0 0
(41) Up-down flag
(038416)···
0016
(19) UART0 receive interrupt control register
(005216)···
? 0 0 0
x : Nothing is mapped to this bit
? : Undefined
The content of other registers are undefined when the microcomputer is reset. The initial values must therefore be set.
The RAM is undefined at power on. The initial values must therefore be set. When a reset signal is applied while the
CPU is writing a value to the RAM, the value may be set as unknown due to the termination of the CPU access.
Note 1: When the VCC level is applied to the CNVSS pin, it is 0316 at a reset.
Note 2: “0016” is read out when set bit 7 (SDDS) of the UART2 special mode register ( address 037716) to “1”.
Figure 1.5.3. Device's internal status after a reset is cleared
16
0016
Mitsubishi microcomputers
M16C / 30 Group
Reset
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(42) Timer A0 mode register
(039616)···
0016
(62) Port P4 direction register
(03EA16)···
0016
(43) Timer A1 mode register
(039716)···
0016
(63) Port P5 direction register
(03EB16)···
0016
(44) Timer A2 mode register
(039816)···
0016
(64) Port P6 direction register
(03EE16)···
0016
(45) Timer B1 mode register
(039C16)··· 0 0 ?
0 0 0 0
(65) Port P7 direction register
(03EF16)···
0016
(46) Timer B2 mode register
(039D16)··· 0 0 ?
0 0 0 0
(66) Port P8 direction register
(03F216)··· 0 0
0 0 0 0 0
(47) UART0 transmit/receive mode register
(03A016)···
(67) Port P9 direction register
(03F316)···
0016
(48) UART0 transmit/receive control register 0 (03A416)··· 0 0 0 0 1 0 0 0
(68) Port P10 direction register
(03F616)···
0016
(49) UART0 transmit/receive control register 1 (03A516)··· 0 0 0 0 0 0 1 0
(69) Pull-up control register 0
(03FC16)···
0016
(70) Pull-up control register 1(Note)
(03FD16)···
0016
(51) UART1 transmit/receive control register 0 (03AC16)··· 0 0 0 0 1 0 0 0
(71) Pull-up control register 2
(03FE16)···
0016
(52) UART1 transmit/receive control register 1 (03AD16)··· 0 0 0 0 0 0 1 0
(72) Port control register
(03FF16)···
0016
(50) UART1 transmit/receive mode register
(03A816)···
(53) UART transmit/receive control register 2
(03B016)···
(54) DMA0 cause select register
(03B816)···
0016
0016
0 0 0 0 0 0 0
0016
(73) Data registers (R0/R1/R2/R3)
000016
(74) Address registers (A0/A1)
000016
(55) A-D control register 2
(03D416)··· 0 0 0 0 ? ? ? 0
(75) Frame base register (FB)
000016
(56) A-D control register 0
(03D616)··· 0 0 0 0 0 ? ? ?
(76) Interrupt table register (INTB)
0000016
(57) A-D control register 1
(03D716)···
0016
(77) User stack pointer (USP)
000016
(58) Port P0 direction register
(03E216)···
0016
(78) Interrupt stack pointer (ISP)
000016
(59) Port P1 direction register
(03E316)···
0016
(79) Static base register (SB)
000016
(60) Port P2 direction register
(03E616)···
0016
(80) Flag register (FLG)
000016
(61) Port P3 direction register
(03E716)···
0016
x : Nothing is mapped to this bit
? : Undefined
The content of other registers are undefined when the microcomputer is reset. The initial values must therefore be set.
The RAM is undefined at power on. The initial values must therefore be set. When a reset signal is applied while the
CPU is writing a value to the RAM, the value may be set as unknown due to the termination of the CPU access.
Note: When the VCC level is applied to the CNVSS pin, it is 0216 at a reset.
Figure 1.5.4. Device's internal status after a reset is cleared
17
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
SFR
000016
004016
000116
004116
000216
004216
000316
000416
000516
000616
000716
000816
000916
000A16
004316
Processor mode register 0 (PM0)
Processor mode register 1(PM1)
System clock control register 0 (CM0)
System clock control register 1 (CM1)
Chip select control register (CSR)
Address match interrupt enable register (AIER)
Protect register (PRCR)
004416
004516
004616
004716
004816
004916
000B16
000C16
004A16
Bus collision detection interrupt control register (BCNIC)
000D16
004B16
DMA0 interrupt control register (DM0IC)
000E16
000F16
Watchdog timer start register (WDTS)
Watchdog timer control register (WDC)
001016
001116
004C16
004D16
004E16
Address match interrupt register 0 (RMAD0)
004F16
001216
005016
001316
005116
001416
001516
005216
Address match interrupt register 1 (RMAD1)
005316
001616
005416
001716
005516
001816
005616
001916
005716
001A16
005816
001B16
005916
001C16
005A16
001D16
005B16
001E16
005C16
001F16
005D16
005E16
002016
002116
DMA0 source pointer (SAR0)
005F16
002216
006016
002316
006116
DMA0 destination pointer (DAR0)
Timer B1 interrupt control register (TB1IC)
Timer B2 interrupt control register (TB2IC)
INT0 interrupt control register (INT0IC)
INT1 interrupt control register (INT1IC)
INT2 interrupt control register (INT2IC)
006316
006516
002716
002916
Timer A0 interrupt control register (TA0IC)
Timer A1 interrupt control register (TA1IC)
Timer A2 interrupt control register (TA2IC)
006416
002616
002816
UART2 transmit interrupt control register (S2TIC)
UART2 receive interrupt control register (S2RIC)
UART0 transmit interrupt control register (S0TIC)
UART0 receive interrupt control register (S0RIC)
UART1 transmit interrupt control register (S1TIC)
UART1 receive interrupt control register (S1RIC)
006216
002416
002516
Key input interrupt control register (KUPIC)
A-D conversion interrupt control register (ADIC)
DMA0 transfer counter (TCR0)
002A16
002B16
002C16
DMA0 control register (DM0CON)
032A16
002D16
032B16
002E16
032C16
002F16
032D16
003016
032E16
003116
032F16
003216
033016
003316
033116
003416
033216
003516
033316
003616
033416
003716
033516
003816
033616
003916
033716
003A16
033816
003B16
033916
003C16
033A16
003D16
033B16
003E16
033C16
003F16
033D16
033E16
033F16
Note : Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.
Figure 1.6.1. Location of peripheral unit control registers (1)
18
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
SFR
034016
038016
034116
038116
034216
038216
034316
038316
034416
038416
034516
038516
034616
038616
034716
038716
034816
038816
034916
038916
034A16
038A16
034B16
038B16
034C16
038C16
034D16
038D16
034E16
038E16
034F16
038F16
035016
039016
035116
039116
035216
039216
035316
039316
035416
039416
035516
039516
035616
039616
035716
039716
035816
039816
035916
039916
035A16
039A16
035B16
039B16
035C16
039C16
035D16
039D16
Timer A0 register (TA0)
Timer A1 register (TA1)
Timer A2 register (TA2)
Timer B1 register (TB1)
Timer B2 register (TB2)
Timer A0 mode register (TA0MR)
Timer A1 mode register (TA1MR)
Timer A2 mode register (TA2MR)
Timer B1 mode register (TB1MR)
Timer B2 mode register (TB2MR)
039E16
035E16
035F16
Count start flag (TABSR)
Clock prescaler reset flag (CPSRF)
One-shot start flag (ONSF)
Trigger select register (TRGSR)
Up-down flag (UDF)
Interrupt cause select register (IFSR)
039F16
036016
03A016
UART0 transmit/receive mode register (U0MR)
036116
03A116
UART0 bit rate generator (U0BRG)
036216
03A216
036316
03A316
036416
03A416
036516
03A516
036616
03A616
036716
03A716
036816
03A816
UART1 transmit/receive mode register (U1MR)
036916
03A916
UART1 bit rate generator (U1BRG)
036A16
03AA16
036B16
03AB16
036C16
03AC16
036D16
03AD16
036E16
03AE16
036F16
03AF16
037016
03B016
037116
03B116
037216
03B216
037316
03B316
037616
037716
037816
037916
037A16
037B16
037C16
037D16
037E16
037F16
UART0 transmit/receive control register 0 (U0C0)
UART0 transmit/receive control register 1 (U0C1)
UART0 receive buffer register (U0RB)
UART1 transmit buffer register (U1TB)
UART1 transmit/receive control register 0 (U1C0)
UART1 transmit/receive control register 1 (U1C1)
UART1 receive buffer register (U1RB)
UART transmit/receive control register 2 (UCON)
03B416
037416
037516
UART0 transmit buffer register (U0TB)
UART2 special mode register 3(U2SMR3)
UART2 special mode register 2(U2SMR2)
UART2 special mode register (U2SMR)
03B516
UART2 transmit/receive mode register (U2MR)
UART2 bit rate generator (U2BRG)
03B816
UART2 transmit buffer register (U2TB)
UART2 transmit/receive control register 0 (U2C0)
UART2 transmit/receive control register 1 (U2C1)
UART2 receive buffer register (U2RB)
03B616
03B716
DMA0 request cause select register (DM0SL)
03B916
03BA16
03BB16
03BC16
03BD16
03BE16
03BF16
Note : Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for
read or write.
Figure 1.6.2. Location of peripheral unit control registers (2)
19
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
SFR
03C016
03C116
03C216
03C316
03C416
03C516
03C616
03C716
03C816
03C916
03CA16
03CB16
03CC16
03CD16
03CE16
03CF16
A-D register 0 (AD0)
A-D register 1 (AD1)
A-D register 2 (AD2)
A-D register 3 (AD3)
A-D register 4 (AD4)
A-D register 5 (AD5)
A-D register 6 (AD6)
A-D register 7 (AD7)
03D016
03D116
03D216
03D316
03D416
A-D control register 2 (ADCON2)
03D516
03D616
03D716
A-D control register 0 (ADCON0)
A-D control register 1 (ADCON1)
03D816
03D916
03DA16
03DB16
03DC16
03DD16
03DE16
03DF16
03E016
03E116
03E216
03E316
03E416
03E516
03E616
03E716
03E816
03E916
03EA16
03EB16
03EC16
03ED16
03EE16
03EF16
03F016
03F116
03F216
03F316
03F416
Port P0 register (P0)
Port P1 register (P1)
Port P0 direction register (PD0)
Port P1 direction register (PD1)
Port P2 register (P2)
Port P3 register (P3)
Port P2 direction register (PD2)
Port P3 direction register (PD3)
Port P4 register (P4)
Port P5 register (P5)
Port P4 direction register (PD4)
Port P5 direction register (PD5)
Port P6 register (P6)
Port P7 register (P7)
Port P6 direction register (PD6)
Port P7 direction register (PD7)
Port P8 register (P8)
Port P9 register (P9)
Port P8 direction register (PD8)
Port P9 direction register (PD9)
Port P10 register (P10)
03F516
03F616
Port P10 direction register (PD10)
03F716
03F816
03F916
03FA16
03FB16
03FC16
03FD16
03FE16
03FF16
Pull-up control register 0 (PUR0)
Pull-up control register 1 (PUR1)
Pull-up control register 2 (PUR2)
Port control register (PCR)
Note : Locations in the SFR area where nothing is allocated are reserved
areas. Do not access these areas for read or write.
Figure 1.6.3. Location of peripheral unit control registers (3)
20
Mitsubishi microcomputers
M16C / 30 Group
Software Reset
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Software Reset
Writing “1” to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the
microcomputer. A software reset has the same effect as a hardware reset. The contents of internal RAM
are preserved.
Processor Mode
(1) Types of Processor Mode
One of three processor modes can be selected: single-chip mode, memory expansion mode, and microprocessor mode. The functions of some pins, the memory map, and the access space differ according to
the selected processor mode.
• Single-chip mode
In single-chip mode, only internal memory space (SFR, internal RAM, and internal ROM) can be
accessed. However, after the reset has been released and the operation of shifting from the microprocessor mode has started (“H” applied to the CNVSS pin), the internal ROM area cannot be accessed
even if the CPU shifts to the single-chip mode.
Ports P0 to P10 can be used as programmable I/O ports or as I/O ports for the internal peripheral
functions.
• Memory expansion mode
In memory expansion mode, external memory can be accessed in addition to the internal memory
space (SFR, internal RAM, and internal ROM). However, after the reset has been released and the
operation of shifting from the microprocessor mode has started (“H” applied to the CNVSS pin), the
internal ROM area cannot be accessed even if the CPU shifts to the memory expansion mode.
In this mode, some of the pins function as the address bus, the data bus, and as control signals. The
number of pins assigned to these functions depends on the bus and register settings. (See “Bus
Settings” for details.)
• Microprocessor mode
In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed. The
internal ROM area cannot be accessed.
In this mode, some of the pins function as the address bus, the data bus, and as control signals. The
number of pins assigned to these functions depends on the bus width and register settings. (See “Bus
Settings” for details.)
(2) Setting Processor Modes
The processor mode is set using the CNVSS pin and the processor mode bits (bits 1 and 0 at address
000416). Do not set the processor mode bits to “102”.
Regardless of the level of the CNVSS pin, changing the processor mode bits selects the mode. Therefore,
never change the processor mode bits when changing the contents of other bits. Do not change the
processor mode bits simultaneously with other bits when changing the processor mode bits “012” or
“112”. Change the processor mode bits after changing the other bits. Also do not attempt to shift to or from
the microprocessor mode within the program stored in the internal ROM area.
• Applying VSS to CNVSS pin
The microcomputer begins operation in single-chip mode after being reset. Memory expansion mode
is selected by writing “012” to the processor mode bits.
• Applying VCC to CNVSS pin
The microcomputer starts to operate in microprocessor mode after being reset.
21
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Processor Mode
Figure 1.7.1 shows the processor mode register 0 and 1.
Figure 1.7.2 shows the memory maps in each processor modes.
Processor mode register 0 (Note 1)
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
PM0
Address
000416
Bit symbol
PM00
When reset
0016 (Note 2)
Bit name
Processor mode bit
PM01
Function
b1 b0
0 0: Single-chip mode
0 1: Memory expansion mode
1 0: Must not be set
1 1: Microprocessor mode
0 : RD,BHE,WR
1 : RD,WRH,WRL
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AAA
AAA
R W
PM02
R/W mode select bit
PM03
Software reset bit
The device is reset when this bit is set
to “1”. The value of this bit is “0” when
read.
PM04
Multiplexed bus space
select bit
b5 b4
PM06
Port P40 to P43 function
select bit (Note 3)
0 : Address output
1 : Port function
(Address is not output)
PM07
BCLK output disable bit
0 : BCLK is output
1 : BCLK is not output
(Pin is left floating)
PM05
0 0 : Multiplexed bus is not used
0 1 : Allocated to CS2 space
1 0 : Allocated to CS1 space
1 1 : Allocated to entire space (Note4)
Note 1: Set bit 1 of the protect register (address 000A16) to “1” when writing new
values to this register.
Note 2: If the VCC voltage is applied to the CNVSS, the value of this register when
reset is 0316. (PM00 and PM01 both are set to “1”.)
Note 3: Valid in microprocessor and memory expansion modes.
Note 4: If the entire space is of multiplexed bus in memory expansion mode, choose an 8bit width.The processor operates using the separate bus after reset is revoked, so the entire
space multiplexed bus cannot be chosen in microprocessor mode.
P31 to P37 become a port if the entire space multiplexed bus is chosen, so only 256 bytes can
be used in each chip select.
Processor mode register 1 (Note)
b7
b6
b5
0 0
b4
b3
0 0
b2
b1
b0
0
Symbol
PM1
Address
000516
Bit symbol
Bit name
When reset
00000XX02
Function
Must always be set to “0”
Reserved bit
Nothing is assigned.
AA
A
AAA
AA
A
AAA
AA
A
AAA
R W
In an attempt to write to these bits, write “0”. The value, if read, turns
out to be indeterminate.
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
PM17
Wait bit
0 : No wait state
1 : Wait state inserted
Note: Set bit 1 of the protect register (address 000A16) to “1” when writing new values to this register.
Figure 1.7.1. Processor mode register 0 and 1
22
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Processor Mode
Single-chip mode
Memory expansion mode
Microprocessor mode
0000016
SFR area
SFR area
SFR area
Internal
RAM area
Internal
RAM area
Internal
RAM area
Internally
reserved area
Internally
reserved area
External
area
External
area
0040016
XXXXX16
0400016
Inhibited
D000016
Internally
reserved area
YYYYY16
Internal
ROM area
Internal
ROM area
FFFFF16
RAM size
Address XXXXX16
ROM size
Address YYYYY16
2K bytes
00BFF16
32K bytes
F800016
3K bytes
00FFF16
64K bytes
F000016
96K bytes
E800016
128K bytes
E000016
External area :
Accessing this area allows the user to
access a device connected externally
to the microcomputer.
Figure 1.7.2. Memory maps in each processor modes
23
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Settings
Bus Settings
The BYTE pin and bits 4 to 6 of the processor mode register 0 (address 000416) are used to change the bus settings.
Table 1.8.1 shows the factors used to change the bus settings.
Table 1.8.1. Factors for switching bus settings
Bus setting
Switching external address bus width
Switching external data bus width
Switching between separate and multiplex bus
Switching factor
Bit 6 of processor mode register 0
BYTE pin
Bits 4 and 5 of processor mode register 0
(1) Selecting external address bus width
The address bus width for external output in the 1M bytes of address space can be set to 16 bits (64K
bytes address space) or 20 bits (1M bytes address space). When bit 6 of the processor mode register 0
is set to “1”, the external address bus width is set to 16 bits, and P2 and P3 become part of the address
bus. P40 to P43 can be used as programmable I/O ports. When bit 6 of processor mode register 0 is set
to “0”, the external address bus width is set to 20 bits, and P2, P3, and P40 to P43 become part of the
address bus.
(2) Selecting external data bus width
The external data bus width can be set to 8 or 16 bits. (Note, however, that only the separate bus can be
set.) When the BYTE pin is “L”, the bus width is set to 16 bits; when “H”, it is set to 8 bits. (The internal bus
width is permanently set to 16 bits.) While operating, fix the BYTE pin either to “H” or to “L”.
(3) Selecting separate/multiplex bus
The bus format can be set to multiplex or separate bus using bits 4 and 5 of the processor mode register 0.
• Separate bus
In this mode, the data and address are input and output separately. The data bus can be set using the
BYTE pin to be 8 or 16 bits. When the BYTE pin is “H”, the data bus is set to 8 bits and P0 functions as
the data bus and P1 as a programmable I/O port. When the BYTE pin is “L”, the data bus is set to 16
bits and P0 and P1 are both used for the data bus.
When the separate bus is used for access, a software wait can be selected.
• Multiplex bus
In this mode, data and address I/O are time multiplexed. With the BYTE pin = “H”, the 8 bits from D0 to
D7 are multiplexed with A0 to A7.
With the BYTE pin = “L”, the 8 bits from D0 to D7 are multiplexed with A1 to A8. D8 to D15 are not
multiplexed. In this case, the external devices connected to the multiplexed bus are mapped to the
microcomputer’s even addresses (every 2nd address). To access these external devices, access the
even addresses as bytes.
The ALE signal latches the address. It is output from P56.
Before using the multiplex bus for access, be sure to insert a software wait.
If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width.
The processor operates using the separate bus after reset is revoked, so the entire space multiplexed
bus cannot be chosen in microprocessor mode.
P31 to P37 become a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used
in each chip select.
24
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Settings
Table 1.8.2. Pin functions for each processor mode
Processor mode
Single-chip
mode
Memory expansion mode/microprocessor modes
“01”, “10”
Multiplexed bus
space select bit
“00”
Either CS1 or CS2 is for
multiplexed bus and others
are for separate bus
Data bus width
BYTE pin level
8 bits
“H”
16 bits
“L”
(separate bus)
8 bits
“H”
Memory
expansion mode
“11” (Note 1)
multiplexed
bus for the
entire
space
16 bits
“L”
8 bit
“H”
P00 to P07
I/O port
Data bus
Data bus
Data bus
Data bus
I/O port
P10 to P17
I/O port
I/O port
Data bus
I/O port
Data bus
I/O port
P20
I/O port
Address bus
Address bus
/data bus(Note 2)
Address bus
Address bus
Address bus
/data bus
P21 to P27
I/O port
Address bus
/data bus(Note 2)
Address bus
/data bus(Note 2)
Address bus
Address bus
Address bus
/data bus
P30
I/O port
Address bus
Address bus
Address bus
Address bus
A8/D7
/data bus(Note 2)
P31 to P37
I/O port
Address bus
Address bus
Address bus
Address bus
I/O port
P40 to P43
Port P40 to P43
function select bit = 1
I/O port
I/O port
I/O port
I/O port
I/O port
I/O port
P40 to P43
Port P40 to P43
function select bit = 0
I/O port
Address bus
Address bus
Address bus
Address bus
I/O port
P44 to P47
I/O port
CS (chip select) or programmable I/O port
(For details, refer to “Bus control”)
P50 to P53
I/O port
Outputs RD, WRL, WRH, and BCLK or RD, BHE, WR, and BCLK
(For details, refer to “Bus control”)
P54
I/O port
HLDA
HLDA
HLDA
HLDA
HLDA
P55
I/O port
HOLD
HOLD
HOLD
HOLD
HOLD
P56
I/O port
ALE
ALE
ALE
ALE
ALE
P57
I/O port
RDY
RDY
RDY
RDY
RDY
Note 1: If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width.
The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be
chosen in microprocessor mode.
P31 to P37 become a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used
in each chip select.
Note 2: Address bus when in separate bus mode.
25
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Control
Bus Control
The following explains the signals required for accessing external devices and software waits. The signals
required for accessing the external devices are valid when the processor mode is set to memory expansion
mode and microprocessor mode. The software waits are valid in all processor modes.
(1) Address bus/data bus
The address bus consists of the 20 pins A0 to A19 for accessing the 1M bytes of address space.
The data bus consists of the pins for data I/O. When the BYTE pin is “H”, the 8 ports D0 to D7 function
as the data bus. When BYTE is “L”, the 16 ports D0 to D15 function as the data bus.
When a change is made from single-chip mode to memory expansion mode, the value of the address
bus is undefined until external memory is accessed.
(2) Chip select signal
The chip select signal is output using the same pins as P44 to P47. Bits 0 to 3 of the chip select control
register (address 000816) set each pin to function as a port or to output the chip select signal. The chip
select control register is valid in memory expansion mode and microprocessor mode. In single-chip
mode, P44 to P47 function as programmable I/O ports regardless of the value in the chip select control
register.
_______
In microprocessor mode, only CS0 outputs the chip select signal after the reset state has been can_______
_______
celled. CS1 to CS3 function as input ports. Figure 1.9.1 shows the chip select control register.
The chip select signal can be used to split the external area into as many as four blocks. Tables 1.9.1
shows the external memory areas specified using the chip select signal.
Table 1.9.1. External areas specified by the chip select signals
Chip select signal
Processor mode
CS0
Memory expansion mode
Microprocessor mode
26
3000016 to
CFFFF16
(640K bytes)
3000016 to
FFFFF16
(832K bytes)
CS1
CS2
CS3
2800016 to
2FFFF16
(32K bytes)
0800016 to
27FFF16
(128K bytes)
0400016 to
07FFF16
(16K bytes)
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Control
Chip select control register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
CSR
Address
000816
Bit name
Bit symbol
CS0
CS1
CS0 output enable bit
CS1 output enable bit
CS2
CS2 output enable bit
CS3
CS3 output enable bit
CS0W
CS0 wait bit
CS1W
CS1 wait bit
CS2W
CS2 wait bit
CS3W
CS3 wait bit
When reset
0116
Function
0 : Chip select output disabled
(Normal port pin)
1 : Chip select output enabled
0 : Wait state inserted
1 : No wait state
AA
A
AA
A
A
A
A
AA
AA
A
A
AA
A
A
AA
RW
Figure 1.9.1. Chip select control register
The timing of the chip select signal changing to “L”(active) is synchronized with the address bus. But the
timing of the chip select signal changing to “H” depends on the area which will be accessed in the next
cycle. Figure 1.9.2 shows the output example of the address bus and chip select signal.
27
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Control
Example 1) After access the external area, both the address signal and
the chip select signal change concurrently in the next cycle.
Example 2) After access the external area, only the chip select signal
changes in the next cycle (the address bus does not change).
In this example, after access to the external area(i), an access to the area
indicated by the other chip select signal(j) will occur in the next cycle. In
this case, both the address bus and the chip select signal change between
the two cycles.
In this example, an access to the internal ROM or the internal RAM in the
next cycle will occur, after access to the external area. In this case, the
chip select signal changes between the two cycles, but the address does
not change.
Access to the
Access to the Other
External Area( i ) External Area( j )
BCLK
Address bus
Internal ROM/RAM
Access
BCLK
Read/Write
signal
Data bus
Access to the
External Area
Read/Write
signal
Data
Data bus
Address bus
Address
Chip select
(CS i)
Data
Address
Chip select
Chip select
(CS j)
Example 3) After access the external area, only the address bus changes
in the next cycle (the chip select signal does not change).
Example 4) After access the external area, either the address signal and
the chip select signal do not change in the next cycle.
In this example, after access to the external area(i), an access to the area
indicated by the same chip select signal(i) will occur in the next cycle. In
this case, the address bus changes between the two cycles, but the chip
select signal does not change.
In this example, any access to any area does not occur in the next cycle
(either instruction prefetch does not occur). In this case,either the address
bus and chip select signal do not change between the two cycles.
Access to the
External Area( i )
BCLK
Address bus
Chip select
(CS i)
Access to the
External Area
No Access
BCLK
Read/Write
signal
Read/Write
signal
Data bus
Access to the Same
External Area( i )
Data
Address
Data bus
Address bus
Data
Address
Chip select
Note : These examples show the address bus and chip select signal within the successive two cycles.
According to the combination of these examples, the chip select can be elongated to over 2cycles.
Figure 1.9.2. Output Examples about Address Bus and Chip Select Signal (Separated Bus without
Wait)
28
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Control
(3) Read/write signals
With a 16-bit data bus (BYTE pin =“L”), bit 2 of the processor mode register 0 (address 000416) select the
_____ ________
______
_____ ________
_________
combinations of RD, BHE, and WR signals or RD, WRL, and WRH signals. With an 8-bit data bus (BYTE
_____ ______
_______
pin = “H”), use the combination of RD, WR, and BHE signals. (Set bit 2 of the processor mode register 0
(address 000416) to “0”.) Tables 1.9.3 and 1.9.4 show the operation of these signals.
_____ ______
________
After a reset has been cancelled, the combination of RD, WR, and BHE signals is automatically selected.
_____ _________
_________
When switching to the RD, WRL, and WRH combination, do not write to external memory until bit 2 of the
processor mode register 0 (address 000416) has been set (Note).
Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect
register (address 000A16) to “1”.
_____
________
_________
Table 1.9.3. Operation of RD, WRL, and WRH signals
Data bus width
16-bit
(BYTE = “L”)
RD
L
H
H
H
WRL
H
L
H
L
_____
______
Status of external data bus
WRH
H
H
L
L
Read data
Write 1 byte of data to even address
Write 1 byte of data to odd address
Write data to both even and odd addresses
________
Table 1.9.4. Operation of RD, WR, and BHE signals
Data bus width
16-bit
(BYTE = “L”)
8-bit
(BYTE = “H”)
RD
H
L
H
L
H
L
H
L
WR
L
H
L
H
L
H
L
H
BHE
L
L
H
H
L
L
Not used
Not used
A0
H
H
L
L
L
L
H/L
H/L
Status of external data bus
Write 1 byte of data to odd address
Read 1 byte of data from odd address
Write 1 byte of data to even address
Read 1 byte of data from even address
Write data to both even and odd addresses
Read data from both even and odd addresses
Write 1 byte of data
Read 1 byte of data
(4) ALE signal
The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the
ALE signal falls.
When BYTE pin = “L”
When BYTE pin = “H”
ALE
ALE
D0/A0 to D7/A7
A8 to A19
Address
Data (Note 1)
A0
D0/A1 to D7/A8
Address
Address
Data (Note 1)
Address (Note 2)
A9 to A19
Address
Note 1: Floating when reading.
Note 2: When multiplexed bus for the entire space is selected, these are I/O ports.
Figure 1.9.3. ALE signal and address/data bus
29
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Control
________
(5) The RDY signal
________
RDY is a signal that facilitates access to an external device that requires long access time. As shown in
________
Figure 1.9.4, if an “L” is being input to the RDY at the BCLK falling edge, the bus turns to the wait state. If
________
an “H” is being input to the RDY pin at the BCLK falling edge, the bus cancels the wait state. Table 1.9.5
shows the state of the microcomputer with the bus in the wait state, and Figure 1.9.4 shows an example
____
________
in which the RD signal is prolonged by the RDY signal.
________
The RDY signal is valid when accessing the external area during the bus cycle in which bits 4 to 7 of the
________
chip select control register (address 000816) are set to “0”. The RDY signal is invalid when setting “1” to
________
all bits 4 to 7 of the chip select control register (address 000816), but the RDY pin should be treated as
properly as in non-using.
Table 1.9.5. Microcomputer status in wait state (Note)
Item
Status
Oscillation
On
___
_____
________
R/W signal, address bus, data bus, CS
__________
ALE signal, HLDA, programmable I/O ports
Internal peripheral circuits
Maintain status when RDY signal received
On
________
Note: The RDY signal cannot be received immediately prior to a software wait.
In an instance of separate bus
BCLK
AAAA
RD
CSi
(i=0 to 3)
RDY
tsu(RDY - BCLK)
Accept timing of RDY signal
In an instance of multiplexed bus
BCLK
AAAAAA
AAAAAA
RD
CSi
(i=0 to 3)
RDY
tsu(RDY - BCLK)
AA
AA
: Wait using RDY signal
Accept timing of RDY signal
: Wait using software
_____
________
Figure 1.9.4. Example of RD signal extended by RDY signal
30
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Control
(6) Hold signal
The hold signal is used to transfer the bus privileges from the CPU to the external circuits. Inputting “L” to
__________
the HOLD pin places the microcomputer in the hold state at the end of the current bus access. This status
__________
__________
is maintained and “L” is output from the HLDA pin as long as “L” is input to the HOLD pin. Table 1.9.6
shows the microcomputer status in the hold state.
__________
Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence.
__________
HOLD > DMAC > CPU
Figure 1.9.5. Bus-using priorities
Table 1.9.6. Microcomputer status in hold state
Item
Status
Oscillation
ON
___
_____
_______
R/W signal, address bus, data bus, CS, BHE
Programmable I/O ports
P0, P1, P2, P3, P4, P5
P6, P7, P8, P9, P10
Floating
Floating
Maintains status when hold signal is received
__________
HLDA
Internal peripheral circuits
ALE signal
Output “L”
ON (but watchdog timer stops)
Undefined
(7) External bus status when the internal area is accessed
Table 1.9.7 shows the external bus status when the internal area is accessed.
Table 1.9.7. External bus status when the internal area is accessed
Item
SFR accessed
Internal ROM/RAM accessed
Address bus
Address output
Maintain status before accessed
address of external area
Data bus
When read
Floating
Floating
When write
Output data
Undefined
RD, WR, WRL, WRH
RD, WR, WRL, WRH output
Output “H”
BHE
BHE output
Maintain status before accessed
status of external area
CS
Output “H”
Output “H”
ALE
Output “L”
Output “L”
31
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Control
(8) BCLK output
The user can choose the BCLK output by use of bit 7 of processor mode register 0 (000416) (Note).
When set to “1”, the output floating.
Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect
register (address 000A16) to “1”.
(9) Software wait
A software wait can be inserted by setting the wait bit (bit 7) of the processor mode register 1 (address
000516) (Note) and bits 4 to 7 of the chip select control register (address 000816).
A software wait is inserted in the internal ROM/RAM area and in the external memory area by setting the
wait bit of the processor mode register 1. When set to “0”, each bus cycle is executed in one BCLK cycle.
When set to “1”, each bus cycle is executed in two or three BCLK cycles. After the microcomputer has been
reset, this bit defaults to “0”. When set to “1”, a wait is applied to all memory areas (two or three BCLK
cycles), regardless of the contents of bits 4 to 7 of the chip select control register. Set this bit after referring
to the recommended operating conditions (main clock input oscillation frequency) of the electric character________
istics. However, when the user is using the RDY signal, the relevant bit in the chip select control register’s
bits 4 to 7 must be set to “0”.
When the wait bit of the processor mode register 1 is “0”, software waits can be set independently for
each of the 4 areas selected using the chip select signal. Bits 4 to 7 of the chip select control register
_______
_______
correspond to chip selects CS0 to CS3. When one of these bits is set to “1”, the bus cycle is executed in
one BCLK cycle. When set to “0”, the bus cycle is executed in two or three BCLK cycles. These bits
default to “0” after the microcomputer has been reset.
The SFR area is always accessed in two BCLK cycles regardless of the setting of these control bits. Also,
insert a software wait if using the multiplex bus to access the external memory area.
Table 1.9.8 shows the software wait and bus cycles. Figure 1.9.6 shows example of bus timing when
using software waits.
Note: Before attempting to change the contents of the processor mode register 1, set bit 1 of the protect
register (address 000A16) to “1”.
Table 1.9.8. Software waits and bus cycles
Area
Wait bit
Bits 4 to 7 of chip select
control register
Invalid
Invalid
2 BCLK cycles
0
Invalid
1 BCLK cycle
1
Invalid
2 BCLK cycles
Separate bus
0
1
1 BCLK cycle
Separate bus
0
0
2 BCLK cycles
Separate bus
1
0 (Note)
2 BCLK cycles
Multiplex bus
0
0
3 BCLK cycles
Multiplex bus
1
0 (Note)
3 BCLK cycles
Bus status
SFR
Internal
ROM/RAM
External
memory
area
Note: When using the RDY signal, always set to “0”.
32
Bus cycle
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bus Control
< Separate bus (no wait) >
Bus cycle (Note 1) Bus cycle (Note 1)
BCLK
Write signal
Read signal
Output
Data bus
Address bus (Note 2)
Address
Input
Address
Chip select (Note 2)
< Separate bus (with wait) >
Bus cycle (Note 1)
Bus cycle (Note 1)
BCLK
Write signal
Read signal
Input
Output
Data bus
Address
Address
Bus cycle (Note 1)
Bus cycle (Note 1)
Address
Address
Address bus (Note 2)
Chip select (Note 2)
< Multiplexed bus >
BCLK
Write signal
Read signal
ALE
Address bus (Note 2)
Address bus/
Data bus
Address
Data output
Address
Input
Chip select (Note 2)
Note 1: These example timing charts indicate bus cycle length.
After this bus cycle sometimes come read and write cycles in succession.
Note 2: The address bus and chip select may be extended depending on the CPU status
such as that of the instruction queue buffer.
Figure 1.9.6. Typical bus timings using software wait
33
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Clock Generating Circuit
Clock Generating Circuit
The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the
CPU and internal peripheral units.
Table 1.10.1. Main clock and sub-clock generating circuits
Use of clock
Usable oscillator
Pins to connect oscillator
Oscillation stop/restart function
Oscillator status immediately after reset
Other
Main clock generating circuit
Sub-clock generating circuit
• CPU’s operating clock source
• CPU’s operating clock source
• Internal peripheral units’
• Timer A/B’s count clock
operating clock source
source
Ceramic or crystal oscillator
Crystal oscillator
XIN, XOUT
XCIN, XCOUT
Available
Available
Oscillating
Stopped
Externally derived clock can be input
Example of oscillator circuit
Figure 1.10.1 shows some examples of the main clock circuit, one using an oscillator connected to the
circuit, and the other one using an externally derived clock for input. Figure 1.10.2 shows some examples
of sub-clock circuits, one using an oscillator connected to the circuit, and the other one using an externally
derived clock for input. Circuit constants in Figures 1.10.1 and 1.10.2 vary with each oscillator used. Use
the values recommended by the manufacturer of your oscillator.
Microcomputer
Microcomputer
(Built-in feedback resistor)
(Built-in feedback resistor)
XIN
XIN
XOUT
XOUT
Open
(Note)
Rd
Externally derived clock
CIN
COUT
Vcc
Vss
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive
capacity setting. Use the value recommended by the maker of the oscillator.
When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's
data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XIN
and XOUT following the instruction.
Figure 1.10.1. Examples of main clock
Microcomputer
Microcomputer
(Built-in feedback resistor)
(Built-in feedback resistor)
XCIN
XCOUT
XCIN
XCOUT
Open
(Note)
RCd
Externally derived clock
CCIN
CCOUT
Vcc
Vss
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive
capacity setting. Use the value recommended by the maker of the oscillator.
When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's
data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XCIN
and XCOUT following the instruction.
Figure 1.10.2. Examples of sub-clock
34
Mitsubishi microcomputers
M16C / 30 Group
Clock Generating Circuit
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Clock Control
Figure 1.10.3 shows the block diagram of the clock generating circuit.
XCIN
XCOUT
fC32
1/32
f1
CM04
f1SIO2
fAD
fC
f8SIO2
f8
Sub clock
f32SIO2
CM10 “1”
Write signal
f32
S Q
XIN
XOUT
a
RESET
Software reset
Main clock
CM02
CM05
NMI
Interrupt request
level judgment
output
AAA
AAA
b
R
c
Divider
d
CM07=0
BCLK
fC
CM07=1
S Q
WAIT instruction
R
c
b
a
1/2
1/2
1/2
1/2
1/2
CM06=0
CM17,CM16=11
CM06=1
CM06=0
CM17,CM16=10
d
CM06=0
CM17,CM16=01
CM06=0
CM17,CM16=00
CM0i : Bit i at address 000616
CM1i : Bit i at address 000716
WDCi : Bit i at address 000F16
Details of divider
Figure 1.10.3. Clock generating circuit
35
Mitsubishi microcomputers
M16C / 30 Group
Clock Generating Circuit
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The following paragraphs describes the clocks generated by the clock generating circuit.
(1) Main clock
The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to
the BCLK. The clock can be stopped using the main clock stop bit (bit 5 at address 000616). Stopping the
clock, after switching the operating clock source of CPU to the sub-clock, reduces the power dissipation.
After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the main clock
oscillation circuit can be reduced using the XIN-XOUT drive capacity select bit (bit 5 at address 000716).
Reducing the drive capacity of the main clock oscillation circuit reduces the power dissipation. This bit
changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
(2) Sub-clock
The sub-clock is generated by the sub-clock oscillation circuit. No sub-clock is generated after a reset.
After oscillation is started using the port XC select bit (bit 4 at address 000616), the sub-clock can be
selected as the BCLK by using the system clock select bit (bit 7 at address 000616). However, be sure
that the sub-clock oscillation has fully stabilized before switching.
After the oscillation of the sub-clock oscillation circuit has stabilized, the drive capacity of the sub-clock
oscillation circuit can be reduced using the XCIN-XCOUT drive capacity select bit (bit 3 at address 000616).
Reducing the drive capacity of the sub-clock oscillation circuit reduces the power dissipation. This bit
changes to “1” when shifting to stop mode and at a reset.
When the XCIN/XCOUT is used, set ports P86 and P87 as the input ports without pull-up.
(3) BCLK
The BCLK is the clock that drives the CPU, and is fC or the clock is derived by dividing the main clock by
1, 2, 4, 8, or 16. The BCLK is derived by dividing the main clock by 8 after a reset. The BCLK signal can
be output from BCLK pin by the BCLK output disable bit (bit 7 at address 000416) in the memory expansion and the microprocessor modes.
The main clock division select bit 0(bit 6 at address 000616) changes to “1” when shifting from highspeed/medium-speed to stop mode and at reset. When shifting from low-speed/low power dissipation
mode to stop mode, the value before stop mode is retained.
(4) Peripheral function clock(f1, f8, f32, f1SIO2, f8SIO2,f32SIO2,fAD)
The clock for the peripheral devices is derived from the main clock or by dividing it by 1, 8, or 32. The
peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function
clock stop bit (bit 2 at 000616) to “1” and then executing a WAIT instruction.
(5) fC32
This clock is derived by dividing the sub-clock by 32. It is used for the timer A and timer B counts.
(6) fC
This clock has the same frequency as the sub-clock. It is used for the BCLK and for the watchdog timer.
36
Mitsubishi microcomputers
M16C / 30 Group
Clock Generating Circuit
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Figure 1.10.4 shows the system clock control registers 0 and 1.
System clock control register 0 (Note 1)
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
CM0
Address
000616
Bit symbol
When reset
4816
Bit name
Function
b1 b0
AA
A
AAA
AAA
AA
A
AA
A
AAA
AA
A
AA
A
AAA
RW
Clock output function
select bit
(Valid only in single-chip
mode)
0 0 : I/O port P57
0 1 : fC output
1 0 : f8 output
1 1 : f32 output
CM02
WAIT peripheral function
clock stop bit
0 : Do not stop peripheral function clock in wait mode
1 : Stop peripheral function clock in wait mode (Note 8)
CM03
XCIN-XCOUT drive capacity 0 : LOW
select bit (Note 2)
1 : HIGH
CM04
Port XC select bit
0 : I/O port
1 : XCIN-XCOUT generation (Note 9)
CM05
Main clock (XIN-XOUT)
stop bit (Note 3, 4, 5)
0 : On
1 : Off
CM06
Main clock division select
bit 0 (Note 7)
0 : CM16 and CM17 valid
1 : Division by 8 mode
CM07
System clock select bit
(Note 6)
0 : XIN, XOUT
1 : XCIN, XCOUT
CM00
CM01
Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register.
Note 2: Changes to “1” when shiffing to stop mode and at a reset.
Note 3: When entering low power dissipation mode, main clock stops by using this bit. To stop the main clock, when the
sub clock oscillation is stable, set system clock select bit (CM07) to “1” before setting this bit to “1”.
Note 4: When inputting external clock, only clock oscillation buffer is stopped and clock input is acceptable.
Note 5: If this bit is set to “1”, XOUT turns “H”. The built-in feedback resistor remains being connected, so XIN turns
pulled up to XOUT (“H”) via the feedback resistor.
Note 6: Set port XC select bit (CM04) to “1” and stabilize the sub-clock oscillating before setting this bit from “0” to “1”.
Do not write to both bits at the same time. And also, set the main clock stop bit (CM05) to “0” and stabilize the
main clock oscillating before setting this bit from “1” to “0”.
Note 7: This bit changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
Note 8: fC32 is not included. Do not set to “1” when using low-speed or low power dissipation mode.
Note 9: When the XCIN/XCOUT is used, set ports P86 and P87 as the input ports without pull-up.
System clock control register 1 (Note 1)
b7
b6
b5
b4
b3
b2
b1
0 0
0
0
b0
Symbol
CM1
Address
000716
Bit symbol
CM10
When reset
2016
Bit name
All clock stop control bit
(Note4)
Function
0 : Clock on
1 : All clocks off (stop mode)
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
CM15
XIN-XOUT drive capacity
select bit (Note 2)
CM16
Main clock division
select bit 1 (Note 3)
0 : LOW
1 : HIGH
b7 b6
CM17
0 0 : No division mode
0 1 : Division by 2 mode
1 0 : Division by 4 mode
1 1 : Division by 16 mode
AAA
AA
A
AA
A
AA
A
AA
A
AA
A
AAA
AA
A
AAA
RW
Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register.
Note 2: This bit changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
Note 3: Can be selected when bit 6 of the system clock control register 0 (address 000616) is “0”. If “1”, division mode is
fixed at 8.
Note 4: If this bit is set to “1”, XOUT turns “H”, and the built-in feedback resistor is cut off. XCIN and XCOUT turn highimpedance state.
Figure 1.10.4. Clock control registers 0 and 1
37
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Clock Generating Circuit
Clock Output
In single-chip mode, the clock output function select bits (bits 0 and 1 at address 000616) enable f8, f32, or
fc to be output from the P57/CLKOUT pin. When the WAIT peripheral function clock stop bit (bit 2 at address
000616) is set to “1”, the output of f8 and f32 stops when a WAIT instruction is executed.
Stop Mode
Writing “1” to the all-clock stop control bit (bit 0 at address 000716) stops all oscillation and the microcomputer enters stop mode. In stop mode, the content of the internal RAM is retained provided that VCC remains above 2V.
Because the oscillation , BCLK, f1 to f32, f1SIO2 to f32SIO2, fC, fC32, and fAD stops in stop mode, peripheral
functions such as the A-D converter and watchdog timer do not function. However, timer A and timer B
operate provided that the event counter mode is set to an external pulse, and UARTi(i = 0 to 2) functions
provided an external clock is selected. Table 1.10.2 shows the status of the ports in stop mode.
Stop mode is cancelled by a hardware reset or an interrupt. If an interrupt is to be used to cancel stop mode,
that interrupt must first have been enabled, and the priority level of the interrupt which is not used to cancel
must have been changed to 0. If returning by an interrupt, that interrupt routine is executed. If only a
_______
hardware reset or an NMI interrupt is used to cancel stop mode, change the priority level of all interrupt to
0, then shift to stop mode.
When shifting from high-speed/medium-speed mode to stop mode and at a reset, the main clock division
select bit 0 (bit 6 at address 000616) is set to “1”. When shifting from low-speed/low power dissipation mode
to stop mode, the value before stop mode is retained.
Table 1.10.2. Port status during stop mode
Pin
Memory expansion mode
Microprocessor mode
_______
Single-chip mode
_______
Address bus, data bus, CS0 to CS3,
Retains status before stop mode
________
BHE
_____
______
________
_________
RD, WR, WRL, WRH
“H”
__________
HLDA, BCLK
ALE
Port
CLKOUT
When fc selected
When f8, f32 selected
38
“H”
“H”
Retains status before stop mode Retains status before stop mode
Valid only in single-chip mode “H”
Valid only in single-chip mode Retains status before stop mode
Mitsubishi microcomputers
M16C / 30 Group
Wait Mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Wait Mode
When a WAIT instruction is executed, the BCLK stops and the microcomputer enters the wait mode. In this
mode, oscillation continues but the BCLK and watchdog timer stop. Writing “1” to the WAIT peripheral
function clock stop bit and executing a WAIT instruction stops the clock being supplied to the internal
peripheral functions, allowing power dissipation to be reduced. However, peripheral function clock fC32
does not stop so that the peripherals using fC32 do not contribute to the power saving. When the MCU
running in low-speed or low power dissipation mode, do not enter WAIT mode with this bit set to “1”. Table
1.10.3 shows the status of the ports in wait mode.
Wait mode is cancelled by a hardware reset or an interrupt. If an interrupt is used to cancel wait mode, that
interrupt must first have been enabled, and the priority level of the interrupt which is not used to cancel must
have been changed to 0. If returning by an interrupt, the clock in which the WAIT instruction executed is set
to BCLK by the microcomputer, and the action is resumed from the interrupt routine. If only a hardware
_______
reset or an NMI interrupt is used to cancel wait mode, change the priority level of all interrupt to 0,then shift
to wait mode.
Table 1.10.3. Port status during wait mode
Pin
Memory expansion mode
Microprocessor mode
_______
Single-chip mode
_______
Address bus, data bus, CS0 to CS3,
Retains status before wait mode
________
BHE
_____
______
________ _________
RD, WR, WRL, WRH
“H”
__________
HLDA,BCLK
ALE
Port
CLKOUT
“H”
“H”
Retains status before wait mode
When fC selected
Valid only in single-chip mode
When f8, f32 selected Valid only in single-chip mode
Retains status before wait mode
Does not stop
Does not stop when the WAIT
peripheral function clock stop
bit is “0”.
When the WAIT peripheral
function clock stop bit is “1”,
the status immediately prior
to entering wait mode is maintained.
39
Mitsubishi microcomputers
M16C / 30 Group
Status Transition of BCLK
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Status Transition of BCLK
Power dissipation can be reduced and low-voltage operation achieved by changing the count source for
BCLK. Table 1.10.4 shows the operating modes corresponding to the settings of system clock control
registers 0 and 1.
When reset, the device starts in division by 8 mode. The main clock division select bit 0(bit 6 at address
000616) changes to “1” when shifting from high-speed/medium-speed to stop mode and at a reset. When
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
The following shows the operational modes of BCLK.
(1) Division by 2 mode
The main clock is divided by 2 to obtain the BCLK.
(2) Division by 4 mode
The main clock is divided by 4 to obtain the BCLK.
(3) Division by 8 mode
The main clock is divided by 8 to obtain the BCLK. When reset, the device starts operating from this
mode. Before the user can go from this mode to no division mode, division by 2 mode, or division by 4
mode, the main clock must be oscillating stably. When going to low-speed or lower power consumption
mode, make sure the sub-clock is oscillating stably.
(4) Division by 16 mode
The main clock is divided by 16 to obtain the BCLK.
(5) No-division mode
The main clock is divided by 1 to obtain the BCLK.
(6) Low-speed mode
fC is used as the BCLK. Note that oscillation of both the main and sub-clocks must have stabilized before
transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the subclock starts. Therefore, the program must be written to wait until this clock has stabilized immediately
after powering up and after stop mode is cancelled.
(7) Low power dissipation mode
fC is the BCLK and the main clock is stopped.
Note : Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which
the count source is going to be switched must be oscillating stably. Allow a wait time in software for
the oscillation to stabilize before switching over the clock.
Table 1.10.4. Operating modes dictated by settings of system clock control registers 0 and 1
CM17
CM16
CM07
CM06
CM05
CM04
Operating mode of BCLK
0
1
Invalid
1
0
Invalid
Invalid
1
0
Invalid
1
0
Invalid
Invalid
0
0
0
0
0
1
1
CM1i : Bit i of the address 000716
CM0i : Bit i of the address 000616
40
0
0
1
0
0
Invalid
Invalid
0
0
0
0
0
0
1
Invalid
Invalid
Invalid
Invalid
Invalid
1
1
Division by 2 mode
Division by 4 mode
Division by 8 mode
Division by 16 mode
No-division mode
Low-speed mode
Low power dissipation mode
Mitsubishi microcomputers
M16C / 30 Group
Power control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Power control
The following is a description of the three available power control modes:
Modes
Power control is available in three modes.
(a) Normal operation mode
• High-speed mode
Divide-by-1 frequency of the main clock becomes the BCLK. The CPU operates with the BCLK.
Each peripheral function operates according to its assigned clock.
• Medium-speed mode
Divide-by-2, divide-by-4, divide-by-8, or divide-by-16 frequency of the main clock becomes the
BCLK. The CPU operates with the BCLK. Each peripheral function operates according to its assigned clock.
• Low-speed mode
fC becomes the BCLK. The CPU operates according to the fC clock. The fC clock is supplied by the
subclock. Each peripheral function operates according to its assigned clock.
• Low power dissipation mode
The main clock operating in low-speed mode is stopped. The CPU operates according to the fC
clock. The fC clock is supplied by the subclock. The only peripheral functions that operate are those
with the subclock selected as the count source.
(b) Wait mode
The CPU operation is stopped. The oscillators do not stop.
(c) Stop mode
All oscillators stop. The CPU and all built-in peripheral functions stop. This mode, among the three
modes listed here, is the most effective in decreasing power consumption.
Figure 1.10.5 is the state transition diagram of the above modes.
41
Mitsubishi microcomputers
M16C / 30 Group
Power control
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Transition of stop mode, wait mode
Reset
All oscillators stopped
Stop mode
CM10 = “1”
Interrupt
All oscillators stopped
Stop mode
Stop mode
Interrupt
CPU operation stopped
WAIT
instruction
High-speed/mediumspeed mode
Wait mode
Interrupt
All oscillators stopped
CM10 = “1”
Wait mode
Interrupt
Interrupt
CM10 = “1”
CPU operation stopped
WAIT
instruction
Medium-speed mode
(divided-by-8 mode)
CPU operation stopped
WAIT
instruction
Low-speed/low power
dissipation mode
Wait mode
Interrupt
Normal mode
(Refer to the following for the transition of normal mode.)
Transition of normal mode
Main clock is oscillating
Sub clock is stopped
Medium-speed mode
(divided-by-8 mode)
CM06 = “1”
BCLK : f(XIN)/8
CM07 = “0” CM06 = “1”
Main clock is oscillating CM04 = “0”
Sub clock is oscillating
CM07 = “0” (Note 1)
CM06 = “1”
CM04 = “0”
CM04 = “1”
(Notes 1, 3)
High-speed mode
Medium-speed mode
(divided-by-2 mode)
BCLK : f(XIN)
CM07 = “0” CM06 = “0”
CM17 = “0” CM16 = “0”
BCLK : f(XIN)/2
CM07 = “0” CM06 = “0”
CM17 = “0” CM16 = “1”
Medium-speed mode
(divided-by-8 mode)
Medium-speed mode
(divided-by-16 mode)
BCLK : f(XIN)/8
CM07 = “0”
CM06 = “1”
Medium-speed mode
(divided-by-4 mode)
BCLK : f(XIN)/4
CM07 = “0” CM06 = “0”
CM17 = “1” CM16 = “0”
BCLK : f(XIN)/16
CM07 = “0” CM06 = “0”
CM17 = “1” CM16 = “1”
Main clock is oscillating
Sub clock is oscillating
Low-speed mode
CM07 = “0”
(Note 1, 3)
BCLK : f(XCIN)
CM07 = “1”
CM07 = “1”
(Note 2)
CM05 = “0”
CM04 = “0”
CM06 = “0”
(Notes 1,3)
Main clock is oscillating
Sub clock is stopped
CM04 = “1”
High-speed mode
Medium-speed mode
(divided-by-2 mode)
BCLK : f(XIN)
CM07 = “0” CM06 = “0”
CM17 = “0” CM16 = “0”
BCLK : f(XIN)/2
CM07 = “0” CM06 = “0”
CM17 = “0” CM16 = “1”
Medium-speed mode
(divided-by-4 mode)
Medium-speed mode
(divided-by-16 mode)
BCLK : f(XIN)/4
CM07 = “0” CM06 = “0”
CM17 = “1” CM16 = “0”
BCLK : f(XIN)/16
CM07 = “0” CM06 = “0”
CM17 = “1” CM16 = “1”
Main clock is stopped
Sub clock is oscillating
Low power dissipation mode
CM07 = “1” (Note 2)
CM05 = “1”
BCLK : f(XCIN)
CM07 = “1”
CM07 = “0” (Note 1)
CM06 = “0” (Note 3)
CM04 = “1”
Note 1: Switch clock after oscillation of main clock is sufficiently stable.
Note 2: Switch clock after oscillation of sub clock is sufficiently stable.
Note 3: Change CM06 after changing CM17 and CM16.
Note 4: Transit in accordance with arrow.
Figure 1.10.5. State transition diagram of Power control mode
42
CM05 = “1”
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Protection
Protection
The protection function is provided so that the values in important registers cannot be changed in the event
that the program runs out of control. Figure 1.10.6 shows the protect register. The values in the processor
mode register 0 (address 000416), processor mode register 1 (address 000516), system clock control register 0 (address 000616), system clock control register 1 (address 000716), port P9 direction register (address 03F316) can only be changed when the respective bit in the protect register is set to “1”. Therefore,
important outputs can be allocated to port P9.
If, after “1” (write-enabled) has been written to the port P9 direction register write-enable bit (bit 2 at address
000A16), a value is written to any address, the bit automatically reverts to “0” (write-inhibited). However, the
system clock control registers 0 and 1 write-enable bit (bit 0 at 000A16) and processor mode register 0 and
1 write-enable bit (bit 1 at 000A16) do not automatically return to “0” after a value has been written to an
address. The program must therefore be written to return these bits to “0”.
Protect register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
PRCR
Bit symbol
Address
000A16
When reset
XXXXX0002
Bit name
Function
PRC0
Enables writing to system clock
control registers 0 and 1 (addresses 0 : Write-inhibited
1 : Write-enabled
000616 and 000716)
PRC1
Enables writing to processor mode
0 : Write-inhibited
registers 0 and 1 (addresses 000416
1 : Write-enabled
and 000516)
PRC2
Enables writing to port P9 direction
register (address 03F316) (Note)
0 : Write-inhibited
1 : Write-enabled
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be
indeterminate.
A
A
A
A
R W
Note: Writing a value to an address after “1” is written to this bit returns the bit
to “0” . Other bits do not automatically return to “0” and they must therefore
be reset by the program.
Figure 1.10.6. Protect register
43
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Overview of Interrupt
Type of Interrupts
Figure 1.11.1 lists the types of interrupts.










Hardware
Special
Peripheral I/O (Note)
















Interrupt
Software
Undefined instruction (UND instruction)
Overflow (INTO instruction)
BRK instruction
INT instruction
Reset
NMI
________
DBC
Watchdog timer
Single step
Address matched
_______
Note: Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer system.
Figure 1.11.1. Classification of interrupts
• Maskable interrupt :
An interrupt which can be enabled (disabled) by the interrupt enable flag
(I flag) or whose interrupt priority can be changed by priority level.
• Non-maskable interrupt : An interrupt which cannot be enabled (disabled) by the interrupt enable flag
(I flag) or whose interrupt priority cannot be changed by priority level.
44
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Software Interrupts
A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable
interrupts.
• Undefined instruction interrupt
An undefined instruction interrupt occurs when executing the UND instruction.
• Overflow interrupt
An overflow interrupt occurs when executing the INTO instruction with the overflow flag (O flag) set to
“1”. The following are instructions whose O flag changes by arithmetic:
ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB
• BRK interrupt
A BRK interrupt occurs when executing the BRK instruction.
• INT interrupt
An INT interrupt occurs when specifying one of software interrupt numbers 0 through 63 and executing the INT instruction. Software interrupt numbers 0 through 31 are assigned to peripheral I/O interrupts, so executing the INT instruction allows executing the same interrupt routine that a peripheral I/
O interrupt does.
The stack pointer (SP) used for the INT interrupt is dependent on which software interrupt number is
involved.
So far as software interrupt numbers 0 through 31 are concerned, the microcomputer saves the stack
pointer assignment flag (U flag) when it accepts an interrupt request. If change the U flag to “0” and
select the interrupt stack pointer (ISP), and then execute an interrupt sequence. When returning from
the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt request. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a
shift.
45
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Hardware Interrupts
Hardware interrupts are classified into two types — special interrupts and peripheral I/O interrupts.
(1) Special interrupts
Special interrupts are non-maskable interrupts.
• Reset
____________
Reset occurs if an “L” is input to the RESET pin.
_______
• NMI interrupt
_______
_______
An NMI interrupt occurs if an “L” is input to the NMI pin.
________
• DBC interrupt
This interrupt is exclusively for the debugger, do not use it in other circumstances.
• Watchdog timer interrupt
Generated by the watchdog timer.
• Single-step interrupt
This interrupt is exclusively for the debugger, do not use it in other circumstances. With the debug
flag (D flag) set to “1”, a single-step interrupt occurs after one instruction is executed.
• Address match interrupt
An address match interrupt occurs immediately before the instruction held in the address indicated by
the address match interrupt register is executed with the address match interrupt enable bit set to “1”.
If an address other than the first address of the instruction in the address match interrupt register is set,
no address match interrupt occurs.
(2) Peripheral I/O interrupts
A peripheral I/O interrupt is generated by one of built-in peripheral functions. Built-in peripheral functions are dependent on classes of products, so the interrupt factors too are dependent on classes of
products. The interrupt vector table is the same as the one for software interrupt numbers 0 through
31 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts.
• Bus collision detection interrupt
This is an interrupt that the serial I/O bus collision detection generates.
• DMA0 interrupt
This is an interrupts that DMA generates.
• Key-input interrupt
___
A key-input interrupt occurs if an “L” is input to the KI pin.
• A-D conversion interrupt
This is an interrupt that the A-D converter generates.
• UART0, UART1, UART2/NACK transmission interrupt
These are interrupts that the serial I/O transmission generates.
• UART0, UART1, UART2/ACK reception interrupt
These are interrupts that the serial I/O reception generates.
• Timer A0 interrupt through timer A2 interrupt
These are interrupts that timer A generates
• Timer B1, timer B2 interrupt
These are interrupts that timer B generates.
________
________
• INT0 interrupt through INT2 interrupt
______
______
An INT interrupt occurs if either a rising edge or a falling edge or a both edge is input to the INT pin.
46
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupts and Interrupt Vector Tables
If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector
table. Set the first address of the interrupt routine in each vector table. Figure 1.11.2 shows the format for
specifying the address.
Two types of interrupt vector tables are available — fixed vector table in which addresses are fixed and
variable vector table in which addresses can be varied by the setting.
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
MSB
LSB
Vector address + 0
Low address
Vector address + 1
Mid address
Vector address + 2
0000
High address
Vector address + 3
0000
0000
Figure 1.11.2. Format for specifying interrupt vector addresses
• Fixed vector tables
The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area
extending from FFFDC16 to FFFFF16. One vector table comprises four bytes. Set the first address of
interrupt routine in each vector table. Table 1.11.1 shows the interrupts assigned to the fixed vector
tables and addresses of vector tables.
Table 1.11.1. Interrupts assigned to the fixed vector tables and addresses of vector tables
Interrupt source
Undefined instruction
Overflow
BRK instruction
Vector table addresses
Address (L) to address (H)
FFFDC16 to FFFDF16
FFFE016 to FFFE316
FFFE416 to FFFE716
Remarks
Interrupt on UND instruction
Interrupt on INTO instruction
If the vector contains FF16, program execution starts from
the address shown by the vector in the variable vector table
There is an address-matching interrupt enable bit
Do not use
Address match
FFFE816 to FFFEB16
Single step (Note)
FFFEC16 to FFFEF16
Watchdog timer
FFFF016 to FFFF316
________
DBC (Note)
FFFF416 to FFFF716
Do not use
_______
_______
NMI
FFFF816 to FFFFB16
External interrupt by input to NMI pin
Reset
FFFFC16 to FFFFF16
Note: Interrupts used for debugging purposes only.
47
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
• Variable vector tables
The addresses in the variable vector table can be modified, according to the user’s settings. Indicate
the first address using the interrupt table register (INTB). The 256-byte area subsequent to the address the INTB indicates becomes the area for the variable vector tables. One vector table comprises
four bytes. Set the first address of the interrupt routine in each vector table. Table 1.11.2 shows the
interrupts assigned to the variable vector tables and addresses of vector tables.
Table 1.11.2. Interrupts assigned to the variable vector tables and addresses of vector tables
Software interrupt number
Vector table address
Interrupt source
Address (L) to address (H)
Software interrupt number 0
+0 to +3 (Note 1)
BRK instruction
Software interrupt number 10
+40 to +43 (Note 1)
Bus collision detection
Software interrupt number 11
+44 to +47 (Note 1)
DMA0
Software interrupt number 13
+52 to +55 (Note 1)
Key input interrupt
Software interrupt number 14
+56 to +59 (Note 1)
A-D
Software interrupt number 15
+60 to +63 (Note 1)
UART2 transmit/NACK (Note 2)
Software interrupt number 16
+64 to +67 (Note 1)
UART2 receive/ACK (Note 2)
Software interrupt number 17
+68 to +71 (Note 1)
UART0 transmit
Software interrupt number 18
+72 to +75 (Note 1)
UART0 receive
Software interrupt number 19
+76 to +79 (Note 1)
UART1 transmit
Software interrupt number 20
+80 to +83 (Note 1)
UART1 receive
Software interrupt number 21
+84 to +87 (Note 1)
Timer A0
Software interrupt number 22
+88 to +91 (Note 1)
Timer A1
Software interrupt number 23
+92 to +95 (Note 1)
Timer A2
Software interrupt number 27
+108 to +111 (Note 1)
Timer B1
Software interrupt number 28
+112 to +115 (Note 1)
Timer B2
Software interrupt number 29
+116 to +119 (Note 1)
INT0
Software interrupt number 30
+120 to +123 (Note 1)
INT1
Software interrupt number 31
+124 to +127 (Note 1)
INT2
Software interrupt number 32
+128 to +131 (Note 1)
to
Software interrupt number 63
to
+252 to +255 (Note 1)
Software interrupt
Note 1: Address relative to address in interrupt table register (INTB).
Note 2: When IIC mode is selected, NACK and ACK interrupts are selected.
48
Remarks
Cannot be masked I flag
Cannot be masked I flag
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupt Control
Descriptions are given here regarding how to enable or disable maskable interrupts and how to set the
priority to be accepted. What is described here does not apply to non-maskable interrupts.
Enable or disable a maskable interrupt using the interrupt enable flag (I flag), interrupt priority level selection bit, or processor interrupt priority level (IPL). Whether an interrupt request is present or absent is
indicated by the interrupt request bit. The interrupt request bit and the interrupt priority level selection bit
are located in the interrupt control register of each interrupt. Also, the interrupt enable flag (I flag) and the
IPL are located in the flag register (FLG).
Figure 1.11.3 shows the memory map of the interrupt control registers.
49
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupt control register (Note 2)
AAA
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
BCNIC
DM0IC
KUPIC
ADIC
SiTIC(i=0 to 2)
SiRIC(i=0 to 2)
TAiIC(i=0 to 2)
TBiIC(i=1, 2)
Bit symbol
ILVL0
Address
004A16
004B16
004D16
004E16
005116, 005316, 004F16
005216, 005416, 005016
005516 to 005716
005B16, 005C16
Bit name
Interrupt priority level
select bit
ILVL2
IR
Function
b2 b1 b0
000:
001:
010:
011:
100:
101:
110:
111:
ILVL1
Interrupt request bit
When reset
XXXXX0002
XXXXX0002
XXXXX0002
XXXXX0002
XXXXX0002
XXXXX0002
XXXXX0002
XXXXX0002
AAAA
AA
A
A
AA
AA
AA
AA
AAAA
R
W
Level 0 (interrupt disabled)
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
0 : Interrupt not requested
1 : Interrupt requested
Nothing is assigned.
(Note 1)
In an attempt to write to these bits, write “0”. The value, if read, turns
out to be indeterminate.
Note 1: This bit can only be accessed for reset (= 0), but cannot be accessed for set (= 1).
Note 2: To rewrite the interrupt control register, do so at a point that does not generate the
interrupt request for that register. For details, see the precautions for interrupts.
AAA
A
AA
b7
b6
b5
0
b4
b3
b2
b1
b0
Symbol
INTiIC(i=0 to 2)
Bit symbol
ILVL0
Address
005D16 to 005F16
Bit name
Interrupt priority level
select bit
ILVL1
ILVL2
IR
POL
When reset
XX00X0002
Interrupt request bit
Polarity select bit
Reserved bit
Nothing is assigned.
Function
b2 b1 b0
AA
A
A
AA
AA
AAAA
AA
A
A
AA
AA
AAAA
AA
A
A
AAAA
R
W
0 0 0 : Level 0 (interrupt disabled)
0 0 1 : Level 1
0 1 0 : Level 2
0 1 1 : Level 3
1 0 0 : Level 4
1 0 1 : Level 5
1 1 0 : Level 6
1 1 1 : Level 7
0: Interrupt not requested
1: Interrupt requested
0 : Selects falling edge
1 : Selects rising edge
Must always be set to “0”
(Note 1)
In an attempt to write to these bits, write “0”. The value, if read, turns
out to be indeterminate.
Note 1: This bit can only be accessed for reset (= 0), but cannot be accessed for set (= 1).
Note 2: To rewrite the interrupt control register, do so at a point that does not generate the
interrupt request for that register. For details, see the precautions for interrupts.
Figure 1.11.3. Interrupt control registers
50
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupt Enable Flag (I flag)
The interrupt enable flag (I flag) controls the enabling and disabling of maskable interrupts. Setting this
flag to “1” enables all maskable interrupts; setting it to “0” disables all maskable interrupts. This flag is set
to “0” after reset.
Interrupt Request Bit
The interrupt request bit is set to “1” by hardware when an interrupt is requested. After the interrupt is
accepted and jumps to the corresponding interrupt vector, the request bit is set to “0” by hardware. The
interrupt request bit can also be set to “0” by software. (Do not set this bit to “1”).
Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)
Set the interrupt priority level using the interrupt priority level select bit, which is one of the component bits
of the interrupt control register. When an interrupt request occurs, the interrupt priority level is compared
with the IPL. The interrupt is enabled only when the priority level of the interrupt is higher than the IPL.
Therefore, setting the interrupt priority level to “0” disables the interrupt.
Table 1.11.3 shows the settings of interrupt priority levels and Table 1.11.4 shows the interrupt levels
enabled, according to the contents of the IPL.
The following are conditions under which an interrupt is accepted:
· interrupt enable flag (I flag) = “1”
· interrupt request bit = “1”
· interrupt priority level > IPL
The interrupt enable flag (I flag), the interrupt request bit, the interrupt priority select bit, and the IPL are
independent, and they are not affected by one another.
Table 1.11.3. Settings of interrupt priority
levels
Interrupt priority
level select bit
Interrupt priority
level
Table 1.11.4. Interrupt levels enabled according
to the contents of the IPL
Priority
order
b2 b1 b0
IPL
Enabled interrupt priority levels
IPL2 IPL1 IPL0
0
0
0
Level 0 (interrupt disabled)
0
0
1
Level 1
0
1
0
0
1
1
0
0
0
Interrupt levels 1 and above are enabled
0
0
1
Interrupt levels 2 and above are enabled
Level 2
0
1
0
Interrupt levels 3 and above are enabled
1
Level 3
0
1
1
Interrupt levels 4 and above are enabled
0
0
Level 4
1
0
0
Interrupt levels 5 and above are enabled
1
0
1
Level 5
1
0
1
Interrupt levels 6 and above are enabled
1
1
0
Level 6
1
1
0
Interrupt levels 7 and above are enabled
1
1
1
Level 7
1
1
1
All maskable interrupts are disabled
Low
High
51
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Rewrite the interrupt control register
To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for
that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after
the interrupt is disabled. The program examples are described as follow:
Example 1:
INT_SWITCH1:
FCLR
I
AND.B #00h, 0055h
NOP
NOP
FSET
I
; Disable interrupts.
; Clear TA0IC int. priority level and int. request bit.
; Four NOP instructions are required when using HOLD function.
; Enable interrupts.
Example 2:
INT_SWITCH2:
FCLR
I
AND.B #00h, 0055h
MOV.W MEM, R0
FSET
I
; Disable interrupts.
; Clear TA0IC int. priority level and int. request bit.
; Dummy read.
; Enable interrupts.
Example 3:
INT_SWITCH3:
PUSHC FLG
FCLR
I
AND.B #00h, 0055h
POPC FLG
; Push Flag register onto stack
; Disable interrupts.
; Clear TA0IC int. priority level and int. request bit.
; Enable interrupts.
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted
before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the
interrupt control register is rewritten due to effects of the instruction queue.
When changing an interrupt control register in a sate of interrupts being disabled, please read the
following precautions on instructions used before changing the register.
Changing a non-interrupt request bit
If an interrupt request for an interrupt control register is generated during an instruction to rewrite the
register is being executed, there is a case that the interrupt request bit is not set and consequently the
interrupt is ignored. This will depend on the instruction. If this creates problems, use the below instructions to change the register.
Instructions : AND, OR, BCLR, BSET
Changing the interrupt request bit
When attempting to clear the interrupt request bit of an interrupt control register, the interrupt request bit
is not cleared sometimes. This will depend on the instruction. If this creates problems, use the below
instructions to change the register.
Instructions : MOV
52
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Interrupt Sequence
An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the
instant the interrupt routine is executed — is described here.
If an interrupt occurs during execution of an instruction, the processor determines its priority when the
execution of the instruction is completed, and transfers control to the interrupt sequence from the next
cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction,
the processor temporarily suspends the instruction being executed, and transfers control to the interrupt
sequence.
In the interrupt sequence, the processor carries out the following in sequence given:
(1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address 0000016. After this, the corresponding interrupt request bit becomes “0”.
(2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence
in the temporary register (Note) within the CPU.
(3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to
“0” (the U flag, however does not change if the INT instruction, in software interrupt numbers 32
through 63, is executed)
(4) Saves the content of the temporary register (Note) within the CPU in the stack area.
(5) Saves the content of the program counter (PC) in the stack area.
(6) Sets the interrupt priority level of the accepted instruction in the IPL.
After the interrupt sequence is completed, the processor resumes executing instructions from the first
address of the interrupt routine.
Note: This register cannot be utilized by the user.
Interrupt Response Time
'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first
instruction within the interrupt routine has been executed. This time comprises the period from the
occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the
time required for executing the interrupt sequence (b). Figure 1.11.4 shows the interrupt response time.
Interrupt request generated
Interrupt request acknowledged
Time
Instruction
Interrupt sequence
(a)
Instruction in
interrupt routine
(b)
Interrupt response time
(a) Time from interrupt request is generated to when the instruction then under execution is completed.
(b) Time in which the instruction sequence is executed.
Figure 1.11.4. Interrupt response time
53
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Time (a) is dependent on the instruction under execution. Thirty cycles is the maximum required for the
DIVX instruction (without wait).
Time (b) is as shown in Table 1.11.5.
Table 1.11.5. Time required for executing the interrupt sequence
Interrupt vector address
Stack pointer (SP) value
16-Bit bus, without wait
8-Bit bus, without wait
Even
Even
18 cycles (Note 1)
20 cycles (Note 1)
Even
Odd
19 cycles (Note 1)
20 cycles (Note 1)
Odd (Note 2)
Even
19 cycles (Note 1)
20 cycles (Note 1)
Odd (Note 2)
Odd
20 cycles (Note 1)
20 cycles (Note 1)
________
Note 1: Add 2 cycles in the case of a DBC interrupt; add 1 cycle in the case either of an address match
interrupt or of a single-step interrupt.
Note 2: Locate an interrupt vector address in an even address, if possible.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
BCLK
Address bus
Address
0000
Interrupt
information
Data bus
R
Indeterminate
Indeterminate
SP-2
SP-4
SP-2
contents
SP-4
contents
vec
vec+2
vec
contents
PC
vec+2
contents
Indeterminate
W
The indeterminate segment is dependent on the queue buffer.
If the queue buffer is ready to take an instruction, a read cycle occurs.
Figure 1.11.5. Time required for executing the interrupt sequence
Variation of IPL when Interrupt Request is Accepted
If an interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.
If an interrupt request, that does not have an interrupt priority level, is accepted, one of the values shown
in Table 1.11.6 is set in the IPL.
Table 1.11.6. Relationship between interrupts without interrupt priority levels and IPL
Interrupt sources without priority levels
Value set in the IPL
_______
Watchdog timer, NMI
7
Reset
0
Other
54
Not changed
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Saving Registers
In the interrupt sequence, only the contents of the flag register (FLG) and that of the program counter
(PC) are saved in the stack area.
First, the processor saves the four higher-order bits of the program counter, and 4 upper-order bits and 8
lower-order bits of the FLG register, 16 bits in total, in the stack area, then saves 16 lower-order bits of the
program counter. Figure 1.11.6 shows the state of the stack as it was before the acceptance of the
interrupt request, and the state the stack after the acceptance of the interrupt request.
Save other necessary registers at the beginning of the interrupt routine using software. Using the
PUSHM instruction alone can save all the registers except the stack pointer (SP).
Address
MSB
Stack area
Address
MSB
LSB
Stack area
LSB
m–4
m–4
Program counter (PCL)
m–3
m–3
Program counter (PCM)
m–2
m–2
Flag register (FLGL)
m–1
m–1
m
Content of previous stack
m+1
Content of previous stack
Stack status before interrupt request
is acknowledged
[SP]
Stack pointer
value before
interrupt occurs
Flag register
(FLGH)
[SP]
New stack
pointer value
Program
counter (PCH)
m
Content of previous stack
m+1
Content of previous stack
Stack status after interrupt request
is acknowledged
Figure 1.11.6. State of stack before and after acceptance of interrupt request
55
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
The operation of saving registers carried out in the interrupt sequence is dependent on whether the
content of the stack pointer (Note) , at the time of acceptance of an interrupt request, is even or odd. If
the content of the stack pointer (Note) is even, the content of the flag register (FLG) and the content of the
program counter (PC) are saved, 16 bits at a time. If odd, their contents are saved in two steps, 8 bits at
a time. Figure 1.11.7 shows the operation of the saving registers.
Note: When any INT instruction in software numbers 32 to 63 has been executed, this is the stack pointer
indicated by the U flag. Otherwise, it is the interrupt stack pointer (ISP).
(1) Stack pointer (SP) contains even number
Address
Stack area
Sequence in which order
registers are saved
[SP] – 5 (Odd)
[SP] – 4 (Even)
Program counter (PCL)
[SP] – 3(Odd)
Program counter (PCM)
[SP] – 2 (Even)
Flag register (FLGL)
[SP] – 1(Odd)
[SP]
Flag register
(FLGH)
Program
counter (PCH)
(2) Saved simultaneously,
all 16 bits
(1) Saved simultaneously,
all 16 bits
(Even)
Finished saving registers
in two operations.
(2) Stack pointer (SP) contains odd number
Address
Stack area
Sequence in which order
registers are saved
[SP] – 5 (Even)
[SP] – 4(Odd)
Program counter (PCL)
(3)
[SP] – 3 (Even)
Program counter (PCM)
(4)
[SP] – 2(Odd)
Flag register (FLGL)
[SP] – 1 (Even)
[SP]
Flag register
(FLGH)
Program
counter (PCH)
Saved simultaneously,
all 8 bits
(1)
(2)
(Odd)
Finished saving registers
in four operations.
Note: [SP] denotes the initial value of the stack pointer (SP) when interrupt request is acknowledged.
After registers are saved, the SP content is [SP] minus 4.
Figure 1.11.7. Operation of saving registers
56
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Returning from an Interrupt Routine
Executing the REIT instruction at the end of an interrupt routine returns the contents of the flag register
(FLG) as it was immediately before the start of interrupt sequence and the contents of the program counter
(PC), both of which have been saved in the stack area. Then control returns to the program that was being
executed before the acceptance of the interrupt request, so that the suspended process resumes.
Return the other registers saved by software within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.
Interrupt Priority
If there are two or more interrupt requests occurring at a point in time within a single sampling (checking
whether interrupt requests are made), the interrupt assigned a higher priority is accepted.
Assign an arbitrary priority to maskable interrupts (peripheral I/O interrupts) using the interrupt priority level
select bit. If the same interrupt priority level is assigned, however, the interrupt assigned a higher hardware
priority is accepted.
Priorities of the special interrupts, such as Reset (dealt with as an interrupt assigned the highest priority),
watchdog timer interrupt, etc. are regulated by hardware.
Figure 1.11.8 shows the priorities of hardware interrupts.
Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches
invariably to the interrupt routine.
_______
________
Reset > NMI > DBC > Watchdog timer > Peripheral I/O > Single step > Address match
Figure 1.11.8. Hardware interrupts priorities
Interrupt resolution circuit
When two or more interrupts are generated simultaneously, this circuit selects the interrupt with the highest
priority level. Figure 1.11.9 shows the circuit that judges the interrupt priority level.
57
Mitsubishi microcomputers
M16C / 30 Group
Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Priority level of each interrupt
Level 0 (initial value)
INT1
High
Timer B2
Timer A1
INT2
INT0
Timer B1
Timer A2
UART1 reception
UART0 reception
UART2 reception/ACK
Priority of peripheral I/O interrupts
(if priority levels are same)
A-D conversion
Bus collision detection
Timer A0
UART1 transmission
UART0 transmission
UART2 transmission/NACK
Key input interrupt
DMA0
Low
Processor interrupt priority level (IPL)
Interrupt request level judgment output
to clock generating circuit (Fig.1.10.3)
Interrupt enable flag (I flag)
Address match
Watchdog timer
DBC
NMI
Reset
Figure 1.11.9. Maskable interrupts priorities (peripheral I/O interrupts)
58
Interrupt
request
accepted
Mitsubishi microcomputers
M16C / 30 Group
______
INT Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
______
INT Interrupt
________
________
INT0 to INT2 are triggered by the edges of external inputs. The edge polarity is selected using the polarity
select bit.
As for external interrupt input, an interrupt can be generated both at the rising edge and at the falling edge
by setting “1” in the INTi interrupt polarity switching bit of the interrupt request cause select register
(035F16). To select both edges, set the polarity switching bit of the corresponding interrupt control register
to ‘falling edge’ (“0”).
Figure 1.11.10 shows the Interrupt request cause select register.
AA
A
AA
A
AAAA
AA
Interrupt request cause select register
b7
b6
b5
b4
b3
0 0
0
0
0
b2
b1
b0
Symbol
IFSR
Address
035F16
Bit name
Bit symbol
When reset
0016
Function
IFSR0
INT0 interrupt polarity
switching bit
0 : One edge
1 : Two edges
IFSR1
INT1 interrupt polarity
switching bit
0 : One edge
1 : Two edges
IFSR2
INT2 interrupt polarity
switching bit
0 : One edge
1 : Two edges
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
R W
Figure 1.11.10. Interrupt request cause select register
59
Mitsubishi microcomputers
M16C / 30 Group
________
NMI Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
______
NMI Interrupt
______
______
______
An NMI interrupt is generated when the input to the P85/NMI pin changes from “H” to “L”. The NMI interrupt
is a non-maskable external interrupt. The pin level can be checked in the port P85 register (bit 5 at address
03F016).
This pin cannot be used as a normal port input.
Key Input Interrupt
If the direction register of any of P104 to P107 is set for input and a falling edge is input to that port, a key
input interrupt is generated. A key input interrupt can also be used as a key-on wakeup function for cancelling the wait mode or stop mode. However, if you intend to use the key input interrupt, do not use P104 to
P107 as A-D input ports. Figure 1.11.11 shows the block diagram of the key input interrupt. Note that if an
“L” level is input to any pin that has not been disabled for input, inputs to the other pins are not detected as
an interrupt.
Port P104-P107 pull-up
select bit
Pull-up
transistor
Key input interrupt control register
Port P107 direction
register
(address 004D16)
Port P107 direction register
P107/KI3
Pull-up
transistor
Port P106 direction
register
Interrupt control circuit
P106/KI2
Pull-up
transistor
Port P105 direction
register
P105/KI1
Pull-up
transistor
Port P104 direction
register
P104/KI0
Figure 1.11.11. Block diagram of key input interrupt
60
Key input interrupt
request
Mitsubishi microcomputers
M16C / 30 Group
Address Match Interrupt
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Address Match Interrupt
An address match interrupt is generated when the address match interrupt address register contents match
the program counter value. Two address match interrupts can be set, each of which can be enabled and
disabled by an address match interrupt enable bit. Address match interrupts are not affected by the interrupt enable flag (I flag) and processor interrupt priority level (IPL). For an address match interrupt, the value
of the program counter (PC) that is saved to the stack area varies depending on the instruction being
executed. Note that when using the external data bus in width of 8 bits, the address match interrupt cannot
be used for external area.
Figure 1.11.12 shows the address match interrupt-related registers.
Address match interrupt enable register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
AIER
Address
000916
When reset
XXXXXX002
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AA
A
AAAAAAAAAAAAAA
AA
A
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
Bit symbol
Bit name
Function
AIER0
Address match interrupt 0
enable bit
0 : Interrupt disabled
1 : Interrupt enabled
AIER1
Address match interrupt 1
enable bit
0 : Interrupt disabled
1 : Interrupt enabled
RW
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to
be indeterminated.
Address match interrupt register i (i = 0, 1)
(b23)
b7
(b19)
b3
(b16)(b15)
b0 b7
(b8)
b0 b7
b0
Symbol
RMAD0
RMAD1
Address
001216 to 001016
001616 to 001416
Function
Address setting register for address match interrupt
When reset
X0000016
X0000016
AA
A
AAA
Values that can be set R W
0000016 to FFFFF16
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to
be indeterminated.
Figure 1.11.12. Address match interrupt-related registers
61
Mitsubishi microcomputers
M16C / 30 Group
Precautions for Interrupts
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Precautions for Interrupts
(1) Reading address 0000016
• When maskable interrupt is occurred, CPU reads the interrupt information (the interrupt number and
interrupt request level) in the interrupt sequence.
The interrupt request bit of the certain interrupt written in address 0000016 will then be set to “0”.
Even if the address 0000016 is read out by software, “0” is set to the enabled highest priority interrupt
source request bit. Therefore interrupt can be canceled and unexpected interrupt can occur.
Do not read address 0000016 by software.
(2) Setting the stack pointer
• The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt
before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in
_______
the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack
pointer at the beginning of a program. Concerning the first instruction immediately after reset, generat_______
ing any interrupts including the NMI interrupt is prohibited.
_______
(3) The NMI interrupt
_______
_______
•The NMI interrupt can not be disabled. Be sure to connect NMI pin to Vcc via a pull-up resistor if
unused. Be sure to work on it.
_______
• The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register
allows reading
the pin value. Use the reading of this pin only for establishing the pin level at the time
_______
when the NMI interrupt is input.
_______
• Do not attempt to go into stop mode with the input to the NMI pin being in the “L” state. With the input to
_______
the NMI being in the “L” state, the CM10 is fixed to “0”, so attempting to go into stop mode is turned
down.
_______
• Do not attempt to go into wait mode with the input to the NMI pin being in the “L” state. With the input to
_______
the NMI pin being in the “L” state, the CPU stops but the oscillation does not stop, so no power is saved.
In this instance, the CPU is returned to the normal state by a later interrupt.
_______
• Signals input to the NMI pin require “L” level and “H” level of 2 clock +300ns or more, from the operation
clock of the CPU.
(4) External interrupt
________
• Either an________
“L” level or an “H” level of at least 250 ns width is necessary for the signal input to pins INT0
through INT2 regardless of the CPU operation clock.
________
________
• When the polarity of the INT0 to INT2 pins is changed, the interrupt request bit is sometimes set to “1”.
After changing______
the polarity, set the interrupt request bit to “0”. Figure 1.11.13 shows the procedure for
changing the INT interrupt generate factor.
Clear the interrupt enable flag to “0”
(Disable interrupt)
Set the interrupt priority level to level 0
(Disable INTi interrupt)
Set the polarity select bit
NOP X 2
Clear the interrupt request bit to “0”
Set the interrupt priority level to level 1 to 7
(Enable the accepting of INTi interrupt request)
Set the interrupt enable flag to “1”
(Enable interrupt)
Note: Execute the setting above individually. Don't execute two or
more settings at once(by one instruction).
______
Figure 1.11.13. Switching condition of INT interrupt request
62
Mitsubishi microcomputers
M16C / 30 Group
Precautions for Interrupts
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(5) Rewrite the interrupt control register
• To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for
that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after
the interrupt is disabled. The program examples are described as follow:
Example 1:
INT_SWITCH1:
FCLR
I
AND.B #00h, 0055h
NOP
NOP
FSET
I
; Disable interrupts.
; Clear TA0IC int. priority level and int. request bit.
; Four NOP instructions are required when using HOLD function.
; Enable interrupts.
Example 2:
INT_SWITCH2:
FCLR
I
AND.B #00h, 0055h
MOV.W MEM, R0
FSET
I
; Disable interrupts.
; Clear TA0IC int. priority level and int. request bit.
; Dummy read.
; Enable interrupts.
Example 3:
INT_SWITCH3:
PUSHC FLG
FCLR
I
AND.B #00h, 0055h
POPC FLG
; Push Flag register onto stack
; Disable interrupts.
; Clear TA0IC int. priority level and int. request bit.
; Enable interrupts.
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted
before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the
interrupt control register is rewritten due to effects of the instruction queue.
When changing an interrupt control register in a sate of interrupts being disabled, please read the
following precautions on instructions used before changing the register.
Changing a non-interrupt request bit
If an interrupt request for an interrupt control register is generated during an instruction to rewrite the
register is being executed, there is a case that the interrupt request bit is not set and consequently the
interrupt is ignored. This will depend on the instruction. If this creates problems, use the below instructions to change the register.
Instructions : AND, OR, BCLR, BSET
Changing the interrupt request bit
When attempting to clear the interrupt request bit of an interrupt control register, the interrupt request bit
is not cleared sometimes. This will depend on the instruction. If this creates problems, use the below
instructions to change the register.
Instructions : MOV
63
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Watchdog Timer
Watchdog Timer
The watchdog timer has the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer is a 15-bit counter
which down-counts the clock derived by dividing the BCLK using the prescaler. A watchdog timer interrupt
is generated when an underflow occurs in the watchdog timer. When XIN is selected for the BCLK, bit 7 of
the watchdog timer control register (address 000F16) selects the prescaler division ratio (by 16 or by 128).
When XCIN is selected as the BCLK, the prescaler is set for division by 2 regardless of bit 7 of the watchdog
timer control register (address 000F16). Thus the watchdog timer's period can be calculated as given
below. The watchdog timer's period is, however, subject to an error due to the prescaler.
With XIN chosen for BCLK
Watchdog timer period =
prescaler dividing ratio (16 or 128) X watchdog timer count (32768)
BCLK
With XCIN chosen for BCLK
Watchdog timer period =
prescaler dividing ratio (2) X watchdog timer count (32768)
BCLK
For example, suppose that BCLK runs at 16 MHz and that 16 has been chosen for the dividing ratio of the
prescaler, then the watchdog timer's period becomes approximately 32.8 ms.
The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when
a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is
reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by
writing to the watchdog timer start register (address 000E16). In stop mode, wait mode and hold state, the
watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or
state are released.
Figure 1.12.1 shows the block diagram of the watchdog timer. Figure 1.12.2 shows the watchdog timerrelated registers.
Prescaler
1/16
BCLK
1/128
“CM07 = 0”
“WDC7 = 0”
“CM07 = 0”
“WDC7 = 1”
Watchdog timer
HOLD
“CM07 = 1”
1/2
Write to the watchdog timer
start register
(address 000E16)
RESET
Figure 1.12.1. Block diagram of watchdog timer
64
Set to
“7FFF16”
Watchdog timer
interrupt request
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Watchdog Timer
Watchdog timer control register
b7
b6
b5
b4
b3
b2
b1
b0
0 0
Symbol
WDC
Bit symbol
Address
000F16
When reset
000XXXXX2
Function
Bit name
High-order bit of watchdog timer
Reserved bit
Must always be set to “0”
Reserved bit
Must always be set to “0”
WDC7
Prescaler select bit
0 : Divided by 16
1 : Divided by 128
AA
AA
A
AA
A
AA
A
R W
Watchdog timer start register
b7
b0
Symbol
WDTS
Address
000E16
When reset
Indeterminate
Function
The watchdog timer is initialized and starts counting after a write instruction to
this register. The watchdog timer value is always initialized to “7FFF16”
regardless of whatever value is written.
A
R W
Figure 1.12.2. Watchdog timer control and start registers
65
Mitsubishi microcomputers
M16C / 30 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMAC
This microcomputer has one DMAC (direct memory access controller) channel that allow data to be sent to
memory without using the CPU. DMAC shares the same data bus with the CPU. The DMAC is given a
higher right of using the bus than the CPU, which leads to working the cycle stealing method. On this
account, the operation from the occurrence of DMA transfer request signal to the completion of 1-word (16bit) or 1-byte (8-bit) data transfer can be performed at high speed. Figure 1.13.1 shows the block diagram
of the DMAC. Table 1.13.1 shows the DMAC specifications. Figures 1.13.2 to 1.13.4 show the registers
used by the DMAC.
AA
AAAAAAAAAAAAAAAAAAAAAAAAA
A
AAAAAAA
AA
A
AA
AAAAAAAAAAAAAAAAAAAAAAAAA
A
AAAAAAA
AA
A
AA
AA
AAA A
AA
AAA AA AA
AA
AA
A
AA
AA
AA
A
A
AA
AA
A
AA AA
AA
Address bus
DMA0 source pointer SAR0(20)
(addresses 002216 to 002016)
DMA0 destination pointer DAR0 (20)
(addresses 002616 to 002416)
DMA0 transfer counter reload register TCR0 (16)
(addresses 002916, 002816)
DMA0 transfer counter TCR0 (16)
Data bus low-order bits
Data bus high-order bits
DMA0 forward address pointer (20) (Note)
DMA latch high-order bits
DMA latch low-order bits
AA
Note: Pointer is incremented by a DMA request.
Figure 1.13.1. Block diagram of DMAC
Either a write signal to the software DMA request bit or an interrupt request signal is used as a DMA transfer
request signal. But the DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the
interrupt priority level. The DMA transfer doesn't affect any interrupts either.
If the DMAC is active (the DMA enable bit is set to 1), data transfer starts every time a DMA transfer request
signal occurs. If the cycle of the occurrences of DMA transfer request signals is higher than the DMA
transfer cycle, there can be instances in which the number of transfer requests doesn't agree with the
number of transfers. For details, see the description of the DMA request bit.
66
Mitsubishi microcomputers
M16C / 30 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.13.1. DMAC specifications
Item
No. of channels
Transfer memory space
Maximum No. of bytes transferred
Specification
2 (cycle steal method)
• From any address in the 1M bytes space to a fixed address
• From a fixed address to any address in the 1M bytes space
• From a fixed address to a fixed address
(Note that DMA-related registers [002016 to 003F16] cannot be accessed)
128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)
________
DMA request factors (Note)
Falling edge of INT0 or both edge
Timer A0 to timer A2 interrupt requests
Timer B1 and timer B2 interrupt requests
UART0 transfer and reception interrupt requests
UART1 transfer and reception interrupt requests
UART2 transfer and reception interrupt requests
A-D conversion interrupt requests
Software triggers
Transfer unit
8 bits or 16 bits
Transfer address direction
forward/fixed (forward direction cannot be specified for both source and
destination simultaneously)
Transfer mode
• Single transfer mode
After the transfer counter underflows, the DMA enable bit turns to
“0”, and the DMAC turns inactive
• Repeat transfer mode
After the transfer counter underflows, the value of the transfer counter
reload register is reloaded to the transfer counter.
The DMAC remains active unless a “0” is written to the DMA enable bit.
DMA interrupt request generation timing When an underflow occurs in the transfer counter
Active
When the DMA enable bit is set to “1”.
When the DMAC is active, data transfer starts every time a DMA
transfer request signal occurs.
Inactive
• When the DMA enable bit is set to “0”.
At the time of starting data transfer immediately after turning the DMAC active, the
Reload timing for forward
value of one of source pointer and destination pointer - the one specified for the
address pointer and transfer
forward direction - is reloaded to the forward direction address pointer, and the value
counter
of the transfer counter reload register is reloaded to the transfer counter.
Writing to register
Registers specified for forward direction transfer are always write enabled.
Registers specified for fixed address transfer are write-enabled when
the DMA enable bit is “0”.
Reading the register
Can be read at any time.
However, when the DMA enable bit is “1”, reading the register set up as the
forward register is the same as reading the value of the forward address pointer.
Note: DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the interrupt enable
flag (I flag) nor by the interrupt priority level.
67
Mitsubishi microcomputers
M16C / 30 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMA0 request cause select register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
DM0SL
Bit symbol
DSEL0
Address
03B816
DMA request cause
select bit
DSEL2
DSEL3
DSEL4
DSEL5
DMS
Figure 1.13.2. DMAC register (1)
68
Function
Bit name
DSEL1
DSR
When reset
0016
Software DMA
request bit
b6 b5 b4 b3 b2 b1 b0
(DMS)
0 0 0 0 0 0 0 : Falling edge of INT0 pin
0 0 0 0 0 0 1 : Software trigger
0 0 0 0 0 1 0 : Timer A0
0 0 0 0 0 1 1 : Timer A1
0 0 0 0 1 0 0 : Timer A2
0 0 0 0 1 0 1 : Must not be set
0 0 0 0 1 1 0 : Must not be set
0 0 0 0 1 1 1 : Must not be set
0 0 0 1 0 0 0 : Timer B1
0 0 0 1 0 0 1 : Timer B2
0 0 0 1 0 1 0 : UART0 transmit
0 0 0 1 0 1 1 : UART0 receive
0 0 0 1 1 0 0 : UART2 transmit
0 0 0 1 1 0 1 : UART2 receive
0 0 0 1 1 1 0 : A-D conversion
0 0 0 1 1 1 1 : UART1 transmit
1 0 0 0 1 1 0 : Two edges of INT0 pin
Must not be set except the above.
If software trigger is selected, a
DMA request is generated by
setting this bit to “1” (When read,
the value of this bit is always “0”)
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
R
W
Mitsubishi microcomputers
M16C / 30 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMA0 control register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
DM0CON
Bit symbol
Address
002C16
When reset
00000X002
Bit name
Function
DMBIT
Transfer unit bit select bit
0 : 16 bits
1 : 8 bits
DMASL
Repeat transfer mode
select bit
0 : Single transfer
1 : Repeat transfer
DMAS
DMA request bit (Note 1)
0 : DMA not requested
1 : DMA requested
DMAE
DMA enable bit
0 : Disabled
1 : Enabled
DSD
Source address direction
select bit (Note 3)
0 : Fixed
1 : Forward
DAD
Destination address
0 : Fixed
direction select bit (Note 3) 1 : Forward
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.
AA
AA
AA
A
A
A
A
AA
AA
R
W
(Note 2)
Note 1: DMA request can be cleared by resetting the bit.
Note 2: This bit can only be set to “0”.
Note 3: Source address direction select bit and destination address direction select bit
cannot be set to “1” simultaneously.
Figure 1.13.3. DMAC register (2)
69
Mitsubishi microcomputers
M16C / 30 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMA0 source pointer
(b23)
b7
(b19)
b3
(b16)(b15)
b0 b7
(b8)
b0 b7
b0
Symbol
SAR0
Address
002216 to 002016
When reset
Indeterminate
Transfer address
specification
Function
• Source pointer
Stores the source address
0000016 to FFFFF16
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.
R W
A
DMA0 destination pointer
(b23)
b7
(b19)
b3
(b16)(b15)
b0 b7
(b8)
b0 b7
b0
Symbol
DAR0
Address
002616 to 002416
When reset
Indeterminate
Transfer address
specification
Function
• Destination pointer
Stores the destination address
0000016 to FFFFF16
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.
AA
R W
DMA0 transfer counter
(b15)
b7
(b8)
b0 b7
b0
Symbol
TCR0
Address
002916, 002816
Function
• Transfer counter
Set a value one less than the transfer count
Figure 1.13.4. DMAC register (3)
70
When reset
Indeterminate
Transfer count
specification
000016 to FFFF16
A
R W
Mitsubishi microcomputers
M16C / 30 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(1) Transfer cycle
The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area
(source read) and the bus cycle in which the data is written to memory or to the SFR area (destination
write). The number of read and write bus cycles depends on the source and destination addresses. In
memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on the level of the BYTE pin. Also, the bus cycle itself is longer when software waits are inserted.
(a) Effect of source and destination addresses
When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd
addresses, there are one more source read cycle and destination write cycle than when the source
and destination both start at even addresses.
(b) Effect of BYTE pin level
When transferring 16-bit data over an 8-bit data bus (BYTE pin = “H”) in memory expansion mode and
microprocessor mode, the 16 bits of data are sent in two 8-bit blocks. Therefore, two bus cycles are
required for reading the data and two are required for writing the data. Also, in contrast to when the
CPU accesses internal memory, when the DMAC accesses internal memory (internal ROM, internal
RAM, and SFR), these areas are accessed using the data size selected by the BYTE pin.
(c) Effect of software wait
When the SFR area or a memory area with a software wait is accessed, the number of cycles is
increased for the wait by 1 bus cycle. The length of the cycle is determined by BCLK.
Figure 1.13.5 shows the example of the transfer cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown.
In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the
transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respective conditions to both the destination write cycle and the source read cycle. For example (2) in Figure
1.13.5, if data is being transferred in 16-bit units on an 8-bit bus, two bus cycles are required for both the
source read cycle and the destination write cycle.
71
Mitsubishi microcomputers
M16C / 30 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(1) 8-bit transfers
16-bit transfers and the source address is even.
BCLK
Address
bus
CPU use
Source
Destination
Dummy
cycle
CPU use
RD signal
WR signal
Data
bus
CPU use
Source
Destination
Dummy
cycle
CPU use
(2) 16-bit transfers and the source address is odd
Transferring 16-bit data on an 8-bit data bus (In this case, there are also two destination cycles).
BCLK
Address
bus
CPU use
Source
Source + 1 Destination
Dummy
cycle
CPU use
RD signal
WR signal
Data
bus
CPU use
Source + 1 Destination
Source
Dummy
cycle
CPU use
(3) One wait is inserted into the source read under the conditions in (1)
BCLK
Address
bus
CPU use
Source
Destination
Dummy
cycle
CPU use
RD signal
WR signal
Data
bus
CPU use
Source
Destination Dummy
cycle
CPU use
(4) One wait is inserted into the source read under the conditions in (2)
(When 16-bit data is transferred on an 8-bit data bus, there are two destination cycles).
BCLK
Address
bus
CPU use
Source
Source + 1
Destination
Dummy
cycle
CPU use
RD signal
WR signal
Data
bus
CPU use
Source
Source + 1
Destination
Dummy
cycle
CPU use
Note: The same timing changes occur with the respective conditions at the destination as at the source.
Figure 1.13.5. Example of the transfer cycles for a source read
72
Mitsubishi microcomputers
M16C / 30 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(2) DMAC transfer cycles
Any combination of even or odd transfer read and write addresses is possible. Table 1.13.2 shows the
number of DMAC transfer cycles.
The number of DMAC transfer cycles can be calculated as follows:
No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k
Table 1.13.2. No. of DMAC transfer cycles
Single-chip mode
Transfer unit
8-bit transfers
(DMBIT= “1”)
16-bit transfers
(DMBIT= “0”)
Memory expansion mode
Bus width
Access address
Microprocessor mode
No. of read No. of write No. of read No. of write
cycles
cycles
cycles
cycles
16-bit
Even
1
1
1
1
(BYTE= “L”)
Odd
1
1
1
1
8-bit
Even
—
—
1
1
(BYTE = “H”)
Odd
—
—
1
1
16-bit
Even
1
1
1
1
(BYTE = “L”)
Odd
2
2
2
2
8-bit
Even
—
—
2
2
(BYTE = “H”)
Odd
—
—
2
2
Coefficient j, k
Internal memory
Internal ROM/RAM Internal ROM/RAM
No wait
With wait
1
2
SFR area
2
External memory
Separate bus Separate bus
No wait
With wait
1
2
Multiplex
bus
3
73
Mitsubishi microcomputers
M16C / 30 Group
DMAC
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DMA enable bit
Setting the DMA enable bit to “1” makes the DMAC active. The DMAC carries out the following operations
at the time data transfer starts immediately after DMAC is turned active.
(1) Reloads the value of one of the source pointer and the destination pointer - the one specified for the
forward direction - to the forward direction address pointer.
(2) Reloads the value of the transfer counter reload register to the transfer counter.
Thus overwriting “1” to the DMA enable bit with the DMAC being active carries out the operations given
above, so the DMAC operates again from the initial state at the instant “1” is overwritten to the DMA
enable bit.
DMA request bit
The DMAC can generate a DMA transfer request signal triggered by a factor chosen in advance out of
DMA request factors.
DMA request factors include the following.
* Factors effected by using the interrupt request signals from the built-in peripheral functions and software
DMA factors (internal factors) effected by a program.
* External factors effected by utilizing the input from external interrupt signals.
For the selection of DMA request factors, see the descriptions of the DMA0 factor selection register.
The DMA request bit turns to “1” if the DMA transfer request signal occurs regardless of the DMAC's state
(regardless of whether the DMA enable bit is set to “1” or “0”). It turns to “0” immediately before data
transfer starts.
In addition, it can be set to “0” by use of a program, but cannot be set to “1”.
There can be instances in which a change in DMA request factor selection bit causes the DMA request bit
to turn to “1”. So be sure to set the DMA request bit to “0” after the DMA request factor selection bit is
changed.
The DMA request bit turns to “1” if a DMA transfer request signal occurs, and turns to “0” immediately
before data transfer starts. If the DMAC is active, data transfer starts immediately, so the value of the
DMA request bit, if read by use of a program, turns out to be “0” in most cases. To examine whether the
DMAC is active, read the DMA enable bit.
Here follows the timing of changes in the DMA request bit.
(1) Internal factors
Except the DMA request factors triggered by software, the timing for the DMA request bit to turn to “1” due
to an internal factor is the same as the timing for the interrupt request bit of the interrupt control register to
turn to “1” due to several factors.
Turning the DMA request bit to “0” due to an internal factor is timed to be effected immediately before the
transfer starts.
(2) External factors
________
An external factor is a factor caused to occur by the leading edge of input from the INT0 pin.
________
Selecting the INT0 pins as external factors using the DMA request factor selection bit causes input from
these pins to become the DMA transfer request signals.
The timing for the DMA request bit to turn to “1” when an external factor is selected synchronizes with the
signal's edge applicable to the function specified by the DMA request factor selection bit (synchronizes
________
with the trailing edge of the input signal to INT0 pin, for example).
With an external factor selected, the DMA request bit is timed to turn to “0” immediately before data
transfer starts similarly to the state in which an internal factor is selected.
74
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer
Timer
There are five 16-bit timers. These timers can be classified by function into timers A (three) and timers B
(two). All these timers function independently. Figures 1.14.1 and 1.14.2 show the block diagram of timers.
Clock prescaler
f1
XIN
f8
1/8
1/4
f32
1/32
XCIN
Clock prescaler reset flag (bit 7
at address 038116) set to “1”
fC32
Reset
f1 f8 f32 fC32
• Timer mode
• One-shot timer mode
• PWM mode
Timer A0 interrupt
TA0IN
Noise
filter
Timer A0
• Event counter mode
• Timer mode
• One-shot timer mode
• PWM mode
TA1IN
Noise
filter
Timer A1 interrupt
Timer A1
• Event counter mode
• Timer mode
• One-shot timer mode
• PWM mode
Timer A2 interrupt
TA2IN
Noise
filter
Timer A2
• Event counter mode
Timer B2 overflow
Note : The TA0IN pin (P71) is shared with RxD2, so be careful.
Figure 1.14.1. Timer A block diagram
75
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer
Clock prescaler
f1
XIN
f8
1/8
1/4
f32
fC32
1/32
XCIN
Clock prescaler reset flag (bit 7
at address 038116) set to “1”
Reset
f1 f8 f32 fC32
• Timer mode
• Pulse width measuring mode
TB1IN
Noise
filter
Timer B1 interrupt
Timer B1
• Event counter mode
• Timer mode
• Pulse width measuring mode
TB2IN
Noise
filter
Timer B2 interrupt
Timer B2
• Event counter mode
Timer A
Figure 1.14.2. Timer B block diagram
76
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer A
Timer A
Figure 1.14.3 shows the block diagram of timer A. Figures 1.14.4 to 1.14.6 show the timer A-related
registers.
Except in event counter mode, timers A0 through A2 all have the same function. Use the timer Ai mode
register (i = 0 to 2) bits 0 and 1 to choose the desired mode.
Timer A has the four operation modes listed as follows:
• Timer mode: The timer counts an internal count source.
• Event counter mode: The timer counts pulses from an external source or a timer overflow.
• One-shot timer mode: The timer stops counting when the count reaches “000016”.
• Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.
Data bus high-order bits
Clock source
selection
f1
f8
f32
High-order
8 bits
Low-order
8 bits
Clock selection
• Timer
(gate function)
fC32
AAA
AAA
AA
AA
AA
Data bus low-order bits
• Timer
• One shot
• PWM
Reload register (16)
• Event counter
Counter (16)
Polarity
selection
Up count/down count
Clock selection
TAiIN
(i = 0 to 2)
Always down count except
in event counter mode
Count start flag
(Address 038016)
TB2 overflow
To external
trigger circuit
TAj overflow
Down count
TAi
Addresses
TAj
TAk
Timer A1
Timer A0 038716 038616 Must not be set
Timer A0
Timer A2
Timer A1 038916 038816
Timer A1
Must not be set
Timer A2 038B16 038A16
(j = i – 1. Note, however, must not be set when i = 0)
Up/down flag
TAk overflow
(k = i + 1. Note, however, must not be set when i = 2)
(Address 038416)
Pulse output
TAiOUT
(i = 0 to 2)
Toggle flip-flop
Figure 1.14.3. Block diagram of timer A
Timer Ai mode register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
TAiMR(i=0 to 2)
Bit symbol
TMOD0
Bit name
Operation mode select bit
TMOD1
MR0
MR1
Address
When reset
039616 to 039816
0016
Function
b1 b0
0 0 : Timer mode
0 1 : Event counter mode
1 0 : One-shot timer mode
1 1 : Pulse width modulation
(PWM) mode
Function varies with each operation mode
MR2
MR3
TCK0
TCK1
Count source select bit
(Function varies with each operation mode)
A
A
A
A
AA
A
AA
A
A
AA
A
AA
AA
RW
Figure 1.14.4. Timer A-related registers (1)
77
Mitsubishi microcomputers
M16C / 30 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer Ai register (Note 1)
(b15)
b7
(b8)
b0 b7
Symbol
TA0
TA1
TA2
b0
Address
038716,038616
038916,038816
038B16,038A16
When reset
Indeterminate
Indeterminate
Indeterminate
Function
Values that can be set
• Timer mode
Counts an internal count source
000016 to FFFF16
RW
AA
AAA
AA
A
• Event counter mode
000016 to FFFF16
Counts pulses from an external source or timer overflow
• One-shot timer mode
Counts a one shot width
000016 to FFFF16
(Note 2,4)
• Pulse width modulation mode (16-bit PWM)
Functions as a 16-bit pulse width modulator
000016 to FFFE16
(Note 3,4)
• Pulse width modulation mode (8-bit PWM)
Timer low-order address functions as an 8-bit
prescaler and high-order address functions as an 8-bit
pulse width modulator
0016 to FE16
(High-order address)
0016 to FF16
(Low-order address)
(Note 3,4)
Note 1: Read and write data in 16-bit units.
Note 2: When the timer Ai register is set to “000016”, the counter does not
operate and the timer Ai interrupt request is not generated. When the
pulse is set to output, the pulse does not output from the TAiOUT pin.
Note 3: When the timer Ai register is set to “000016”, the pulse width modulator
does not operate and the output level of the TAiOUT pin remains “L”
level, therefore the timer Ai interrupt request is not generated. This also
occurs in the 8-bit pulse width modulator mode when the significant 8
high-order bits in the timer Ai register are set to “0016”.
Note 4: Use MOV instruction to write to this register.
Count start flag
b7
b6
b5
b4
0
0 0
b3
b2
b1
b0
Symbol
TABSR
Address
038016
When reset
0016
AA
AA
AA
AA
AAAAAAAAAAAAAAAA
AA
A
A
AAAAAAAAAAAAAAAA
AA
Bit symbol
Bit name
TA0S
Timer A0 count start flag
TA1S
Timer A1 count start flag
TA2S
Timer A2 count start flag
Reserved bit
R W
Function
0 : Stops counting
1 : Starts counting
Must always be set to “0”
TB1S
Timer B1 count start flag
TB2S
Timer B2 count start flag
0 : Stops counting
1 : Starts counting
Up/down flag (Note 1)
b7
b6
0
0
b5
b4
b3
0 0
b2
b1
b0
Symbol
UDF
Address
038416
Bit symbol
Bit name
TA0UD
Timer A0 up/down flag
TA1UD
Timer A1 up/down flag
TA2UD
Timer A2 up/down flag
Reserved bit
TA2P
When reset
0016
Function
AA
AA
AA
AA
A
A
RW
0 : Down count
1 : Up count
This specification becomes valid
when the up/down flag content is
selected for up/down switching
cause
Must always be set to “0”
0 : two-phase pulse signal
processing disabled
Timer A2 two-phase pulse
signal processing select bit 1 : two-phase pulse signal
processing enabled (Note 2)
When not using the two-phase
pulse signal processing function,
set the select bit to “0”
Reserved bit
Must always be set to “0”
Note 1: Use MOV instruction to write to this register.
Note 2: Set the TAiIN and TAiOUT pins correspondent port direction registers to “0”.
Figure 1.14.5. Timer A-related registers (2)
78
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer A
One-shot start flag
b7
b6
b5
b4
b3
0
0
b2
b1
Symbol
ONSF
b0
Address
038216
When reset
00X000002
Bit symbol
Bit name
TA0OS
Timer A0 one-shot start flag
TA1OS
Timer A1 one-shot start flag
TA2OS
Timer A2 one-shot start flag
Reserved bit
Function
1 : Timer start
When read, the value is “0”
Must always be set to “0”
AA
AA
AA
AA
AA
AA
RW
Nothing is assigned.
In an attempt to write to this bit, write “0”. The value, if read, turns out to be indeterminate.
TA0TGL
Timer A0 event/trigger
select bit
TA0TGH
b7 b6
0 0 : Input on TA0IN is selected (Note)
0 1 : TB2 overflow is selected
1 0 : Must not be set
1 1 : TA1 overflow is selected
Note: Set the corresponding port direction register to “0”.
Trigger select register
b7
b5
b4
0 0 0
b6
0
b3
b2
b1
b0
Symbol
TRGSR
Address
038316
Bit symbol
Bit name
Timer A1 event/trigger
select bit
TA1TGL
TA1TGH
Timer A2 event/trigger
select bit
TA2TGL
TA2TGH
Reserved bit
When reset
0016
Function
b1 b0
0 0 : Input on TA1IN is selected (Note)
0 1 : TB2 overflow is selected
1 0 : TA0 overflow is selected
1 1 : TA2 overflow is selected
b3 b2
0 0 : Input on TA2IN is selected (Note)
0 1 : TB2 overflow is selected
1 0 : TA1 overflow is selected
1 1 : Must not be set
Must always be set to “0”
Note: Set the corresponding port direction register to “0”.
AA
AA
AA
A
AA
A
AA
A
AA
R W
Clock prescaler reset flag
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
CPSRF
Bit symbol
Address
038116
Bit name
When reset
0XXXXXXX2
Function
RW
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be
indeterminate.
AAAAAAAAAAAAAAA
A
A
AAAAAAAAAAAAAAA
CPSR
Clock prescaler reset flag
0 : No effect
1 : Prescaler is reset
(When read, the value is “0”)
Figure 1.14.6. Timer A-related registers (3)
79
Mitsubishi microcomputers
M16C / 30 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(1) Timer mode
In this mode, the timer counts an internally generated count source. (See Table 1.14.1.) Figure 1.14.7
shows the timer Ai mode register in timer mode.
Table 1.14.1. Specifications of timer mode
Item
Count source
Count operation
Specification
f1, f8, f32, fC32
• Down count
• When the timer underflows, it reloads the reload register contents before continuing counting
1/(n+1) n : Set value
Count start flag is set (= 1)
Count start flag is reset (= 0)
When the timer underflows
Programmable I/O port or gate input
Programmable I/O port or pulse output
Count value can be read out by reading timer Ai register
• When counting stopped
When a value is written to timer Ai register, it is written to both reload register and counter
• When counting in progress
When a value is written to timer Ai register, it is written to only reload register
(Transferred to counter at next reload time)
• Gate function
Counting can be started and stopped by the TAiIN pin’s input signal
• Pulse output function
Each time the timer underflows, the TAiOUT pin’s polarity is reversed
Divide ratio
Count start condition
Count stop condition
Interrupt request generation timing
TAiIN pin function
TAiOUT pin function
Read from timer
Write to timer
Select function
Timer Ai mode register
b7
b6
b5
0
b4
b3
b2
b1
b0
0 0
Symbol
TAiMR(i=0 to 2)
Bit symbol
TMOD0
TMOD1
Address
When reset
039616 to 039816
0016
Bit name
Operation mode
select bit
Function
b1 b0
0 0 : Timer mode
MR0
Pulse output function
select bit
0 : Pulse is not output
(TAiOUT pin is a normal port pin)
1 : Pulse is output (Note 1)
(TAiOUT pin is a pulse output pin)
MR1
Gate function select bit
b4 b3
AA
AA
AA
AAA
A
AA
AA
AA
AA
RW
0 X (Note 2): Gate function not available
(TAiIN pin is a normal port pin)
1 0 : Timer counts only when TAiIN pin is
held “L” (Note 3)
1 1 : Timer counts only when TAiIN pin is
held “H” (Note 3)
MR2
MR3
0 (Must always be “0” in timer mode)
TCK0
Count source select bit
TCK1
b7 b6
0 0 : f1
0 1 : f8
1 0 : f32
1 1 : fC32
Note 1: The settings of the corresponding port register and port direction register
are invalid.
Note 2: The bit can be “0” or “1”.
Note 3: Set the corresponding port direction register to “0”.
Figure 1.14.7. Timer Ai mode register in timer mode
80
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer A
(2) Event counter mode
In this mode, the timer counts an external signal or an internal timer’s overflow. Timers A0 and A1 can
count a single-phase external signal. Timer A2 can count a single-phase and a two-phase external
signal. Table 1.14.2 lists timer specifications when counting a single-phase external signal. Figure
1.14.8 shows the timer Ai mode register in event counter mode.
Table 1.14.3 lists timer specifications when counting a two-phase external signal. Figure 1.14.9 shows
the timer Ai mode register in event counter mode.
Table 1.14.2. Timer specifications in event counter mode (when not processing two-phase pulse signal)
Item
Specification
Count source
• External signals input to TAiIN pin (effective edge can be selected by software)
• TB2 overflow, TAj overflow
Count operation
• Up count or down count can be selected by external signal or software
• When the timer overflows or underflows, it reloads the reload register con
tents before continuing counting (Note)
Divide ratio
1/ (FFFF16 - n + 1) for up count
1/ (n + 1) for down count
n : Set value
Count start condition
Count start flag is set (= 1)
Count stop condition
Count start flag is reset (= 0)
Interrupt request generation timing The timer overflows or underflows
TAiIN pin function
Programmable I/O port or count source input
TAiOUT pin function
Programmable I/O port, pulse output, or up/down count select input
Read from timer
Count value can be read out by reading timer Ai register
Write to timer
• When counting stopped
When a value is written to timer Ai register, it is written to both reload register and counter
• When counting in progress
When a value is written to timer Ai register, it is written to only reload register
(Transferred to counter at next reload time)
Select function
• Free-run count function
Even when the timer overflows or underflows, the reload register content is not reloaded to it
• Pulse output function
Each time the timer overflows or underflows, the TAiOUT pin’s polarity is reversed
Note: This does not apply when the free-run function is selected.
Timer Ai mode register
(When not using two-phase pulse signal processing)
b7
b6
b5
0
b4
b3
b2
b1
b0
Symbol
Address
TAiMR(i = 0 to 2) 039616 to 039816
0 1
When reset
0016
Function
AAAA
AA
AA
AAAA
AAAAAA
AAAA
Bit symbol
Bit name
TMOD0
Operation mode select bit
b1 b0
MR0
Pulse output function
select bit
0 : Pulse is not output
(TAiOUT pin is a normal port pin)
1 : Pulse is output (Note 2)
(TAiOUT pin is a pulse output pin)
MR1
Count polarity
select bit (Note 3)
0 : Counts external signal's falling edge
1 : Counts external signal's rising edge
MR2
Up/down switching
cause select bit
0 : Up/down flag's content
1 : TAiOUT pin's input signal (Note 4)
0 1 : Event counter mode (Note 1)
TMOD1
MR3
0 (Must always be “0” in event counter mode)
TCK0
Count operation type
select bit
TCK1
Invalid when not using two-phase pulse signal processing
Can be “0” or “1”
0 : Reload type
1 : Free-run type
R W
Note 1: In event counter mode, the count source is selected by the event / trigger select bit
(addresses 038216 and 038316).
Note 2: The settings of the corresponding port register and port direction register are invalid.
Note 3: Valid only when counting an external signal.
Note 4: When an “L” signal is input to the TAiOUT pin, the downcount is activated. When “H”,
the upcount is activated. Set the corresponding port direction register to “0”.
Figure 1.14.8. Timer Ai mode register in event counter mode
81
Mitsubishi microcomputers
M16C / 30 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.14.3. Timer specifications in event counter mode (when processing two-phase pulse signal with timer A2)
Item
Count source
Count operation
Divide ratio
Count start condition
Count stop condition
Interrupt request generation timing
TA2IN pin function
TA2OUT pin function
Read from timer
Write to timer
Select function
Specification
• Two-phase pulse signals input to TA2IN or TA2OUT pin
• Up count or down count can be selected by two-phase pulse signal
• When the timer overflows or underflows, the reload register content is
reloaded and the timer starts over again (Note)
1/ (FFFF16 - n + 1) for up count
1/ (n + 1) for down count
n : Set value
Count start flag is set (= 1)
Count start flag is reset (= 0)
Timer overflows or underflows
Two-phase pulse input (Set the TA2IN pin correspondent port direction register to “0”.)
Two-phase pulse input (Set the TA2OUT pin correspondent port direction register to “0”.)
Count value can be read out by reading timer A2 register
• When counting stopped
When a value is written to timer A2 register, it is written to both reload
register and counter
• When counting in progress
When a value is written to timer A2 register, it is written to only reload
register. (Transferred to counter at next reload time.)
• Normal processing operation
The timer counts up rising edges or counts down falling edges on the TA2IN
pin when input signal on the TA2OUT pin is “H”.
TA2OUT
TA2IN
Up
count
Up
count
Up
count
Note: This does not apply when the free-run function is selected.
82
Down
count
Down
count
Down
count
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer A
Timer Ai mode register
(When using two-phase pulse signal processing) (Note)
b6
0
b5
b4
b3
b2
b1
b0
0 1 0 0 0 1
Symbol
TA2MR
Address
039816
When reset
0016
Bit name
TMOD0
Operation mode select bit
TMOD1
Function
b1 b0
0 1 : Event counter mode
MR0
0 (Must always be “0” when using two-phase pulse signal
processing)
MR1
0 (Must always be “0” when using two-phase pulse signal
processing)
MR2
1 (Must always be “1” when using two-phase pulse signal
processing)
MR3
0 (Must always be “0” when using two-phase pulse signal
processing)
TCK0
Count operation type
select bit
TCK1
0 (Must always be “0” when using two-phase pulse signal
processing)
0 : Reload type
1 : Free-run type
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
RW
Note : When performing two-phase pulse signal processing, make sure the two-phase pulse
signal processing operation select bit (address 038416) is set to “1”. Also, always be
sure to set the event/trigger select bit (address 038316) to “00”.
Figure 1.14.9. Timer Ai mode register in event counter mode
83
Mitsubishi microcomputers
M16C / 30 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(3) One-shot timer mode
In this mode, the timer operates only once. (See Table 1.14.4.) When a trigger occurs, the timer starts up
and continues operating for a given period. Figure 1.14.10 shows the timer Ai mode register in one-shot
timer mode.
Table 1.14.4. Timer specifications in one-shot timer mode
Item
Count source
Count operation
Specification
f1, f8, f32, fC32
• The timer counts down
• When the count reaches 000016, the timer stops counting after reloading a new count
• If a trigger occurs when counting, the timer reloads a new count and restarts counting
1/n
n : Set value
• An external trigger is input
• The timer overflows
• The one-shot start flag is set (= 1)
• A new count is reloaded after the count has reached 000016
• The count start flag is reset (= 0)
The count reaches 000016
Programmable I/O port or trigger input
Programmable I/O port or pulse output
When timer Ai register is read, it indicates an indeterminate value
• When counting stopped
When a value is written to timer Ai register, it is written to both reload
register and counter
• When counting in progress
When a value is written to timer Ai register, it is written to only reload register
(Transferred to counter at next reload time)
Divide ratio
Count start condition
Count stop condition
Interrupt request generation timing
TAiIN pin function
TAiOUT pin function
Read from timer
Write to timer
Timer Ai mode register
b7
b6
b5
0
b4
b3
b2
b1
b0
1 0
Symbol
Address
When reset
TAiMR(i = 0 to 2) 039616 to 039816
0016
AA
A
AAA
AAA
AA
A
AA
A
AA
A
AAA
AA
A
AAA
Bit symbol
Bit name
TMOD0
Operation mode select bit
b1 b0
MR0
Pulse output function
select bit
0 : Pulse is not output
(TAiOUT pin is a normal port pin)
1 : Pulse is output (Note 1)
(TAiOUT pin is a pulse output pin)
MR1
External trigger select
bit (Note 2)
0 : Falling edge of TAiIN pin's input signal (Note 3)
1 : Rising edge of TAiIN pin's input signal (Note 3)
MR2
Trigger select bit
0 : One-shot start flag is valid
1 : Selected by event/trigger select
bits
MR3
0 (Must always be “0” in one-shot timer mode)
TCK0
Count source select bit
TMOD1
TCK1
Function
1 0 : One-shot timer mode
b7 b6
0 0 : f1
0 1 : f8
1 0 : f32
1 1 : fC32
RW
Note 1: The settings of the corresponding port register and port direction register are invalid.
Note 2: Valid only when the TAiIN pin is selected by the event/trigger select bit
(addresses 038216 and 038316). If timer overflow is selected, this bit can be “1” or “0”.
Note 3: Set the corresponding port direction register to “0”.
Figure 1.14.10. Timer Ai mode register in one-shot timer mode
84
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer A
(4) Pulse width modulation (PWM) mode
In this mode, the timer outputs pulses of a given width in succession. (See Table 1.14.5.) In this mode, the
counter functions as either a 16-bit pulse width modulator or an 8-bit pulse width modulator. Figure
1.14.11 shows the timer Ai mode register in pulse width modulation mode. Figure 1.14.12 shows the
example of how a 16-bit pulse width modulator operates. Figure 1.14.13 shows the example of how an 8bit pulse width modulator operates.
Table 1.14.5. Timer specifications in pulse width modulation mode
Item
Specification
Count source
Count operation
16-bit PWM
8-bit PWM
Count start condition
Count stop condition
Interrupt request generation timing
TAiIN pin function
TAiOUT pin function
Read from timer
Write to timer
f1, f8, f32, fC32
• The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator)
• The timer reloads a new count at a rising edge of PWM pulse and continues counting
• The timer is not affected by a trigger that occurs when counting
• High level width
n / fi n : Set value
• Cycle time
(216-1) / fi fixed
• High level width n (m+1) / fi
n : values set to timer Ai register’s high-order address
• Cycle time
(28-1) (m+1) / fi
m : values set to timer Ai register’s low-order address
• External trigger is input
• The timer overflows
• The count start flag is set (= 1)
• The count start flag is reset (= 0)
PWM pulse goes “L”
Programmable I/O port or trigger input
Pulse output
When timer Ai register is read, it indicates an indeterminate value
• When counting stopped
When a value is written to timer Ai register, it is written to both reload
register and counter
• When counting in progress
When a value is written to timer Ai register, it is written to only reload register
(Transferred to counter at next reload time)
Timer Ai mode register
b7
b6
b5
b4
b3
b2
b1
b0
1 1
1
Symbol
TAiMR(i=0 to 2)
Bit symbol
TMOD0
TMOD1
Address
When reset
039616 to 039816
0016
Bit name
Operation mode
select bit
Function
b1 b0
1 1 : PWM mode
A
AA
AAA
A
AA
AA
AA
A
AA
A
AA
AA
AA
MR0
1 (Must always be “1” in PWM mode)
MR1
External trigger select
bit (Note 1)
0: Falling edge of TAiIN pin's input signal (Note 2)
1: Rising edge of TAiIN pin's input signal (Note 2)
MR2
Trigger select bit
0: Count start flag is valid
1: Selected by event/trigger select bits
MR3
16/8-bit PWM mode
select bit
0: Functions as a 16-bit pulse width modulator
1: Functions as an 8-bit pulse width modulator
TCK0
Count source select bit
0 0 : f1
0 1 : f8
1 0 : f32
1 1 : fC32
b7 b6
TCK1
R W
Note 1: Valid only when the TAiIN pin is selected by the event/trigger select bit
(addresses 038216 and 038316). If timer overflow is selected, this bit can be “1” or “0”.
Note 2: Set the corresponding port direction register to “0”.
Figure 1.14.11. Timer Ai mode register in pulse width modulation mode
85
Mitsubishi microcomputers
M16C / 30 Group
Timer A
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Condition : Reload register = 000316, when external trigger
(rising edge of TAiIN pin input signal) is selected
1 / fi X (2 16 – 1)
Count source
“H”
TAiIN pin
input signal
“L”
Trigger is not generated by this signal
1 / fi X n
PWM pulse output
from TAiOUT pin
“H”
Timer Ai interrupt
request bit
“1”
“L”
“0”
fi : Frequency of count source
(f1, f8, f32, fC32)
Cleared to “0” when interrupt request is accepted, or cleared by software
Note: n = 000016 to FFFE16.
Figure 1.14.12. Example of how a 16-bit pulse width modulator operates
Condition : Reload register high-order 8 bits = 0216
Reload register low-order 8 bits = 0216
External trigger (falling edge of TAiIN pin input signal) is selected
1 / fi X (m + 1) X (2 8 – 1)
Count source (Note1)
TAiIN pin input signal
“H”
“L”
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
1 / fi X (m + 1)
“H”
Underflow signal of
8-bit prescaler (Note2) “L”
1 / fi X (m + 1) X n
PWM pulse output
from TAiOUT pin
“H”
Timer Ai interrupt
request bit
“1”
“L”
“0”
fi : Frequency of count source
(f1, f8, f32, fC32)
Cleared to “0” when interrupt request is accepted, or cleaerd by software
Note 1: The 8-bit prescaler counts the count source.
Note 2: The 8-bit pulse width modulator counts the 8-bit prescaler's underflow signal.
Note 3: m = 0016 to FF16; n = 0016 to FE16.
Figure 1.14.13. Example of how an 8-bit pulse width modulator operates
86
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B
Timer B
Figure 1.14.14 shows the block diagram of timer B. Figures 1.14.15 and 1.14.16 show the timer B-related
registers.
Use the timer Bi mode register (i = 1, 2) bits 0 and 1 to choose the desired mode.
Timer B has three operation modes listed as follows:
• Timer mode: The timer counts an internal count source.
• Event counter mode: The timer counts pulses from an external source or a timer overflow.
• Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or
pulse width.
Data bus high-order bits
Data bus low-order bits
Clock source selection
High-order 8 bits
Low-order 8 bits
f1
• Timer
• Pulse period/pulse width measurement
f8
f32
fC32
Reload register (16)
Clock selection
Counter (16)
• Event counter
Count start flag
Polarity switching
and edge pulse
TBiIN
(i = 1, 2)
(address 038016)
Counter reset circuit
Can be selected in only
event counter mode
TBi
Timer B1
Timer B2
TBj overflow
(j = i – 1. Note, however,
must not be set when i = 1)
Address
039316 039216
039516 039416
TBj
Must not be set
Timer B1
Figure 1.14.14. Block diagram of timer B
Timer Bi mode register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
TBiMR(i = 1, 2)
Bit symbol
TMOD0
Address
039C16, 039D16
Function
Bit name
Operation mode select bit
TMOD1
MR0
When reset
00XX00002
b1 b0
0 0 : Timer mode
0 1 : Event counter mode
1 0 : Pulse period/pulse width
measurement mode
1 1 : Must not be set.
Function varies with each operation mode
MR1
Nothing is assigned.
In an attempt to write to these bits, write “0”.
The value, if read, turns out to be indeterminate.
MR3
TCK0
TCK1
Function varies with each operation mode
Count source select bit
(Function varies with each operation mode)
AAA
A
AA
A
A
AA
AA
AA
R
W
Figure 1.14.15. Timer B-related registers (1)
87
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B
Timer Bi register (Note)
(b15)
b7
(b8)
b0 b7
Symbol
TB1
TB2
b0
Address
039316, 039216
039516, 039416
Function
When reset
Indeterminate
Indeterminate
Values that can be set
• Timer mode
Counts the timer's period
000016 to FFFF16
• Event counter mode
Counts external pulses input or a timer overflow
000016 to FFFF16
• Pulse period / pulse width measurement mode
Measures a pulse period or width
Note: Read and write data in 16-bit units.
A
A
A
RW
Count start flag
b7
b6
b5
b4
0
0 0
b3
b2
b1
b0
Symbol
TABSR
Address
038016
When reset
0016
AAAAAAAAAAAAAAA
A
AAAAAAAAAAAAAAA
A
AAAAAAAAAAAAAAA
A
AAAAAAAAAAAAAAA
A
AAAAAAAAAAAAAAA
A
Bit symbol
Bit name
TA0S
Timer A0 count start flag
TA1S
Timer A1 count start flag
TA2S
Timer A2 count start flag
Reverved bit
Function
RW
0 : Stops counting
1 : Starts counting
Must always be set to “0”
TB1S
Timer B1 count start flag
TB2S
Timer B2 count start flag
0 : Stops counting
1 : Starts counting
Clock prescaler reset flag
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
CPSRF
Address
038116
Bit symbol
Bit name
When reset
0XXXXXXX2
Function
R W
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
A
AAAAAAAAAAAAAAA
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns
out to be indeterminate.
CPSR
Clock prescaler reset flag
Figure 1.14.16. Timer B-related registers (2)
88
0 : No effect
1 : Prescaler is reset
(When read, the value is “0”)
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B
(1) Timer mode
In this mode, the timer counts an internally generated count source. (See Table 1.14.6.) Figure 1.14.17
shows the timer Bi mode register in timer mode.
Table 1.14.6. Timer specifications in timer mode
Item
Count source
Count operation
Specification
Divide ratio
Count start condition
Count stop condition
Interrupt request generation timing
TBiIN pin function
Read from timer
Write to timer
AA
A
AA
A
f1, f8, f32, fC32
• Counts down
• When the timer underflows, it reloads the reload register contents before
continuing counting
1/(n+1) n : Set value
Count start flag is set (= 1)
Count start flag is reset (= 0)
The timer underflows
Programmable I/O port
Count value is read out by reading timer Bi register
• When counting stopped
When a value is written to timer Bi register, it is written to both reload register and counter
• When counting in progress
When a value is written to timer Bi register, it is written to only reload register
(Transferred to counter at next reload time)
Timer Bi mode register
b7
b6
b5
b4
b3
b2
b1
b0
0 0
Symbol
TBiMR(i=1, 2)
Address
039C16, 039D16
Bit symbol
Bit name
TMOD0
Operation mode select bit
When reset
00XX00002
Function
b1 b0
0 0 : Timer mode
TMOD1
MR0
MR1
Invalid in timer mode
Can be “0” or “1”
Nothing is assiigned.
In an attempt to write to this bit, write “0”. The value, if read,
turns out to be indeterminate.
MR3
Invalid in timer mode.
In an attempt to write to this bit, write “0”. The value, if read in
timer mode, turns out to be indeterminate.
TCK0
Count source select bit
TCK1
b7 b6
0 0 : f1
0 1 : f8
1 0 : f32
1 1 : fC32
AA
AA
AA
AAA
A
AA
A
AA
A
AA
AA
AA
AA
AA
AA
AA
AA
AA
R
W
Figure 1.14.17. Timer Bi mode register in timer mode
89
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B
(2) Event counter mode
In this mode, the timer counts an external signal or an internal timer's overflow. (See Table 1.14.7.)
Figure 1.14.18 shows the timer Bi mode register in event counter mode.
Table 1.14.7. Timer specifications in event counter mode
Item
Count source
Specification
• External signals input to TBiIN pin
• Effective edge of count source can be a rising edge, a falling edge, or falling
and rising edges as selected by software
Count operation
• Counts down
• When the timer underflows, it reloads the reload register contents before
continuing counting
Divide ratio
1/(n+1)
n : Set value
Count start condition
Count start flag is set (= 1)
Count stop condition
Count start flag is reset (= 0)
Interrupt request generation timing The timer underflows
TBiIN pin function
Read from timer
Write to timer
AA
AA
Count source input
Count value can be read out by reading timer Bi register
• When counting stopped
When a value is written to timer Bi register, it is written to both reload register and counter
• When counting in progress
When a value is written to timer Bi register, it is written to only reload register
(Transferred to counter at next reload time)
Timer Bi mode register
b7
b6
b5
b4
b3
b2
b1
b0
0 1
Symbol
TBiMR(i=1, 2)
Address
039C16, 039D16
Bit symbol
Bit name
TMOD0
Operation mode select bit
TMOD1
MR0
Count polarity select
bit (Note 1)
MR1
When reset
00XX00002
Function
b1 b0
0 1 : Event counter mode
b3 b2
0 0 : Counts external signal's
falling edges
0 1 : Counts external signal's
rising edges
1 0 : Counts external signal's
falling and rising edges
1 1 : Must not be set.
Nothing is assigned.
In an attempt to write to this bit, write “0”. The value, if read,
turns out to be indeterminate.
MR3
Invalid in event counter mode.
In an attempt to write to this bit, write “0”. The value, if read in
event counter mode, turns out to be indeterminate.
TCK0
Invalid in event counter mode.
Can be “0” or “1”.
TCK1
Event clock select
0 : Input from TBiIN pin (Note 2)
1 : TBj overflow
(j = i – 1; however, must not be set,
when i = 1)
Note 1: Valid only when input from the TBiIN pin is selected as the event clock.
If timer's overflow is selected, this bit can be “0” or “1”.
Note 2: Set the corresponding port direction register to “0”.
Figure 1.14.18. Timer Bi mode register in event counter mode
90
AA
AA
AA
AA
R
W
AAA
AA
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B
(3) Pulse period/pulse width measurement mode
In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table 1.14.8.)
Figure 1.14.19 shows the timer Bi mode register in pulse period/pulse width measurement mode. Figure
1.14.20 shows the operation timing when measuring a pulse period. Figure 1.14.21 shows the operation
timing when measuring a pulse width.
Table 1.14.8. Timer specifications in pulse period/pulse width measurement mode
Item
Count source
Count operation
Specification
f1, f8, f32, fC32
• Up count
• Counter value “000016” is transferred to reload register at measurement
pulse's effective edge and the timer continues counting
Count start condition
Count start flag is set (= 1)
Count stop condition
Count start flag is reset (= 0)
Interrupt request generation timing • When measurement pulse's effective edge is input (Note 1)
• When an overflow occurs. (Simultaneously, the timer Bi overflow flag
changes to “1”. Assume that the count start flag condition is “1” and then the
timer Bi overflow flag becomes “1”. If the timer Bi mode register has a writeaccess after next count cycle of the timer from the above condition, the timer
Bi overflow flag becomes “0”.)
TBiIN pin function
Measurement pulse input
Read from timer
When timer Bi register is read, it indicates the reload register’s content
(measurement result) (Note 2)
Write to timer
Cannot be written to
Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting.
Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input
after the timer has started counting.
Timer Bi mode register
b7
b6
b5
b4
b3
b2
b1
b0
1 0
Symbol
TBiMR(i=1, 2)
Bit symbol
TMOD0
TMOD1
MR0
Address
039C16, 039D16
When reset
00XX00002
Bit name
Operation mode
select bit
Measurement mode
select bit
MR1
Function
b1 b0
1 0 : Pulse period / pulse width
measurement mode
b3 b2
0 0 : Pulse period measurement (Interval between
measurement pulse's falling edge to falling edge)
0 1 : Pulse period measurement (Interval between
measurement pulse's rising edge to rising edge)
1 0 : Pulse width measurement (Interval between
measurement pulse's falling edge to rising edge,
and between rising edge to falling edge)
1 1 : Must not be set.
Nothing is assigned.
In an attempt to write to this bit, write “0”. The value, if read, turns out to be
indeterminate.
MR3
Timer Bi overflow
flag (Note)
TCK0
Count source
select bit
TCK1
0 : Timer did not overflow
1 : Timer has overflowed
b7 b6
0 0 : f1
0 1 : f8
1 0 : f32
1 1 : fC32
AA
A
AAA
AAA
AAA
AA
AA
A
AA
A
AAA
R
W
Note: It is indeterminate when reset. Assume that the count start flag condition is “1” and then the timer Bi
overflow flag becomes “1”. If the timer Bi mode register has a write access after next count cycle of
the timer from the above condition, the timer
Bi overflow flag becomes “0”. This flag cannot be set
to “1” by software.
Figure 1.14.19. Timer Bi mode register in pulse period/pulse width measurement mode
91
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B
When measuring measurement pulse time interval from falling edge to falling edge
Count source
Measurement pulse
Reload register
transfer timing
“H”
“L”
Transfer
(indeterminate value)
Transfer
(measured value)
counter
(Note 1)
(Note 1)
(Note 2)
Timing at which counter
reaches “000016”
“1”
Count start flag
“0”
Timer Bi interrupt
request bit
“1”
Timer Bi overflow flag
“1”
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software.
“0”
Note 1: Counter is initialized at completion of measurement.
Note 2: Timer has overflowed.
Figure 1.14.20. Operation timing when measuring a pulse period
Count source
Measurement pulse
Reload register
transfer timing
“H”
“L”
counter
Transfer
(indeterminate
value)
(Note 1)
Transfer
(measured value)
Transfer
(measured
value)
(Note 1)
(Note 1)
Transfer
(measured value)
(Note 1)
(Note 2)
Timing at which counter
reaches “000016”
Count start flag
“1”
“0”
Timer Bi interrupt
request bit
“1”
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software.
Timer Bi overflow flag
“1”
“0”
Note 1: Counter is initialized at completion of measurement.
Note 2: Timer has overflowed.
Figure 1.14.21. Operation timing when measuring a pulse width
92
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Serial I/O
Serial I/O is configured as three channels: UART0, UART1, UART2.
UART0, UART1 and UART2 each have an exclusive timer to generate a transfer clock, so they operate
independently of each other.
Figure 1.16.1 shows the block diagram of UART0, UART1 and UART2. Figures 1.16.2 and 1.16.3 show
the block diagram of the transmit/receive unit.
UARTi (i = 0 to 2) has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous
serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses
03A016, 03A816 and 037816) determine whether UARTi is used as a clock synchronous serial I/O or as a
UART. Although a few functions are different, UART0, UART1 and UART2 have almost the same functions.
UART2, in particular, is used for the SIM interface with some extra settings added in clock-asynchronous
serial I/O mode (Note). It also has the bus collision detection function that generates an interrupt request if
the TxD pin and the RxD pin are different in level.
Table 1.16.1 shows the comparison of functions of UART0 through UART2, and Figures 1.16.4 to 1.16.9
show the registers related to UARTi.
Note: SIM : Subscriber Identity Module
Table 1.16.1. Comparison of functions of UART0 through UART2
Function
UART0
UART1
UART2
CLK polarity selection
Possible
(Note 1)
Possible
(Note 1)
Possible
(Note 1)
LSB first / MSB first selection
Possible
(Note 1)
Possible
(Note 1)
Possible
(Note 2)
Continuous receive mode selection
Possible
(Note 1)
Possible
(Note 1)
Possible
(Note 1)
Transfer clock output from multiple
pins selection
Impossible
Possible
(Note 1)
Impossible
Serial data logic switch
Impossible
Impossible
Sleep mode selection
Possible
TxD, RxD I/O polarity switch
Impossible
Impossible
Possible
TxD, RxD port output format
CMOS output
CMOS output
N-channel open-drain
output
Parity error signal output
Impossible
Impossible
Possible
Bus collision detection
Impossible
Impossible
Possible
(Note 3)
Possible
Possible
(Note 3)
(Note 4)
Impossible
(Note 4)
Note 1: Only when clock synchronous serial I/O mode.
Note 2: Only when clock synchronous serial I/O mode and 8-bit UART mode.
Note 3: Only when UART mode.
Note 4: Using for SIM interface.
93
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(UART0)
RxD0
TxD0
UART reception
1/16
Clock source selection
Bit rate generator
Internal (address 03A116)
f1
f8
f32
1 / (n0+1)
Reception
control circuit
Clock synchronous type
UART transmission
1/16
Transmission
control circuit
Clock synchronous type
External
Receive
clock
Transmit/
receive
unit
Transmit
clock
Clock synchronous type
(when internal clock is selected)
1/2
Clock synchronous type
(when internal clock is selected)
Clock synchronous type
(when external clock is
selected)
CLK
polarity
reversing
circuit
CLK0
CTS/RTS disabled
CTS/RTS selected
RTS0
CTS0 / RTS0
Vcc
CTS/RTS disabled
CTS0
(UART1)
RxD1
TxD1
1/16
Clock source selection
Bit rate generator
Internal (address 03A916)
f1
f8
f32
UART reception
1 / (n1+1)
UART transmission
1/16
CTS1 / RTS1/
CLKS1
Clock synchronous type
(when internal clock is selected)
Transmit
clock
Clock synchronous type
(when external clock is
selected)
CTS/RTS disabled
CTS/RTS selected
Clock output pin
select switch
Transmit/
receive
unit
(when internal clock is selected)
1/2
CLK1
Transmission
control circuit
Clock synchronous type
Clock synchronous type
External
CLK
polarity
reversing
circuit
Reception
control circuit
Clock synchronous type
Receive
clock
RTS1
VCC
CTS/RTS disabled
CTS1
(UART2)
RxD2
TxD
polarity
reversing
circuit
RxD polarity
reversing circuit
UART reception
Clock source selection
Bit rate generator
f1
Internal (address 037916)
f8
f32
1 / (n2+1)
1/16
Clock synchronous type
UART transmission
1/16
Clock synchronous type
External
Reception
control circuit
Transmission
control circuit
Receive
clock
Transmit/
receive
unit
Transmit
clock
Clock synchronous type
1/2
CLK2
CLK
polarity
reversing
circuit
(when internal clock is selected)
Clock synchronous type
(when internal clock is selected)
CTS/RTS
selected
Clock synchronous type
(when external clock is
selected)
CTS/RTS disabled
RTS2
CTS2 / RTS2
Vcc
CTS/RTS disabled
CTS2
n0 : Values set to UART0 bit rate generator (U0BRG)
n1 : Values set to UART1 bit rate generator (U1BRG)
n2 : Values set to UART2 bit rate generator (U2BRG)
Figure 1.16.1. Block diagram of UARTi (i = 0 to 2)
94
TxD2
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Clock
synchronous type
PAR
disabled
1SP
RxDi
SP
SP
UART (7 bits)
UART (8 bits)
Clock
synchronous
type
UARTi receive register
UART (7 bits)
PAR
2SP
PAR
enabled
UART
UART (9 bits)
Clock
synchronous type
UART (8 bits)
UART (9 bits)
0
0
0
0
0
0
0
D8
D7
D6
D5
D4
D3
D2
D1
D0
UARTi receive
buffer register
Address 03A616
Address 03A716
Address 03AE16
Address 03AF16
MSB/LSB conversion circuit
Data bus high-order bits
Data bus low-order bits
MSB/LSB conversion circuit
D7
D8
D6
D5
D4
D3
D2
D1
UART (9 bits)
2SP
SP
SP
Clock synchronous
type
UART
TxDi
PAR
1SP
UARTi transmit
buffer register
Address 03A216
Address 03A316
Address 03AA16
Address 03AB16
UART (8 bits)
UART (9 bits)
PAR
enabled
D0
PAR
disabled
“0”
Clock
synchronous
type
UART (7 bits)
UARTi transmit register
UART (7 bits)
UART (8 bits)
Clock synchronous
type
SP: Stop bit
PAR: Parity bit
Figure 1.16.2. Block diagram of UARTi (i = 0, 1) transmit/receive unit
95
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
No reverse
RxD data
reverse circuit
RxD2
Reverse
Clock
synchronous type
PAR
disabled
1SP
SP
SP
UART2 receive register
UART(7 bits)
PAR
2SP
PAR
enabled
0
UART
(7 bits)
UART
(8 bits)
Clock
synchronous
type
0
0
0
UART
0
Clock
synchronous type
UART
(9 bits)
0
0
UART
(8 bits)
UART
(9 bits)
D8
D0
UART2 receive
buffer register
Logic reverse circuit + MSB/LSB conversion circuit
Address 037E16
Address 037F16
D7
D6
D5
D4
D3
D2
D1
Data bus high-order bits
Data bus low-order bits
Logic reverse circuit + MSB/LSB conversion circuit
D7
D8
D6
D5
D4
D3
D2
D1
D0
UART2 transmit
buffer register
Address 037A16
Address 037B16
UART
(8 bits)
UART
(9 bits)
PAR
enabled
2SP
SP
SP
UART
(9 bits)
Clock
synchronous type
UART
PAR
1SP
PAR
disabled
“0”
Clock
synchronous
type
UART
(7 bits)
UART
(8 bits)
UART2 transmit register
UART(7 bits)
Clock
synchronous type
Error signal output
disable
No reverse
TxD data
reverse circuit
Error signal
output circuit
Error signal output
enable
Reverse
SP: Stop bit
PAR: Parity bit
Figure 1.16.3. Block diagram of UART2 transmit/receive unit
96
TxD2
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit buffer register (Note)
(b15)
b7
(b8)
b0 b7
b0
Symbol
U0TB
U1TB
U2TB
Address
03A316, 03A216
03AB16, 03AA16
037B16, 037A16
When reset
Indeterminate
Indeterminate
Indeterminate
Function
AA
R W
Transmit data
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminate.
Note: Use MOV instruction to write to this register.
UARTi receive buffer register
(b15)
b7
(b8)
b0 b7
b0
Bit
symbol
Symbol
U0RB
U1RB
U2RB
Address
03A716, 03A616
03AF16, 03AE16
037F16, 037E16
When reset
Indeterminate
Indeterminate
Indeterminate
Function
(During clock synchronous
serial I/O mode)
Bit name
Receive data
Function
(During UART mode)
Receive data
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.
ABT
Arbitration lost detecting
flag (Note 2)
OER
Overrun error flag (Note 1) 0 : No overrun error
1 : Overrun error found
0 : No overrun error
1 : Overrun error found
FER
Framing error flag (Note 1) Invalid
0 : No framing error
1 : Framing error found
PER
Parity error flag (Note 1)
Invalid
0 : No parity error
1 : Parity error found
SUM
Error sum flag (Note 1)
Invalid
0 : No error
1 : Error found
0 : Not detected
1 : Detected
Invalid
A
AA
AA
AA
A
R W
Note 1: Bits 15 through 12 are set to “0” when the serial I/O mode select bit (bits 2 to 0 at addresses 03A016,
03A816 and 037816) are set to “0002” or the receive enable bit is set to “0”.
(Bit 15 is set to “0” when bits 14 to 12 all are set to “0”.) Bits 14 and 13 are also set to “0” when the
lower byte of the UARTi receive buffer register (addresses 03A616, 03AE16 and 037E16) is read out.
Note 2: Arbitration lost detecting flag is allocated to U2RB and noting but “0” may be written. Nothing is
assigned in bit 11 of U0RB and U1RB. When write, set “0”. The value, if read, turns out to be “0”.
UARTi bit rate generator (Note 1, 2)
b7
b0
Symbol
U0BRG
U1BRG
U2BRG
Address
03A116
03A916
037916
When reset
Indeterminate
Indeterminate
Indeterminate
Function
Assuming that set value = n, BRGi divides the count source by
n+1
Note 1: Write a value to this register while transmit/receive halts.
Note 2: Use MOV instruction to write to this register.
Values that can be set
0016 to FF16
AA
RW
Figure 1.16.4. Serial I/O-related registers (1)
97
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit/receive mode register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
UiMR(i=0,1)
Address
03A016, 03A816
When reset
0016
Function
(During clock synchronous
serial I/O mode)
Bit
symbol
Bit name
SMD0
Serial I/O mode select bit
Must always be “001”
b2 b1 b0
0 0 0 : Serial I/O invalid
0 1 0 : Must not be set.
0 1 1 : Must not be set.
1 1 1 : Must not be set.
SMD1
SMD2
Function
(During UART mode)
b2 b1 b0
R W
A
A
AA
A
A
AA
A
A
A
AA
A
AA
A
A
AA
1 0 0 : Transfer data 7 bits long
1 0 1 : Transfer data 8 bits long
1 1 0 : Transfer data 9 bits long
0 0 0 : Serial I/O invalid
0 1 0 : Must not be set.
0 1 1 : Must not be set.
1 1 1 : Must not be set.
CKDIR Internal/external clock
select bit
0 : Internal clock
1 : External clock (Note)
0 : Internal clock
1 : External clock (Note)
STPS
Stop bit length select bit
Invalid
0 : One stop bit
1 : Two stop bits
PRY
Odd/even parity select bit Invalid
PRYE
Parity enable bit
Invalid
0 : Parity disabled
1 : Parity enabled
SLEP
Sleep select bit
Must always be “0”
0 : Sleep mode deselected
1 : Sleep mode selected
Valid when bit 6 = “1”
0 : Odd parity
1 : Even parity
Note : Set the corresponding port direction register to “0”.
UART2 transmit/receive mode register
b7
b6
b5
b4
b3
b2
b1
Symbol
U2MR
b0
Address
037816
Bit
symbol
Bit name
SMD0
Serial I/O mode select bit
When reset
0016
Function
(During clock synchronous
serial I/O mode)
Must always be “001”
b2 b1 b0
0 0 0 : Serial I/O invalid
0 1 0 : (Note 1)
0 1 1 : Must not be set.
1 1 1 : Must not be set.
SMD1
SMD2
b2 b1 b0
0 : Internal clock
1 : External clock (Note 2)
Must always be “0”
STPS
Stop bit length select bit
Invalid
0 : One stop bit
1 : Two stop bits
PRY
Odd/even parity select bit Invalid
PRYE
Parity enable bit
Invalid
0 : Parity disabled
1 : Parity enabled
IOPOL
TxD, RxD I/O polarity
reverse bit
0 : No reverse
1 : Reverse
Usually set to “0”
0 : No reverse
1 : Reverse
Usually set to “0”
Figure 1.16.5. Serial I/O-related registers (2)
R W
A
A
A
A
A
A
A
A
AA
A
A
A
AA
A
AA
AA
1 0 0 : Transfer data 7 bits long
1 0 1 : Transfer data 8 bits long
1 1 0 : Transfer data 9 bits long
0 0 0 : Serial I/O invalid
0 1 0 : Must not be set.
0 1 1 : Must not be set.
1 1 1 : Must not be set.
CKDIR Internal/external clock
select bit
Note 1: Bit 2 to bit 0 are set to “0102” when I2C mode is used.
Note 2: Set the corresponding port direction register to “0”.
98
Function
(During UART mode)
Valid when bit 6 = “1”
0 : Odd parity
1 : Even parity
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit/receive control register 0
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
UiC0(i=0,1)
Bit
symbol
CLK0
Address
When reset
03A416, 03AC16
0816
Function
(During clock synchronous
serial I/O mode)
Bit name
b1 b0
BRG count source
select bit
CLK1
CRS
TXEPT
CTS/RTS function
select bit
Function
(During UART mode)
b1 b0
R W
AA
AA
AA
A
AA
AAAA
AA
AA
0 0 : f1 is selected
0 1 : f8 is selected
1 0 : f32 is selected
1 1 : Must not be set.
0 0 : f1 is selected
0 1 : f8 is selected
1 0 : f32 is selected
1 1 : Must not be set.
Valid when bit 4 = “0”
Valid when bit 4 = “0”
0 : CTS function is selected (Note 1)
1 : RTS function is selected (Note 2)
0 : CTS function is selected (Note 1)
1 : RTS function is selected (Note 2)
0 : Data present in transmit
0 : Data present in transmit register
Transmit register empty
register (during transmission)
(during transmission)
flag
1 : No data present in transmit
1 : No data present in transmit
register (transmission
completed)
register (transmission completed)
CRD
CTS/RTS disable bit
0 : CTS/RTS function enabled
1 : CTS/RTS function disabled
(P60 and P64 function as
programmable I/O port)
0 : CTS/RTS function enabled
1 : CTS/RTS function disabled
(P60 and P64 function as
programmable I/O port)
NCH
Data output select bit
0 : TXDi pin is CMOS output
1 : TXDi pin is N-channel
open-drain output
0: TXDi pin is CMOS output
1: TXDi pin is N-channel
open-drain output
CKPOL
CLK polarity select bit
0 : Transmit data is output at
falling edge of transfer clock
and receive data is input at
rising edge
1 : Transmit data is output at
rising edge of transfer clock
and receive data is input at
falling edge
Must always be “0”
UFORM Transfer format select bit 0 : LSB first
1 : MSB first
Must always be “0”
Note 1: Set the corresponding port direction register to “0”.
Note 2: The settings of the corresponding port register and port direction register are invalid.
UART2 transmit/receive control register 0
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
U2C0
Bit
symbol
CLK0
Address
037C16
Bit name
BRG count source
select bit
CLK1
CRS
TXEPT
CTS/RTS function
select bit
When reset
0816
Function
(During clock synchronous
serial I/O mode)
b1 b0
0 0 : f1 is selected
0 1 : f8 is selected
1 0 : f32 is selected
1 1 : Must not be set.
Valid when bit 4 = “0”
Valid when bit 4 = “0”
0 : CTS function is selected (Note 1)
1 : RTS function is selected (Note 2)
0 : CTS function is selected (Note 1)
1 : RTS function is selected (Note 2)
R W
0 : Data present in transmit
0 : Data present in transmit register
Transmit register empty
register (during transmission)
(during transmission)
flag
1 : No data present in transmit
1 : No data present in transmit
CTS/RTS disable bit
Nothing is assigned.
register (transmission completed)
0 : CTS/RTS function enabled
1 : CTS/RTS function disabled
(P73 functions
programmable I/O port)
0 : CTS/RTS function enabled
1 : CTS/RTS function disabled
(P73 functions programmable
I/O port)
0 : TXDi pin is CMOS output
0: TXDi pin is CMOS output
: TXDi
pinvalue,
is N-channel
1: TXDi
is N-channel
In an attempt to write to this bit, write1“0”.
The
if read, turns out
to bepin“0”.
CKPOL
AA
AAAA
AA
AA
AAAA
AAAA
AAAA
b1 b0
0 0 : f1 is selected
0 1 : f8 is selected
1 0 : f32 is selected
1 1 : Must not be set.
register (transmission
completed)
CRD
Function
(During UART mode)
CLK polarity select bit
open-drain output
0 : Transmit data is output at
falling edge of transfer clock
and receive data is input at
rising edge
1 : Transmit data is output at
rising edge of transfer clock
and receive data is input at
falling edge
UFORM Transfer format select bit 0 : LSB first
1 : MSB first
(Note 3)
open-drain output
Must always be “0”
0 : LSB first
1 : MSB first
Note 1: Set the corresponding port direction register to “0”.
Note 2: The settings of the corresponding port register and port direction register are invalid.
Note 3: Only clock synchronous serial I/O mode and 8-bit UART mode are valid.
Figure 1.16.6. Serial I/O-related registers (3)
99
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit/receive control register 1
b7
b6
b5
b4
b3
b2
b1
Symbol
UiC1(i=0,1)
b0
Bit
symbol
Address
03A516,03AD16
When reset
0216
Function
(During clock synchronous
serial I/O mode)
Bit name
Function
(During UART mode)
TE
Transmit enable bit
0 : Transmission disabled
1 : Transmission enabled
0 : Transmission disabled
1 : Transmission enabled
TI
Transmit buffer
empty flag
0 : Data present in
transmit buffer register
1 : No data present in
transmit buffer register
0 : Data present in
transmit buffer register
1 : No data present in
transmit buffer register
RE
Receive enable bit
0 : Reception disabled
1 : Reception enabled
0 : Reception disabled
1 : Reception enabled
RI
Receive complete flag
0 : No data present in
receive buffer register
1 : Data present in
receive buffer register
0 : No data present in
receive buffer register
1 : Data present in
receive buffer register
R W
A
A
A
A
A
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.
UART2 transmit/receive control register 1
b7
b6
b5
b4
b3
b2
b1
Symbol
U2C1
b0
Bit
symbol
Address
037D16
Bit name
Function
(During clock synchronous
serial I/O mode)
Function
(During UART mode)
TE
Transmit enable bit
0 : Transmission disabled
1 : Transmission enabled
0 : Transmission disabled
1 : Transmission enabled
TI
Transmit buffer
empty flag
0 : Data present in
transmit buffer register
1 : No data present in
transmit buffer register
0 : Data present in
transmit buffer register
1 : No data present in
transmit buffer register
RE
Receive enable bit
0 : Reception disabled
1 : Reception enabled
0 : Reception disabled
1 : Reception enabled
RI
Receive complete flag
0 : No data present in
receive buffer register
1 : Data present in
receive buffer register
0 : No data present in
receive buffer register
1 : Data present in
receive buffer register
0 : Transmit buffer empty
(TI = 1)
1 : Transmit is completed
(TXEPT = 1)
0 : Transmit buffer empty
(TI = 1)
1 : Transmit is completed
(TXEPT = 1)
U2RRM UART2 continuous
receive mode enable bit
0 : Continuous receive
mode disabled
1 : Continuous receive
mode enabled
Must always be "0"
U2LCH Data logic select bit
0 : No reverse
1 : Reverse
0 : No reverse
1 : Reverse
U2ERE Error signal output
enable bit
Must always be "0"
0 : Output disabled
1 : Output enabled
U2IRS UART2 transmit interrupt
cause select bit
Figure 1.16.7. Serial I/O-related registers (4)
100
When reset
0216
A
A
A
A
A
A
A
A
A
A
A
R W
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART transmit/receive control register 2
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
UCON
0
Bit
symbol
U0IRS
Address
03B016
When reset
X00000002
Function
(During clock synchronous
serial I/O mode)
Bit
name
UART0 transmit
interrupt cause select bit
0 : Transmit buffer empty (Tl = 1)
1 : Transmission completed
(TXEPT = 1)
U1IRS
0 : Transmit buffer empty (Tl = 1)
1 : Transmission completed
UART1 transmit
interrupt cause select bit
(TXEPT = 1)
Function
(During UART mode)
0 : Transmit buffer empty (Tl = 1)
1 : Transmission completed
(TXEPT = 1)
0 : Continuous receive
mode disabled
1 : Continuous receive
mode enable
Must always be “0”
U1RRM UART1 continuous
receive mode enable bit
0 : Continuous receive
mode disabled
1 : Continuous receive
mode enabled
Valid when bit 5 = “1”
0 : Clock output to CLK1
1 : Clock output to CLKS1
Must always be “0”
0 : Normal mode
CLKMD1 CLK/CLKS select
bit 1 (Note)
Invalid
Must always be “0”
(CLK output is CLK1 only)
1 : Transfer clock output
from multiple pins
function selected
Reserved bit
AA
AA
AAA
A
AAA
AAA
AA
AA
0 : Transmit buffer empty (Tl = 1)
1 : Transmission completed
(TXEPT = 1)
U0RRM UART0 continuous
receive mode enable bit
CLKMD0 CLK/CLKS select bit 0
RW
Must always be set to “0”
Nothing is assigned.
In an attempt to write to this bit, write “0”. The value, if read, turns out to be indeterminate.
Note: When using multiple pins to output the transfer clock, the following requirements must be met:
• UART1 internal/external clock select bit (bit 3 at address 03A816) = “0”.
UART2 special mode register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
U2SMR
Bit
symbol
Address
037716
Bit
name
When reset
0016
Function
(During clock synchronous
serial I/O mode)
Function
(During UART mode)
AA
AAAA
AA
AA
AAAA
AA
AAAA
AAAA
IICM
I2C mode select bit
0 : Normal mode
1 : I2C mode
Must always be “0”
ABC
Arbitration lost detecting
flag control bit
0 : Update per bit
1 : Update per byte
Must always be “0”
BBS
Bus busy flag
0 : STOP condition detected
1 : START condition detected
Must always be “0”
LSYN
SCLL sync output
enable bit
0 : Disabled
1 : Enabled
Must always be “0”
ABSCS
Bus collision detect
sampling
clock select bit
Must always be “0”
0 : Rising edge of transfer
clock
1 : Underflow signal of timer A0
ACSE
Auto clear function
select bit of transmit
enable bit
Must always be “0”
0 : No auto clear function
1 : Auto clear at occurrence of
bus collision
SSS
Transmit start condition
select bit
Must always be “0”
0 : Ordinary
1 : Falling edge of RXD2
SDDS
SDA digital delay select
bit (Note 2, Note 3)
0 : Analog delay output
is selected
1 : Digital delay output
is selected
(must always be “0” when
not using I 2 C mode)
Must always be “0”
R W
(Note1)
Note 1: Nothing but “0” may be written.
Note 2: When not in I2C mode, do not set this bit by writing a “1”. During normal mode, set it to “0”. When this
bit = “0”, UART2 special mode register 3 (U2SMR3 at address 037516) bits 7 to 5 (DL2 to DL0 = SDA
digital delay setup bits) are initialized to “000”, with the analog delay circuit selected. Also, when SDDS
= “0”, the U2SMR3 register cannot be read or written to.
Note 3: When analog delay is selected, only the analog delay value is effective; when digital delay is selected,
only the digital delay value is effective.
Figure 1.16.8. Serial I/O-related registers (5)
101
Mitsubishi microcomputers
M16C / 30 Group
Serial I/O
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART2 special mode register 2 (I 2 C bus exclusive use register)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
U2SMR2
Bit
symbol
Address
037616
When reset
0016
AA
AA
A
A
AA
AA
AA
AA
AA
AA
Function
(I2C bus exclusive use)
Bit name
IICM2
I 2C mode select bit 2
Refer to Table 1.16.11
CSC
Clock-synchronous bit
0 : Disabled
1 : Enabled
SWC
SCL wait output bit
0 : Disabled
1 : Enabled
ALS
SDA output stop bit
0 : Disabled
1 : Enabled
STAC
UART2 initialization bit
0 : Disabled
1 : Enabled
SWC2
SCL wait output bit 2
0: UART2 clock
1: 0 output
SDHI
SDA output disable bit
0: Enabled
1: Disabled (high impedance)
SHTC
Start/stop condition
control bit
1: Set this bit to “1” in I2C mode
(refer to Table 1.16.12)
R W
UART2 special mode register 3 (I 2 C bus exclusive use register)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
U2SMR3
Bit
symbol
Address
037516
When reset
Indeterminate
(However, when SDDS = “1”, the initial value is “0016”)
Function
(I 2 C bus exclusive use register)
Bit name
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be
indeterminate. However, when SDDS = “1”, the value “0” is read out (Note 1)
DL0
DL1
SDA digital delay setup
bit
(Note 1, Note 2, Note 3,
Note 4)
DL2
b7 b6 b5
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 : Analog delay is selected
1 : 1 to 2 cycle(s) of 1/f(XIN)
0 : 2 to 3 cycles of 1/f(XIN)
1 : 3 to 4 cycles of 1/f(XIN)
0 : 4 to 5 cycles of 1/f(XIN)
1 : 5 to 6 cycles of 1/f(XIN)
0 : 6 to 7 cycles of 1/f(XIN)
1 : 7 to 8 cycles of 1/f(XIN)
Digital delay
is selected
R W
AA
AA
AA
Note 1: This bit can be read or written to when UART2 special mode register (U2SMR at address 037716) bit
7 (SDDS: SDA digital delay select bit) = “1”. When the initial value of UART2 special mode register 3
(U2SMR3) is read after setting SDDS = “1”, the value is “0016”. When writing to UART2 special mode
register 3 (U2SMR3) after setting SDDS = “1”, be sure to write 0's to bits 0–4. When SDDS = “0”,
this register cannot be written to; when read, the value is indeterminate.
Note 2: These bits are initialized to “000” when SDDS = “0”, with the analog delay circuit selected. After a reset,
these bits are set to “000”, with the analog delay circuit selected. However, because these bits can be
read only when SDDS = “1”, the value read from these bits when SDDS = “0” is indeterminate.
Note 3: When analog delay is selected, only the analog delay value is effective; when digital delay is selected,
only the digital delay value is effective.
Note 4: The amount of delay varies with the load on SCL and SDA pins. Also, when using an external clock, the
amount of delay increases by about 100 ns, so be sure to take this into account when using the device.
Figure 1.16.9. Serial I/O-related registers (6)
102
Mitsubishi microcomputers
M16C / 30 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(1) Clock synchronous serial I/O mode
The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Tables 1.16.2
and 1.16.3 list the specifications of the clock synchronous serial I/O mode. Figure 1.16.10 shows the
UARTi transmit/receive mode register.
Table 1.16.2. Specifications of clock synchronous serial I/O mode (1)
Item
Transfer data format
Transfer clock
Specification
• Transfer data length: 8 bits
• When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816
= “0”) : fi/ 2(n+1) (Note 1) fi = f1, f8, f32
• When external clock is selected (bit 3 at addresses 03A016, 03A816, 037816
= “1”) : Input from CLKi pin
_______
_______
_______
_______
Transmission/reception control • CTS function, RTS function, CTS and RTS function invalid: selectable
Transmission start condition • To start transmission, the following requirements must be met:
_ Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = “1”
_ Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = “0”
_______
_______
_ When CTS function selected, CTS input level = “L”
• Furthermore, if external clock is selected, the following requirements must also be met:
_ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = “0”:
CLKi input level = “H”
_ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = “1”:
CLKi input level = “L”
Reception start condition • To start reception, the following requirements must be met:
_ Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = “1”
_ Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = “1”
_ Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = “0”
• Furthermore, if external clock is selected, the following requirements must
also be met:
_ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = “0”:
CLKi input level = “H”
_ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = “1”:
CLKi input level = “L”
• When transmitting
Interrupt request
_ Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at
generation timing
address 037D16) = “0”: Interrupts requested when data transfer from UARTi
transfer buffer register to UARTi transmit register is completed
_ Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at
address 037D16) = “1”: Interrupts requested when data transmission from
UARTi transfer register is completed
• When receiving
_ Interrupts requested when data transfer from UARTi receive register to
UARTi receive buffer register is completed
Error detection
• Overrun error (Note 2)
This error occurs when the next data is ready before contents of UARTi
receive buffer register are read out
Note 1: “n” denotes the value 0016 to FF16 that is set to the UART bit rate generator.
Note 2: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that
the UARTi receive interrupt request bit does not change.
103
Mitsubishi microcomputers
Clock synchronous serial I/O mode
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.16.3. Specifications of clock synchronous serial I/O mode (2)
Item
Select function
Specification
• CLK polarity selection
Whether transmit data is output/input timing at the rising edge or falling edge
of the transfer clock can be selected
• LSB first/MSB first selection
Whether transmission/reception begins with bit 0 or bit 7 can be selected
• Continuous receive mode selection
Reception is enabled simultaneously by a read from the receive buffer register
• Transfer clock output from multiple pins selection (UART1)
UART1 transfer clock can be chosen by software to be output from one of
the two pins set
• Switching serial data logic (UART2)
Whether to reverse data in writing to the transmission buffer register or
reading the reception buffer register can be selected.
• TxD, RxD I/O polarity reverse (UART2)
This function is reversing TxD port output and RxD port input. All I/O data
level is reversed.
104
Mitsubishi microcomputers
M16C / 30 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit/receive mode registers
b7
b6
b5
b4
b3
0
b2
b1
b0
0 0 1
Symbol
UiMR(i=0,1)
Bit symbol
SMD0
Address
03A016, 03A816
When reset
0016
Bit name
Serial I/O mode select bit
SMD1
SMD2
CKDIR
Internal/external clock
select bit
Function
b2 b1 b0
0 0 1 : Clock synchronous serial
I/O mode
0 : Internal clock
1 : External clock (Note)
STPS
PRY
Invalid in clock synchronous serial I/O mode
PRYE
SLEP
0 (Must always be “0” in clock synchronous serial I/O mode)
Note : Set the corresponding port direction register to “0”.
A
AA
A
AAA
A
A
AA
A
A
AA
A
AAA
A
RW
UART2 transmit/receive mode register
b7
0
b6
b5
b4
b3
b2
b1
b0
0 0 1
Symbol
U2MR
Bit symbol
SMD0
Address
037816
Bit name
Serial I/O mode select bit
SMD1
SMD2
CKDIR
When reset
0016
Internal/external clock
select bit
Function
b2 b1 b0
0 0 1 : Clock synchronous serial
I/O mode
0 : Internal clock
1 : External clock (Note 2)
STPS
PRY
Invalid in clock synchronous serial I/O mode
PRYE
IOPOL
TxD, RxD I/O polarity
reverse bit (Note 1)
0 : No reverse
1 : Reverse
Note 1: Usually set to “0”.
Note 2: Set the corresponding port direction register to “0”.
AA
A
A
AA
A
A
A
A
A
A
A
AA
A
A
AA
RW
Figure 1.16.10. UARTi transmit/receive mode register in clock synchronous serial I/O mode
105
Mitsubishi microcomputers
Clock synchronous serial I/O mode
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.16.4 lists the functions of the input/output pins during clock synchronous serial I/O mode. This
table shows the pin functions when the transfer clock output from multiple pins function is not selected.
Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi
pin outputs an “H”. (If the N-channel open-drain is selected, this pin is in floating state.)
Table 1.16.4. Input/output pin functions in clock synchronous serial I/O mode
(when transfer clock output from multiple pins is not selected)
Pin name
Function
Method of selection
TxDi
Serial data output
(P63, P67, P70)
(Outputs dummy data when performing reception only)
Serial data input
RxDi
(P62, P66, P71)
Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16,
bit 1 at address 03EF16)= “0”
(Can be used as an input port when performing transmission only)
CLKi
Transfer clock output
(P61, P65, P72)
Transfer clock input
Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = “0”
CTSi/RTSi
CTS input
(P60, P64, P73)
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) =“0”
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = “0”
Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16,
bit 3 at address 03EF16) = “0”
106
Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = “1”
Port P61, P65 and P72 direction register (bits 1 and 5 at address 03EE16,
bit 2 at address 03EF16) = “0”
RTS output
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = “0”
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = “1”
Programmable I/O port
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = “1”
Mitsubishi microcomputers
M16C / 30 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
• Example of transmit timing (when internal clock is selected)
Tc
Transfer clock
Transmit enable
bit (TE)
Transmit buffer
empty flag (Tl)
“1”
“0”
Data is set in UARTi transmit buffer register
“1”
“0”
Transferred from UARTi transmit buffer register to UARTi transmit register
“H”
CTSi
TCLK
“L”
Stopped pulsing because CTS = “H”
Stopped pulsing because transfer enable bit = “0”
CLKi
TxDi
D0 D 1 D2 D3 D4 D5 D6 D7
Transmit
register empty
flag (TXEPT)
D0 D 1 D2 D3 D4 D5 D 6 D7
D 0 D1 D2 D 3 D 4 D 5 D6 D7
“1”
“0”
Transmit interrupt “1”
request bit (IR)
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software
Shown in ( ) are bit symbols.
The above timing applies to the following settings:
• Internal clock is selected.
• CTS function is selected.
• CLK polarity select bit = “0”.
• Transmit interrupt cause select bit = “0”.
Tc = TCLK = 2(n + 1) / fi
fi: frequency of BRGi count source (f1, f8, f32)
n: value set to BRGi
• Example of receive timing (when external clock is selected)
“1”
Receive enable
bit (RE)
“0”
Transmit enable
bit (TE)
“0”
Transmit buffer
empty flag (Tl)
“1”
“0”
“H”
RTSi
Dummy data is set in UARTi transmit buffer register
“1”
Transferred from UARTi transmit buffer register to UARTi transmit register
“L”
1 / fEXT
CLKi
Receive data is taken in
D 0 D1 D 2 D3 D 4 D5 D6 D 7
RxDi
Receive complete “1”
flag (Rl)
“0”
Receive interrupt
request bit (IR)
Transferred from UARTi receive register
to UARTi receive buffer register
D0 D 1 D 2
D3 D4 D5
Read out from UARTi receive buffer register
“1”
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software
Shown in ( ) are bit symbols.
The above timing applies to the following settings:
• External clock is selected.
• RTS function is selected.
• CLK polarity select bit = “0”.
Meet the following conditions are met when the CLK
input before data reception = “H”
• Transmit enable bit “1”
• Receive enable bit “1”
• Dummy data write to UARTi transmit buffer register
fEXT: frequency of external clock
Figure 1.16.11. Typical transmit/receive timings in clock synchronous serial I/O mode
107
Mitsubishi microcomputers
M16C / 30 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(a) Polarity select function
As shown in Figure 1.16.12, the CLK polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16)
allows selection of the polarity of the transfer clock.
• When CLK polarity select bit = “0”
CLKi
TXDi
D0
D1
D2
D3
D4
D5
D6
D7
RXDi
D0
D1
D2
D3
D4
D5
D6
D7
Note 1: The CLKi pin level when not
transferring data is “H”.
• When CLK polarity select bit = “1”
CLKi
TXDi
D0
D1
D2
D3
D4
D5
D6
D7
RXDi
D0
D1
D2
D3
D4
D5
D6
D7
Note 2: The CLKi pin level when not
transferring data is “L”.
Figure 1.16.12. Polarity of transfer clock
(b) LSB first/MSB first select function
As shown in Figure 1.16.13, when the transfer format select bit (bit 7 at addresses 03A416, 03AC16,
037C16) = “0”, the transfer format is “LSB first”; when the bit = “1”, the transfer format is “MSB first”.
• When transfer format select bit = “0”
CLKi
TXDi
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
LSB first
R XD i
• When transfer format select bit = “1”
CLKi
TXDi
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
MSB first
R XD i
Note: This applies when the CLK polarity select bit = “0”.
Figure 1.16.13. Transfer format
108
Mitsubishi microcomputers
M16C / 30 Group
Clock synchronous serial I/O mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(c) Transfer clock output from multiple pins function (UART1)
This function allows the setting two transfer clock output pins and choosing one of the two to output a
clock by using the CLK and CLKS select bit (bits 4 and 5 at address 03B016). (See Figure 1.16.14.)
The multiple pins function is valid only when the internal clock is selected for UART1.
Microcomputer
TXD1 (P67)
CLKS1 (P64)
CLK1 (P65)
IN
IN
CLK
CLK
Note: This applies when the internal clock is selected and transmission
is performed only in clock synchronous serial I/O mode.
Figure 1.16.14. The transfer clock output from the multiple pins function usage
(d) Continuous receive mode
If the continuous receive mode enable bit (bits 2 and 3 at address 03B016, bit 5 at address 037D16) is
set to “1”, the unit is placed in continuous receive mode. In this mode, when the receive buffer register
is read out, the unit simultaneously goes to a receive enable state without having to set dummy data to
the transmit buffer register back again.
(e) Serial data logic switch function (UART2)
When the data logic select bit (bit6 at address 037D16) = “1”, and writing to transmit buffer register or
reading from receive buffer register, data is reversed. Figure 1.16.15 shows the example of serial data
logic switch timing.
•When LSB first
Transfer clock
“H”
“L”
TxD2
“H”
(no reverse) “L”
TxD2
“H”
(reverse) “L”
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
Figure 1.16.15. Serial data logic switch timing
109
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(2) Clock asynchronous serial I/O (UART) mode
The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer
data format. Tables 1.16.5 and 1.16.6 list the specifications of the UART mode. Figure 1.16.16 shows
the UARTi transmit/receive mode register.
Table 1.16.5. Specifications of UART Mode (1)
Item
Transfer data format
Transfer clock
Specification
• Character bit (transfer data): 7 bits, 8 bits, or 9 bits as selected
• Start bit: 1 bit
• Parity bit: Odd, even, or nothing as selected
• Stop bit: 1 bit or 2 bits as selected
• When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816 = “0”) :
fi/16(n+1) (Note 1) fi = f1, f8, f32
• When external clock is selected (bit 3 at addresses 03A016, 03A816 =“1”) :
fEXT/16(n+1) (Note 1) (Note 2) (Do not set external clock for UART2)
_______
_______
_______
_______
Transmission/reception control • CTS function, RTS function, CTS and RTS function invalid: selectable
Transmission start condition • To start transmission, the following requirements must be met:
- Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = “1”
- Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = “0”
_______
_______
- When CTS function selected, CTS input level = “L”
Reception start condition • To start reception, the following requirements must be met:
- Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = “1”
- Start bit detection
Interrupt request
• When transmitting
generation timing
- Transmit interrupt cause select bits (bits 0,1 at address 03B016, bit4 at
address 037D16) = “0”: Interrupts requested when data transfer from UARTi
transfer buffer register to UARTi transmit register is completed
- Transmit interrupt cause select bits (bits 0, 1 at address 03B016, bit4 at
address 037D16) = “1”: Interrupts requested when data transmission from
UARTi transfer register is completed
• When receiving
- Interrupts requested when data transfer from UARTi receive register to
UARTi receive buffer register is completed
Error detection
• Overrun error (Note 3)
This error occurs when the next data is ready before contents of UARTi
receive buffer register are read out
• Framing error
This error occurs when the number of stop bits set is not detected
• Parity error
This error occurs when if parity is enabled, the number of 1’s in parity and
character bits does not match the number of 1’s set
• Error sum flag
This flag is set (= 1) when any of the overrun, framing, and parity errors is
encountered
Note 1: ‘n’ denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.
Note 2: fEXT is input from the CLKi pin.
Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that
the UARTi receive interrupt request bit does not change.
110
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.16.6. Specifications of UART Mode (2)
Item
Select function
Specification
• Sleep mode selection (UART0, UART1)
This mode is used to transfer data to and from one of multiple slave microcomputers
• Serial data logic switch (UART2)
This function is reversing logic value of transferring data. Start bit, parity bit
and stop bit are not reversed.
• TXD, RXD I/O polarity switch (UART2)
This function is reversing TXD port output and RXD port input. All I/O data
level is reversed.
111
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UARTi transmit / receive mode registers
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
UiMR(i=0,1)
Bit symbol
SMD0
Address
03A016, 03A816
Bit name
Serial I/O mode select bit
SMD1
SMD2
CKDIR
When reset
0016
Function
b2 b1 b0
1 0 0 : Transfer data 7 bits long
1 0 1 : Transfer data 8 bits long
1 1 0 : Transfer data 9 bits long
Internal / external clock
select bit
Stop bit length select bit
0 : Internal clock
1 : External clock (Note)
0 : One stop bit
1 : Two stop bits
PRY
Odd / even parity
select bit
Valid when bit 6 = “1”
0 : Odd parity
1 : Even parity
PRYE
Parity enable bit
0 : Parity disabled
1 : Parity enabled
SLEP
Sleep select bit
0 : Sleep mode deselected
1 : Sleep mode selected
STPS
A
A
AA
A
A
AA
A
A
A
A
AA
AA
AA
RW
Note : Set the corresponding port direction register to “0”.
UART2 transmit / receive mode register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
U2MR
Address
037816
Bit symbol
SMD0
Bit name
Serial I/O mode select bit
SMD1
SMD2
CKDIR
STPS
When reset
0016
Internal / external clock
select bit
Stop bit length select bit
Function
b2 b1 b0
Must always be “0”
0 : One stop bit
1 : Two stop bits
PRY
Odd / even parity
select bit
Valid when bit 6 = “1”
0 : Odd parity
1 : Even parity
PRYE
Parity enable bit
0 : Parity disabled
1 : Parity enabled
IOPOL
TxD, RxD I/O polarity
reverse bit (Note)
0 : No reverse
1 : Reverse
Note: Usually set to “0”.
Figure 1.16.16. UARTi transmit/receive mode register in UART mode
112
A
A
AA
A
AA
A
AA
AA
AA
AA
AA
1 0 0 : Transfer data 7 bits long
1 0 1 : Transfer data 8 bits long
1 1 0 : Transfer data 9 bits long
RW
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.16.7 lists the functions of the input/output pins during UART mode. Note that for a period from
when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an “H”. (If the Nchannel open-drain is selected, this pin is in floating state.)
Table 1.16.7. Input/output pin functions in UART mode
Pin name
Function
TxDi
Serial data output
(P63, P67, P70)
Method of selection
RxDi
Serial data input
(P62, P66, P71)
Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16,
bit 1 at address 03EF16)= “0”
(Can be used as an input port when performing transmission only)
CLKi
Programmable I/O port
(P61, P65, P72)
Transfer clock input
Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = “0”
CTSi/RTSi
CTS input
(P60, P64, P73)
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) =“0”
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = “0”
Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16,
bit 3 at address 03EF16) = “0”
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “1”
Port P61, P65 direction register (bits 1 and 5 at address 03EE16) = “0”
(Do not set external clock for UART2)
RTS output
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = “0”
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = “1”
Programmable I/O port
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = “1”
113
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
• Example of transmit timing when transfer data is 8 bits long (parity enabled, one stop bit)
The transfer clock stops momentarily as CTS is “H” when the stop bit is checked.
The transfer clock starts as the transfer starts immediately CTS changes to “L”.
Tc
Transfer clock
Transmit enable
bit(TE)
“1”
Transmit buffer
empty flag(TI)
“1”
“0”
Data is set in UARTi transmit buffer register.
“0”
Transferred from UARTi transmit buffer register to UARTi transmit register
“H”
CTSi
“L”
Start
bit
TxDi
Parity
bit
ST D0 D1 D2 D3 D4 D5 D6 D7
P
Stopped pulsing because transmit enable bit = “0”
Stop
bit
SP
ST D0 D1 D2 D3 D4 D5 D6 D7
P
ST D0 D1
SP
“1”
Transmit register
empty flag (TXEPT)
“0”
Transmit interrupt
request bit (IR)
“1”
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software
Shown in ( ) are bit symbols.
The above timing applies to the following settings :
• Parity is enabled.
• One stop bit.
• CTS function is selected.
• Transmit interrupt cause select bit = “1”.
Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT
fi : frequency of BRGi count source (f1, f8, f32)
fEXT : frequency of BRGi count source (external clock)
n : value set to BRGi
• Example of transmit timing when transfer data is 9 bits long (parity disabled, two stop bits)
Tc
Transfer clock
Transmit enable
bit(TE)
“1”
Transmit buffer
empty flag(TI)
“1”
“0”
Data is set in UARTi transmit buffer register
“0”
Transferred from UARTi transmit buffer register to UARTi transmit register
Start
bit
TxDi
Stop
bit
ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP SP
Stop
bit
ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SPSP
ST D0 D1
“1”
Transmit register
empty flag (TXEPT)
“0”
Transmit interrupt
request bit (IR)
“1”
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software
Shown in ( ) are bit symbols.
The above timing applies to the following settings :
• Parity is disabled.
• Two stop bits.
• CTS function is disabled.
• Transmit interrupt cause select bit = “0”.
Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT
fi : frequency of BRGi count source (f1, f8, f32)
fEXT : frequency of BRGi count source (external clock)
n : value set to BRGi
Figure 1.16.17. Typical transmit timings in UART mode(UART0,UART1)
114
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
• Example of transmit timing when transfer data is 8 bits long (parity enabled, one stop bit)
Tc
Transfer clock
Transmit enable
bit(TE)
“1”
Transmit buffer
empty flag(TI)
“1”
Data is set in UART2 transmit buffer register
“0”
Note
“0”
Transferred from UART2 transmit buffer register to UARTi transmit register
Parity
bit
Start
bit
TxD2
ST D0 D1
D 2 D 3 D4 D 5 D 6 D 7
P
Stop
bit
SP
ST D0 D1 D2 D3 D4 D5 D6 D7
P
SP
“1”
Transmit register
empty flag (TXEPT) “0”
Transmit interrupt
request bit (IR)
“1”
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software
Shown in ( ) are bit symbols.
The above timing applies to the following settings :
• Parity is enabled.
• One stop bit.
• Transmit interrupt cause select bit = “1”.
Tc = 16 (n + 1) / fi
fi : frequency of BRG2 count source (f1, f8, f32)
n : value set to BRG2
Note: The transmit is started with overflow timing of BRG after having written in a value at the transmit buffer in the above timing.
Figure 1.16.18. Typical transmit timings in UART mode(UART2)
115
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
• Example of receive timing when transfer data is 8 bits long (parity disabled, one stop bit)
BRGi count
source
Receive enable bit
“1”
“0”
Stop bit
Start bit
RxDi
D1
D0
D7
Sampled “L”
Receive data taken in
Transfer clock
Reception triggered when transfer clock
“1” is generated by falling edge of start bit
Receive
complete flag
Transferred from UARTi receive register to
UARTi receive buffer register
“0”
“H”
“L”
RTSi
Receive interrupt
request bit
“1”
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software
The above timing applies to the following settings :
•Parity is disabled.
•One stop bit.
•RTS function is selected.
Figure 1.16.19. Typical receive timing in UART mode
(a) Sleep mode (UART0, UART1)
This mode is used to transfer data between specific microcomputers among multiple microcomputers
connected using UARTi. The sleep mode is selected when the sleep select bit (bit 7 at addresses
03A016, 03A816) is set to “1” during reception. In this mode, the unit performs receive operation when
the MSB of the received data = “1” and does not perform receive operation when the MSB = “0”.
(b) Function for switching serial data logic (UART2)
When the data logic select bit (bit 6 of address 037D16) is assigned “1”, data is inverted in writing to the
transmission buffer register or reading the reception buffer register. Figure 1.16.20 shows the example of timing for switching serial data logic.
• When LSB first, parity enabled, one stop bit
Transfer clock
“H”
“L”
TxD2
“H”
(no reverse)
“L”
TxD2
“H”
(reverse)
“L”
ST
D0
D1
D2
D3
D4
D5
D6
D7
P
SP
ST
D0
D1
D2
D3
D4
D5
D6
D7
P
SP
ST : Start bit
P : Even parity
SP : Stop bit
Figure 1.16.20. Timing for switching serial data logic
116
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(c) TxD, RxD I/O polarity reverse function (UART2)
This function is to reverse TXD pin output and RXD pin input. The level of any data to be input or output
(including the start bit, stop bit(s), and parity bit) is reversed. Set this function to “0” (not to reverse) for
usual use.
(d) Bus collision detection function (UART2)
This function is to sample the output level of the TXD pin and the input level of the RXD pin at the rising
edge of the transfer clock; if their values are different, then an interrupt request occurs. Figure 1.16.21
shows the example of detection timing of a bus collision (in UART mode).
Transfer clock
“H”
“L”
TxD2
“H”
ST
SP
ST
SP
“L”
RxD2
“H”
“L”
Bus collision detection
interrupt request signal
“1”
Bus collision detection
interrupt request bit
“1”
“0”
“0”
ST : Start bit
SP : Stop bit
Figure 1.16.21. Detection timing of a bus collision (in UART mode)
117
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(3) Clock-asynchronous serial I/O mode (used for the SIM interface)
The SIM interface is used for connecting the microcomputer with a memory card or the like; adding some
extra settings in UART2 clock-asynchronous serial I/O mode allows the user to effect this function. Table
1.16.8 shows the specifications of clock-asynchronous serial I/O mode (used for the SIM interface).
Table 1.16.8. Specifications of clock-asynchronous serial I/O mode (used for the SIM interface)
Item
Transfer data format
Transfer clock
Specification
• Transfer data 8-bit UART mode (bit 2 through bit 0 of address 037816 = “1012”)
• One stop bit (bit 4 of address 037816 = “0”)
• With the direct format chosen
Set parity to “even” (bit 5 and bit 6 of address 037816 = “1” and “1” respectively)
Set data logic to “direct” (bit 6 of address 037D16 = “0”).
Set transfer format to LSB (bit 7 of address 037C16 = “0”).
• With the inverse format chosen
Set parity to “odd” (bit 5 and bit 6 of address 037816 = “0” and “1” respectively)
Set data logic to “inverse” (bit 6 of address 037D16 = “1”)
Set transfer format to MSB (bit 7 of address 037C16 = “1”)
• With the internal clock chosen (bit 3 of address 037816 = “0”) : fi / 16 (n + 1) (Note 1) : fi=f1, f8, f32
(Do not set external clock)
_______
_______
Transmission / reception control • Disable the CTS and RTS function (bit 4 of address 037C16 = “1”)
Other settings
• The sleep mode select function is not available for UART2
• Set transmission interrupt factor to “transmission completed” (bit 4 of address 037D16 = “1”)
Transmission start condition • To start transmission, the following requirements must be met:
- Transmit enable bit (bit 0 of address 037D16) = “1”
- Transmit buffer empty flag (bit 1 of address 037D16) = “0”
Reception start condition
• To start reception, the following requirements must be met:
- Reception enable bit (bit 2 of address 037D16) = “1”
- Detection of a start bit
Interrupt request
• When transmitting
generation timing
When data transmission from the UART2 transmit register is completed
(bit 4 of address 037D16 = “1”)
• When receiving
When data transfer from the UART2 receive register to the UART2 receive
buffer register is completed
Error detection
• Overrun error (see the specifications of clock-asynchronous serial I/O) (Note 2)
• Framing error (see the specifications of clock-asynchronous serial I/O)
• Parity error (see the specifications of clock-asynchronous serial I/O)
- On the reception side, an “L” level is output from the TXD2 pin by use of the parity error
signal output function (bit 7 of address 037D16 = “1”) when a parity error is detected
- On the transmission side, a parity error is detected by the level of input to
the RXD2 pin when a transmission interrupt occurs
• The error sum flag (see the specifications of clock-asynchronous serial I/O)
Note 1: ‘n’ denotes the value 0016 to FF16 that is set to the UART2 bit rate generator.
Note 2: If an overrun error occurs, the UART2 receive buffer will have the next data written in. Note also
that the UART2 receive interrupt request bit does not change.
118
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Tc
Transfer clock
Transmit enable
bit(TE)
“1”
Transmit buffer
empty flag(TI)
“1”
“0”
Data is set in UART2 transmit buffer register
Note 1
“0”
Transferred from UART2 transmit buffer register to UART2 transmit register
Start
bit
TxD2
ST D0
Parity
bit
D 1 D 2 D 3 D4 D 5 D 6 D 7
P
Stop
bit
ST D0 D1 D2 D3 D4 D5 D6 D7
SP
P
SP
P
SP
RxD2
An “L” level returns from TxD2 due to
the occurrence of a parity error.
Signal conductor level
(Note 2)
ST D0 D1 D2 D3 D4 D5 D6 D7
P
SP
ST D0 D1 D2 D3 D4 D5 D6 D7
The level is
detected by the
interrupt routine.
The level is detected by the
interrupt routine.
“1”
Transmit register
empty flag (TXEPT)
“0”
Transmit interrupt
request bit (IR)
“1”
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software
Shown in ( ) are bit symbols.
The above timing applies to the following settings :
• Parity is enabled.
• One stop bit.
• Transmit interrupt cause select bit = “1”.
Tc = 16 (n + 1) / fi
fi : frequency of BRG2 count source (f1, f8, f32)
n : value set to BRG2
Note 1: The transmit is started with overflow timing of BRG after having written in a value at the transmit buffer in the above timing.
Tc
Transfer clock
Receive enable
bit (RE)
“1”
“0”
Start
bit
RxD2
Parity
bit
ST D0 D1 D2 D3 D4 D5 D6 D7
P
Stop
bit
SP
ST D0 D1 D2 D3 D4 D5 D6 D7
P
SP
TxD2
An “L” level returns from TxD2 due to
the occurrence of a parity error.
Signal conductor level
(Note 2)
Receive complete
flag (RI)
“1”
Receive interrupt
request bit (IR)
“1”
ST D0 D1 D2 D3 D4 D5 D6 D7
P
SP
ST D0 D1 D2 D3 D4 D5 D6 D7
P
SP
“0”
Read to receive buffer
Read to receive buffer
“0”
Cleared to “0” when interrupt request is accepted, or cleared by software
Shown in ( ) are bit symbols.
The above timing applies to the following settings :
• Parity is enabled.
• One stop bit.
• Transmit interrupt cause select bit = “0”.
Tc = 16 (n + 1) / fi
fi : frequency of BRG2 count source (f1, f8, f32)
n : value set to BRG2
Note 2: Equal in waveform because TxD2 and RxD2 are connected.
Figure 1.16.22. Typical transmit/receive timing in UART mode (used for the SIM interface)
119
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(a) Function for outputting a parity error signal
During reception, with the error signal output enable bit (bit 7 of address 037D16) assigned “1”, you
can output an “L” level from the TXD2 pin when a parity error is detected. And during transmission,
comparing with the case in which the error signal output enable bit (bit 7 of address 037D16) is assigned “0”, the transmission completion interrupt occurs in the half cycle later of the transfer clock.
Therefore parity error signals can be detected by a transmission completion interrupt program. Figure
1.16.23 shows the output timing of the parity error signal.
• LSB first
Transfer
clock
“H”
RxD2
“H”
TxD2
“H”
Receive
complete flag
“L”
ST
D0
D1
D2
D3
D4
D5
D6
D7
P
SP
“L”
Hi-Z
“L”
“1”
“0”
ST : Start bit
P : Even Parity
SP : Stop bit
Figure 1.16.23. Output timing of the parity error signal
(b) Direct format/inverse format
Connecting the SIM card allows you to switch between direct format and inverse format. If you choose
the direct format, D0 data is output from TxD2. If you choose the inverse format, D7 data is inverted
and output from TxD2.
Figure 1.16.24 shows the SIM interface format.
Transfer
clcck
TxD2
(direct)
D0
D1
D2
D3
D4
D5
D6
D7
P
TxD2
(inverse)
D7
D6
D5
D4
D3
D2
D1
D0
P
P : Even parity
Figure 1.16.24. SIM interface format
120
Mitsubishi microcomputers
M16C / 30 Group
Clock asynchronous serial I/O (UART) mode
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Figure 1.16.25 shows the example of connecting the SIM interface. Connect TXD2 and RXD2 and apply
pull-up.
Microcomputer
SIM card
TxD2
RxD2
Figure 1.16.25. Connecting the SIM interface
121
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART2 Special Mode Register
UART2 Special Mode Register
The UART2 special mode register (address 037716) is used to control UART2 in various ways.
Figure 1.16.26 shows the UART2 special mode register.
Bit 0 of the UART2 special mode register (037716) is used as the I2C mode select bit.
Setting “1” in the I2C mode select bit (bit 0) goes the circuit to achieve the I2C bus (simplified I2C bus)
interface effective.
Table 1.16.9 shows the relation between the I2C mode select bit and respective control workings.
Since this function uses clock-synchronous serial I/O mode, set this bit to “0” in UART mode.
UART2 special mode register
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
U2SMR
Bit
symbol
Address
037716
Function
(During clock synchronous
serial I/O mode)
Bit
name
IICM
I2C
ABC
When reset
0016
Function
(During UART mode)
0 : Normal mode
1 : I2C mode
Must always be “0”
Arbitration lost detecting
flag control bit
0 : Update per bit
1 : Update per byte
Must always be “0”
BBS
Bus busy flag
0 : STOP condition detected
1 : START condition detected
Must always be “0”
LSYN
SCL L sync output
enable bit
0 : Disabled
1 : Enabled
Must always be “0”
Bus collision detect
sampling clock select bit
Must always be “0”
0 : Rising edge of transfer
clock
1 : Underflow signal of timer A0
ACSE
Auto clear function
select bit of transmit
enable bit
Must always be “0”
0 : No auto clear function
1 : Auto clear at occurrence of
bus collision
SSS
Transmit start condition
select bit
Must always be “0”
0 : Ordinary
1 : Falling edge of RxD2
SDDS
SDA digital delay select
bit (Note 2, Note 3)
0 : Analog delay output
is selected
1 : Digital delay output
is selected
(must always be “0” when
not using I 2 C mode)
Must always be “0”
ABSCS
mode select bit
A
AA
A
AA
A
A
AA
A
AA
AA
AA
AA
AA
AAA
R W
(Note1)
Note 1: Nothing but “0” may be written.
Note 2: When not in I2C mode, do not set this bit by writing a “1”. During normal mode, set it to “0”. When this
bit = “0”, UART2 special mode register 3 (U2SMR3 at address 037516) bits 7 to 5 (DL2 to DL0 = SDA
digital delay setup bits) are initialized to “000”, with the analog delay circuit selected. Also, when SDDS
= “0”, the U2SMR3 register cannot be read or written to.
Note 3: When analog delay is selected, only the analog delay value is effective; when digital delay is selected,
only the digital delay value is effective.
UART2 special mode register 3 (I 2 C bus exclusive use register)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
U2SMR3
Bit
symbol
Address
037516
When reset
Indeterminate
(However, when SDDS = “1”, the initial value is “0016”)
Function
(I 2 C bus exclusive use register)
Bit name
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be
indeterminate. However, when SDDS = “1”, the value “0” is read out (Note 1)
DL0
DL1
DL2
SDA digital delay setup
bit
(Note 1, Note 2, Note 3,
Note 4)
b7 b6 b5
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 : Analog delay is selected
1 : 1 to 2 cycle(s) of 1/f(XIN)
0 : 2 to 3 cycles of 1/f(XIN)
1 : 3 to 4 cycles of 1/f(XIN)
0 : 4 to 5 cycles of 1/f(XIN)
1 : 5 to 6 cycles of 1/f(XIN)
0 : 6 to 7 cycles of 1/f(XIN)
1 : 7 to 8 cycles of 1/f(XIN)
R W
AA
AA
AA
AAA
AAA
Digital delay
is selected
Note 1: This bit can be read or written to when UART2 special mode register (U2SMR at address 037716) bit
7 (SDDS: SDA digital delay select bit) = “1”. When the initial value of UART2 special mode register 3
(U2SMR3) is read after setting SDDS = “1”, the value is “0016”. When writing to UART2 special mode
register 3 (U2SMR3) after setting SDDS = “1”, be sure to write 0's to bits 0–4. When SDDS = “0”,
this register cannot be written to; when read, the value is indeterminate.
Note 2: These bits are initialized to “000” when SDDS = “0”, with the analog delay circuit selected. After a reset,
these bits are set to “000”, with the analog delay circuit selected. However, because these bits can be
read only when SDDS = “1”, the value read from these bits when SDDS = “0” is indeterminate.
Note 3: When analog delay is selected, only the analog delay value is effective; when digital delay is selected,
only the digital delay value is effective.
Note 4: The amount of delay varies with the load on SCL and SDA pins. Also, when using an external clock, the
amount of delay increases by about 100 ns, so be sure to take this into account when using the device.
Figure 1.16.26. UART2 special mode register
122
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART2 Special Mode Register
P70 through P7 2 conforming to the simplified I 2C bus
P70/TxD2/SDA
Timer
I/O
Selector
UART2
Digital delay
(Divider)
IICM=1 (SDDS=0) or
DL=000 (SDDS=1)
SDDS=0
or DL=000
To DMA0
UART2
IICM=0
or IICM2=1
Transmission
register
Analog
delay
IICM=1
and IICM2=0
IICM=0 or
DL≠000 (SDDS=1)
SDDS=1 and
DL≠000
UART2 transmission/
NACK interrupt request
SDHI
ALS
D Q
Arbitration
T
Noize
Filter
Timer
To DMA0
IICM=1
IICM=0
or IICM2=1
Reception register
IICM=0
UART2 reception/ACK interrupt
request
UART2
IICM=1
and IICM2=0
Start condition
detection
S
Q
Bus busy
R
Stop condition
detection
NACK
D
L-synchronous
output enabling
bit
Falling edge
detection
Q
T
D Q
P71/RxD2/SCL
I/O
R
Q
T
Data bus
(Port P7 1 output data latch)
Internal clock
Selector
ACK
9th pulse
IICM=1
UART2
IICM=1
SWC2
IICM=1
Noize
Filter
External clock
Noize
Filter
Bus collision/start, stop condition
detection interrupt request
Bus collision
CLK
control detection
UART2
IICM=0
Falling edge of 9 bit
IICM=0
SWC
Port reading
UART2
* With IICM set to 1, the port terminal is to be readable
IICM=0
P72/CLK2
Selector
even if 1 is assigned to P7 1 of the direction register.
I/O
Timer
Figure 1.16.27. Functional block diagram for I2C mode
Table 1.16.9. Features in I2C mode
Function
Normal mode
I2C mode (Note 1)
Start condition detection or stop
condition detection
1
Factor of interrupt number 10 (Note 2)
Bus collision detection
2
Factor of interrupt number 15 (Note 2)
UART2 transmission
No acknowledgment detection (NACK)
3
Factor of interrupt number 16 (Note 2)
UART2 reception
Acknowledgment detection (ACK)
4
UART2 transmission output delay
Not delayed
Delayed
5
P70 at the time when UART2 is in use
TxD2 (output)
SDA (input/output) (Note 3)
6
P71 at the time when UART2 is in use
RxD2 (input)
SCL (input/output)
7
P72 at the time when UART2 is in use
CLK2
P72
8
Noise filter width
15ns
50ns
9
Reading P71
Reading the terminal when 0 is
assigned to the direction register
Reading the terminal regardless of the
value of the direction register
H level (when 0 is assigned to
the CLK polarity select bit)
The value set in latch P70 when the port is
selected
10 Initial value of UART2 output
Note 1: Make the settings given below when I2C mode is in use.
Set 0 1 0 in bits 2, 1, 0 of the UART2 transmission/reception mode register.
Disable the RTS/CTS function. Choose the MSB First function.
Note 2: Follow the steps given below to switch from a factor to another.
1. Disable the interrupt of the corresponding number.
2. Switch from a factor to another.
3. Reset the interrupt request flag of the corresponding number.
4. Set an interrupt level of the corresponding number.
Note 3: Set an initial value of SDA transmission output when serial I/O is invalid.
123
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART2 Special Mode Register
Figure 1.16.27 shows the functional block diagram for I2C mode. Setting “1” in the I2C mode select bit
(IICM) causes ports P70, P71, and P72 to work as data transmission-reception terminal SDA, clock inputoutput terminal SCL, and port P72 respectively. A delay circuit is added to the SDA transmission output,
so the SDA output changes after SCL fully goes to “L”. The SDA digital delay select bit (bit 7 at address
037716) can be used to select between analog delay and digital delay. When digital delay is selected, the
amount of delay can be selected in the range of 2 cycles to 8 cycles of f1 using UART2 special mode
register 3 (at address 037516). Delay circuit select conditions are shown in Table 1.16.10.
Table 1.16.10. Delay circuit select conditions
Register value
Contents
Digital delay is
selected
Analog delay is
selected
No delay
IICM
SDDS
1
1
DL
001
to
111
When digital delay is selected, no analog delay is added. Only
digital delay is effective.
1
000
When DL is set to “000”, analog delay is selected no matter what
value is set in SDDS.
0
(000)
0
(000)
1
0
When SDDS is set to “0”, DL is initialized, so that DL =“000”.
When IICM = “0”, no delay circuit is selected. When IICM = “0”,
however, always make sure SDDS = “0”.
An attempt to read Port P71 (SCL) results in getting the terminal’s level regardless of the content of the
port direction register. The initial value of SDA transmission output goes to the value set in port P70. The
interrupt factors of the bus collision detection interrupt, UART2 transmission interrupt, and of UART2
reception interrupt turn to the start/stop condition detection interrupt, acknowledgment non-detection interrupt, and acknowledgment detection interrupt respectively.
The start condition detection interrupt refers to the interrupt that occurs when the falling edge of the SDA
terminal (P70) is detected with the SCL terminal (P71) staying “H”. The stop condition detection interrupt
refers to the interrupt that occurs when the rising edge of the SDA terminal (P70) is detected with the SCL
terminal (P71) staying “H”. The bus busy flag (bit 2 of the UART2 special mode register) is set to “1” by the
start condition detection, and set to “0” by the stop condition detection.
The acknowledgment non-detection interrupt refers to the interrupt that occurs when the SDA terminal
level is detected still staying “H” at the rising edge of the 9th transmission clock. The acknowledgment
detection interrupt refers to the interrupt that occurs when SDA terminal’s level is detected already went
to “L” at the 9th transmission clock.
Bit 1 of the UART2 special mode register (037716) is used as the arbitration lost detecting flag control bit.
Arbitration means the act of detecting the nonconformity between transmission data and SDA terminal
data at the timing of the SCL rising edge. This detecting flag is located at bit 11 of the UART2 reception
buffer register (037F16, 037E16), and “1” is set in this flag when nonconformity is detected. Use the
arbitration lost detecting flag control bit to choose which way to use to update the flag, bit by bit or byte by
byte. When setting this bit to “1” and updated the flag byte by byte if nonconformity is detected, the
arbitration lost detecting flag is set to “1” at the falling edge of the 9th transmission clock.
If update the flag byte by byte, must judge and clear (“0”) the arbitration lost detecting flag after completing the first byte acknowledge detect and before starting the next one byte transmission.
Bit 3 of the UART2 special mode register is used as SCL- and L-synchronous output enable bit. Setting
this bit to “1” goes the P71 data register to “0” in synchronization with the SCL terminal level going to “L”.
124
Mitsubishi microcomputers
M16C / 30 Group
UART2 Special Mode Register
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Some other functions added are explained here. Figure 1.16.28 shows their workings.
Bit 4 of the UART2 special mode register is used as the bus collision detect sampling clock select bit. The
bus collision detect interrupt occurs when the RXD2 level and TXD2 level do not match, but the nonconformity is detected in synchronization with the rising edge of the transfer clock signal if the bit is set to “0”. If
this bit is set to “1”, the nonconformity is detected at the timing of the overflow of timer A0 rather than at
the rising edge of the transfer clock.
Bit 5 of the UART2 special mode register is used as the auto clear function select bit of transmit enable
bit. Setting this bit to “1” automatically resets the transmit enable bit to “0” when “1” is set in the bus
collision detect interrupt request bit (nonconformity).
Bit 6 of the UART2 special mode register is used as the transmit start condition select bit. Setting this bit
to “1” starts the TxD transmission in synchronization with the falling edge of the RxD terminal.
1. Bus collision detect sampling clock select bit (Bit 4 of the UART2 special mode register)
0: Rising edges of the transfer clock
CLK
TxD/RxD
1: Timer A0 overflow
Timer A0
2. Auto clear function select bit of transmt enable bit (Bit 5 of the UART2 special mode register)
CLK
TxD/RxD
Bus collision
detect interrupt
request bit
Transmit
enable bit
3. Transmit start condition select bit (Bit 6 of the UART2 special mode register)
0: In normal state
CLK
TxD
Enabling transmission
With "1: falling edge of RxD2" selected
CLK
TxD
RxD
Figure 1.16.28. Some other functions added
125
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART2 Special Mode Register 2
UART2 Special Mode Register 2
UART2 special mode register 2 (address 037616) is used to further control UART2 in I2C mode. Figure
1.16.29 shows the UART2 special mode register 2.
UART2 special mode register 2 (I 2 C bus exclusive use register)
b7 b6 b5 b4 b3 b2 b1 b0
Symbol
U2SMR2
Bit
symbol
Address
037616
Bit name
Function
IICM2
I 2C mode select bit 2
Refer to Table 1.16.11
CSC
Clock-synchronous bit
0 : Disabled
1 : Enabled
SWC
SCL wait output bit
0 : Disabled
1 : Enabled
ALS
SDA output stop bit
0 : Disabled
1 : Enabled
STAC
UART2 initialization bit
0 : Disabled
1 : Enabled
SWC2
SCL wait output bit 2
0: UART2 clock
1: 0 output
SDHI
SDA output disable bit
0: Enabled
1: Disabled (high impedance)
SHTC
Start/stop condition
control bit
1: Set this bit to “1” in I2C mode
(refer to Table 1.16.12)
Figure 1.16.29. UART2 special mode register 2
126
When reset
0016
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
AA
A
R W
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART2 Special Mode Register 2
Bit 0 of the UART2 special mode register 2 (address 037616) is used as the I2C mode select bit 2. Table
1.16.11 shows the types of control to be changed by I2C mode select bit 2 when the I2C mode select bit
is set to “1”. Table 1.16.12 shows the timing characteristics of detecting the start condition and the stop
condition. Set the start/stop condition control bit (bit 7 of UART2 special mode register 2) to “1” in I2C
mode.
Table 1.16.11. Functions changed by I2C mode select bit 2
Function
IICM2 = 0
IICM2 = 1
1 Factor of interrupt number 15
No acknowledgment detection (NACK)
UART2 transmission (the rising edge
of the final bit of the clock)
2 Factor of interrupt number 16
Acknowledgment detection (ACK)
UART2 reception (the falling edge
of the final bit of the clock)
3 Timing for transferring data from the
UART2 reception shift register to the
reception buffer.
The rising edge of the final bit of the
reception clock
The falling edge of the final bit of the
reception clock
4 Timing for generating a UART2
reception/ACK interrupt request
The rising edge of the final bit of the
reception clock
The falling edge of the final bit of the
reception clock
Table 1.16.12. Timing characteristics of detecting the start condition and the stop condition (Note 1)
3 to 6 cycles < duration for setting-up (Note 2)
3 to 6 cycles < duration for holding (Note 2)
Note 1 : When the start/stop condition control bit SHTC is “1” .
Note 2 : “Cycles” is in terms of the input oscillation frequency f(XIN) of the main clock.
Duration for
setting up
Duration for
holding
SCL
SDA
(Start condition)
SDA
(Stop condition)
127
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
UART2 Special Mode Register 2
P70 through P7 2 conforming to the simplified I 2C bus
P70/TxD2/SDA
Timer
I/O
Selector
UART2
Digital delay
(Divider)
IICM=1 (SDDS=0) or
DL=000 (SDDS=1)
SDDS=0
or DL=000
To DMA0
UART2
Transmission
register
Analog
delay
IICM=0 or
DL≠000 (SDDS=1)
SDDS=1 and
DL≠000
IICM=0
or IICM2=1
UART2 transmission/
NACK interrupt request
IICM=1
and IICM2=0
SDHI
ALS
D Q
Arbitration
T
Noize
Filter
Timer
To DMA0
IICM=1
IICM=0
or IICM2=1
Reception register
IICM=0
UART2 reception/ACK interrupt
request
UART2
IICM=1
and IICM2=0
Start condition
detection
S
Q
R
Stop condition
detection
NACK
L-synchronous
output enabling
bit
Falling edge
detection
Bus busy
D
Q
T
D Q
P71/RxD2/SCL
I/O
R
Q
Selector
T
Data bus
(Port P7 1 output data latch)
Internal clock
UART2
IICM=1
SWC2
IICM=1
Noize
Filter
External clock
Noize
Filter
ACK
9th pulse
IICM=1
Bus collision
CLK
control detection
Bus collision/start, stop condition
detection interrupt request
IICM=0
UART2
Falling edge of 9 bit
IICM=0
SWC
Port reading
UART2
* With IICM set to 1, the port terminal is to be readable
IICM=0
P72/CLK2
Selector
even if 1 is assigned to P7 1 of the direction register.
I/O
Timer
Figure 1.16.30. Functional block diagram for I2C mode
Functions available in I2C mode are shown in Figure 1.16.30 — a functional block diagram.
Bit 3 of the UART2 special mode register 2 (address 037616) is used as the SDA output stop bit. Setting
this bit to “1” causes an arbitration loss to occur, and the SDA pin turns to high-impedance state at the
instant when the arbitration lost detecting flag is set to “1”.
Bit 1 of the UART2 special mode register 2 (address 037616) is used as the clock synchronization bit.
With this bit set to “1” at the time when the internal SCL is set to “H”, the internal SCL turns to “L” if the
falling edge is found in the SCL pin; and the baud rate generator reloads the set value, and start counting
within the “L” interval. When the internal SCL changes from “L” to “H” with the SCL pin set to “L”, stops
counting the baud rate generator, and starts counting it again when the SCL pin turns to “H”. Due to this
function, the UART2 transmission-reception clock becomes the logical product of the signal flowing
through the internal SCL and that flowing through the SCL pin. This function operates over the period
from the moment earlier by a half cycle than falling edge of the UART2 first clock to the rising edge of the
ninth bit. To use this function, choose the internal clock for the transfer clock.
Bit 2 of the UART2 special mode register 2 (037616) is used as the SCL wait output bit. Setting this bit to
“1” causes the SCL pin to be fixed to “L” at the falling edge of the ninth bit of the clock. Setting this bit to
“0” frees the output fixed to “L”.
128
Mitsubishi microcomputers
M16C / 30 Group
UART2 Special Mode Register 2
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Bit 4 of the UART2 special mode register 2 (address 037616) is used as the UART2 initialization bit.
Setting this bit to “1”, and when the start condition is detected, the microcomputer operates as follows.
(1) The transmission shift register is initialized, and the content of the transmission register is transferred
to the transmission shift register. This starts transmission by dealing with the clock entered next as the
first bit. The UART2 output value, however, doesn’t change until the first bit data is output after the
entrance of the clock, and remains unchanged from the value at the moment when the microcomputer
detected the start condition.
(2) The reception shift register is initialized, and the microcomputer starts reception by dealing with the
clock entered next as the first bit.
(3) The SCL wait output bit turns to “1”. This turns the SCL pin to “L” at the falling edge of the ninth bit of
the clock.
Starting to transmit/receive signals to/from UART2 using this function doesn’t change the value of the
transmission buffer empty flag. To use this function, choose the external clock for the transfer clock.
Bit 5 of the UART2 special mode register 2 (037616) is used as the SCL wait output bit 2. Setting this bit
to “1” with the serial I/O specified allows the user to forcibly output an “1” from the SCL pin even if UART2
is in operation. Setting this bit to “0” frees the “L” output from the SCL pin, and the UART2 clock is input/
output.
Bit 6 of the UART2 special mode register 2 (037616) is used as the SDA output disable bit. Setting this bit
to “1” forces the SDA pin to turn to the high-impedance state. Refrain from changing the value of this bit
at the rising edge of the UART2 transfer clock. There can be instances in which arbitration lost detecting
flag is turned on.
129
Mitsubishi microcomputers
M16C / 30 Group
A-D Converter
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A-D Converter
The A-D converter consists of one 10-bit successive approximation A-D converter circuit with a capacitive coupling
amplifier. Pins P100 to P107, P95, and P96 also function as the analog signal input pins. The direction registers of
these pins for A-D conversion must therefore be set to input. The Vref connect bit (bit 5 at address 03D716) can be
used to isolate the resistance ladder of the A-D converter from the reference voltage input pin (VREF) when the A-D
converter is not used. Doing so stops any current flowing into the resistance ladder from VREF, reducing the power
dissipation. When using the A-D converter, start A-D conversion only after setting bit 5 of 03D716 to connect VREF.
The result of A-D conversion is stored in the A-D registers of the selected pins. When set to 10-bit precision, the low
8 bits are stored in the even addresses and the high 2 bits in the odd addresses. When set to 8-bit precision, the low
8 bits are stored in the even addresses.
Table 1.17.1 shows the performance of the A-D converter. Figure 1.17.1 shows the block diagram of the
A-D converter, and Figures 1.17.2 and 1.17.3 show the A-D converter-related registers.
Table 1.17.1. Performance of A-D converter
Item
Performance
Method of A-D conversion Successive approximation (capacitive coupling amplifier)
Analog input voltage (Note 1) 0V to AVCC (VCC)
Operating clock φAD (Note 2) VCC = 5V fAD/divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)
VCC = 3V divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)
Resolution
8-bit or 10-bit (selectable)
Absolute precision
VCC = 5V • Without sample and hold function
±3LSB
• With sample and hold function (8-bit resolution)
±2LSB
• With sample and hold function (10-bit resolution)
AN0 to AN7 input : ±3LSB
ANEX0 and ANEX1 input (including mode in which external
operation amp is connected) : ±7LSB
VCC = 3V • Without sample and hold function (8-bit resolution)
±2LSB
Operating modes
One-shot mode
Analog input pins
8pins (AN0 to AN7) + 2pins (ANEX0 and ANEX1)
A-D conversion start condition • Software trigger
A-D conversion starts when the A-D conversion start flag changes to “1”
• External trigger (can be retriggered)
A-D conversion starts when the A-D conversion start flag is “1” and the
___________
ADTRG/P97 input changes from “H” to “L”
Conversion speed per pin • Without sample and hold function
8-bit resolution: 49 φAD cycles, 10-bit resolution: 59 φAD cycles
• With sample and hold function
8-bit resolution: 28 φAD cycles, 10-bit resolution: 33 φAD cycles
Note 1: Does not depend on use of sample and hold function.
Note 2: Divide the frequency if f(XIN) exceeds 10MHZ, and make φAD frequency equal to or less than 10MHz.
Without sample and hold function, set the φAD frequency to 250kHZ min.
With the sample and hold function, set the φAD frequency to 1MHZ min.
130
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A-D Converter
CKS1=1
φAD
CKS0=1
fAD
1/2
1/2
CKS0=0
CKS1=0
A-D conversion rate
selection
V REF
VCUT=0
Resistor ladder
AV SS
VCUT=1
Successive conversion register
A-D control register 1 (address 03D716)
A-D control register 0 (address 03D616)
Addresses
(03C116, 03C016)
A-D register 0(16)
(03C316, 03C216)
A-D register 1(16)
A-D register 2(16)
A-D register 3(16)
(03C516, 03C416)
(03C716, 03C616)
(03C916, 03C816)
A-D register 4(16)
(03CB16, 03CA16)
(03CD16, 03CC16)
A-D register 5(16)
A-D register 6(16)
(03CF16, 03CE16)
A-D register 7(16)
Vref
Decoder
VIN
Comparator
Data bus high-order
Data bus low-order
AN0
CH2,CH1,CH0=000
AN1
CH2,CH1,CH0=001
AN2
CH2,CH1,CH0=010
AN3
CH2,CH1,CH0=011
AN4
CH2,CH1,CH0=100
AN5
CH2,CH1,CH0=101
AN6
CH2,CH1,CH0=110
AN7
CH2,CH1,CH0=111
OPA1,OPA0=0,0
OPA1, OPA0
OPA1,OPA0=1,1
OPA0=1
0
0
1
1
0 : Normal operation
1 : ANEX0
0 : ANEX1
1 : External op-amp mode
ANEX0
OPA1,OPA0=0,1
ANEX1
OPA1=1
Figure 1.17.1. Block diagram of A-D converter
131
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A-D Converter
A-D control register 0 (Note)
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
ADCON0
Bit symbol
Address
03D616
When reset
00000XXX2
Bit name
Function
b2 b1 b0
CH0
Analog input pin select bit
CH1
CH2
MD0
A-D operation mode
select bit 0
MD1
0 0 0 : AN0 is selected
0 0 1 : AN1 is selected
0 1 0 : AN2 is selected
0 1 1 : AN3 is selected
1 0 0 : AN4 is selected
1 0 1 : AN5 is selected
1 1 0 : AN6 is selected
1 1 1 : AN7 is selected
b4 b3
0 0 : One-shot mode
Must not be set except “00”
Trigger select bit
0 : Software trigger
1 : ADTRG trigger
ADST
A-D conversion start flag
0 : A-D conversion disabled
1 : A-D conversion started
CKS0
Frequency select bit 0
0 : fAD/4 is selected
1 : fAD/2 is selected
TRG
A
A
AA
AA
A
A
A
A
A
A
A
A
AA
RW
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is
indeterminate.
A-D control register 1 (Note)
b7
b6
b5
b4
b3
b2
b1
b0
0
0
0
Symbol
ADCON1
Bit symbol
Address
03D716
When reset
0016
Bit name
Reserved bit
Function
Must always be set to “0”
BITS
8/10-bit mode select bit
0 : 8-bit mode
1 : 10-bit mode
CKS1
Frequency select bit 1
0 : fAD/2 or fAD/4 is selected
1 : fAD is selected
Vref connect bit
0 : Vref not connected
1 : Vref connected
External op-amp
connection mode bit
b7 b6
VCUT
OPA0
OPA1
0 0 : ANEX0 and ANEX1 are not used
0 1 : ANEX0 input is A-D converted
1 0 : ANEX1 input is A-D converted
1 1 : External op-amp connection mode
A
A
AA
A
A
A
A
AA
AA
RW
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is
indeterminate.
Figure 1.17.2. A-D converter-related registers (1)
132
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A-D Converter
A-D control register 2 (Note)
b7
b6
b5
b4
b3
b2
b1
b0
0 0 0
Symbol
Address
When reset
ADCON2
03D416
0000XXX02
Bit symbol
SMP
Bit name
A-D conversion method
select bit
Reserved bit
Function
0 : Without sample and hold
1 : With sample and hold
Must always be set to “0”
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to
be “0”.
A
A
A
A
AA
RW
Note: If the A-D control register is rewritten during A-D conversion, the conversion
result is indeterminate.
Symbol
A-D register i
(b15)
b7
ADi(i=0 to 7)
(b8)
b0 b7
Address
When reset
03C016 to 03CF16 Indeterminate
b0
Function
Eight low-order bits of A-D conversion result
• During 10-bit mode
Two high-order bits of A-D conversion result
• During 8-bit mode
When read, the content is indeterminate
A
A
A
R W
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if
read, turns out to be “0”.
Figure 1.17.3. A-D converter-related registers (2)
133
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A-D Converter
(1) One-shot mode
In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A-D conversion. Table 1.17.2 shows the specifications of one-shot mode. Figure 1.17.4 shows the A-D control register in one-shot mode.
Table 1.17.2. One-shot mode specifications
Item
Specification
The pin selected by the analog input pin select bit is used for one A-D conversion
Writing “1” to A-D conversion start flag
• End of A-D conversion (A-D conversion start flag changes to “0”, except
when external trigger is selected)
• Writing “0” to A-D conversion start flag
End of A-D conversion
One of AN0 to AN7, as selected
Read A-D register corresponding to selected pin
Function
Start condition
Stop condition
Interrupt request generation timing
Input pin
Reading of result of A-D converter
A-D control register 0 (Note)
b7
b6
b5
b4
b3
b2
b1
b0
0 0
Symbol
ADCON0
Bit symbol
CH0
Address
03D616
Bit name
Analog input pin select
bit
CH1
CH2
MD0
When reset
00000XXX2
Function
b2 b1 b0
0 0 0 : AN0 is selected
0 0 1 : AN1 is selected
0 1 0 : AN2 is selected
0 1 1 : AN3 is selected
1 0 0 : AN4 is selected
1 0 1 : AN5 is selected
1 1 0 : AN6 is selected
1 1 1 : AN7 is selected
b4 b3
MD1
A-D operation mode
select bit 0
TRG
Trigger select bit
0 : Software trigger
1 : ADTRG trigger
ADST
A-D conversion start flag
0 : A-D conversion disabled
1 : A-D conversion started
CKS0
Frequency select bit 0
0: fAD/4 is selected
1: fAD/2 is selected
0 0 : One-shot mode
A
AA
A
AA
A
A
RW
Note : If the A-D control register is rewritten during A-D conversion, the conversion
result is indeterminate.
A-D control register 1 (Note)
b7
b6
b5
1
b4
b3
b2
b1
b0
0 0 0
Symbol
ADCON1
Bit symbol
Address
03D716
When reset
0016
Bit name
Reserved bit
Function
Must always be set to “0”
BITS
8/10-bit mode select bit
0 : 8-bit mode
1 : 10-bit mode
CKS1
Frequency select bit1
0 : fAD/2 or fAD/4 is selected
1 : fAD is selected
VCUT
Vref connect bit
OPA0
External op-amp
connection mode bit
OPA1
1 : Vref connected
b7 b6
0 0 : ANEX0 and ANEX1 are not used
0 1 : ANEX0 input is A-D converted
1 0 : ANEX1 input is A-D converted
1 1 : External op-amp connection mode
AA
A
AA
A
RW
Note: If the A-D control register is rewritten during A-D conversion, the conversion
result is indeterminate.
Figure 1.17.4. A-D conversion register in one-shot mode
134
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
A-D Converter
(a) Sample and hold
Sample and hold is selected by setting bit 0 of the A-D control register 2 (address 03D416) to “1”. When
sample and hold is selected, the rate of conversion of each pin increases. As a result, a 28 φAD cycle is
achieved with 8-bit resolution and 33 φAD with 10-bit resolution. Sample and hold can be selected in all
modes. However, in all modes, be sure to specify before starting A-D conversion whether sample and
hold is to be used.
(b) Extended analog input pins
In one-shot mode and repeat mode, the input via the extended analog input pins ANEX0 and ANEX1 can
also be converted from analog to digital.
When bit 6 of the A-D control register 1 (address 03D716) is “1” and bit 7 is “0”, input via ANEX0 is
converted from analog to digital. The result of conversion is stored in A-D register 0.
When bit 6 of the A-D control register 1 (address 03D716) is “0” and bit 7 is “1”, input via ANEX1 is
converted from analog to digital. The result of conversion is stored in A-D register 1.
(c) External operation amp connection mode
In this mode, multiple external analog inputs via the extended analog input pins, ANEX0 and ANEX1, can
be amplified together by just one operation amp and used as the input for A-D conversion.
When bit 6 of the A-D control register 1 (address 03D716) is “1” and bit 7 is “1”, input via AN0 to AN7 is
output from ANEX0. The input from ANEX1 is converted from analog to digital and the result stored in the
corresponding A-D register. The speed of A-D conversion depends on the response of the external operation amp. Do not connect the ANEX0 and ANEX1 pins directly. Figure 1.17.5 is an example of how to
connect the pins in external operation amp mode.
Resistor ladder
Successive conversion register
Analog
input
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
ANEX0
ANEX1
Comparator
External op-amp
Figure 1.17.5. Example of external op-amp connection mode
135
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Programmable I/O Ports
There are 87 programmable I/O ports: P0 to P10 (excluding P85). Each port can be set independently for
input or output using the direction register. A pull-up resistance for each block of 4 ports can be set. P85 is
an input-only port and has no built-in pull-up resistance.
Figures 1.20.1 to 1.20.4 show the programmable I/O ports. Figure 1.20.5 shows the I/O pins.
Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices.
To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input
mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D-A converter), they function as outputs regardless of the contents of the direction registers. When pins are to be
used as the outputs for the D-A converter, do not set the direction registers to output mode. See the
descriptions of the respective functions for how to set up the built-in peripheral devices.
(1) Direction registers
Figure 1.20.6 shows the direction registers.
These registers are used to choose the direction of the programmable I/O ports. Each bit in these registers corresponds one for one to each I/O pin.
In memory expansion and microprocessor mode, the contents of corresponding direction register of pins
_______
_______ _____ ________ ______ ________ _______
_______ __________ _________
A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and BCLK cannot
be modified.
Note: There is no direction register bit for P85.
(2) Port registers
Figure 1.20.7 shows the port registers.
These registers are used to write and read data for input and output to and from an external device. A
port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit
in port registers corresponds one for one to each I/O pin.
In memory expansion and microprocessor mode, the contents of corresponding port register of pins A0 to
_______
________ _____ ________ ______ ________ ________
_______ __________ _________
A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and BCLK cannot be
modified.
(3) Pull-up control registers
Figure 1.20.8 shows the pull-up control registers.
The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports
are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is
set for input.
However, in memory expansion mode and microprocessor mode, the pull-up control register of P0 to P3,
P40 to P43, and P5 is invalid. The contents of register can be changed, but the pull-up resistance is not
connected.
(4) Port control register
Figure 1.20.9 shows the port control register.
The bit 0 of port control register is used to read port P1 as follows:
0 : When port P1 is input port, port input level is read.
When port P1 is output port , the contents of port P1 register is read.
1 : The contents of port P1 register is read always.
This register is valid in the following:
• External bus width is 8 bits in microprocessor mode or memory expansion mode.
• Port P1 can be used as a port in multiplexed bus for the entire space.
136
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pull-up selection
Direction register
P00 to P07, P20 to P27,
P30 to P37, P40 to P47,
P50 to P54, P56
Data bus
Port latch
(Note)
Pull-up selection
Direction register
P10 to P14
Port P1 control register
Data bus
Port latch
(Note)
Pull-up selection
Direction register
P15 to P17
Port P1 control register
Data bus
Port latch
(Note)
Input to respective peripheral functions
Pull-up selection
Direction register
P57, P60, P61, P64, P65,
P72, P73, P74
"1"
Output
Data bus
Port latch
(Note)
Input to respective peripheral functions
Note:
symbolizes a parasitic diode.
Do not apply a voltage higher than Vcc to each port.
Figure 1.20.1. Programmable I/O ports (1)
137
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pull-up selection
P82 to P84
Direction register
Data bus
Port latch
(Note1)
Input to respective peripheral functions
Pull-up selection
Direction register
P76, P77, P80, P81,
P90, P93, P94
(inside dotted-line not included)
P55, P62, P66, P75,
P91, P92, P97
(inside dotted-line included)
Data bus
Port latch
(Note1)
Input to respective peripheral functions
(Note 2)
Pull-up selection
Direction register
P63, P67
"1"
Data bus
Port latch
Output
(Note1)
P85
Data bus
NMI interrupt input
Note 1:
symbolizes a parasitic diode.
Do not apply a voltage higher than Vcc to each port.
Note 2: In a part of port, the input to a respective peripheral functions
does not exist, but schmitt circuit exists.
Figure 1.20.2. Programmable I/O ports (2)
138
(Note1)
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Direction register
P70, P71
"1"
Data bus
Port latch
Output
(Note 2)
Input to respective peripheral functions
Pull-up selection
P96, P100 to P103
(inside dotted-line not included)
P95, P104 to P107
(inside dotted-line included)
Direction register
Data bus
Port latch
(Note 1)
Analog input
Input to respective peripheral functions
Note 1:
symbolizes a parasitic diode.
Do not apply a voltage higher than Vcc to each port.
Note 2:
symbolizes a parasitic diode.
Figure 1.20.3. Programmable I/O ports (3)
139
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pull-up selection
Direction register
P87
Data bus
Port latch
(Note)
fc
Rf
Pull-up selection
Rd
Direction register
P86
"1"
Data bus
Port latch
Output
(Note)
Note :
symbolizes a parasitic diode.
Do not apply a voltage higher than Vcc to each port.
Figure 1.20.4. Programmable I/O ports (4)
BYTE
BYTE signal input
(Note)
CNVSS
CNVSS signal input
(Note)
RESET
RESET signal input
(Note)
Note :
Figure 1.20.5. I/O pins
140
symbolizes a parasitic diode.
Do not apply a voltage higher than Vcc to each pin.
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Port Pi direction register (Note 1, 2)
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
PDi (i = 0 to 10, except 8)
Bit symbol
Address
03E216, 03E316, 03E616, 03E716, 03EA16
03EB16, 03EE16, 03EF16, 03F316, 03F616
Bit name
PDi_0
PDi_1
Port Pi0 direction register
Port Pi1 direction register
PDi_2
Port Pi2 direction register
PDi_3
Port Pi3 direction register
PDi_4
Port Pi4 direction register
PDi_5
Port Pi5 direction register
PDi_6
PDi_7
Port Pi6 direction register
Port Pi7 direction register
When reset
0016
0016
AA
AA
A
A
A
A
AA
AA
AA
AA
Function
RW
0 : Input mode
(Functions as an input port)
1 : Output mode
(Functions as an output port)
(i = 0 to 10 except 8)
Note 1: Set bit 2 of protect register (address 000A16) to “1” before rewriting to
the port P9 direction register.
Note 2: In memory expansion and microprocessor mode, the contents of
corresponding port Pi direction register of pins A0 to A19, D0 to D15,
CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and
BCLK cannot be modified.
Port P8 direction register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
PD8
Bit symbol
PD8_0
Address
03F216
Bit name
When reset
00X000002
Function
Port P80 direction register
PD8_1
Port P81 direction register
PD8_2
Port P82 direction register
PD8_3
Port P83 direction register
0 : Input mode
(Functions as an input port)
1 : Output mode
(Functions as an output port)
PD8_4
Port P84 direction register
Nothing is assigned.
In an attempt to write to this bit, write “0”. The value, if read, turns out to be
indeterminate.
PD8_6
Port P86 direction register
PD8_7
Port P87 direction register
A
A
AA
AA
A
A
AA
AA
AA
AA
RW
0 : Input mode
(Functions as an input port)
1 : Output mode
(Functions as an output port)
Figure 1.20.6. Direction register
141
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Port Pi register (Note 2)
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
Pi (i = 0 to 10, except 8)
Bit symbol
Address
03E016, 03E116, 03E416, 03E516, 03E816
03E916, 03EC16, 03ED16, 03F116, 03F416
Bit name
Pi_0
Port Pi0 register
Pi_1
Pi_2
Port Pi1 register
Port Pi2 register
Pi_3
Port Pi3 register
Pi_4
Port Pi4 register
Pi_5
Port Pi5 register
Pi_6
Port Pi6 register
Pi_7
Port Pi7 register
Function
Data is input and output to and from
each pin by reading and writing to
and from each corresponding bit
0 : “L” level data
1 : “H” level data (Note 1)
(i = 0 to 10 except 8)
When reset
Indeterminate
Indeterminate
AA
A
AAA
AA
A
AA
A
AA
A
AAA
RW
Note 1: Since P70 and P71 are N-channel open drain ports, the data is high-impedance.
Note 2: In memory expansion and microprocessor mode, the contents of
corresponding port Pi register of pins A0 to A19, D0 to D15, CS0 to CS3,
RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and BCLK cannot
be modified.
Port P8 register
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
P8
Bit symbol
Bit name
P8_0
Port P80 register
P8_1
Port P81 register
P8_2
Port P82 register
P8_3
Port P83 register
P8_4
Port P84 register
P8_5
Port P85 register
P8_6
Port P86 register
P8_7
Port P87 register
Figure 1.20.7. Port register
142
Address
03F016
When reset
Indeterminate
Function
AA
A
AA
A
AA
A
AA
A
AAA
Data is input and output to and from
each pin by reading and writing to
and from each corresponding bit
(except for P85)
0 : “L” level data
1 : “H” level data
R W
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Pull-up control register 0 (Note)
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
PUR0
Address
03FC16
Bit symbol
Bit name
PU00
P00 to P03 pull-up
PU01
P04 to P07 pull-up
PU02
P10 to P13 pull-up
PU03
P14 to P17 pull-up
PU04
P20 to P23 pull-up
PU05
P24 to P27 pull-up
PU06
P30 to P33 pull-up
PU07
P34 to P37 pull-up
When reset
0016
Function
The corresponding port is pulled
high with a pull-up resistor
0 : Not pulled high
1 : Pulled high
A
A
A
A
A
RW
Note : In memory expansion and microprocessor mode, the content of this register
can be changed, but the pull-up resistance is not connected.
Pull-up control register 1
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
PUR1
Address
03FD16
Bit symbol
PU10
PU11
PU12
PU13
Bit name
When reset
0016 (Note 2)
Function
P40 to P43 pull-up (Note 3) The corresponding port is pulled
high with a pull-up resistor
P44 to P47 pull-up
0 : Not pulled high
P50 to P53 pull-up (Note 3) 1 : Pulled high
P54 to P57 pull-up (Note 3)
PU14
P60 to P63 pull-up
PU15
P64 to P67 pull-up
PU16
P72 to P73 pull-up (Note 1)
A
A
A
A
A
A
R W
PU17
P74 to P77 pull-up
Note 1: Since P70 and P71 are N-channel open drain ports, pull-up is not available for them.
Note 2: When the VCC level is being impressed to the CNVSS terminal, this register becomes
to 0216 when reset (PU11 becomes to “1”).
Note 3: In memory expansion and microprocessor mode, the content of these bits can be
changed, but the pull-up resistance is not connected.
Pull-up control register 2
b7
b6
b5
b4
b3
b2
b1
b0
Symbol
PUR2
Address
03FE16
Bit symbol
Bit name
PU20
P80 to P83 pull-up
PU21
PU22
P84 to P87 pull-up
(Except P85)
P90 to P93 pull-up
PU23
PU24
P94 to P97 pull-up
P100 to P103 pull-up
PU25
P104 to P107 pull-up
When reset
0016
Function
The corresponding port is pulled
high with a pull-up resistor
0 : Not pulled high
1 : Pulled high
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.
A
A
A
A
A
RW
Figure 1.20.8. Pull-up control register
143
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Port control register
b7
b6
b5
b4
b3
b2
b1
b0
Symbpl
PCR
Address
03FF16
Bit symbol
PCR0
Bit name
Port P1 control register
When reset
0016
Function
0 : When input port, read port
input level. When output port,
read the contents of port P1
register.
1 : Read the contents of port P1
register though input/output
port.
Nothing is assigned.
In an attempt to write to these bits, write “0”. The value, if read, turns
out to be “0”.
Figure 1.20.9. Port control register
144
R W
A
Mitsubishi microcomputers
M16C / 30 Group
Programmable I/O Port
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.20.1. Example connection of unused pins in single-chip mode
Pin name
Connection
Ports P0 to P10
(excluding P85)
After setting for input mode, connect every pin to VSS via a resistor
(pull-down); or after setting for output mode, leave these pins open.
XOUT (Note)
Open
NMI
Connect via resistor to VCC (pull-up)
AVCC
Connect to VCC
AVSS, VREF, BYTE
Connect to VSS
Note: With external clock input to XIN pin.
Table 1.20.2. Example connection of unused pins in memory expansion mode and microprocessor mode
Pin name
Connection
Ports P6 to P10
(excluding P85)
After setting for input mode, connect every pin to VSS via a resistor
(pull-down); or after setting for output mode, leave these pins open.
P45 / CS1 to P47 / CS3
Set ports to input mode, set output enable bits of CS1 through CS3 to
0, and connect to Vcc via resistors (pull-up).
BHE, ALE, HLDA,
XOUT (Note 1), BCLK (Note 2)
Open
HOLD, RDY, NMI
Connect via resistor to VCC (pull-up)
AVCC
Connect to VCC
AVSS, VREF
Connect to VSS
Note 1: With external clock input to XIN pin.
Note 2: When the BCLK output disable bit (bit 7 at address 000416) is set to “1”, connect to VCC via a resistor (pull-up).
Microcomputer
Microcomputer
Port P0 to P10 (except for P85)
Port P6 to P10 (except for P85)
(Input mode)
·
·
·
(Input mode)
(Output mode)
(Input mode)
·
·
·
(Input mode)
·
·
·
(Output mode)
Open
AVCC
NMI
BHE
Port P45 / CS1
HLDA
to P47 / CS3
ALE
XOUT
BCLK (Note)
BYTE
HOLD
NMI
XOUT
Open
VCC
AVSS
RDY
VREF
AVCC
·
·
·
Open
Open
VCC
AVSS
VREF
VSS
VSS
In single-chip mode
In memory expansion mode or
in microprocessor mode
Note : When the BCLK output disable bit (bit 7 at address 000416) is set to “1”, connect to VCC via a resistor (pull-up).
Figure 1.20.10. Example connection of unused pins
145
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Electrical characteristics
Table 1.23.1. Absolute maximum ratings
Symbol
Vcc
AVcc
VI
VO
Pd
Topr
Tstg
Parameter
Supply voltage
Analog supply voltage
RESET, CNVSS, BYTE,
Input
P00 to P07, P10 to P17, P20 to P27,
voltage
P30 to P37, P40 to P47, P50 to P57,
P60 to P67, P72 to P77, P80 to P87,
P90 to P97, P100 to P107,
VREF, XIN
P70, P71
Output
P00 to P07, P10 to P17, P20 to P27,
voltage
P30 to P37,P40 to P47, P50 to P57,
VCC=AVCC
VCC=AVCC
Power dissipation
Operating ambient temperature
Storage temperature
Rated value
-0.3 to 6.5
-0.3 to 6.5
-0.3 to Vcc+0.3
-0.3 to 6.5
-0.3 to Vcc+0.3
P60 to P67,P72 to P77, P80 to P84,
P86, P87, P90 to P97, P100 to P107,
XOUT
P70, P71
Note : Specify a product of -40°C to 85°C to use it.
146
Condition
Topr=25 C
Unit
V
V
V
V
V
-0.3 to 6.5
300
V
mW
-20 to 85 / -40 to 85 (Note)
-65 to 150
C
C
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.23.2. Recommended operating conditions (referenced to VCC = 2.7V to 5.5V at Topr = – 20oC
to 85oC / – 40oC to 85oC (Note 3) unless otherwise specified)
Standard
Symbol
Unit
Parameter
Typ.
Min
Max.
Vcc
AVcc
Vss
AVss
Supply voltage
Analog supply voltage
Supply voltage
Analog supply voltage
VIH
HIGH input P31 to P37, P40 to P47, P50 to P57, P60 to P67,
P72 to P77, P80 to P87, P90 to P97, P100 to P107,
voltage
XIN, RESET, CNVSS, BYTE
2.7
0.8Vcc
V
V
0.5Vcc
Vcc
V
P31 to P37, P40 to P47, P50 to P57, P60 to P67,
P70 to P77, P80 to P87, P90 to P97, P100 to P107,
XIN, RESET, CNVSS, BYTE
0
0.2Vcc
V
P00 to P07, P10 to P17, P20 to P27, P30 (during single-chip mode)
0
0.2Vcc
V
0
0.16Vcc
V
HIGH peak output
I OH (peak) current
HIGH average output
current
LOW peak output
I OL (peak) current
LOW average
output current
P00 to P07, P10 to P17, P20 to P27, P30 to P37,
P40 to P47, P50 to P57, P60 to P67, P72 to P77,
P80 to P84, P86, P87, P90 to P97, P100 to P107
P00 to P07, P10 to P17, P20 to P27, P30 to P37,
P40 to P47, P50 to P57, P60 to P67, P72 to P77,
P80 to P84, P86, P87, P90 to P97, P100 to P107
P00 to P07, P10 to P17, P20 to P27, P30 to P37,
P40 to P47, P50 to P57, P60 to P67, P70 to P77,
P80 to P84, P86, P87, P90 to P97, P100 to P107
P00 to P07, P10 to P17, P20 to P27, P30 to P37,
P40 to P47, P50 to P57, P60 to P67, P70 to P77,
P80 to P84, P86, P87, P90 to P97, P100 to P107
No wait
Main clock input oscillation
frequency (Note 4)
f (XIN)
With wait
Vcc=4.2V to 5.5V
0
Vcc=2.7V to 4.2V
0
Vcc=4.2V to 5.5V
0
Vcc=2.7V to 4.2V
0
-10.0
mA
-5.0
mA
10.0
mA
5.0
mA
16
MHz
7.33 X Vcc MHz
-14.791
MHz
16
Subclock oscillation frequency
f (XcIN)
V
6.5
(data input function during memory expansion and microprocessor modes)
I OL (avg)
Vcc
Vcc
P00 to P07, P10 to P17, P20 to P27, P30
I OH (avg)
V
V
V
V
0.8Vcc
(data input function during memory expansion and microprocessor modes)
VIL
5.5
0.8Vcc
P70 , P71
P00 to P07, P10 to P17, P20 to P27, P30 (during single-chip mode)
P00 to P07, P10 to P17, P20 to P27, P30
LOW input
voltage
5.0
Vcc
0
0
32.768
4 X Vcc
-0.8
50
MHz
kHz
Note 1: The mean output current is the mean value within 100ms.
Note 2: The total IOL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IOH (peak) for ports P0, P1,
P2, P86, P87, P9, and P10 must be 80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be
80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80mA max.
Note 3: Specify a product of -40°C to 85°C to use it.
Note 4: Relationship between main clock oscillation frequency and supply voltage.
Operating maximum frequency [MHZ]
16.0
7.33 X VCC - 14.791MHZ
5.0
0.0
2.7
4.2
5.5
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
Main clock input oscillation frequency (With wait)
Operating maximum frequency [MHZ]
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
Main clock input oscillation frequency (No wait)
16.0
4 X VCC - 0.8MHZ
10.0
0.0
2.7
4.2
Supply voltage[V]
Supply voltage[V]
(BCLK: no division)
(BCLK: no division)
5.5
147
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Table 1.23.3. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 2.7V to 5.5V, Vss = AVSS =
0V at Topr = – 20oC to 85oC / – 40oC to 85oC (Note 4) unless otherwise specified)
Symbol
Parameter
Measuring condition
Standard
Min. Typ. Max.
Resolution
VREF = VCC
10
Bits
Absolute
accuracy
Sample & hold function not available
VREF = VCC = 5V
LSB
LSB
Sample & hold function available(10bit)
AN0 to AN 7 input
VREF =VCC ANEX0, ANEX1 input,
= 5V
External op-amp connection mode
±3
±3
±7
LSB
±2
±2
40
LSB
LSB
kΩ
µs
Sample & hold function available(8bit)
VREF = VCC = 5V
Sample & hold function not available(8bit) V REF = VCC = 3V, Ø AD = fAD/2
RLADDER
tCONV
tCONV
tCONV
Ladder resistance
VREF = VCC
10
Conversion time(10bit), Sample & hold function available
VREF = VCC = 5V, ØAD =10MHz
Conversion time(8bit), Sample & hold function available
VREF = VCC = 5V, ØAD =10MHz
3.3
2.8
Conversion time(8bit), Sample & hold function not available
VREF = VCC = 3V, ØAD = fAD/2 = 5MHz
tSAMP
Sampling time
Reference voltage
Analog input voltage
VREF
VIA
Unit
µs
µs
µs
9.8
0.3
2.7
VCC
V
0
VREF
V
Note 1: Do f(X IN) in range of main clock input oscillation frequency prescribed with recommended operating
conditions of table 1.23.2. Divide the f AD if f(X IN) exceeds 10MHz, and make AD operation clock frequency
(ØAD) equal to or lower than 10MHz. And divide the f AD if V CC is less than 4.2V, and make AD operation
clock frequency (ØAD) equal to or lower than f AD/2.
Note 2: A case without sample & hold function turn AD operation clock frequency (ØAD) into 250 kHz or more in
addition to a limit of Note 1.
A case with sample & hold function turn AD operation clock frequency (ØAD) into 1MHz or more in addition
to a limit of Note 1.
Note 3: Connect AV CC pin to V CC pin and apply the same electric potential.
Note 4: Specify a product of -40°C to 85°C to use it.
148
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Table 1.23.6. Electrical characteristics (referenced to VCC = 4.2V to 5.5V, VSS = 0V at Topr = – 20oC
to 85oC / – 40oC to 85oC (Note 2), f(XIN) = 16MHZ unless otherwise specified)
Symbol
Parameter
Measuring condition
Min
Standard
Typ. Max.
Unit
VOH
HIGH output P00 to P07, P10 to P17, P20 to P27,
voltage
P30 to P37, P40 to P47, P50 to P57,
IOH = -5mA, VCC=5.0V
P60 to P67, P72 to P77, P80 to P84,
P86, P87, P90 to P97, P100 to P107
3 .0
V
VOH
HIGH output P00 to P07, P10 to P17, P20 to P27,
voltage
P30 to P37, P40 to P47, P50 to P57, IOH = -200µA, VCC=5.0V
P60 to P67, P72 to P77, P80 to P84,
P86, P87, P90 to P97, P100 to P107
4 .7
V
VOH
HIGH output
voltage
XOUT
HIGH output
voltage
XCOUT
HIGHPOWER
IOH = -1mA, VCC=5.0V
3 .0
LOWPOWER
IOH = -0.5mA, VCC=5.0V
3 .0
HIGHPOWER
With no load applied, VCC=5.0V
LOWPOWER
With no load applied, VCC=5.0V
V
3 .0
1.6
V
VOL
LOW output P00 to P07, P10 to P17, P20 to P27,
voltage
P30 to P37, P40 to P47, P50 to P57,
P60 to P67, P70 to P77, P80 to P84,
P86, P87, P90 to P97, P100 to P107
IOL = 5mA, VCC=5.0V
2.0
V
VOL
LOW output P00 to P07, P10 to P17, P20 to P27,
voltage
P30 to P37, P40 to P47, P50 to P57,
P60 to P67, P70 to P77, P80 to P84,
P86, P87, P90 to P97, P100 to P107
IOL = 200µA, VCC=5.0V
0.45
V
VOL
LOW output
voltage
XOUT
HIGHPOWER
IOL = 1mA, VCC=5.0V
2.0
LOWPOWER
IOL = 0.5mA, VCC=5.0V
2.0
LOW output
voltage
XCOUT
HIGHPOWER
With no load applied, VCC=5.0V
0
LOWPOWER
With no load applied, VCC=5.0V
0
Hysteresis
VT+-VT-
HOLD, RDY, TA0IN to TA2IN,
TB1IN, TB2IN, INT0 to INT2, NMI,
ADTRG, CTS0 to CTS2, SCL, SDA,
CLK0 to CLK4,TA2OUT,
KI0 to KI3, RxD0 to RxD2
V
V
VCC=5.0V
0 .2
1.0
V
VCC=5.0V
0.2
1.8
V
VT+-VT-
Hysteresis
IIH
HIGH input P00 to P07, P10 to P17, P20 to P27,
current
P30 to P37, P40 to P47, P50 to P57,
P60 to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P107,
XIN, RESET, CNVss, BYTE
VI = 5V, VCC=5.0V
5 .0
µA
P00 to P07, P10 to P17, P20 to P27,
P30 to P37, P40 to P47, P50 to P57,
P60 to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P107,
XIN, RESET, CNVss, BYTE
VI = 0V, VCC=5.0V
-5.0
µA
P00 to P07, P10 to P17, P20 to P27,
P30 to P37, P40 to P47, P50 to P57,
P60 to P67, P72 to P77, P80 to P84,
P86, P87, P90 to P97, P100 to P107
VI = 0V, VCC=5.0V
167.0
kΩ
LOW input
current
I IL
RPULLUP
Pull-up
resistance
RESET
30.0
50.0
RfXIN
Feedback resistance XIN
1.0
MΩ
RfXCIN
Feedback resistance XCIN
6.0
MΩ
V
RAM retention voltage
RAM
Icc
Power supply current
When clock is stopped
In single-chip
mode, the
output pins are
open and other
pins are VSS
f(XIN) = 16MHz
Square wave, no division
f(XCIN) = 32kHz
Square wave
f(XCIN) = 32kHz
When a WAIT instruction
is executed (Note 1)
2 .0
V
30.0
50.0
µA
90.0
4 .0
mA
10
(Topr
= 25°C)
Topr = 25°C
when clock is stopped
1 .0
Topr = 85°C
when clock is stopped
20.0
µA
µA
Note 1: With one timer operated using fC32.
Note 2: Specify a product of -40°C to 85°C to use it.
149
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Timing requirements (referenced to VCC = 5V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to 85oC (*)
unless otherwise specified)
* : Specify a product of -40°C to 85°C to use it.
Table 1.23.7. External clock input
Symbol
tc
Parameter
External clock input cycle time
External clock input HIGH pulse width
External clock input LOW pulse width
External clock rise time
External clock fall time
tw(H)
tw(L)
tr
tf
Standard
Min.
Max.
Unit
ns
62.5
25
25
15
15
ns
ns
ns
ns
Table 1.23.8. Memory expansion and microprocessor modes
Symbol
Parameter
tac1(RD-DB)
Data input access time (no wait)
tac2(RD-DB)
Data input access time (with wait)
Data input access time (when accessing multiplex bus area)
Data input setup time
RDY input setup time
HOLD input setup time
Data input hold time
RDY input hold time
HOLD input hold time
HLDA output delay time
tac3(RD-DB)
tsu(DB-RD)
tsu(RDY-BCLK )
tsu(HOLD-BCLK )
th(RD-DB)
th(BCLK -RDY)
th(BCLK-HOLD )
td(BCLK-HLDA )
Note: Calculated according to the BCLK frequency as follows:
tac1(RD – DB) =
10 9
– 45
f(BCLK) X 2
tac2(RD – DB) =
3 X 10
– 45
f(BCLK) X 2
tac3(RD – DB) =
3 X 10
– 45
f(BCLK) X 2
[ns]
9
[ns]
9
150
[ns]
Standard
Max.
Min.
(Note)
(Note)
(Note)
40
Unit
ns
ns
ns
40
ns
ns
ns
0
ns
0
ns
30
ns
0
40
ns
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Timing requirements (referenced to VCC = 5V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to 85oC (*)
unless otherwise specified)
* : Specify a product of -40°C to 85°C to use it.
Table 1.23.9. Timer A input (counter input in event counter mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
TAiIN input HIGH pulse width
tw(TAL)
TAiIN input LOW pulse width
Standard
Min.
Max.
100
40
40
Unit
ns
ns
ns
Table 1.23.10. Timer A input (gating input in timer mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
tw(TAL)
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
Standard
Max.
Min.
400
200
200
Unit
ns
ns
ns
Table 1.23.11. Timer A input (external trigger input in one-shot timer mode)
Symbol
tc(TA)
tw(TAH)
tw(TAL)
Parameter
Standard
Max.
Min.
Unit
TAiIN input cycle time
200
ns
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
100
ns
100
ns
Table 1.23.12. Timer A input (external trigger input in pulse width modulation mode)
Symbol
tw(TAH)
tw(TAL)
Parameter
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
Standard
Max.
Min.
100
100
Unit
ns
ns
Table 1.23.13. Timer A input (up/down input in event counter mode)
Symbol
Parameter
tc(UP)
TAiOUT input cycle time
tw(UPH)
TAiOUT input HIGH pulse width
tw(UPL)
TAiOUT input LOW pulse width
TAiOUT input setup time
TAiOUT input hold time
tsu(UP-TIN)
th(TIN-UP)
Standard
Min.
Max.
2000
1000
1000
400
400
Unit
ns
ns
ns
ns
ns
151
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Timing requirements (referenced to VCC = 5V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to 85oC (*)
unless otherwise specified)
* : Specify a product of -40°C to 85°C to use it.
Table 1.23.14. Timer B input (counter input in event counter mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time (counted on one edge)
100
ns
tw(TBH)
TBiIN input HIGH pulse width (counted on one edge)
40
ns
tw(TBL)
TBiIN input LOW pulse width (counted on one edge)
ns
tc(TB)
TBiIN input cycle time (counted on both edges)
40
200
tw(TBH)
TBiIN input HIGH pulse width (counted on both edges)
80
ns
tw(TBL)
TBiIN input LOW pulse width (counted on both edges)
80
ns
ns
Table 1.23.15. Timer B input (pulse period measurement mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time
400
ns
tw(TBH)
tw(TBL)
TBiIN input HIGH pulse width
TBiIN input LOW pulse width
200
200
ns
ns
Table 1.23.16. Timer B input (pulse width measurement mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time
400
ns
tw(TBH)
TBiIN input HIGH pulse width
200
ns
tw(TBL)
TBiIN input LOW pulse width
200
ns
Table 1.23.17. A-D trigger input
Symbol
tc(AD)
tw(ADL)
Parameter
ADTRG input cycle time (trigger able minimum)
ADTRG input LOW pulse width
Standard
Min.
1000
125
Max.
Unit
ns
ns
Table 1.23.18. Serial I/O
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(CK)
CLKi input cycle time
200
ns
tw(CKH)
CLKi input HIGH pulse width
100
ns
tw(CKL)
CLKi input LOW pulse width
100
ns
td(C-Q)
TxDi output delay time
th(C-Q)
TxDi hold time
tsu(D-C)
RxDi input setup time
RxDi input hold time
th(C-D)
80
ns
0
30
ns
90
ns
ns
_______
Table 1.23.19. External interrupt INTi inputs
Symbol
Parameter
tw(INH)
INTi input HIGH pulse width
tw(INL)
INTi input LOW pulse width
152
Standard
Min.
250
250
Max.
Unit
ns
ns
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to
85oC (Note 3), CM15 = “1” unless otherwise specified)
Table 1.23.20. Memory expansion mode and microprocessor mode (no wait)
Symbol
td(BCLK-AD)
th(BCLK-AD)
th(RD-AD)
th(WR-AD)
td(BCLK-CS)
th(BCLK-CS)
td(BCLK-ALE)
th(BCLK-ALE)
td(BCLK-RD)
th(BCLK-RD)
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
th(BCLK-DB)
td(DB-WR)
th(WR-DB)
Measuring condition
Parameter
Address output delay time
Address output hold time (BCLK standard)
Address output hold time (RD standard)
Address output hold time (WR standard)
Chip select output delay time
Chip select output hold time (BCLK standard)
ALE signal output delay time
ALE signal output hold time
RD signal output delay time
RD signal output hold time
WR signal output delay time
WR signal output hold time
Data output delay time (BCLK standard)
Data output hold time (BCLK standard)
Data output delay time (WR standard)
Data output hold time (WR standard)(Note2)
Standard
Min.
Max.
25
4
0
0
25
4
25
Figure 1.23.1
–4
25
0
25
0
40
4
(Note1)
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
0
Note 1: Calculated according to the BCLK frequency as follows:
td(DB – WR) =
10 9
– 40
f(BCLK) X 2
[ns]
Note 2: This is standard value shows the timing when the output is off,
and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – VOL / VCC)
by a circuit of the right figure.
For example, when VOL = 0.2VCC, C = 30pF, R = 1kΩ, hold time
of output “L” level is
t = – 30pF X 1kΩ X ln (1 – 0.2VCC / VCC)
= 6.7ns.
R
DBi
C
Note 3: Specify a product of -40°C to 85°C to use it.
P0
P1
P2
30pF
P3
P4
P5
P6
P7
P8
P9
P10
Figure 1.23.1. Port P0 to P10 measurement circuit
153
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to
85oC (Note 3), CM15 = “1” unless otherwise specified)
Table 1.23.21. Memory expansion mode and microprocessor mode
(with wait, accessing external memory)
Symbol
Measuring condition
Parameter
Standard
Min.
Max.
td(BCLK-AD)
th(BCLK-AD)
th(RD-AD)
th(WR-AD)
Address output delay time
Address output hold time (BCLK standard)
Address output hold time (RD standard)
Address output hold time (WR standard)
4
0
0
td(BCLK-CS)
th(BCLK-CS)
Chip select output delay time
Chip select output hold time (BCLK standard)
4
td(BCLK-ALE)
th(BCLK-ALE)
td(BCLK-RD)
ALE signal output delay time
ALE signal output hold time
RD signal output delay time
th(BCLK-RD)
td(BCLK-WR)
RD signal output hold time
WR signal output delay time
0
th(BCLK-WR)
td(BCLK-DB)
WR signal output hold time
Data output delay time (BCLK standard)
0
th(BCLK-DB)
td(DB-WR)
th(WR-DB)
Data output hold time (BCLK standard)
Data output delay time (WR standard)
Data output hold time (WR standard)(Note2)
25
ns
ns
ns
ns
25
25
ns
ns
ns
ns
ns
25
ns
ns
40
ns
ns
25
Figure 1.23.1
Unit
–4
4
(Note1)
ns
ns
ns
0
Note 1: Calculated according to the BCLK frequency as follows:
td(DB – WR) =
10 9
f(BCLK)
– 40
[ns]
Note 2: This is standard value shows the timing when the output is off,
and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – VOL / VCC)
by a circuit of the right figure.
For example, when VOL = 0.2VCC, C = 30pF, R = 1kΩ, hold time
of output “L” level is
t = – 30pF X 1kΩ X ln (1 – 0.2VCC / VCC)
= 6.7ns.
Note 3: Specify a product of -40°C to 85°C to use it.
154
R
DBi
C
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to
85oC (Note 2), CM15 = “1” unless otherwise specified)
Table 1.23.22. Memory expansion mode and microprocessor mode
(with wait, accessing external memory, multiplex bus area selected)
Symbol
Measuring condition
Parameter
Standard
Min.
Max.
25
Unit
td(BCLK-AD)
Address output delay time
th(BCLK-AD)
th(RD-AD)
Address output hold time (BCLK standard)
Address output hold time (RD standard)
(Note1)
th(WR-AD)
Address output hold time (WR standard)
(Note1)
td(BCLK-CS)
th(BCLK-CS)
th(RD-CS)
Chip select output delay time
Chip select output hold time (BCLK standard)
Chip select output hold time (RD standard)
th(WR-CS)
td(BCLK-RD)
th(BCLK-RD)
Chip select output hold time (WR standard)
RD signal output delay time
RD signal output hold time
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
WR signal output delay time
WR signal output hold time
Data output delay time (BCLK standard)
th(BCLK-DB)
td(DB-WR)
Data output hold time (BCLK standard)
Data output delay time (WR standard)
th(WR-DB)
td(BCLK-ALE)
Data output hold time (WR standard)
ALE signal output delay time (BCLK standard)
th(BCLK-ALE)
td(AD-ALE)
ALE signal output hold time (BCLK standard)
ALE signal output delay time (Address standard)
(Note1)
ns
ns
th(ALE-AD)
td(AD-RD)
ALE signal output hold time (Adderss standard)
Post-address RD signal output delay time
30
0
ns
ns
td(AD-WR)
tdZ(RD-AD)
Post-address WR signal output delay time
Address output floating start time
4
ns
25
4
(Note1)
(Note1)
25
Figure 1.23.1
ns
ns
ns
0
25
0
40
4
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
(Note1)
(Note1)
25
–4
0
8
ns
ns
ns
ns
Note 1: Calculated according to the BCLK frequency as follows:
th(RD – AD) =
10 9
f(BCLK) X 2
th(WR – AD) =
10
f(BCLK) X 2
[ns]
th(RD – CS) =
10 9
f(BCLK) X 2
[ns]
th(WR – CS) =
10
f(BCLK) X 2
td(DB – WR) =
10 X 3
– 40
f(BCLK) X 2
th(WR – DB) =
10
f(BCLK) X 2
[ns]
td(AD – ALE) =
10 9
– 25
f(BCLK) X 2
[ns]
[ns]
9
9
[ns]
9
[ns]
9
Note 2: Specify a product of -40°C to 85°C to use it.
155
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing (Vcc = 5V)
VCC = 5V
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
tc(UP)
tw(UPH)
TAiOUT input
tw(UPL)
TAiOUT input
(Up/down input)
During event counter mode
TAiIN input
(When count on falling
edge is selected)
th(TIN–UP)
tsu(UP–TIN)
TAiIN input
(When count on rising
edge is selected)
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
tc(AD)
tw(ADL)
ADTRG input
tc(CK)
tw(CKH)
CLKi
tw(CKL)
th(C–Q)
TxDi
td(C–Q)
tsu(D–C)
RxDi
tw(INL)
INTi input
Figure 1.23.2. VCC = 5V timing diagram (1)
156
tw(INH)
th(C–D)
Mitsubishi microcomputers
M16C / 30 Group
Timing (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Memory Expansion Mode and Microprocessor Mode
(Valid only with wait)
BCLK
RD
(Separate bus)
WR, WRL, WRH
(Separate bus)
RD
(Multiplexed bus)
WR, WRL, WRH
(Multiplexed bus)
RDY input
tsu(RDY–BCLK)
th(BCLK–RDY)
(Valid with or without wait)
BCLK
tsu(HOLD–BCLK)
th(BCLK–HOLD)
HOLD input
HLDA output
td(BCLK–HLDA)
td(BCLK–HLDA)
P0, P1, P2,
P3, P4,
P50 to P52
Hi–Z
Note: The above pins are set to high-impedance regardless of the input level of the
BYTE pin and bit (PM06) of processor mode register 0 selects the function of
ports P40 to P43.
Measuring conditions :
• VCC=5V
• Input timing voltage : Determined with VIL=1.0V, VIH=4.0V
• Output timing voltage : Determined with VOL=2.5V, VOH=2.5V
Figure 1.23.3. VCC = 5V timing diagram (2)
157
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing (Vcc = 5V)
Memory Expansion Mode and Microprocessor Mode
(With no wait)
Read timing
BCLK
td(BCLK–CS)
th(BCLK–CS)
4ns.min
25ns.max
CSi
th(RD–CS)
tcyc
0ns.min
td(BCLK–AD)
th(BCLK–AD)
25ns.max
ADi
BHE
ALE
4ns.min
th(RD–AD)
td(BCLK–ALE) th(BCLK–ALE)
0ns.min
–4ns.min
25ns.max
th(BCLK–RD)
td(BCLK–RD)
25ns.max
0ns.min
RD
tac1(RD–DB)
Hi–Z
DB
tSU(DB–RD)
th(RD–DB)
40ns.min
0ns.min
td(BCLK–CS)
th(BCLK–CS)
Write timing
BCLK
4ns.min
25ns.max
CSi
th(WR–CS)
tcyc
0ns.min
td(BCLK–AD)
th(BCLK-AD)
25ns.max
ADi
BHE
4ns.min
td(BCLK–ALE) th(BCLK–ALE)
th(WR–AD) 0ns.min
–4ns.min
ALE
25ns.max
th(BCLK–WR)
td(BCLK–WR)
WR,WRL,
WRH
DB
0ns.min
25ns.max
td(BCLK–DB)
40ns.max
Hi-Z
th(BCLK–DB)
4ns.min
td(DB–WR)
th(WR–DB)
(tcyc/2–40)ns.min
Figure 1.23.4. VCC = 5V timing diagram (3)
158
0ns.min
VCC = 5V
Mitsubishi microcomputers
M16C / 30 Group
Timing (Vcc = 5V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 5V
Memory Expansion Mode and Microprocessor Mode
(When accessing external memory area with wait)
Read timing
BCLK
th(BCLK–CS)
td(BCLK–CS)
4ns.min
25ns.max
CSi
th(RD–CS)
tcyc
0ns.min
td(BCLK–AD)
th(BCLK–AD)
25ns.max
ADi
BHE
4ns.min
td(BCLK–ALE) 25ns.max
th(BCLK–ALE)
th(RD–AD)
0ns.min
–4ns.min
ALE
th(BCLK–RD)
td(BCLK–RD)
0ns.min
25ns.max
RD
tac2(RD–DB)
Hi–Z
DB
tSU(DB–RD)
th(RD–DB)
40ns.min
0ns.min
Write timing
BCLK
td(BCLK–CS)
th(BCLK–CS)
4ns.min
25ns.max
CSi
th(WR–CS)
tcyc
0ns.min
td(BCLK–AD)
th(BCLK–AD)
25ns.max
ADi
BHE
4ns.min
td(BCLK–ALE)
th(WR–AD)
25ns.max
th(BCLK–ALE)
0ns.min
–4ns.min
ALE
td(BCLK–WR)
WR,WRL,
WRH
25ns.max
td(BCLK–DB)
40ns.max
th(BCLK–WR)
0ns.min
th(BCLK–DB)
4ns.min
DBi
td(DB–WR)
(tcyc–40)ns.min
th(WR–DB)
0ns.min
Measuring conditions :
• VCC=5V
• Input timing voltage : Determined with: VIL=0.8V, VIH=2.5V
• Output timing voltage : Determined with: VOL=0.8V, VOH=2.0V
Figure 1.23.5. VCC = 5V timing diagram (4)
159
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing (Vcc = 5V)
VCC = 5V
Memory Expansion Mode and Microprocessor Mode
(When accessing external memory area with wait, and select multiplexed bus)
Read timing
BCLK
td(BCLK–CS)
tcyc
CSi
td(AD–ALE)
th(BCLK–CS)
th(RD–CS)
(tcyc/2)ns.min
25ns.max
4ns.min
th(ALE–AD)
(tcyc/2-25)ns.min
30ns.min
ADi
/DBi
Address
Data input
tdz(RD–AD)
tac3(RD–DB)
8ns.max
Address
th(RD–DB)
tSU(DB–RD)
0ns.min
40ns.min
td(AD–RD)
0ns.min
td(BCLK–AD)
th(BCLK–AD)
25ns.max
ADi
BHE
ALE
4ns.min
td(BCLK–ALE)
th(BCLK–ALE)
th(RD–AD)
(tcyc/2)ns.min
–4ns.min
25ns.max
th(BCLK–RD)
td(BCLK–RD)
0ns.min
25ns.max
RD
Write timing
BCLK
td(BCLK–CS)
th(BCLK–CS)
tcyc
th(WR–CS)
25ns.max
4ns.min
(tcyc/2)ns.min
CSi
th(BCLK–DB)
td(BCLK–DB)
4ns.min
40ns.max
ADi
/DBi
Data output
Address
td(DB–WR)
(tcyc x 3/2–40)ns.min
td(AD–ALE)
(tcyc/2–25)ns.min
ADi
BHE
ALE
Address
th(WR–DB)
(tcyc/2)ns.min
td(BCLK–AD)
th(BCLK–AD)
25ns.max
4ns.min
td(BCLK–ALE)
th(BCLK–ALE)
–4ns.min
td(AD–WR)
0ns.min
25ns.max
td(BCLK–WR)
25ns.max
WR,WRL,
WRH
th(WR–AD)
(tcyc/2)ns.min
th(BCLK–WR)
0ns.min
Measuring conditions :
• VCC=5V
• Input timing voltage : Determined with VIL=0.8V, VIH=2.5V
• Output timing voltage : Determined with VOL=0.8V, VOH=2.0V
Figure 1.23.6. VCC = 5V timing diagram (5)
160
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Table 1.23.23. Electrical characteristics (referenced to VCC = 2.7 to 3.3V, VSS = 0V at Topr = – 20oC
to 85oC / – 40oC to 85oC (Note 1), f(XIN) = 10MHZ with wait unless otherwise specified)
Symbol
VOH
VOH
Measuring condition
Parameter
Min
HIGH output P00 to P07, P10 to P17, P20 to P27,
voltage
P30 to P37, P40 to P47, P50 to P57,
IOH = -1mA, VCC=3.0V
P60 to P67, P72 to P77, P80 to P84,
P86, P87, P90 to P97, P100 to P107
HIGH output voltage
XOUT
HIGH output voltage XCOUT
IOH = -0.1mA, VCC=3.0V
2 .5
LOWPOWER
IOH = -50µA, VCC=3.0V
2 .5
HIGHPOWER
With no load applied, VCC=3.0V
3.0
LOWPOWER
With no load applied, VCC=3.0V
1 .6
LOW output P00 to P07 ,P10 to P17, P20 to P27,
voltage
P30 to P37, P40 to P47, P50 to P57,
IOL = 1mA, VCC=3.0V
P60 to P67, P70 to P77, P80 to P84,
P86, P87, P90 to P97, P100 to P107
VOL
LOW output voltage XOUT
Hysteresis
VT+-VT-
Unit
V
2 .5
HIGHPOWER
VOL
LOW output voltage XCOUT
Standard
Typ. Max.
V
V
0.5
HIGHPOWER
IOL = 0.1mA, VCC=3.0V
0.5
LOWPOWER
IOL = 50µA, VCC=3.0V
0.5
HIGHPOWER
With no load applied, VCC=3.0V
0
LOWPOWER
With no load applied, VCC=3.0V
0
V
V
V
HOLD, RDY, TA0IN to TA2IN,
TB1IN, TB2IN, INT0 to INT2, NMI,
ADTRG, CTS0 to CTS2, SCL, SDA
CLK0 to CLK4,TA2OUT,
KI0 to KI3, RxD0 to RxD2
VCC=3.0V
0 .2
0 .8
V
RESET
VCC=3.0V
0.2
1.8
V
VT+-VT-
Hysteresis
IIH
HIGH input P00 to P07, P10 to P17, P20 to P27,
current
P30 to P37, P40 to P47 ,P50 to P57,
P60 to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P107,
XIN, RESET, CNVss, BYTE
VI = 3V, VCC=3.0V
4.0
µA
P00 to P07, P10 to P17, P20 to P27,
P30 to P37, P40 to P47, P50 to P57,
P60 to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P107,
XIN, RESET, CNVss, BYTE
VI = 0V, VCC=3.0V
-4.0
µA
P00 to P07, P10 to P17, P20 to P27,
P30 to P37, P40 to P47, P50 to P57,
P60 to P67, P72 to P77, P80 to P84,
P86, P87, P90 to P97 ,P100 to P107
VI = 0V, VCC=3.0V
500.0
kΩ
LOW input
current
I IL
R PULLUP
Pull-up
resistance
66.0
120.0
R fXIN
Feedback resistance XIN
3 .0
MΩ
R fXCIN
Feedback resistance XCIN
10.0
MΩ
V RAM
RAM retention voltage
8.5
mA
When clock is stopped
In single-chip
mode, the
output pins are
open and other
pins are VSS
f(XIN) = 10MHz
Square wave, no division
f(XCIN) = 32kHz
V
2.0
21.25
µA
40.0
Square wave
f(XCIN) = 32kHz
Icc
Power supply current
When a WAITinstruction
is executed.
Oscillation capacity High
(Note 2)
2 .8
10
(Topr
= 25°C)
µA
0 .9
10
(Topr
= 25°C)
µA
f(XCIN) = 32kHz
When a WAIT instruction
is executed.
Oscillation capacity Low
(Note 2)
Topr = 25°C
when clock is stopped
1 .0
Topr = 85°C
when clock is stopped
20.0
µA
Note 1: Specify a product of -40°C to 85°C to use it.
Note 2: With one timer operated using fC32.
161
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Timing requirements (referenced to VCC = 3V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to 85oC (*)
unless otherwise specified)
* : Specify a product of -40°C to 85°C to use it.
Table 1.23.24. External clock input
Symbol
tc
Parameter
Standard
Min.
Max.
Unit
100
ns
External clock input HIGH pulse width
40
ns
tw(L)
External clock input LOW pulse width
40
ns
tr
External clock rise time
External clock fall time
External clock input cycle time
tw(H)
tf
18
ns
18
ns
Table 1.23.25. Memory expansion and microprocessor modes
Symbol
tac1(RD-DB)
tac2(RD-DB)
tac3(RD-DB)
tsu(DB-RD)
tsu(RDY-BCLK )
tsu(HOLD-BCLK )
th(RD-DB)
th(BCLK -RDY)
th(BCLK-HOLD )
td(BCLK-HLDA)
Parameter
Data input access time (no wait)
Data input access time (with wait)
Data input access time (when accessing multiplex bus area)
Data input setup time
RDY input setup time
HOLD input setup time
Data input hold time
RDY input hold time
HOLD input hold time
HLDA output delay time
Note: Calculated according to the BCLK frequency as follows:
tac1(RD – DB) =
10 9
– 90
f(BCLK) X 2
tac2(RD – DB) =
3 X 10
– 90
f(BCLK) X 2
[ns]
tac3(RD – DB) =
3 X 10 9
– 90
f(BCLK) X 2
[ns]
[ns]
9
162
Standard
Min.
Max.
(Note)
Unit
(Note)
ns
ns
(Note)
ns
ns
80
60
ns
ns
80
0
ns
0
ns
0
ns
100
ns
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Timing requirements (referenced to VCC = 3V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to 85oC (*)
unless otherwise specified)
* : Specify a product of -40°C to 85°C to use it.
Table 1.23.26. Timer A input (counter input in event counter mode)
Symbol
Parameter
Standard
Min.
Max.
150
Unit
tc(TA)
TAiIN input cycle time
tw(TAH)
TAiIN input HIGH pulse width
60
ns
ns
tw(TAL)
TAiIN input LOW pulse width
60
ns
Table 1.23.27. Timer A input (gating input in timer mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TA)
TAiIN input cycle time
600
ns
tw(TAH)
TAiIN input HIGH pulse width
300
ns
tw(TAL)
TAiIN input LOW pulse width
300
ns
Table 1.23.28. Timer A input (external trigger input in one-shot timer mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TA)
TAiIN input cycle time
300
tw(TAH)
TAiIN input HIGH pulse width
150
ns
ns
tw(TAL)
TAiIN input LOW pulse width
150
ns
Table 1.23.29. Timer A input (external trigger input in pulse width modulation mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tw(TAH)
TAiIN input HIGH pulse width
150
ns
tw(TAL)
TAiIN input LOW pulse width
150
ns
Table 1.23.30. Timer A input (up/down input in event counter mode)
tc(UP)
TAiOUT input cycle time
Standard
Min.
Max.
3000
tw(UPH)
TAiOUT input HIGH pulse width
1500
tw(UPL)
TAiOUT input LOW pulse width
1500
ns
tsu(UP-TIN)
TAiOUT input setup time
600
ns
th(TIN-UP)
TAiOUT input hold time
600
ns
Symbol
Parameter
Unit
ns
ns
163
Mitsubishi microcomputers
Electrical characteristics (Vcc = 3V)
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Timing requirements (referenced to VCC = 3V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to 85oC (*)
unless otherwise specified)
* : Specify a product of -40°C to 85°C to use it.
Table 1.23.31. Timer B input (counter input in event counter mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time (counted on one edge)
tw(TBH)
TBiIN input HIGH pulse width (counted on one edge)
60
ns
ns
tw(TBL)
TBiIN input LOW pulse width (counted on one edge)
60
ns
150
tc(TB)
TBiIN input cycle time (counted on both edges)
300
ns
tw(TBH)
TBiIN input HIGH pulse width (counted on both edges)
160
ns
tw(TBL)
TBiIN input LOW pulse width (counted on both edges)
160
ns
Table 1.23.32. Timer B input (pulse period measurement mode)
Symbol
Parameter
Standard
Max.
Unit
tc(TB)
TBiIN input cycle time
Min.
600
tw(TBH)
TBiIN input HIGH pulse width
300
ns
tw(TBL)
TBiIN input LOW pulse width
300
ns
Standard
Min.
Max.
Unit
ns
Table 1.23.33. Timer B input (pulse width measurement mode)
Symbol
Parameter
tc(TB)
TBiIN input cycle time
600
ns
tw(TBH)
TBiIN input HIGH pulse width
300
ns
tw(TBL)
TBiIN input LOW pulse width
300
ns
Table 1.23.34. A-D trigger input
Symbol
Parameter
tc(AD)
ADTRG input cycle time (trigger able minimum)
tw(ADL)
ADTRG input LOW pulse width
Standard
Min.
Max.
Unit
1500
ns
200
ns
Table 1.23.35. Serial I/O
Symbol
Parameter
Standard
Min.
300
Max.
Unit
tc(CK)
CLKi input cycle time
tw(CKH)
CLKi input HIGH pulse width
150
ns
tw(CKL)
CLKi input LOW pulse width
150
ns
td(C-Q)
TxDi output delay time
th(C-Q)
TxDi hold time
tsu(D-C)
th(C-D)
ns
160
ns
0
ns
RxDi input setup time
50
ns
RxDi input hold time
90
ns
_______
Table 1.23.36. External interrupt INTi inputs
Symbol
164
Parameter
Standard
tw(INH)
INTi input HIGH pulse width
Min.
380
tw(INL)
INTi input LOW pulse width
380
Max.
Unit
ns
ns
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to
85oC (Note 3), CM15=“1” unless otherwise specified)
Table 1.23.37. Memory expansion and microprocessor modes (with no wait)
Symbol
td(BCLK-AD)
th(BCLK-AD)
th(RD-AD)
th(WR-AD)
td(BCLK-CS)
th(BCLK-CS)
td(BCLK-ALE)
th(BCLK-ALE)
td(BCLK-RD)
th(BCLK-RD)
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
th(BCLK-DB)
td(DB-WR)
th(WR-DB)
Measuring condition
Parameter
Address output delay time
Address output hold time (BCLK standard)
Address output hold time (RD standard)
Address output hold time (WR standard)
Chip select output delay time
Chip select output hold time (BCLK standard)
ALE signal output delay time
ALE signal output hold time
RD signal output delay time
RD signal output hold time
WR signal output delay time
WR signal output hold time
Data output delay time (BCLK standard)
Data output hold time (BCLK standard)
Data output delay time (WR standard)
Data output hold time (WR standard)(Note2)
Standard
Min.
Max.
60
4
0
0
60
4
60
—4
Figure 1.23.7
60
0
60
0
80
4
(Note1)
0
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note 1: Calculated according to the BCLK frequency as follows:
9
td(DB – WR) =
10
f(BCLK) X 2
– 80
[ns]
Note 2: This is standard value shows the timing when the output is off,
and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – VOL / VCC)
by a circuit of the right figure.
For example, when VOL = 0.2VCC, C = 30pF, R = 1kΩ, hold time
of output “L” level is
t = – 30pF X 1kΩ X ln (1 – 0.2VCC / VCC)
= 6.7ns.
R
DBi
C
Note 3: Specify a product of -40°C to 85°C to use it.
P0
P1
P2
30pF
P3
P4
P5
P6
P7
P8
P9
P10
Figure 1.23.7. Port P0 to P10 measurement circuit
165
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to
85oC (Note 3), CM15=“1” unless otherwise specified)
Table 1.23.38. Memory expansion and microprocessor modes
(when accessing external memory area with wait)
Symbol
Measuring condition
Parameter
td(BCLK-AD)
th(BCLK-AD)
th(RD-AD)
Address output delay time
Address output hold time (BCLK standard)
Address output hold time (RD standard)
th(WR-AD)
td(BCLK-CS)
th(BCLK-CS)
td(BCLK-ALE)
th(BCLK-ALE)
td(BCLK-RD)
th(BCLK-RD)
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
th(BCLK-DB)
td(DB-WR)
th(WR-DB)
Address output hold time (WR standard)
Chip select output delay time
Chip select output hold time (BCLK standard)
ALE signal output delay time
ALE signal output hold time
RD signal output delay time
RD signal output hold time
WR signal output delay time
WR signal output hold time
Data output delay time (BCLK standard)
Data output hold time (BCLK standard)
Data output delay time (WR standard)
Data output hold time (WR standard)(Note2)
Figure 1.23.7
Standard
Min.
Max.
60
4
0
0
60
4
60
–4
60
0
60
0
80
4
(Note1)
0
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note 1: Calculated according to the BCLK frequency as follows:
9
td(DB – WR) =
10
f(BCLK)
– 80
[ns]
Note 2: This is standard value shows the timing when the output is off,
and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – VOL / VCC)
by a circuit of the right figure.
For example, when VOL = 0.2VCC, C = 30pF, R = 1kΩ, hold time
of output “L” level is
t = – 30pF X 1kΩ X ln (1 – 0.2VCC / VCC)
= 6.7ns.
Note 3: Specify a product of -40°C to 85°C to use it.
166
R
DBi
C
Mitsubishi microcomputers
M16C / 30 Group
Electrical characteristics (Vcc = 3V)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
VCC = 3V
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to
85oC (Note 2), CM15=“1” unless otherwise specified)
Table 1.23.39. Memory expansion and microprocessor modes
(when accessing external memory area with wait, and select multiplexed bus)
Symbol
Measuring condition
Parameter
Standard
Min.
Max.
60
4
td(BCLK-AD)
th(BCLK-AD)
Address output delay time
Address output hold time (BCLK standard)
th(RD-AD)
th(WR-AD)
Address output hold time (RD standard)
Address output hold time (WR standard)
td(BCLK-CS)
th(BCLK-CS)
Chip select output delay time
Chip select output hold time (BCLK standard)
th(RD-CS)
th(WR-CS)
td(BCLK-RD)
Chip select output hold time (RD standard)
Chip select output hold time (WR standard)
RD signal output delay time
th(BCLK-RD)
td(BCLK-WR)
RD signal output hold time
WR signal output delay time
th(BCLK-WR)
td(BCLK-DB)
WR signal output hold time
Data output delay time (BCLK standard)
0
th(BCLK-DB)
td(DB-WR)
th(WR-DB)
Data output hold time (BCLK standard)
Data output delay time (WR standard)
Data output hold time (WR standard)
4
(Note1)
(Note1)
td(BCLK-ALE)
th(BCLK-ALE)
ALE signal output delay time (BCLK standard)
ALE signal output hold time (BCLK standard)
td(AD-ALE)
th(ALE-AD)
ALE signal output delay time (Address standard)
ALE signal output hold time(Address standard)
td(AD-RD)
td(AD-WR)
tdZ(RD-AD)
Post-address RD signal output delay time
Post-address WR signal output delay time
Address output floating start time
ns
ns
ns
ns
(Note1)
(Note1)
60
4
ns
ns
60
ns
ns
ns
60
ns
ns
80
ns
ns
(Note1)
(Note1)
Figure 1.23.7
Unit
0
ns
ns
ns
–4
60
ns
ns
(Note1)
50
ns
ns
0
0
ns
ns
ns
8
Note 1: Calculated according to the BCLK frequency as follows:
9
th(RD – AD) =
th(WR – AD) =
10
f(BCLK) X 2
[ns]
10 9
[ns]
f(BCLK) X 2
9
th(RD – CS) =
th(WR – CS) =
10
f(BCLK) X 2
[ns]
10 9
[ns]
f(BCLK) X 2
9
td(DB – WR) =
th(WR – DB) =
10 X 3
– 80
f(BCLK) X 2
10 9
[ns]
f(BCLK) X 2
td(AD – ALE) =
[ns]
10 9
f(BCLK) X 2
– 45
[ns]
Note 2: Specify a product of -40°C to 85°C to use it.
167
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing (Vcc = 3V)
VCC = 3V
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
tc(UP)
tw(UPH)
TAiOUT input
tw(UPL)
TAiOUT input
(Up/down input)
During event counter mode
TAiIN input
th(TIN–UP)
(When count on falling
edge is selected)
tsu(UP–TIN)
TAiIN input
(When count on rising
edge is selected)
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
tc(AD)
tw(ADL)
ADTRG input
tc(CK)
tw(CKH)
CLKi
tw(CKL)
th(C–Q)
TxDi
td(C–Q)
tsu(D–C)
RxDi
tw(INL)
INTi input
Figure 1.23.8. VCC = 3V timing diagram (1)
168
tw(INH)
th(C–D)
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing (Vcc = 3V)
VCC = 3V
Memory Expansion Mode and Microprocessor Mode
(Valid only with wait)
BCLK
RD
(Separate bus)
WR, WRL, WRH
(Separate bus)
RD
(Multiplexed bus)
WR, WRL, WRH
(Multiplexed bus)
RDY input
tsu(RDY–BCLK)
th(BCLK–RDY)
(Valid with or without wait)
BCLK
tsu(HOLD–BCLK)
th(BCLK–HOLD)
HOLD input
HLDA output
td(BCLK–HLDA)
td(BCLK–HLDA)
P0, P1, P2,
P3, P4,
P50 to P52
Hi–Z
Note: The above pins are set to high-impedance regardless of the input level of the
BYTE pin and bit (PM06) of processor mode register 0 selects the function of
ports P40 to P43.
Measuring conditions :
• VCC=3V
• Input timing voltage : Determined with VIL=0.6V, VIH=2.4V
• Output timing voltage : Determined with VOL=1.5V, VOH=1.5V
Figure 1.23.9. VCC = 3V timing diagram (2)
169
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing (Vcc = 3V)
Memory Expansion Mode and Microprocessor Mode
(With no wait)
Read timing
BCLK
th(BCLK–CS)
td(BCLK–CS)
4ns.min
60ns.max
CSi
th(RD–CS)
tcyc
0ns.min
td(BCLK–AD)
th(BCLK–AD)
60ns.max
ADi
BHE
4ns.min
td(BCLK–ALE) th(BCLK–ALE)
th(RD–AD) 0ns.min
–4ns.min
ALE
60ns.max
td(BCLK–RD)
60ns.max
th(BCLK–RD)
0ns.min
RD
tac1(RD–DB)
Hi–Z
DB
th(RD–DB)
0ns.min
tSU(DB–RD)
80ns.min
Write timing
BCLK
td(BCLK–CS)
th(BCLK–CS)
4ns.min
60ns.max
CSi
th(WR–CS)
tcyc
0ns.min
td(BCLK–AD)
th(BCLK–AD)
60ns.max
ADi
BHE
ALE
4ns.min
td(BCLK–ALE) th(BCLK–ALE)
th(BCLK–WR)
td(BCLK–WR)
60ns.max
td(BCLK–DB)
80ns.max
DB
0ns.min
–4ns.min
60ns.max
WR,WRL,
WRH
th(WR–AD)
0ns.min
th(BCLK–DB)
Hi–Z
4ns.min
th(WR–DB)
td(DB–WR)
(tcyc/2–80)ns.min
Figure 1.23.10. VCC = 3V timing diagram (3)
170
0ns.min
VCC = 3V
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing (Vcc = 3V)
VCC = 3V
Memory Expansion Mode and Microprocessor Mode
(When accessing external memory area with wait)
Read timing
BCLK
th(BCLK–CS)
td(BCLK–CS)
4ns.min
60ns.max
CSi
tcyc
th(RD–CS)
0ns.min
td(BCLK–AD)
th(BCLK–AD)
60ns.max
ADi
BHE
4ns.min
td(BCLK–ALE)
th(RD–AD)
60ns.max
th(BCLK–ALE)
0ns.min
–4ns.min
ALE
td(BCLK–RD)
th(BCLK–RD)
0ns.min
60ns.max
RD
tac2(RD–DB)
Hi–Z
DB
th(RD–DB) 0ns.min
tSU(DB–RD)
80ns.min
Write timing
BCLK
td(BCLK–CS)
th(BCLK–CS)
60ns.max
4ns.min
CSi
th(WR–CS)
tcyc
0ns.min
td(BCLK–AD)
th(BCLK–AD)
60ns.max
ADi
BHE
td(BCLK–ALE)
4ns.min
th(BCLK–ALE)
th(WR–AD)
60ns.max
–4ns.min
0ns.min
ALE
td(BCLK–WR)
60ns.max
WR,WRL,
WRH
th(BCLK–WR)
0ns.min
th(BCLK–DB)
td(BCLK–DB)
4ns.min
80ns.max
DBi
td(DB–WR)
(tcyc–80)ns.min
th(WR–DB)
0ns.min
Measuring conditions :
• VCC=3V
• Input timing voltage : Determined with VIL=0.48V, VIH=1.5V
• Output timing voltage : Determined with VOL=1.5V, VOH=1.5V
Figure 1.23.11. VCC = 3V timing diagram (4)
171
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing (Vcc = 3V)
VCC = 3V
Memory Expansion Mode and Microprocessor Mode
(When accessing external memory area with wait, and select multiplexed bus)
Read timing
BCLK
th(BCLK–CS)
tcyc
td(BCLK–CS)
(tcyc/2)ns.min
CSi
td(AD–ALE) (tcyc/2–45)ns.min
tdz(RD–AD)
8ns.max
ADi
/DBi
Data input
Address
th(ALE–AD)
tac3(RD–DB)
50ns.min
ALE
Address
th(RD–DB)
tSU(DB–RD)
0ns.min
80ns.min
td(AD–RD)
td(BCLK–AD)
ADi
BHE
4ns.min
th(RD–CS)
60ns.max
th(BCLK–AD)
0ns.min
60ns.max
4ns.min
th(BCLK–ALE)
td(BCLK–ALE)
th(RD–AD)
(tcyc/2)ns.min
–4ns.min
60ns.max
th(BCLK–RD)
td(BCLK–RD)
0ns.min
60ns.max
RD
Write timing
BCLK
td(BCLK–CS)
tcyc
th(BCLK–CS)
th(WR–CS)
60ns.max
4ns.min
(tcyc/2)ns.min
CSi
td(BCLK–DB)
th(BCLK–DB)
4ns.min
80ns.max
ADi
/DBi
Address
td(AD–ALE)
(tcyc/2–60)ns.min
Data output
td(DB–WR)
(tcyc x 3/2–80)ns.min
Address
th(WR–DB)
(tcyc/2)ns.min
th(BCLK–AD)
td(BCLK–AD)
ADi
BHE
4ns.min
60ns.max
td(BCLK–ALE) th(BCLK–ALE)
td(AD–WR)
0ns.min
ALE
60ns.max
–4ns.min
td(BCLK–WR)
60ns.max
WR,WRL,
WRH
th(WR–AD)
(tcyc/2)ns.min
th(BCLK–WR)
0ns.min
Measuring conditions :
• VCC=3V
• Input timing voltage : Determined with VIL=0.48V,VIH=1.5V
• Output timing voltage : Determined with VOL=1.5V,VOH=1.5V
Figure 1.23.12. VCC = 3V timing diagram (5)
172
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Package Outline
Package Outline
MMP
100P6S-A
EIAJ Package Code
QFP100-P-1420-0.65
Plastic 100pin 14✕20mm body QFP
Weight(g)
1.58
Lead Material
Alloy 42
MD
e
JEDEC Code
–
81
1
b2
100
ME
HD
D
80
I2
Recommended Mount Pad
E
30
HE
Symbol
51
50
A
L1
c
A2
b
x
A1
F
e
M
L
Detail F
y
MMP
EIAJ Package Code
LQFP100-P-1414-0.50
Plastic 100pin 14✕14mm body LQFP
Weight(g)
0.63
JEDEC Code
–
Lead Material
Cu Alloy
MD
e
100P6Q-A
b2
I2
MD
ME
b2
HD
ME
31
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
x
y
Dimension in Millimeters
Min
Nom
Max
3.05
–
–
0.1
0.2
0
2.8
–
–
0.25
0.3
0.4
0.13
0.15
0.2
13.8
14.0
14.2
19.8
20.0
20.2
0.65
–
–
16.5
16.8
17.1
22.5
22.8
23.1
0.4
0.6
0.8
1.4
–
–
–
–
0.13
0.1
–
–
0°
10°
–
–
–
0.35
1.3
–
–
14.6
–
–
–
–
20.6
D
76
100
l2
Recommended Mount Pad
75
1
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
Lp
HE
E
Symbol
51
25
26
50
A
L1
F
A3
M
y
L
Detail F
Lp
c
x
A1
b
A3
A2
e
x
y
b2
I2
MD
ME
Dimension in Millimeters
Min
Nom
Max
1.7
–
–
0.1
0.2
0
1.4
–
–
0.13
0.18
0.28
0.105
0.125
0.175
13.9
14.0
14.1
13.9
14.0
14.1
0.5
–
–
15.8
16.0
16.2
15.8
16.0
16.2
0.3
0.5
0.7
1.0
–
–
0.45
0.6
0.75
–
0.25
–
–
–
0.08
0.1
–
–
0°
10°
–
0.225
–
–
0.9
–
–
14.4
–
–
–
–
14.4
173
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
SFR difference between M16C/62A and M16C/30
SFR difference between M16C/62A and M16C/30
Address
0005
174
Symbol
M16C/62A
M16C/30
PM1
Processor mode register 1
bit0:Reserved bit
bit1:Nothing is assigned
bit2:Nothing is assigned
PM13:Internal reserved area expansion bit
bit4:Reserved bit
bit5:Reserved bit
bit6:Reserved bit
PM17:Wait bit
Processor mode register 1
bit0:Reserved bit
bit1:Nothing is assigned
bit2:Nothing is assigned
bit3:Reserved bit
bit4:Reserved bit
bit5:Reserved bit
bit6:Reserved bit
PM17:Wait bit
Protect register
PRC0:Enables writing to system clock control registers 0
and 1
PRC1:Enables writing to processor mode registers 0 and 1
PRC2:Enables writing to port P9 direction register
and SI/O control register
bit3-bit7:Nothing is assigned
Protect register
PRC0:Enables writing to system clock control registers 0
and 1
PRC1:Enables writing to processor mode registers 0 and 1
PRC2:Enables writing to port P9 direction register
000A
PRCR
0030
SAR1
DMA1 source pointer
Reserved register
0031
SAR1
DMA1 source pointer
Reserved register
0032
SAR1
DMA1 source pointer
Reserved register
0034
DAR1
DMA1 destination pointer
Reserved register
0035
DAR1
DMA1 destination pointer
Reserved register
0036
DAR1
DMA1 destination pointer
Reserved register
0038
TCR1
DMA1 transfer counter
Reserved register
0039
TCR1
DMA1 transfer counter
Reserved register
003C
DM1CON
DMA1 control register
Reserved register
0044
INT3IC
INT3 interrupt control register
Reserved register
0045
TB5IC
Timer B5 interrupt control register
Reserved register
0046
TB4IC
Timer B4 interrupt control register
Reserved register
0047
TB3IC
Timer B3 interrupt control register
Reserved register
0048
S4IC/INT5IC
SI/O4,INT5 interrupt control register
Reserved register
0049
S3IC/INT4IC
SI/O3,INT4 interrupt control register
Reserved register
004C
DM1IC
DMA1 interrupt control register
Reserved register
0058
TA3IC
Timer A3 interrupt control register
Reserved register
0059
TA4IC
Timer A4 interrupt control register
Reserved register
005A
TB0IC
Timer B0 interrupt control register
Reserved register
0340
TBSR
Timer B3, 4, 5 count start flag
Reserved register
0342
TA11
Timer A1-1 register
Reserved register
0343
TA11
Timer A1-1 register
Reserved register
0344
TA21
Timer A2-1 register
Reserved register
0345
TA21
Timer A2-1 register
Reserved register
0346
TA41
Timer A4-1 register
Reserved register
0347
TA41
Timer A4-1 register
Reserved register
0348
INVC0
Three-phase PWM control register 0
Reserved register
0349
INVC1
Three-phase PWM control register 1
Reserved register
034A
IDB0
Three-phase output buffer register 0
Reserved register
034B
IDB1
Three-phase output buffer register 1
Reserved register
034C
034D
DTT
ICTB2
Dead time timer
Reserved register
Timer B2 interrupt occurrence frequency set
counter
Reserved register
bit3-bit7:Nothing is assigned
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
SFR difference between M16C/62A and M16C/30
SFR difference between M16C/62A and M16C/30
Address
035F
Symbol
M16C/62A
M16C/30
IFSR
Interrupt cause select register
IFSR0:INT0 interrupt polarity switching bit
IFSR1:INT1 interrupt polarity switching bit
IFSR2:INT2 interrupt polarity switching bit
IFSR3:INT3 interrupt polarity switching bit
IFSR4:INT4 interrupt polarity switching bit
IFSR5:INT5 interrupt polarity switching bit
IFSR6:Interrupt request cause select bit
IFSR7:Interrupt request cause select bit
Interrupt cause select register
IFSR0:INT0 interrupt polarity switching bit
IFSR1:INT1 interrupt polarity switching bit
IFSR2:INT2 interrupt polarity switching bit
bit3:Reserved bit
bit4:Reserved bit
bit5:Reserved bit
bit6:Reserved bit
bit7:Reserved bit
0360
S3TRR
SI/O3 transmit/receive register
Reserved register
0362
S3C
SI/O3 control register
Reserved register
0363
S3BRG
SI/O3 bit rate generator
Reserved register
0364
S4TRR
SI/O4 transmit/receive register
Reserved register
0366
S4C
SI/O4 control register
Reserved register
0367
0380
S4BRG
TABSR
SI/O4 bit rate generator
Reserved register
Count start flag
TA0S:Timer A0 count start flag
TA1S:Timer A1 count start flag
TA2S:Timer A2 count start flag
TA3S:Timer A3 count start flag
TA4S:Timer A4 count start flag
TB0S:Timer B0 count start flag
TB1S:Timer B1 count start flag
TB2S:Timer B2 count start flag
Count start flag
TA0S:Timer A0 count start flag
TA1S:Timer A1 count start flag
TA2S:Timer A2 count start flag
bit3:Reserved bit
bit4:Reserved bit
bit5:Reserved bit
TB1S:Timer B1 count start flag
TB2S:Timer B2 count start flag
One-shot start flag
TA0OS:Timer A0 one-shot start flag
TA1OS:Timer A1 one-shot start flag
TA2OS:Timer A2 one-shot start flag
TA3OS:Timer A3 one-shot start flag
TA4OS:Timer A4 one-shot start flag
bit5:Nothing is assigned
TA0TGL:Timer A0 event/trigger select bit
TA0TGH: "00","01","10"and"11" can be chosen.
One-shot start flag
TA0OS:Timer A0 one-shot start flag
TA1OS:Timer A1 one-shot start flag
TA2OS:Timer A2 one-shot start flag
bit3:Reserved bit
bit4:Reserved bit
bit5:Nothing is assigned
TA0TGL:Timer A0 event/trigger select bit
TA0TGH: "00","01"and"11" can be chosen.
"10" can't be chosen.
Trigger select register
TA1TGL:Timer A1 event/trigger select bit
TA1TGH: "00","01","10"and"11" can be chosen.
TA2TGL:Timer A2 event/trigger select bit
TA2TGH: "00","01","10"and"11" can be chosen.
Trigger select register
TA1TGL:Timer A1 event/trigger select bit
TA1TGH: "00","01","10"and"11" can be chosen.
TA2TGL:Timer A2 event/trigger select bit
TA2TGH: "00","01"and"10" can be chosen.
"11" can't be chosen.
bit4:Reserved bit
bit5:Reserved bit
bit6:Reserved bit
bit7:Reserved bit
0382
0383
ONSF
TRGSR
TA3TGL:Timer A3 event/trigger select bit
TA3TGH: "00","01","10"and"11" can be chosen.
TA4TGL:Timer A4 event/trigger select bit
TA4TGH: "00","01","10"and"11" can be chosen.
0384
UDF
Up-down flag
TA0UD:Timer A0 up/down flag
TA1UD:Timer A1 up/down flag
TA2UD:Timer A2 up/down flag
TA3UD:Timer A3 up/down flag
TA4UD:Timer A4 up/down flag
TA2P:Timer A2 two-phase pulse signal processing select bit
TA3P:Timer A3 two-phase pulse signal processing
select bit
TA4P:Timer A4 two-phase pulse signal processing
select bit
Up-down flag
TA0UD:Timer A0 up/down flag
TA1UD:Timer A1 up/down flag
TA2UD:Timer A2 up/down flag
bit3:Reserved bit
bit4:Reserved bit
TA2P:Timer A2 two-phase pulse signal processing select bit
bit6:Reserved bit
bit7:Reserved bit
175
Mitsubishi microcomputers
M16C / 30 Group
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
SFR difference between M16C/62A and M16C/30
SFR difference between M16C/62A and M16C/30
Address
039C
M16C/62A
M16C/30
Timer B1 mode register
Event counter mode
TMOD0:Operation mode select bit
TMOD1:
MR0:Count polarity select bit
MR1:
MR2:Nothing is assigned
MR3:Invalid
TCK1:Event clock select "0" and "1" can be
chosen.
Timer B1 mode register
Event counter mode
TMOD0:Operation mode select bit
TMOD1:
MR0:Count polarity select bit
MR1:
MR2:Nothing is assigned
MR3:Invalid
TCK1:Event clock select "0 " can be chosen. "1"
can't be chosen.
03B6
FMR1
Flash memory control register 1
Reserved register
03B7
03B8
FMR0
DM0SL
Flash memory control register 0
Reserved register
DMA0 request cause select register
DMA0 request factors
Falling edge of INT0 pin
Software trigger
Timer A0
Timer A1
Timer A2
Timer A3
Timer A4
two edges of INT0 pin
Timer B0
Timer B1
Timer B2
Timer B3
Timer B4
Timer B5
UART0 transmit
UART0 receive
UART2 transmit
UART2 receive
UART1 transmit
A-D conversion
DMA0 request cause select register
DMA0 request factors
Falling edge of INT0 pin
Software trigger
Timer A0
Timer A1
Timer A2
two edges of INT0 pin
Timer B1
Timer B2
UART0 transmit
UART0 receive
UART2 transmit
UART2 receive
UART1 transmit
A-D conversion
03BA
DM1SL
DMA1 request cause select register
Reserved register
03BC
CRCD
CRC data register
Reserved register
03BD
CRCIN
CRC data register
Reserved register
03BE
03D6
CRCIN
ADCON0
CRC input register
Reserved register
A-D control register 0
CH0:Analog input pin select bit
CH1:
CH2:
MD0:A-D operation mode select bit 0
MD1: "00","01","10"and"11" can be chosen
TRG:Trigger select bit
ADST:A-D conversion start flag
CKS0:Frequency select bit 0
A-D control register 0
CH0:Analog input pin select bit
CH1:
CH2:
MD0:A-D operation mode select bit 0
MD1: "00 " can be chosen. "01","10"and"11" can't
be chosen.
TRG:Trigger select bit
ADST:A-D conversion start flag
CKS0:Frequency select bit 0
A-D control register 1
SCAN0:A-D sweep pin select bit
SCAN1:
MD2:A-D operation mode select bit 1
BITS:8/10-bit mode select bit
CKS1:Frequency select bit 1
VCUT:Vref connect bit
OPA0:External op-amp connection mode bit
OPA1:
A-D control register 1
bit0:Reserved bit
bit1:Reserved bit
bit2:Reserved bit
BITS:8/10-bit mode select bit
CKS1:Frequency select bit 1
VCUT:Vref connect bit
OPA0:External op-amp connection mode bit
OPA1:
03D7
176
Symbol
TB1MR
ADCON1
Keep safety first in your circuit designs!
•
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable
material or (iii) prevention against any malfunction or mishap.
•
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property
rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples
contained in these materials.
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by
Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product
distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).
When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision
on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric
Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved
destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
Notes regarding these materials
•
•
•
•
•
•
•
© 2002 MITSUBISHI ELECTRIC CORP.
Printed in Japan (ROD) II
New publication, effective June. 2002.
Specifications subject to change without notice.