STMICROELECTRONICS M95128-MN3P

M95128
M95128-W M95128-R
128 Kbit Serial SPI bus EEPROM
with high speed clock
Feature summary
■
Compatible with SPI Bus Serial Interface
(Positive Clock SPI Modes)
■
Single Supply Voltage:
– 4.5 to 5.5V for M95128
– 2.5 to 5.5V for M95128-W
– 1.8 to 5.5V for M95128-R
■
High Speed
– 5MHz Clock Rate, 5ms Write Time
■
Status Register
■
Hardware Protection of the Status Register
■
BYTE and PAGE WRITE (up to 64 Bytes)
■
Self-Timed Programming Cycle
■
Adjustable Size Read-Only EEPROM Area
■
Enhanced ESD Protection
■
More than 100,000 Write Cycles
■
More than 40-Year Data Retention
■
Packages
– ECOPACK® (RoHS compliant)
June 2006
SO8 (MN)
150 mil width
TSSOP8 (DW)
169 mil width
Rev 7
1/41
www.st.com
1
Contents
M95128, M95128-W, M95128-R
Contents
1
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1
Serial Data Output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2
Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7.1
4
5
2/41
3.7.2
Operating supply voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7.3
Internal device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7.4
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1
Hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3
Data Protection and protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.1
WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.2
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.3
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.4
SRWD bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
M95128, M95128-W, M95128-R
5.6.1
Contents
ECC (Error Correction Code) and Write cycling . . . . . . . . . . . . . . . . . . 22
6
Delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7
Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3/41
List of tables
M95128, M95128-W, M95128-R
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
4/41
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Write-Protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Operating conditions (M95128) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Operating conditions (M95128-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Operating conditions (M95128-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DC characteristics (M95128, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DC characteristics (M95128-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DC characteristics (M95128-W, Device Grade 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DC characteristics (M95128-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
AC characteristics (M95128, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
AC characteristics (M95128-W, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
AC characteristics (M95128-W, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
AC characteristics (M95128-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
SO8N – 8 lead Plastic Small Outline, 150 mils body width, package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data . . . . . . . . . . . . . . 37
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
M95128, M95128-W, M95128-R
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
SO and TSSOP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Hold condition activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Write Disable (WRDI) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Write Status Register (WRSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Bus master and memory devices on the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
SO8N – 8 lead Plastic Small Outline, 150 mils body width, package outline . . . . . . . . . . . 36
TSSOP8 – 8 lead Thin Shrink Small Outline, package outline . . . . . . . . . . . . . . . . . . . . . . 37
5/41
Summary description
1
M95128, M95128-W, M95128-R
Summary description
These electrically erasable programmable memory (EEPROM) devices are accessed by a
high speed SPI-compatible bus. The memory array is organized as 16384 x 8 bits.
The device is accessed by a simple serial interface that is SPI-compatible. The bus signals
are C, D and Q, as shown in Table 1 and Figure 1.
The device is selected when Chip Select (S) is taken Low. Communications with the device
can be interrupted using Hold (HOLD).
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. ECOPACK® packages are Lead-free and RoHS compliant.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 1.
Logic diagram
VCC
D
Q
C
S
M95128
W
HOLD
VSS
AI12805
Figure 2.
SO and TSSOP connections
M95128
S
Q
W
VSS
1
2
3
4
8
7
6
5
VCC
HOLD
C
D
AI12806
1. See Section 10: Package mechanical for package dimensions, and how to identify pin-1.
6/41
M95128, M95128-W, M95128-R
Table 1.
Summary description
Signal names
C
Serial Clock
D
Serial Data Input
Q
Serial Data Output
S
Chip Select
W
Write Protect
HOLD
Hold
VCC
Supply Voltage
VSS
Ground
7/41
Memory organization
2
M95128, M95128-W, M95128-R
Memory organization
The memory is organized as shown in Figure 3.
Figure 3.
Block diagram
HOLD
W
High Voltage
Generator
Control Logic
S
C
D
I/O Shift Register
Q
Address Register
and Counter
Data
Register
Size of the
Read only
EEPROM
area
Y Decoder
Status
Register
1 Page
X Decoder
AI01272C
8/41
M95128, M95128-W, M95128-R
3
Signal description
Signal description
See Figure 1: Logic diagram and Table 1: Signal names, for a brief overview of the signals
connected to this device.
3.1
Serial Data Output (Q)
This output signal is used to transfer data serially out of the device. Data is shifted out on the
falling edge of Serial Clock (C).
3.2
Serial Data Input (D)
This input signal is used to transfer data serially into the device. It receives instructions,
addresses, and the data to be written. Values are latched on the rising edge of Serial Clock
(C).
3.3
Serial Clock (C)
This input signal provides the timing of the serial interface. Instructions, addresses, or data
present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on
Serial Data Output (Q) changes after the falling edge of Serial Clock (C).
3.4
Chip Select (S)
When this input signal is High, the device is deselected and Serial Data Output (Q) is at high
impedance. Unless an internal Write cycle is in progress, the device will be in the Standby
Power mode. Driving Chip Select (S) Low selects the device, placing it in the Active Power
mode.
After Power-up, a falling edge on Chip Select (S) is required prior to the start of any
instruction.
3.5
Hold (HOLD)
The Hold (HOLD) signal is used to pause any serial communications with the device without
deselecting the device.
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data
Input (D) and Serial Clock (C) are Don’t Care.
To start the Hold condition, the device must be selected, with Chip Select (S) driven Low.
9/41
Signal description
3.6
M95128, M95128-W, M95128-R
Write Protect (W)
The main purpose of this input signal is to freeze the size of the area of memory that is
protected against Write instructions (as specified by the values in the BP1 and BP0 bits of
the Status Register).
This pin must be driven either High or Low, and must be stable during all write instructions.
3.7
Supply voltage (VCC)
3.7.1
Operating supply voltage VCC
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
must be applied: this voltage must be a DC voltage within the specified [VCC(min),
VCC(max)] range, as defined in Table 7, Table 8 and Table 9. In order to secure a stable DC
supply voltage, it is recommended to decouple the VCC line with a suitable capacitor (usually
of the order of 10nF to 100nF) close to the VCC/VSS package pins.
The VCC voltage must remain stable and valid until the end of the transmission of the
instruction and, for a Write instruction, until the completion of the internal write cycle (tW).
3.7.2
Power-up conditions
When the power supply is turned on, VCC rises from VSS to VCC. During this time, the Chip
Select (S) signal is not allowed to float and must follow the VCC voltage. The S line should
therefore be connected to VCC via a suitable pull-up resistor.
In addition, the Chip Select (S) input offers a built-in safety feature, as it is both edge
sensitive and level sensitive. Practically this means that after power-up, the device cannot
become selected until a falling edge has first been detected on Chip Select (S). So the Chip
Select (S) signal must first have been High and then gone Low before the first operation can
be started.
3.7.3
Internal device reset
In order to prevent inadvertent Write operations during Power-up, a Power On Reset (POR)
circuit is included. At Power-up (continuous rise of VCC), the device will not respond to any
instruction until the VCC has reached the Power On Reset threshold voltage (this threshold
is lower than the minimum VCC operating voltage defined in Section 9: DC and AC
parameters).
When VCC has passed the POR threshold voltage, the device is reset and in the following
state:
10/41
●
in Standby Power mode
●
deselected (at next Power-up, a falling edge is required on Chip Select (S) before any
instructions can be executed)
●
not in the Hold Condition Status Register state:
–
the Write Enable Latch (WEL) bit is reset to 0
–
the Write In Progress (WIP) bit is reset to 0.
The SRWD, BP1 and BP0 bits of the Status Register are at the same logic level as
when the device was last powered down (they are non-volatile bits).
M95128, M95128-W, M95128-R
3.7.4
Operating features
Power-down
At Power-down, the device must be deselected and in Standby Power mode (that is, there
should be no internal Write cycle in progress). Chip Select (S) should be allowed to follow
the voltage applied on VCC.
4
Operating features
4.1
Hold condition
The Hold (HOLD) signal is used to pause any serial communications with the device without
resetting the clocking sequence.
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data
Input (D) and Serial Clock (C) are Don’t Care.
To enter the Hold condition, the device must be selected, with Chip Select (S) Low.
Normally, the device is kept selected, for the whole duration of the Hold condition.
Deselecting the device while it is in the Hold condition, has the effect of resetting the state of
the device, and this mechanism can be used if it is required to reset any processes that had
been in progress.
The Hold condition starts when the Hold (HOLD) signal is driven Low at the same time as
Serial Clock (C) already being Low (as shown in Figure 4).
The Hold condition ends when the Hold (HOLD) signal is driven High at the same time as
Serial Clock (C) already being Low.
Figure 4 also shows what happens if the rising and falling edges are not timed to coincide
with Serial Clock (C) being Low.
Figure 4.
Hold condition activation
C
HOLD
Hold
Condition
Hold
Condition
AI02029D
11/41
Operating features
4.2
M95128, M95128-W, M95128-R
Status Register
Figure 3 shows the position of the Status Register in the control logic of the device. The
Status Register contains a number of status and control bits that can be read or set (as
appropriate) by specific instructions. For a detailed description of the Status Register bits,
see Section 5.3: Read Status Register (RDSR).
4.3
Data Protection and protocol control
Non-volatile memory devices can be used in environments that are particularly noisy, and
within applications that could experience problems if memory bytes are corrupted.
Consequently, the device features the following data protection mechanisms:
●
Write and Write Status Register instructions are checked that they consist of a number
of clock pulses that is a multiple of eight, before they are accepted for execution.
●
All instructions that modify data must be preceded by a Write Enable (WREN)
instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state
by the following events:
–
Power-up
–
Write Disable (WRDI) instruction completion
–
Write Status Register (WRSR) instruction completion
–
Write (WRITE) instruction completion
●
The Block Protect (BP1, BP0) bits allow part of the memory to be configured as readonly. This is the Software Protected Mode (SPM).
●
The Write Protect (W) signal allows the Block Protect (BP1, BP0) bits to be protected.
This is the Hardware Protected Mode (HPM).
For any instruction to be accepted, and executed, Chip Select (S) must be driven High after
the rising edge of Serial Clock (C) for the last bit of the instruction, and before the next rising
edge of Serial Clock (C).
Two points need to be noted in the previous sentence:
●
The ‘last bit of the instruction’ can be the eighth bit of the instruction code, or the eighth
bit of a data byte, depending on the instruction (except for Read Status Register
(RDSR) and Read (READ) instructions).
●
The ‘next rising edge of Serial Clock (C)’ might (or might not) be the next bus
transaction for some other device on the SPI bus.
Table 2.
Write-Protected block size
Status Register Bits
Array Addresses Protected
Protected Block
12/41
BP1
BP0
M95128, M95128-W, M95128-R
0
0
none
none
0
1
Upper quarter
3000h - 3FFFh
1
0
Upper half
2000h - 3FFFh
1
1
Whole memory
0000h - 3FFFh
M95128, M95128-W, M95128-R
5
Instructions
Instructions
Each instruction starts with a single-byte code, as summarized in Table 3.
If an invalid instruction is sent (one not contained in Table 3), the device automatically
deselects itself.
Table 3.
Instruction set
Instruction
5.1
Description
Instruction Format
WREN
Write Enable
0000 0110
WRDI
Write Disable
0000 0100
RDSR
Read Status Register
0000 0101
WRSR
Write Status Register
0000 0001
READ
Read from Memory Array
0000 0011
WRITE
Write to Memory Array
0000 0010
Write Enable (WREN)
The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction.
The only way to do this is to send a Write Enable instruction to the device.
As shown in Figure 5, to send this instruction to the device, Chip Select (S) is driven Low,
and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then
enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven
High.
Figure 5.
Write Enable (WREN) sequence
S
0
1
2
3
4
5
6
7
C
Instruction
D
High Impedance
Q
AI02281E
13/41
Instructions
5.2
M95128, M95128-W, M95128-R
Write Disable (WRDI)
One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction
to the device.
As shown in Figure 6, to send this instruction to the device, Chip Select (S) is driven Low,
and the bits of the instruction byte are shifted in, on Serial Data Input (D).
The device then enters a wait state. It waits for a the device to be deselected, by Chip Select
(S) being driven High.
The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events:
●
Power-up
●
WRDI instruction execution
●
WRSR instruction completion
●
WRITE instruction completion.
Figure 6.
Write Disable (WRDI) sequence
S
0
1
2
3
4
5
6
7
C
Instruction
D
High Impedance
Q
AI03750D
14/41
M95128, M95128-W, M95128-R
5.3
Instructions
Read Status Register (RDSR)
The Read Status Register (RDSR) instruction allows the Status Register to be read. The
Status Register may be read at any time, even while a Write or Write Status Register cycle
is in progress. When one of these cycles is in progress, it is recommended to check the
Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible
to read the Status Register continuously, as shown in Figure 7.
The status and control bits of the Status Register are as follows:
5.3.1
WIP bit
The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write
Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0 no such
cycle is in progress.
5.3.2
WEL bit
The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch.
When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable
Latch is reset and no Write or Write Status Register instruction is accepted.
5.3.3
BP1, BP0 bits
The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be
software protected against Write instructions. These bits are written with the Write Status
Register (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set to
1, the relevant memory area (as defined in Table 4) becomes protected against Write
(WRITE) instructions. The Block Protect (BP1, BP0) bits can be written provided that the
Hardware Protected mode has not been set.
5.3.4
SRWD bit
The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write
Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W)
signal allow the device to be put in the Hardware Protected mode (when the Status Register
Write Disable (SRWD) bit is set to 1, and Write Protect (W) is driven Low). In this mode, the
non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits and the
Write Status Register (WRSR) instruction is no longer accepted for execution.
Table 4.
Status Register format
b7
SRWD
b0
0
0
0
BP1
BP0
WEL
WIP
Status Register Write Protect
Block Protect Bits
Write Enable Latch Bit
Write In Progress Bit
15/41
Instructions
M95128, M95128-W, M95128-R
Figure 7.
Read Status Register (RDSR) sequence
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
C
Instruction
D
Status Register Out
Status Register Out
High Impedance
Q
7
MSB
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB
AI02031E
16/41
M95128, M95128-W, M95128-R
5.4
Instructions
Write Status Register (WRSR)
The Write Status Register (WRSR) instruction allows new values to be written to the Status
Register. Before it can be accepted, a Write Enable (WREN) instruction must previously
have been executed. After the Write Enable (WREN) instruction has been decoded and
executed, the device sets the Write Enable Latch (WEL).
The Write Status Register (WRSR) instruction is entered by driving Chip Select (S) Low,
followed by the instruction code and the data byte on Serial Data Input (D).
The instruction sequence is shown in Figure 8.
The Write Status Register (WRSR) instruction has no effect on b6, b5, b4, b1 and b0 of the
Status Register. b6, b5 and b4 are always read as 0.
Chip Select (S) must be driven High after the rising edge of Serial Clock (C) that latches in
the eighth bit of the data byte, and before the next rising edge of Serial Clock (C). Otherwise,
the Write Status Register (WRSR) instruction is not executed. As soon as Chip Select (S) is
driven High, the self-timed Write Status Register cycle (whose duration is tW) is initiated.
While the Write Status Register cycle is in progress, the Status Register may still be read to
check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1
during the self-timed Write Status Register cycle, and is 0 when it is completed. When the
cycle is completed, the Write Enable Latch (WEL) is reset.
The Write Status Register (WRSR) instruction allows the user to change the values of the
Block Protect (BP1, BP0) bits, to define the size of the area that is to be treated as readonly, as defined in Table 4.
The Write Status Register (WRSR) instruction also allows the user to set or reset the Status
Register Write Disable (SRWD) bit in accordance with the Write Protect (W) signal. The
Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to
be put in the Hardware Protected Mode (HPM). The Write Status Register (WRSR)
instruction is not executed once the Hardware Protected Mode (HPM) is entered.
The contents of the Status Register Write Disable (SRWD) and Block Protect (BP1, BP0)
bits are frozen at their current values from just before the start of the execution of Write
Status Register (WRSR) instruction. The new, updated, values take effect at the moment of
completion of the execution of Write Status Register (WRSR) instruction.
17/41
Instructions
M95128, M95128-W, M95128-R
Table 5.
Protection modes
W Signal
SRWD
Bit
1
0
0
0
1
0
1
1
Mode
Write Protection of the
Status Register
Status Register is
Writable (if the WREN
Software instruction has set the
Protected WEL bit)
(SPM) The values in the BP1
and BP0 bits can be
changed
Memory Content
Protected Area(1) Unprotected Area(1)
Write Protected
Ready to accept Write
instructions
Status Register is
Hardware write
Hardware
protected
Protected
Write Protected
(HPM) The values in the BP1
and BP0 bits cannot be
changed
Ready to accept Write
instructions
1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 5.
The protection features of the device are summarized in Table 2.
When the Status Register Write Disable (SRWD) bit of the Status Register is 0 (its initial
delivery state), it is possible to write to the Status Register provided that the Write Enable
Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction, regardless
of the whether Write Protect (W) is driven High or Low.
When the Status Register Write Disable (SRWD) bit of the Status Register is set to 1, two
cases need to be considered, depending on the state of Write Protect (W):
●
If Write Protect (W) is driven High, it is possible to write to the Status Register provided
that the Write Enable Latch (WEL) bit has previously been set by a Write Enable
(WREN) instruction.
●
If Write Protect (W) is driven Low, it is not possible to write to the Status Register even
if the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN)
instruction. (Attempts to write to the Status Register are rejected, and are not accepted
for execution). As a consequence, all the data bytes in the memory area that are
software protected (SPM) by the Block Protect (BP1, BP0) bits of the Status Register,
are also hardware protected against data modification.
Regardless of the order of the two events, the Hardware Protected Mode (HPM) can be
entered:
●
by setting the Status Register Write Disable (SRWD) bit after driving Write Protect (W)
Low
●
or by driving Write Protect (W) Low after setting the Status Register Write Disable
(SRWD) bit.
The only way to exit the Hardware Protected Mode (HPM) once entered is to pull Write
Protect (W) High.
If Write Protect (W) is permanently tied High, the Hardware Protected Mode (HPM) can
never be activated, and only the Software Protected Mode (SPM), using the Block Protect
(BP1, BP0) bits of the Status Register, can be used.
18/41
M95128, M95128-W, M95128-R
Figure 8.
Instructions
Write Status Register (WRSR) sequence
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
C
Instruction
Status
Register In
7
D
High Impedance
6
5
4
3
2
1
0
MSB
Q
AI02282D
19/41
Instructions
5.5
M95128, M95128-W, M95128-R
Read from Memory Array (READ)
As shown in Figure 9, to send this instruction to the device, Chip Select (S) is first driven
Low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data
Input (D). The address is loaded into an internal address register, and the byte of data at
that address is shifted out, on Serial Data Output (Q).
If Chip Select (S) continues to be driven Low, the internal address register is automatically
incremented, and the byte of data at the new address is shifted out.
When the highest address is reached, the address counter rolls over to zero, allowing the
Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a
single READ instruction.
The Read cycle is terminated by driving Chip Select (S) High. The rising edge of the Chip
Select (S) signal can occur at any time during the cycle.
The first byte addressed can be any byte within any page.
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.
Figure 9.
Read from Memory Array (READ) sequence
S
0
1
2
3
4
5
6
7
8
9 10
20 21 22 23 24 25 26 27 28 29 30 31
C
Instruction
16-Bit Address
15 14 13
D
3
2
1
0
MSB
Data Out 1
High Impedance
Q
7
6
5
4
3
2
Data Out 2
1
0
7
MSB
AI01793D
1. The most significant address bits (b15, b14) are Don’t Care.
20/41
M95128, M95128-W, M95128-R
5.6
Instructions
Write to Memory Array (WRITE)
As shown in Figure 10, to send this instruction to the device, Chip Select (S) is first driven
Low. The bits of the instruction byte, address byte, and at least one data byte are then
shifted in, on Serial Data Input (D).
The instruction is terminated by driving Chip Select (S) High at a byte boundary of the input
data. In the case of Figure 10, this occurs after the eighth bit of the data byte has been
latched in, indicating that the instruction is being used to write a single byte. The self-timed
Write cycle starts, and continues for a period tWC (as specified in Table 16 to Table 19), at
the end of which the Write in Progress (WIP) bit is reset to 0.
If, though, Chip Select (S) continues to be driven Low, as shown in Figure 11, the next byte
of input data is shifted in, so that more than a single byte, starting from the given address
towards the end of the same page, can be written in a single internal Write cycle.
Each time a new data byte is shifted in, the least significant bits of the internal address
counter are incremented. If the number of data bytes sent to the device exceeds the page
boundary, the internal address counter rolls over to the beginning of the page, and the
previous data there are overwritten with the incoming data. (The page size of these devices
is 64 bytes).
The instruction is not accepted, and is not executed, under the following conditions:
●
if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable
instruction just before)
●
if a Write cycle is already in progress
●
if the device has not been deselected, by Chip Select (S) being driven High, at a byte
boundary (after the eighth bit, b0, of the last data byte that has been latched in)
●
if the addressed page is in the region protected by the Block Protect (BP1 and BP0)
bits.
Figure 10. Byte Write (WRITE) sequence
S
0
1
2
3
4
5
6
7
8
9 10
20 21 22 23 24 25 26 27 28 29 30 31
C
Instruction
16-Bit Address
15 14 13
D
3
2
Data Byte
1
0
7
6
5
4
3
2
1
0
High Impedance
Q
AI01795D
1. The most significant address bits (b15, b14) are Don’t Care.
21/41
Instructions
M95128, M95128-W, M95128-R
Figure 11. Page Write (WRITE) sequence
S
0
1
2
3
4
5
6
7
8
9 10
20 21 22 23 24 25 26 27 28 29 30 31
C
Instruction
16-Bit Address
15 14 13
D
3
2
Data Byte 1
1
0
7
6
5
4
3
2
0
1
S
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
C
Data Byte 2
D
7
6
5
4
3
2
Data Byte 3
1
0
7
6
5
4
3
2
Data Byte N
1
0
6
5
4
3
2
1
0
AI01796D
1. The most significant address bits (b15, b14) are Don’t Care.
5.6.1
ECC (Error Correction Code) and Write cycling
The M95128 (5V version, processed in F6DP26%, identified with letter "V") offers an ECC
(Error Correction Code) logic which compares each 4-Byte packet with its associated ECC
Word (6 EEPROM bits). As a result, if a single bit out of 4 Bytes of data happens to be
erroneous during a Read operation, the ECC detects it and replaces it by the correct value.
The read reliability is therefore much improved by the use of this feature.
Note however that even though a single Byte has to be written, 4 Bytes are internally
modified (plus the ECC Word), that is, the addressed Byte is cycled together with the three
other Bytes making up the packet. It is therefore recommended to Write by packets of 4
Bytes in order to benefit from the larger amount of Write cycles.
The maximum number of Write cycles for the M95128 device (5V version, processed in
F6DP26%, identified with letter "V") is qualified as 100,000 Write cycles, using a cycling
routine that writes to the device Page by Page (that is, by multiples of 4-Byte packets).
The M95128-W and M95128-R devices (2.5V and 1.8V versions, processed in F6DP36%
and identified with the letter "A") do not offer the ECC logic and are qualified for a maximum
number of 100,000 Write cycles.
22/41
M95128, M95128-W, M95128-R
6
Delivery state
Delivery state
The device is delivered with the memory array set at all 1s (FFh). The Status Register Write
Disable (SRWD) and Block Protect (BP1 and BP0) bits are initialized to 0.
7
Connecting to the SPI bus
These devices are fully compatible with the SPI protocol.
All instructions, addresses and input data bytes are shifted in to the device, most significant
bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C)
after Chip Select (S) goes Low.
All output data bytes are shifted out of the device, most significant bit first. The Serial Data
Output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction
(such as the Read from Memory Array and Read Status Register instructions) have been
clocked into the device.
Figure 12 shows three devices, connected to an MCU, on a SPI bus. Only one device is
selected at a time, so only one device drives the Serial Data Output (Q) line at a time, all the
others being high impedance.
Figure 12. Bus master and memory devices on the SPI bus
VSS
VCC
R(2)
SDO
SPI Interface with
(CPOL, CPHA) =
(0, 0) or (1, 1)
SDI
SCK
VCC
C Q D
Bus Master
SPI Memory
Device
R(2)
CS3
VCC
C Q D
VSS
VCC
C Q D
VSS
SPI Memory
Device
R(2)
VSS
SPI Memory
Device
R(2)
CS2 CS1
S
W
HOLD
S
W
HOLD
S
W
HOLD
AI12304b
1. The Write Protect (W) and Hold (HOLD) signals should be driven, High or Low as appropriate.
2. These pull-up resistors, R, ensure that the M95128, M95128-W, M95128-R are not selected if the Bus Master leaves the S
line in the high-impedance state. As the Bus Master may enter a state where all inputs/outputs are in high impedance at the
same time (that is when the Bus Master is reset), the clock line (C) must be connected to an external pull-down resistor so
that, when all inputs/outputs become high impedance, S is pulled High while C is pulled Low (thus ensuring that S and C do
not become High at the same time, and so, that the tSHCH requirement is met).
23/41
Connecting to the SPI bus
7.1
M95128, M95128-W, M95128-R
SPI modes
These devices can be driven by a microcontroller with its SPI peripheral running in either of
the two following modes:
●
CPOL=0, CPHA=0
●
CPOL=1, CPHA=1
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and
output data is available from the falling edge of Serial Clock (C).
The difference between the two modes, as shown in Figure 13, is the clock polarity when the
bus master is in Stand-by mode and not transferring data:
●
C remains at 0 for (CPOL=0, CPHA=0)
●
C remains at 1 for (CPOL=1, CPHA=1)
Figure 13. SPI modes supported
CPOL CPHA
0
0
C
1
1
C
D
Q
MSB
MSB
AI01438B
24/41
M95128, M95128-W, M95128-R
8
Maximum rating
Maximum rating
Stressing the device outside the ratings listed in Table 6 may cause permanent damage to
the device. These are stress ratings only, and operation of the device at these, or any other
conditions outside those indicated in the Operating sections of this specification, is not
implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect
device reliability. Refer also to the STMicroelectronics SURE Program and other relevant
quality documents.
Table 6.
Absolute maximum ratings
Symbol
TA
TSTG
Parameter
Min.
Max.
Unit
Ambient Operating Temperature
–40
130
°C
Storage Temperature
–65
150
°C
VO
Output Voltage
–0.50
VCC+0.6
V
VI
Input Voltage
–0.50
6.5
V
VCC
Supply Voltage
–0.50
6.5
V
VESD
Electrostatic Discharge Voltage (Human Body model)(1)
–4000
4000
V
1. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500W, R2=500Ω).
25/41
DC and AC parameters
9
M95128, M95128-W, M95128-R
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC Characteristic tables that
follow are derived from tests performed under the Measurement Conditions summarized in
the relevant tables. Designers should check that the operating conditions in their circuit
match the measurement conditions when relying on the quoted parameters.
Table 7.
Operating conditions (M95128)
Symbol
VCC
TA
Table 8.
Parameter
Min.
Max.
Unit
Supply Voltage
4.5
5.5
V
Ambient Operating Temperature (Device Grade 3)
–40
125
°C
Operating conditions (M95128-W)
Symbol
VCC
TA
Table 9.
Parameter
Min.
Max.
Unit
Supply Voltage
2.5
5.5
V
Ambient Operating Temperature (Device Grade 6)
–40
85
°C
Ambient Operating Temperature (Device Grade 3)
–40
125
°C
Operating conditions (M95128-R)
Symbol
VCC
TA
26/41
Parameter
Min.
Max.
Unit
Supply Voltage
1.8
5.5
V
Ambient Operating Temperature
–40
85
°C
M95128, M95128-W, M95128-R
Table 10.
DC and AC parameters
AC measurement conditions(1)
Symbol
CL
Parameter
Min.
Load Capacitance
Max.
Unit
100
Input Rise and Fall Times
pF
50
ns
Input Pulse Voltages
0.2VCC to 0.8VCC
V
Input and Output Timing Reference Voltages
0.3VCC to 0.7VCC
V
1. Output Hi-Z is defined as the point where data out is no longer driven.
Figure 14. AC measurement I/O waveform
Input Levels
Input and Output
Timing Reference Levels
0.8VCC
0.7VCC
0.3VCC
0.2VCC
AI00825B
Table 11.
Symbol
COUT
CIN
Capacitance(1)
Parameter
Output Capacitance (Q)
Test Condition
Min.
Max.
Unit
VOUT = 0V
8
pF
Input Capacitance (D)
VIN = 0V
8
pF
Input Capacitance (other pins)
VIN = 0V
6
pF
1. Sampled only, not 100% tested, at TA=25°C and a frequency of 5 MHz.
27/41
DC and AC parameters
Table 12.
M95128, M95128-W, M95128-R
DC characteristics (M95128, Device Grade 3)
Symbol
Parameter
Test Condition
ILI
Input Leakage Current
ILO
Min.
Max.
Unit
VIN = VSS or VCC
±2
µA
Output Leakage
Current
S = VCC, VOUT = VSS or VCC
±2
µA
ICC
Supply Current
C = 0.1VCC/0.9VCC at 5 MHz,
VCC = 5 V, Q = open
4
mA
ICC1
Supply Current
(Standby Power mode)
S = VCC, VCC = 5 V,
VIN = VSS or VCC
5
µA
VIL
Input Low Voltage
–0.45
0.3 VCC
V
VIH
Input High Voltage
0.7 VCC
VCC+1
V
VOL(1)
Output Low Voltage
IOL = 2 mA, VCC = 5 V
0.4
V
VOH(1)
Output High Voltage
IOH = –2 mA, VCC = 5 V
0.8 VCC
V
1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.
Table 13.
Symbol
DC characteristics (M95128-W, Device Grade 6)
Parameter
ILI
Input Leakage Current
ILO
Output Leakage Current
ICC
Supply Current (Read)
Test Condition
Max.
Unit
VIN = VSS or VCC
±2
µA
S = VCC, VOUT = VSS or VCC
±2
µA
C = 0.1VCC/0.9VCC at 5MHz,
VCC = 2.5V, Q = open
3
mA
C = 0.1VCC/0.9VCC at 5MHz,
VCC = 5V, Q = open
5
mA
ICC0(1)
Supply Current (Write)
During tW, S = VCC,
2.5V < VCC < 5.5V
5
mA
ICC1
Supply Current
(Standby Power mode)
S = VCC, VIN = VSS or VCC,
2.5V < VCC < 5.5V
5
µA
VIL
Input Low Voltage
–0.45
0.3 VCC
V
VIH
Input High Voltage
0.7 VCC
VCC+1
V
VOL
Output Low Voltage
0.4
V
VOH
Output High Voltage
VCC = 2.5V and IOL = 1.5mA or
VCC = 5V and IOL = 2mA
VCC = 2.5V and IOH = –0.4mA or
0.8 VCC
VCC = 5V and IOH = –2mA
1. Characterized value, not tested in production.
28/41
Min.
V
M95128, M95128-W, M95128-R
Table 14.
Symbol
DC and AC parameters
DC characteristics (M95128-W, Device Grade 3)
Parameter
Test Condition
Min.
Max.
Unit
VIN = VSS or VCC
±2
µA
ILI
Input Leakage Current
ILO
Output Leakage Current
S = VCC, VOUT = VSS or VCC
±2
µA
ICC
Supply Current (Read)
C = 0.1VCC/0.9VCC at 5MHz,
VCC = 2.5V, Q = open
3
mA
ICC0(1)
Supply Current (Write)
During tW, S = VCC,
2.5V < VCC < 5.5V
6
mA
ICC1
Supply Current
(Standby Power mode)
S = VCC, VIN = VSS or VCC
2.5V < VCC < 5.5V,
5
µA
VIL
Input Low Voltage
–0.45
0.3 VCC
V
VIH
Input High Voltage
0.7 VCC
VCC+1
V
VOL
Output Low Voltage
VCC = 2.5V and IOL = 1.5mA or
VCC = 5V and IOL = 2mA
0.4
V
VOH
Output High Voltage
VCC = 2.5V and IOH = –0.4mA or
VCC = 5V and IOH = –2mA
0.8 VCC
V
1. Characterized value, not tested in production.
Table 15.
Symbol
DC characteristics (M95128-R)
Parameter
Test Condition
Min
Max
Unit
VIN = VSS or VCC
±2
µA
S = VCC, VOUT = VSS or VCC
±2
µA
ILI
Input Leakage Current
ILO
Output Leakage Current
ICC
Supply Current (Read)
C = 0.1VCC/0.9VCC at 2 MHz,
VCC = 1.8 V, Q = open
1 (1)
mA
ICC0(2)
Supply Current (Write)
During tW, S = VCC,
1.8V < VCC < 5.5V
3
mA
S = VCC, VIN = VSS or VCC,
1.8V < VCC < 5.5V
3(1)
µA
ICC1
Supply Current (Standby
Power mode)
VIL
Input Low Voltage
–0.45
0.25 VCC
V
VIH
Input High Voltage
0.7 VCC
VCC+1
V
VOL
Output Low Voltage
IOL = 0.15 mA, VCC = 1.8 V
0.3
V
VOH
Output High Voltage
IOH = –0.1 mA, VCC = 1.8 V
0.8 VCC
V
1. This is preliminary data.
2. Characterized value, not tested in production.
29/41
DC and AC parameters
Table 16.
M95128, M95128-W, M95128-R
AC characteristics (M95128, Device Grade 3)
Test conditions specified in Table 10 and Table 7
Symbol
Alt.
fC
fSCK
Clock Frequency
tSLCH
tCSS1
S Active Setup Time
90
ns
tSHCH
tCSS2
S Not Active Setup Time
90
ns
tSHSL
tCS
S Deselect Time
100
ns
tCHSH
tCSH
S Active Hold Time
90
ns
S Not Active Hold Time
90
ns
tCHSL
Parameter
Min.
Max.
Unit
D.C.
5
MHz
tCH (1)
tCLH
Clock High Time
90
ns
(1)
90
ns
tCLL
Clock Low Time
tCLCH
(2)
tRC
Clock Rise Time
1
µs
tCHCL
(2)
tFC
Clock Fall Time
1
µs
tCL
tDVCH
tDSU
Data In Setup Time
20
ns
tCHDX
tDH
Data In Hold Time
30
ns
tHHCH
Clock Low Hold Time after HOLD not Active
70
ns
tHLCH
Clock Low Hold Time after HOLD Active
40
ns
tCLHL
Clock Low Set-up Time before HOLD Active
0
ns
tCLHH
Clock Low Set-up Time before HOLD not Active
0
ns
tSHQZ
(2)
tDIS
tCLQV
tV
tCLQX
Output Disable Time
100
ns
Clock Low to Output Valid
60
ns
tHO
Output Hold Time
tQLQH
(2)
tRO
Output Rise Time
50
ns
tQHQL
(2)
tFO
Output Fall Time
50
ns
tHHQV
tLZ
HOLD High to Output Valid
50
ns
tHLQZ (2)
tHZ
HOLD Low to Output High-Z
100
ns
tW
tWC
Write Time
5
ms
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)
2. Value guaranteed by characterization, not 100% tested in production.
30/41
0
ns
M95128, M95128-W, M95128-R
Table 17.
DC and AC parameters
AC characteristics (M95128-W, Device Grade 6)
Test conditions specified in Table 10 and Table 8
Symbol
Alt.
fC
fSCK
Clock Frequency
tSLCH
tCSS1
S Active Setup Time
90
ns
tSHCH
tCSS2
S Not Active Setup Time
90
ns
tSHSL
tCS
S Deselect Time
100
ns
tCHSH
tCSH
S Active Hold Time
90
ns
S Not Active Hold Time
90
ns
tCHSL
Parameter
Min.
Max.
Unit
D.C.
5
MHz
tCH (1)
tCLH
Clock High Time
90
ns
(1)
90
ns
tCLL
Clock Low Time
tCLCH
(2)
tRC
Clock Rise Time
1
µs
tCHCL
(2)
tFC
Clock Fall Time
1
µs
tCL
tDVCH
tDSU
Data In Setup Time
20
ns
tCHDX
tDH
Data In Hold Time
30
ns
tHHCH
Clock Low Hold Time after HOLD not Active
70
ns
tHLCH
Clock Low Hold Time after HOLD Active
40
ns
tCLHL
Clock Low Set-up Time before HOLD Active
0
ns
tCLHH
Clock Low Set-up Time before HOLD not Active
0
ns
tSHQZ
(2)
tDIS
tCLQV
tV
tCLQX
Output Disable Time
100
ns
Clock Low to Output Valid
60
ns
tHO
Output Hold Time
tQLQH
(2)
0
ns
tRO
Output Rise Time
50
ns
tQHQL
(2)
tFO
Output Fall Time
50
ns
tHHQV
tLZ
HOLD High to Output Valid
50
ns
tHLQZ (2)
tHZ
HOLD Low to Output High-Z
100
ns
tW
tWC
Write Time
5
ms
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)
2. Value guaranteed by characterization, not 100% tested in production.
31/41
DC and AC parameters
Table 18.
M95128, M95128-W, M95128-R
AC characteristics (M95128-W, Device Grade 3)
Test conditions specified in Table 10 and Table 8
Symbol
Alt.
fC
fSCK
Clock Frequency
tSLCH
tCSS1
S Active Setup Time
90
ns
tSHCH
tCSS2
S Not Active Setup Time
90
ns
tSHSL
tCS
S Deselect Time
100
ns
tCHSH
tCSH
S Active Hold Time
90
ns
S Not Active Hold Time
90
ns
tCHSL
Parameter
Max.
Unit
D.C.
5
MHz
tCH (1)
tCLH
Clock High Time
90
ns
(1)
90
ns
tCLL
Clock Low Time
tCLCH
(2)
tRC
Clock Rise Time
1
µs
tCHCL
(2)
tFC
Clock Fall Time
1
µs
tCL
tDVCH
tDSU
Data In Setup Time
20
ns
tCHDX
tDH
Data In Hold Time
30
ns
tHHCH
Clock Low Hold Time after HOLD not Active
70
ns
tHLCH
Clock Low Hold Time after HOLD Active
40
ns
tCLHL
Clock Low Set-up Time before HOLD Active
0
ns
tCLHH
Clock Low Set-up Time before HOLD not Active
0
ns
tSHQZ
(2)
tDIS
tCLQV
tV
tCLQX
Output Disable Time
100
ns
Clock Low to Output Valid
60
ns
tHO
Output Hold Time
tQLQH
(2)
tRO
Output Rise Time
50
ns
tQHQL
(2)
tFO
Output Fall Time
50
ns
tHHQV
tLZ
HOLD High to Output Valid
50
ns
tHLQZ (2)
tHZ
HOLD Low to Output High-Z
100
ns
tW
tWC
Write Time
5
ms
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)
2. Value guaranteed by characterization, not 100% tested in production.
32/41
Min.
0
ns
M95128, M95128-W, M95128-R
Table 19.
DC and AC parameters
AC characteristics (M95128-R)
Test conditions specified in Table 10 and Table 9
Min.(1)
Max.(1)
Unit
Clock Frequency
D.C.
2
MHz
tCSS1
S Active Setup Time
200
ns
tSHCH
tCSS2
S Not Active Setup Time
200
ns
tSHSL
tCS
S Deselect Time
200
ns
tCHSH
tCSH
S Active Hold Time
200
ns
S Not Active Hold Time
200
ns
Symbol
Alt.
fC
fSCK
tSLCH
tCHSL
Parameter
tCH (2)
tCLH
Clock High Time
200
ns
(2)
200
ns
tCLL
Clock Low Time
tCLCH
(3)
tRC
Clock Rise Time
1
µs
tCHCL
(3)
tFC
Clock Fall Time
1
µs
tCL
tDVCH
tDSU
Data In Setup Time
40
ns
tCHDX
tDH
Data In Hold Time
50
ns
tHHCH
Clock Low Hold Time after HOLD not Active
140
ns
tHLCH
Clock Low Hold Time after HOLD Active
90
ns
tCLHL
Clock Low Set-up Time before HOLD Active
0
ns
tCLHH
Clock Low Set-up Time before HOLD not
Active
0
ns
tSHQZ (3)
tDIS
tCLQV
tV
tCLQX
tHO
Output Hold Time
tQLQH (3)
tRO
Output Rise Time
100
ns
(3)
tFO
Output Fall Time
100
ns
tLZ
HOLD High to Output Valid
100
ns
tHZ
HOLD Low to Output High-Z
250
ns
tWC
Write Time
10
ms
tQHQL
tHHQV
tHLQZ
tW
(3)
Output Disable Time
250
ns
Clock Low to Output Valid
150
ns
0
ns
1. This is preliminary data.
2. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)
3. Value guaranteed by characterization, not 100% tested in production.
33/41
DC and AC parameters
M95128, M95128-W, M95128-R
Figure 15. Serial input timing
tSHSL
S
tCHSL
tSLCH
tCHSH
tSHCH
C
tDVCH
tCHCL
tCHDX
LSB IN
MSB IN
D
Q
tCLCH
High Impedance
AI01447C
Figure 16. Hold timing
S
tHLCH
tCLHL
tHHCH
C
tCLHH
tHLQZ
tHHQV
Q
D
HOLD
AI01448B
34/41
M95128, M95128-W, M95128-R
DC and AC parameters
Figure 17. Output timing
S
tCH
C
tCLQV
tCLQX
tCLQV
tCL
tSHQZ
tCLQX
LSB OUT
Q
tQLQH
tQHQL
D
ADDR.LSB IN
AI01449e
35/41
Package mechanical
10
M95128, M95128-W, M95128-R
Package mechanical
Figure 18. SO8N – 8 lead Plastic Small Outline, 150 mils body width, package outline
h x 45˚
A2
A
c
ccc
b
e
0.25 mm
GAUGE PLANE
D
k
8
E1
E
1
A1
L
L1
SO-A
1. Drawing is not to scale.
Table 20.
SO8N – 8 lead Plastic Small Outline, 150 mils body width, package
mechanical data
millimeters
inches
Symbol
Typ
Min
A
Typ
Min
1.75
Max
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.009
ccc
0.25
0.004
0.010
0.049
0.10
0.004
D
4.90
4.80
5.00
0.193
0.189
0.197
E
6.00
5.80
6.20
0.236
0.228
0.244
E1
3.90
3.80
4.00
0.154
0.150
0.157
e
1.27
–
–
0.050
–
–
h
0.25
0.50
0.010
0.020
k
0
8
0
8
L
0.40
1.27
0.016
0.050
L1
36/41
Max
1.04
0.041
M95128, M95128-W, M95128-R
Package mechanical
Figure 19. TSSOP8 – 8 lead Thin Shrink Small Outline, package outline
D
8
5
c
E1
1
E
4
α
A1
A
L
A2
L1
CP
b
e
TSSOP8AM
1. Drawing is not to scale.
Table 21.
TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data
millimeters
inches
Symbol
Typ
Min
A
Max
Min
1.200
A1
0.050
0.150
0.800
1.050
b
0.190
c
0.090
A2
Typ
1.000
CP
Max
0.0472
0.0020
0.0059
0.0315
0.0413
0.300
0.0075
0.0118
0.200
0.0035
0.0079
0.0394
0.100
0.0039
D
3.000
2.900
3.100
0.1181
0.1142
0.1220
e
0.650
–
–
0.0256
–
–
E
6.400
6.200
6.600
0.2520
0.2441
0.2598
E1
4.400
4.300
4.500
0.1732
0.1693
0.1772
L
0.600
0.450
0.750
0.0236
0.0177
0.0295
L1
1.000
0°
8°
0.0394
α
0°
N
8
8°
8
37/41
Part numbering
11
M95128, M95128-W, M95128-R
Part numbering
Table 22.
Ordering information scheme
Example:
M95128
–
W MN 6
T
P
/P
Device Type
M95 = SPI serial access EEPROM
Device Function
128 = 128 Kbit (16384 x 8)
Operating Voltage
blank = VCC = 4.5 to 5.5V(1)
W = VCC = 2.5 to 5.5V
R = VCC = 1.8 to 5.5V
Package
MN = SO8 (150 mils width)
DW = TSSOP8 (169 mils width)
Device Grade
6 = Industrial temperature range, –40 to 85 °C.
Device tested with standard test flow
3 = Device tested with High Reliability Certified Flow(2)
Automotive temperature range (–40 to 125 °C)
Option
blank = Standard Packing
T = Tape and Reel Packing
Plating Technology
blank = Standard SnPb plating
P or G = ECOPACK® (RoHs compliant)
Process
P = F6DP26% Chartered
V = F6DP26% Rsst
1. The M95128 5V part is offered in "V" process (F6DP26%) only.
2. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment.
The High Reliability Certified Flow (HRCF) is described in the quality note QNEE9801. Please ask your
nearest ST sales office for a copy.
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST Sales Office.
The category of Second-Level Interconnect is marked on the package and on the inner box
label, in compliance with JEDEC Standard JESD97. The maximum ratings related to
soldering conditions are also marked on the inner box label.
38/41
M95128, M95128-W, M95128-R
12
Revision history
Revision history
Table 23.
Document revision history
Date
Revision
Changes
17-Nov-1999
2.1
New -V voltage range added (including the tables for DC characteristics,
AC characteristics, and ordering information).
07-Feb-2000
2.2
New -V voltage range extended to M95256 (including AC characteristics,
and ordering information).
22-Feb-2000
2.3
tCLCH and tCHCL, for the M95xxx-V, changed from 1µs to 100ns
15-Mar-2000
2.4
-V voltage range changed to 2.7-3.6V
29-Jan-2001
2.5
Lead Soldering Temperature in the Absolute Maximum Ratings table
amended
Illustrations and Package Mechanical data updated
12-Jun-2001
2.6
Correction to header of Table 12B
TSSOP14 Illustrations and Package Mechanical data updated
Document promoted from Preliminary Data to Full Data Sheet
08-Feb-2002
2.7
Announcement made of planned upgrade to 10 MHz clock for the 5V, –40
to 85°C, range.
09-Aug-2002
2.8
M95128 split off to its own datasheet. Data added for new and forthcoming
products, including availability of the SO8 narrow package.
24-Feb-2003
2.9
Omission of SO8 narrow package mechanical data remedied
26-Jun-2003
2.10
-V voltage range removed
21-Nov-2003
3.0
Table of contents, and Pb-free options added. -S voltage range extended
to -R. VIL(min) improved to –0.45V
17-Mar-2004
4.0
Absolute Maximum Ratings for VIO(min) and VCC(min) changed. Soldering
temperature information clarified for RoHS compliant devices. Device
grade information clarified
21-Oct-2004
5.0
M95128 datasheet merged back in. Product List summary table added.
AEC-Q100-002 compliance. Device Grade information clarified. tHHQX
corrected to tHHQV. 10MHz product becomes standard
39/41
Revision history
Table 23.
Date
13-Apr-2006
27-Jun-2006
40/41
M95128, M95128-W, M95128-R
Document revision history (continued)
Revision
Changes
6
New M95128 datasheet extracted from the M95128/256 datasheet. Order
of sections modified.
ECC (Error Correction Code) and Write cycling paragraph added.
Section 3.7: Supply voltage (VCC) added and information removed below
Section 4: Operating features.
Power up state removed below Section 6: Delivery state.
Figure 13: SPI modes supported modified and Note 2 added.
ICC1 specified over the whole VCC range and ICC0 added to Table 13,
Table 14 and Table 15.
ICC specified over the whole VCC range in Table 13.
tCHHL and tCHHH replaced by tCLHL and tCLHH, respectively.
Figure 16: Hold timing modified.
Process letter and Note 1 added to Table 22: Ordering information
scheme.
“AC Characteristics (M95128, Device Grade 6)” Table (for 10MHz
frequency) removed.
Note 1 removed from Table 19: AC characteristics (M95128-R).
TA added to Table 6: Absolute maximum ratings.
PDIP8 (BN) and SO8 wide (MW) packages removed. M95128-W and
M95128-R are no longer under development.
Test conditions changed for VOL and VOH in Section Table 14.: DC
characteristics (M95128-W, Device Grade 3).
7
Figure 12: Bus master and memory devices on the SPI bus modified.
SO8N package specifications updated (see Table 20 and Figure 18).
V Process specified and A Process replaced by P in Table 22: Ordering
information scheme.
M95128, M95128-W, M95128-R
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
41/41