MAXIM MAX384CPN

19-0396; Rev. 0; 5/95
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
____________________________Features
________________________Applications
♦ Pin-Compatible with Industry-Standard
DG428/DG429, DG528/DG529, MAX368/MAX369
♦ Single-Supply Operation (+2.7V to +16.5V)
Bipolar Supply Operation (±3V to ±8V)
♦ Low Power Consumption (<300µW)
♦ Low On-Resistance, 100Ω max
♦ Guaranteed On-Resistance Match Between
Channels, 4Ω max
♦ Low Leakage, 2.5nA at +85°C
♦ TTL/CMOS-Logic Compatible
______________Ordering Information
Battery-Operated Systems
TEMP. RANGE
PART
Audio Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Automatic Test Equipment
PIN-PACKAGE
MAX382CPN
0°C to +70°C
18 Plastic DIP
MAX382CWN
MAX382C/D
MAX382EPN
MAX382EWN
MAX382EJN
MAX382MJN
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-55°C to +125°C
18 Wide SO
Dice*
18 Plastic DIP
18 Wide SO
18 CERDIP**
18 CERDIP**
Ordering Information continued on last page.
* Contact factory for dice specifications.
** Contact factory for package availability.
__________________________________________________________Pin Configurations
TOP VIEW
MAX382
MAX384
WR 1
18 RS
WR 1
18 RS
A0 2
17 A1
A0 2
17 A1
EN 3
16 A2
EN 3
15 GND
V- 4
V- 4
LOGIC
16 GND
LOGIC
15 V+
N01 5
14 V+
N01A 5
14 N01B
N02 6
13 N05
N02A 6
13 N02B
N03 7
12 N06
N03A 7
12 N03B
N04 8
11 N07
N04A 8
11 N04B
COM 9
10 N08
COMA 9
10 COMB
DIP/SO
DIP/SO
________________________________________________________________ Maxim Integrated Products
Call toll free 1-800-998-8800 for free samples or literature.
1
MAX382/MAX384
_______________General Description
The MAX382/MAX384 are low-voltage, CMOS, 1-of-8
and dual 4-channel muxes with latchable digital inputs.
They feature low-voltage operation from a +2.7V to
+16.5V single supply and from ±3V to ±8V dual supplies. Pin compatible with the DG428/DG429, these
muxes offer low on-resistance (100Ω max) matched to
within 4Ω max between channels. Additional features
include off leakage less than 2.5nA at +85°C and guaranteed low charge injection (10pC max). ESD protection is greater than 2000V per Method 3015.7.
ABSOLUTE MAXIMUM RATINGS
Voltage Referenced to GND
V+ .......................................................................-0.3V to +17V
V- ........................................................................+0.3V to -17V
V+ to V-...............................................................-0.3V to +17V
Voltage into Any Terminal (Note 1).........(V- - 2V) to (V+ + 2V) or
30mA (whichever occurs first)
Current into Any Terminal ...................................................30mA
Peak Current, Any Terminal
(pulsed at 1ms, 10% duty cycle max) ..........................100mA
Continuous Power Dissipation (TA = +70°C)
Plastic DIP (derate 11.11mW/°C above +70°C) ..........889mW
Wide SO (derate 9.52mW/°C above +70°C)................762mW
CERDIP (derate 10.53mW/°C above +70°C) ...............842mW
Operating Temperature Ranges
MAX38_C_ N.......................................................0°C to +70°C
MAX38_E_ N ....................................................-40°C to +85°C
MAX38_MJN ..................................................-55°C to +125°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C
Note 1: Signals on any terminal exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—Dual Supplies
(V+ = +5V ±10%, V- = -5V ±10%, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX,
unless otherwise noted.)
PARAMETER
SYMBOL
MIN
CONDITIONS
TYP
MAX
(Note 2)
UNITS
SWITCH
Analog Signal Range
Channel On-Resistance
On-Resistance Matching
Between Channels (Note 4)
VCOM, VNO (Note 3)
VTA = +25°C
∆RON
INO = 1mA, VCOM = ±3.5V,
V+ = 5V, V- = -5V
TA = +25°C
4
TA = TMIN to TMAX
6
INO = 1mA, VCOM = ±3V,
V+ = 5V, V- = -5V
TA = +25°C
10
TA = TMIN to TMAX
13
RFLAT(ON)
NO-Off Leakage Current
(Note 6)
INO(OFF)
VNO = ±4.5V, VCOM = 4.5V,
V+ = 5.5V, V- = -5.5V
TA = TMIN to TMAX
TA = +25°C
TA = TMIN
to TMAX
TA = +25°C
VCOM = ±4.5V,
VNO = 4.5V,
MAX382 TA = TMIN
V+ = 5.5V, V- = -5.5V
to TMAX
±
ICOM(OFF)
-0.1
0.1
-1.0
1.0
M
-10
10
-0.2
0.2
C, E
-2.5
2.5
M
-20
20
-0.1
0.1
C, E
-1.5
1.5
M
-10
10
-0.4
0.4
TA = +25°C
VCOM = ±4.5V,
VNO = 4.5V,
MAX384 TA = TMIN
V+ = 5.5V, V- = -5.5V
to TMAX
±
ICOM(ON)
VCOM = ±4.5V,
VNO = 4.5V,
MAX382 TA = TMIN
to TMAX
2
C, E
-5
5
M
-40
40
-0.2
0.2
C, E
-2.5
2.5
M
-20
20
TA = +25°C
MAX384 TA = TMIN
to TMAX
125
C, E
TA = +25°C
COM-On Leakage Current
(Note 6)
100
INO = 1mA, VCOM = ±3.5V
On-Resistance Flatness
(Note 5)
COM-Off Leakage Current
(Note 6)
V+
60
RON
±
MAX382/MAX384
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
_______________________________________________________________________________________
V
Ω
Ω
Ω
nA
nA
nA
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
(V+ = +5V ±10%, V- = -5V ±10%, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX,
unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
(Note 2)
UNITS
DIGITAL LOGIC INPUT
Logic High Input Voltage
VA_H, VENH
TA = TMIN to TMAX
Logic Low Input Voltage
VA_L, VENL
TA = TMIN to TMAX
Input Current with
Input Voltage High
IA_H, IENH
VA_H = 2.4V, VA_L = 0.8V
Input Current with
Input Voltage Low
IA_L, IENL
VA_H = 2.4V, VA_L = 0.8V
2.4
V
0.8
V
-0.1
0.1
µA
-0.1
0.1
µA
±2.4
±8
V
SUPPLY
Power-Supply Range
V+, V-
Positive Supply Current
I+
VEN = VA = 0V/V+,
V+ = 5.5V, V- = -5.5V
Negative Supply Current
I-
VEN = VA = 0V/V+,
V+ = 5.5V, V- = -5.5V
TA = TMIN to TMAX
AX, EN Data Hold Time
tH
Figure 5
TA = +25°C
100
ns
Reset Pulse Width
tRS
Figure 6, V+ = 5V
TA = +25°C
100
ns
TA = +25°C
0
TA = +25°C
-1
1
µA
-1
1
µA
DYNAMIC
Transition Time
tTRANS
Figure 1
Break-Before-Make Interval
tOPEN
Figure 2
Enable Turn-On Time
tON(EN)
Figure 3
Enable Turn-Off Time
tOFF(EN)
Figure 3
Write Turn-On Time
tON(WR)
Figure 4
Reset Turn-Off Time
tOFF(RS)
Figure 6
100
TA = +25°C
275
20
100
TA = TMIN to TMAX
ns
150
250
TA = +25°C
80
150
TA = TMIN to TMAX
250
TA = +25°C
150
TA = TMIN to TMAX
250
TA = +25°C
150
TA = TMIN to TMAX
250
ns
ns
VCTE
CL = 100pF, VNO = 0V
VISO
VEN = 0V, RL = 1kΩ, f = 100kHz TA = +25°C
-75
dB
VCT
VEN = 2.4V, f = 100kHz,
VGEN = 1Vp-p, RL = 1kΩ
TA = +25°C
-92
dB
CIN
f = 1MHz
TA = +25°C
8
pF
f = 1MHz, VEN = VCOM = 0V
TA = +25°C
11
pF
NO-Off Capacitance
CNO(OFF)
COM-Off Capacitance
f = 1MHz,
CCOM(OFF)
VEN = VCOM = 0V
MAX382
COM-On Capacitance
CCOM(ON)
f = 1MHz,
VEN = VCOM = 0V
MAX382
MAX384
MAX384
40
TA = +25°C
20
54
TA = +25°C
34
5
ns
Off Isolation (Note 7)
Logic Input Capacitance
2
ns
Charge Injection (Note 3)
Crosstalk Between Channels
TA = +25°C
ns
pC
pF
pF
MINIMUM INPUT TIMING REQUIREMENTS
Write Pulse Width
tW
Figure 5
TA = +25°C
100
ns
AX, EN Data Setup Time
tS
Figure 5
TA = +25°C
100
ns
_______________________________________________________________________________________
3
MAX382/MAX384
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
MAX382/MAX384
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
ELECTRICAL CHARACTERISTICS—Single +5V Supply
(V+ = +5V ±10%, V- = 0V, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX, unless
otherwise noted.)
PARAMETER
SYMBOL
MIN
CONDITIONS
TYP
MAX
(Note 2)
UNITS
AX, EN Data Hold Time
tH
Figure 5
TA = +25°C
100
ns
Reset Pulse Width
tRS
Figure 6, V+ = 5V
TA = +25°C
100
ns
SWITCH
SWITCH
Analog Signal Range
VCOM, VNO (Note 3)
V-
V+
RON
INO = 1mA, VCOM = 3.5V,
V+ = 4.5V
TA = +25°C
TA = TMIN to TMAX
280
On-Resistance Matching
Between Channels (Note 4)
∆RON
INO = 1mA, VCOM = 3.5V,
V+ = 4.5V
TA = +25°C
10
TA = TMIN to TMAX
12
On-Resistance Flatness
RFLAT
INO = 1mA; VCOM = 3V, 2V, 1V; TA = +25°C
V+ = 5V
TA = TMIN to TMAX
NO-Off Leakage Current
(Note 8)
INO(OFF)
On-Resistance
COM-Off Leakage Current
(Note 8)
VNO = 4.5V, VCOM = 0V,
V+ = 5.5V
VCOM = 4.5V,
VNO = 0V,
V+ = 5.5V
ICOM(OFF)
VCOM = 4.5V,
VNO = 0V,
V+ = 5.5V
150
TA = +25°C
TA = TMIN
to TMAX
ICOM(ON)
VCOM = 4.5V,
VNO = 4.5V,
V+ = 5.5V
MAX382 TA = TMIN
to TMAX
0.1
1.0
M
-10
10
-0.2
0.2
C, E
-2.5
2.5
M
-20
20
-0.2
0.2
C, E
-1.5
1.5
M
-10
10
-0.4
0.4
C, E
-5
5
M
-40
40
-0.2
0.2
C, E
-2.5
2.5
M
-20
20
TA = +25°C
MAX384 TA = TMIN
to TMAX
20
-1.0
TA = +25°C
COM-On Leakage Current
(Note 8)
16
15
-0.1
TA = +25°C
MAX384 TA = TMIN
to TMAX
10
C, E
TA = +25°C
MAX382 TA = TMIN
to TMAX
225
V
Ω
Ω
Ω
nA
nA
nA
DIGITAL
DIGITAL LOGIC
LOGIC INPUT
INPUT
Logic High Input Voltage
VH, VENH
TA = TMIN to TMAX
Logic Low Input Voltage
VL, VENL
TA = TMIN to TMAX
Input Current with
Input Voltage High
IH, IENH
VH = 2.4V, VL = 0.8V
Input Current with
Input Voltage Low
IL, IENL
2.4
V
0.8
V
-0.1
0.1
µA
VH = 2.4V, VL = 0.8V
-0.1
0.1
µA
SUPPLY
SUPPLY
Power-Supply Range
2.4
15
V
Positive Supply Current
I+
VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V
-1.0
1.0
µA
Negative Supply Current
I-
VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V
µA
IGND Supply Current
4
IGND
VEN = V+, 0V; VA = 0V;
V+ = 5.5V; V- = 0V
-1.0
1.0
TA = +25°C
-1.0
1.0
TA = TMIN to TMAX
-1.0
1.0
_______________________________________________________________________________________
µA
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
(V+ = +5V ±10%, V- = 0V, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX, unless
otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
(Note 2)
UNITS
DYNAMIC
Transition Time
tTRANS
Figure 1, VNO = 3V
Break-Before-Make Interval
tOPEN
Figure 2 (Note 3)
Enable Turn-On Time
(Note 3)
tON(EN)
Figure 3
Enable Turn-Off Time
(Note 3)
tOFF(EN)
Figure 3
Write Turn-On Time
(Note 3)
tON(WR)
Figure 4
Reset Turn-Off Time
(Note 3)
tOFF(RS)
Figure 4
Charge Injection (Note 3)
VCTE
90
TA = +25°C
5
TA = +25°C
130
TA = TMIN to TMAX
80
200
TA = TMIN to TMAX
275
TA = +25°C
200
TA = TMIN to TMAX
275
TA = +25°C
200
TA = TMIN to TMAX
275
TA = +25°C
1.5
ns
ns
200
275
TA = +25°C
Figure 7, CL = 100pF,
VNO = 0V
280
40
5
ns
ns
ns
ns
pC
pC
ELECTRICAL CHARACTERISTICS—Single +3V Supply
(V+ = +3V ±10%, V- = 0V, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX, unless
otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
(Note 2)
UNITS
SWITCH
Analog Signal Range
On-Resistance
VANALOG
RON
(Note 3)
INO = 1mA, VCOM = 1.5V,
V+ = 3V
VTA = +25°C
V+
230
TA = TMIN to TMAX
375
425
V
Ω
DYNAMIC
Transition Time (Note 3)
tTRANS
Figure 1, VIN = 2.4V,
VN01 = 1.5V, VN08 = 0V
TA = +25°C
230
575
ns
Enable Turn-On Time
(Note 3)
tON(EN)
Figure 3, VINH = 2.4V,
VINL = 0V, VN01 = 1.5V
TA = +25°C
200
500
ns
Enable Turn-Off Time
(Note 3)
tOFF(EN)
Figure 3, VINH = 2.4V,
VINL = 0V, VN01 = 1.5V
TA = +25°C
75
400
ns
Write Turn-On Time (Note 3)
tON(WR)
Figure 4
TA = +25°C
200
500
ns
Reset Turn-Off Time (Note 3)
tOFF(RS)
Figure 4
TA = +25°C
75
400
ns
Figure 7, CL = 100pF,
VNO = 0V
TA = +25°C
1
5
pC
Charge Injection
(Note 3)
VCTE
The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Guaranteed by design.
∆RON = RON(max) - RON(min).
Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal
ranges, i.e., VNO = 3V to 0V and 0V to -3V.
Note 6: Leakage parameters are 100% tested at maximum rated hot operating temperature, and guaranteed by correlation at +25°C.
Note 7: Worst-case isolation is on channel 4 because of its proximity to the COM pin. Off isolation = 20log VCOM/VNO, VCOM = output, VNO = input to off switch.
Note 8: Leakage testing at single supply is guaranteed by correlation testing with dual supplies.
Note 2:
Note 3:
Note 4:
Note 5:
_______________________________________________________________________________________
5
MAX382/MAX384
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)
__________________________________________Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
ON-RESISTANCE vs. VCOM
AND TEMPERATURE
(DUAL SUPPLIES)
V+ = 5V
V- = -5V
100
250
225
RON (Ω)
70
60
V± = ±5V
80
TA = +125°C
70
TA = +85°C
60
TA = +25°C
-5 -4 -3 -2 -1
1
2
3
4
0
1
2
3
4
5
0
2
1
3
4
VCOM (V)
VCOM (V)
ON-RESISTANCE vs. VCOM
AND TEMPERATURE
(SINGLE SUPPLY)
OFF-LEAKAGE vs.
TEMPERATURE
ON-LEAKAGE vs.
TEMPERATURE
TA = +125°C
10,000
MAX398/9 TOC5
1000
V+ = 5.5V
V- = -5.5V
120
TA = +25°C
100
80
TA = -55°C
ON-LEAKAGE (pA)
OFF-LEAKAGE (pA)
TA = +85°C
10
1
60
V+ = 5.5V
V- = -5.5V
1000
100
140
5
MAX398/9 TOC6
VCOM (V)
V+ = 5V
V- = 0V
160
50
-5 -4 -3 -2 -1
5
MAX398/9 TOC4
180
0
V+ = 5V
75
30
30
V+ = 3V
150
100
TA = -55°C
40
40
175
125
50
50
200
RON (Ω)
V± = ±3V
80
V- = 0V
275
90
90
RON (Ω)
300
MAX398/9 TOC3
110
MAX398/9 TOC1
110
100
ON-RESISTANCE vs. VCOM
(SINGLE SUPPLY)
MAX398/9 TOC2
ON-RESISTANCE vs. VCOM
(DUAL SUPPLIES)
RON (Ω)
100
10
1
40
0.1
0.1
2
1
3
4
5
-50
VCOM (V)
-25
0
25 50
75
TEMPERATURE (°C)
100
-50
125
-25
0
25 50
75
TEMPERATURE (°C)
SUPPLY CURRENT vs.
TEMPERATURE
CHARGE INJECTION vs. VCOM
10
MAX398/9 TOC7
5
MAX398/9 TOC8
0
V+ = 5V
V- = -5V
VEN = VA = 0V, 5V
I+, I- (nA)
I+
Qj (pC)
MAX382/MAX384
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
0
V+ = 5V
V- = 0V
V+ = 5V
V- = -5V
-5
I-
0.1
-5 -4 -3 -2 -1
0
1
VCOM (V)
6
1
2
3
4
5
-50
-25
0
25 50
75
TEMPERATURE (°C)
_______________________________________________________________________________________
100
125
100
125
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
PIN
MAX382
MAX384
NAME*
FUNCTION
1
1
WR
2, 16, 17
—
A0, A2, A1
WRITE Logic Input
Address Logic Inputs (see Truth Tables at end of data sheet)
—
2, 17
A0, A1
Address Logic Inputs (see Truth Tables at end of data sheet)
3
3
EN
Enable Logic Input (see Truth Tables at end of data sheet)
Negative Supply Voltage Input. Connect to GND for single-supply operation.
4
4
V-
5–8
—
NO1–NO4
Analog Signal Inputs—bidirectional
—
5–8
NO1A–NO4A
Analog Signal Inputs—bidirectional
9
—
COM
Analog Signal Output—bidirectional
—
9, 10
COMA, COMB
Analog Signal Outputs—bidirectional
10–13
—
NO8–NO5
Analog Signal Inputs—bidirectional
Analog Signal Inputs—bidirectional
—
11–14
NO4B–NO1B
14
15
V+
15
16
GND
18
18
RS
Positive Supply Voltage Input
Ground
RESET Logic Input
*Analog inputs and outputs are names of convenience only. Inputs and outputs are identical and interchangeable.
__________Applications Information
The internal structures of the MAX382/MAX384 include
translators for the A2/A1/EN/WR/RS digital inputs, latches, and a decode section for channel selection (see
Truth Tables). The analog-signal switches consist of
parallel combinations of N and P MOSFETs.
WRITE (WR) and RESET (RS) strobes are provided for
interfacing with µP-bus lines, alleviating the need for the
µP to provide constant address inputs to the mux to
hold a particular channel (Figures 2–7).
When the WR strobe is in the low state (less than 0.8V)
and the RS strobe is in the high state (greater than
2.4V), the muxes are in the transparent mode—they
act similar to nonlatching devices, such as the
MAX398/MAX399.
When the WR goes high, the previous BCD address
input is latched and held in that state indefinitely.
RS turns off all channels when it is low. All switches stay
off until RS and EN are high and WR is low.
The MAX382/MAX384 work with both single and dual
supplies and function over the +2.4V to +16V singlesupply range. For example, with a single +5V power
supply, analog signals in the 0V to +5V range can be
switched normally. If negative signals around 0V are
expected, a negative supply is needed.
The EN latch allows all switches to be turned off under
program control. This is useful when two or more are
cascaded to build 16-line and larger analog-signal multiplexers.
_______________________________________________________________________________________
7
MAX382/MAX384
______________________________________________________________Pin Description
______________________________________________Test Circuits/Timing Diagrams
+5V
V+
NO1
RS
+2.4V
EN
A0
A1
±3V
NO2–NO7
MAX382
NO8
A2
±
GND
WR
LOGIC
INPUT
VOUT
V-
50Ω
35pF
-5V
MAX384
A0
NO1A–NO4A
COMA, N02B–N03B
NO4B
A1
GND
WR
SWITCH
OUTPUT
VOUT
±3V
NO1B
EN
90%
0V
90%
VNO_
3V
tTRANS
VOUT
COMB
V-
50Ω
50%
VNO_
V+
RS
tR < 20ns
tF < 20ns
+3V
0V
300Ω
+5V
+2.4V
3V
COM
±
MAX382/MAX384
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
300Ω
tTRANS
35pF
-5V
Figure 1. Transition Time
+5V
V+
VAH = +3V
VA
0V
VA
VOUT
50%
50%
A2
N01
A1
N02–
N08
50Ω
A0
+2.4V
EN
RS
MAX382*
+5V
COM
WR GND
V-
VOUT
1k
tOPEN
-5V
*SIMILAR CONNECTION FOR MAX384
Figure 2. Break-Before-Make Interval (tOPEN)
8
_______________________________________________________________________________________
35pF
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
MAX382/MAX384
+5V
V+
VAH = +3V
A2
N01
A1
N02–
N03
50%
50%
0V
VEN
MAX382*
A0
0.9 VO
VEN
VOUT 0V
COM,
COMB
EN
RS
50Ω
tOFF(EN)
tON(EN)
+2.4V
+10V
35pF
1k
V-
WR GND
VOUT
-5V
*SIMILAR CONNECTION FOR MAX384
Figure 3. Enable Delay (tON(EN), tOFF(EN))
+5V
V+
VWR +3V
+1.5V
0V
A0, A1,
(A2)
50%
tON (WR)
+2.4V
LOGIC INPUT
0V
RS
WR
+5V
ALL
N0_
MAX382*
0.2VO
VOUT
N01 or
N01B
EN
+2.4V
COM,
COMB
V-
GND
VOUT
1k
35pF
-5V
*SIMILAR CONNECTION FOR MAX384
DEVICE MUST BE RESET PRIOR TO APPLYING WR PULSE
Figure 4. Write Turn-On Time (tON(WR))
WR
3V
3V
50%
RS
0V
50%
0V
tRS
tW
tS
A0, A1, (A2) 3V
EN
0V
20%
tH
80%
SWITCH
V
OUTPUT O
tOFF (RS)
80%
Figure 5. Write, Setup, and Hold Timing (tW, tS, tH)
_______________________________________________________________________________________
9
MAX382/MAX384
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
+5V
V+
+2.4V
RS +3V
VOUT
+5V
N01
A0, A1, MAX382
(A2)
50%
+1.5V
EN
N01–
N08
tOFF (RS)
0V
VO
RS
0.8VO
LOGIC
INPUT
VOUT
COM, COMB
WR
GND
V-
1k
35pF
-5V
Figure 6. Reset Turn-Off Time (tOFF(RS))
+5V
V+
OFF
ON
EN
A0, A1, (A2)
OFF
RGEN
∆VOUT
VOUT
RS
N0_
+2.4V
COM
IN
VGEN
∆VOUT IS THE MEASURED VOLTAGE ERROR DUE TO
CHARGE INJECTION. THE CHARGE IN COULOMBS IS Q = CL x ∆VO
3V
GND
WR
MAX382
MAX384
VOUT
CL
100pF
V-5V
Figure 7. Charge Injection (VCTE)
Operation with Supply Voltages
Other than ±5V
Using supply voltages less than ±5V reduces the analog
signal range. The MAX382/MAX384 muxes operate with
±3V to ±8V bipolar supplies or with a +2.7V to +16.5V
single supply. Connect V- to GND when operating with a
single supply. Both devices can also operate with unbalanced supplies, such as +10V and -5V. The Typical
Operating Characteristics graphs show typical on-resistance with ±3V, ±5V, +3V and +5V supplies. (Switching
times increase by a factor of two or more for operation at
+5V or below.)
10
Overvoltage Protection
Proper power-supply sequencing is recommended for
all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices.
Always sequence V+ on first, then V-, followed by the
logic inputs, NO, or COM. If power-supply sequencing
is not possible, add two small signal diodes (D1, D2) in
series with supply pins for overvoltage protection
(Figure 8). Adding diodes reduces the analog signal
range to one diode drop below V+ and one diode drop
above V-, but does not affect the devices’ low switch
resistance and low leakage characteristics. Device
operation is unchanged, and the difference between V+
and V- should not exceed 17V. These protection diodes
are not recommended when using a single supply.
______________________________________________________________________________________
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
MAX382/MAX384
+5V
D1
V+
MAX382
MAX384
*
*
*
*
NO
COM
VD2
-5V
* INTERNAL PROTECTION DIODES
Figure 8. Overvoltage Protection Using External Blocking Diodes
__________________________________________Functional Diagrams/Truth Tables
MAX384 DIFFERENTIAL 4-CHANNEL MULTIPLEXER
MAX382 8-CHANNEL SINGLE-ENDED MULTIPLEXER
V+
V-
V+
GND
NO1
NO1A
NO2
NO3
NO2A
NO3A
NO4
V-
GND
COMA
NO4A
COM
NO5
NO1B
NO6
NO7
NO2B
NO3B
NO8
NO4B
COMB
DECODERS / DRIVERS
DECODERS / DRIVERS
LATCHES
LATCHES
WR
RS
A2
A2
A1
A1
A0
EN
A0
WR
RS
ON SWITCH
X
X
X
X
X
X
0
1
1
1
1
1
1
1
1
1
Maintains previous
switch condition
X
0
NONE
(latches cleared)
A1
A0
EN
X
X
X
X
WR
A0
RS
EN
ON SWITCH
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
NONE
1
2
3
4
5
6
7
8
X
1
Maintains previous
switch condition
X
0
NONE
(latches cleared)
0
0
0
0
0
1
1
1
1
1
NONE
1
2
3
4
Reset
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
X
Transparent Operation
Transparent Operation
X
0
0
0
0
1
1
1
1
A1
Latching
Reset
X
RS
EN
Latching
X
WR
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
LOGIC "0" = VAL ≤ 0.8V, LOGIC "1" VAH ≥ 2.4V
______________________________________________________________________________________
11
MAX382/MAX384
Low-Voltage, 8-Channel/Dual 4-Channel
Multiplexers with Latchable Inputs
_Ordering Information (continued)
PART
TEMP. RANGE
MAX384CPN
0°C to +70°C
18 Plastic DIP
PIN-PACKAGE
MAX384CWN
MAX384C/D
MAX384EPN
MAX384EWN
MAX384EJN
MAX384MJN
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-55°C to +125°C
18 Wide SO
Dice*
18 Plastic DIP
18 Wide SO
18 CERDIP**
18 CERDIP**
* Contact factory for dice specifications.
** Contact factory for package availability.
__________________________________________________________Chip Topographies
MAX384
MAX382
AO WR
RS A1
AO WR
A2
RS A1 N.C.
EN
EN
GND
V-
GND
V-
V+
V+
0.116"
N.C. (2.95mm)
NO1
0.116"
NO1B (2.95mm)
NO1A
NO2B
NO5
NO2A
NO2
NO3A
NO3
NO3B
NO6
NO4B
NO7
NO4
NO4A
COM NO8
COM
COM NO8
COMA
NO8
COMB
0.082"
(2.08mm)
0.082"
(2.08mm)
TRANSISTOR COUNT: 165
SUBSTRATE CONNECTED TO V+
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1995 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.