19-0396; Rev. 0; 5/95 Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs ____________________________Features ________________________Applications ♦ Pin-Compatible with Industry-Standard DG428/DG429, DG528/DG529, MAX368/MAX369 ♦ Single-Supply Operation (+2.7V to +16.5V) Bipolar Supply Operation (±3V to ±8V) ♦ Low Power Consumption (<300µW) ♦ Low On-Resistance, 100Ω max ♦ Guaranteed On-Resistance Match Between Channels, 4Ω max ♦ Low Leakage, 2.5nA at +85°C ♦ TTL/CMOS-Logic Compatible ______________Ordering Information Battery-Operated Systems TEMP. RANGE PART Audio Signal Routing Low-Voltage Data-Acquisition Systems Sample-and-Hold Circuits Automatic Test Equipment PIN-PACKAGE MAX382CPN 0°C to +70°C 18 Plastic DIP MAX382CWN MAX382C/D MAX382EPN MAX382EWN MAX382EJN MAX382MJN 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -55°C to +125°C 18 Wide SO Dice* 18 Plastic DIP 18 Wide SO 18 CERDIP** 18 CERDIP** Ordering Information continued on last page. * Contact factory for dice specifications. ** Contact factory for package availability. __________________________________________________________Pin Configurations TOP VIEW MAX382 MAX384 WR 1 18 RS WR 1 18 RS A0 2 17 A1 A0 2 17 A1 EN 3 16 A2 EN 3 15 GND V- 4 V- 4 LOGIC 16 GND LOGIC 15 V+ N01 5 14 V+ N01A 5 14 N01B N02 6 13 N05 N02A 6 13 N02B N03 7 12 N06 N03A 7 12 N03B N04 8 11 N07 N04A 8 11 N04B COM 9 10 N08 COMA 9 10 COMB DIP/SO DIP/SO ________________________________________________________________ Maxim Integrated Products Call toll free 1-800-998-8800 for free samples or literature. 1 MAX382/MAX384 _______________General Description The MAX382/MAX384 are low-voltage, CMOS, 1-of-8 and dual 4-channel muxes with latchable digital inputs. They feature low-voltage operation from a +2.7V to +16.5V single supply and from ±3V to ±8V dual supplies. Pin compatible with the DG428/DG429, these muxes offer low on-resistance (100Ω max) matched to within 4Ω max between channels. Additional features include off leakage less than 2.5nA at +85°C and guaranteed low charge injection (10pC max). ESD protection is greater than 2000V per Method 3015.7. ABSOLUTE MAXIMUM RATINGS Voltage Referenced to GND V+ .......................................................................-0.3V to +17V V- ........................................................................+0.3V to -17V V+ to V-...............................................................-0.3V to +17V Voltage into Any Terminal (Note 1).........(V- - 2V) to (V+ + 2V) or 30mA (whichever occurs first) Current into Any Terminal ...................................................30mA Peak Current, Any Terminal (pulsed at 1ms, 10% duty cycle max) ..........................100mA Continuous Power Dissipation (TA = +70°C) Plastic DIP (derate 11.11mW/°C above +70°C) ..........889mW Wide SO (derate 9.52mW/°C above +70°C)................762mW CERDIP (derate 10.53mW/°C above +70°C) ...............842mW Operating Temperature Ranges MAX38_C_ N.......................................................0°C to +70°C MAX38_E_ N ....................................................-40°C to +85°C MAX38_MJN ..................................................-55°C to +125°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C Note 1: Signals on any terminal exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—Dual Supplies (V+ = +5V ±10%, V- = -5V ±10%, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX, unless otherwise noted.) PARAMETER SYMBOL MIN CONDITIONS TYP MAX (Note 2) UNITS SWITCH Analog Signal Range Channel On-Resistance On-Resistance Matching Between Channels (Note 4) VCOM, VNO (Note 3) VTA = +25°C ∆RON INO = 1mA, VCOM = ±3.5V, V+ = 5V, V- = -5V TA = +25°C 4 TA = TMIN to TMAX 6 INO = 1mA, VCOM = ±3V, V+ = 5V, V- = -5V TA = +25°C 10 TA = TMIN to TMAX 13 RFLAT(ON) NO-Off Leakage Current (Note 6) INO(OFF) VNO = ±4.5V, VCOM = 4.5V, V+ = 5.5V, V- = -5.5V TA = TMIN to TMAX TA = +25°C TA = TMIN to TMAX TA = +25°C VCOM = ±4.5V, VNO = 4.5V, MAX382 TA = TMIN V+ = 5.5V, V- = -5.5V to TMAX ± ICOM(OFF) -0.1 0.1 -1.0 1.0 M -10 10 -0.2 0.2 C, E -2.5 2.5 M -20 20 -0.1 0.1 C, E -1.5 1.5 M -10 10 -0.4 0.4 TA = +25°C VCOM = ±4.5V, VNO = 4.5V, MAX384 TA = TMIN V+ = 5.5V, V- = -5.5V to TMAX ± ICOM(ON) VCOM = ±4.5V, VNO = 4.5V, MAX382 TA = TMIN to TMAX 2 C, E -5 5 M -40 40 -0.2 0.2 C, E -2.5 2.5 M -20 20 TA = +25°C MAX384 TA = TMIN to TMAX 125 C, E TA = +25°C COM-On Leakage Current (Note 6) 100 INO = 1mA, VCOM = ±3.5V On-Resistance Flatness (Note 5) COM-Off Leakage Current (Note 6) V+ 60 RON ± MAX382/MAX384 Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs _______________________________________________________________________________________ V Ω Ω Ω nA nA nA Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs (V+ = +5V ±10%, V- = -5V ±10%, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX (Note 2) UNITS DIGITAL LOGIC INPUT Logic High Input Voltage VA_H, VENH TA = TMIN to TMAX Logic Low Input Voltage VA_L, VENL TA = TMIN to TMAX Input Current with Input Voltage High IA_H, IENH VA_H = 2.4V, VA_L = 0.8V Input Current with Input Voltage Low IA_L, IENL VA_H = 2.4V, VA_L = 0.8V 2.4 V 0.8 V -0.1 0.1 µA -0.1 0.1 µA ±2.4 ±8 V SUPPLY Power-Supply Range V+, V- Positive Supply Current I+ VEN = VA = 0V/V+, V+ = 5.5V, V- = -5.5V Negative Supply Current I- VEN = VA = 0V/V+, V+ = 5.5V, V- = -5.5V TA = TMIN to TMAX AX, EN Data Hold Time tH Figure 5 TA = +25°C 100 ns Reset Pulse Width tRS Figure 6, V+ = 5V TA = +25°C 100 ns TA = +25°C 0 TA = +25°C -1 1 µA -1 1 µA DYNAMIC Transition Time tTRANS Figure 1 Break-Before-Make Interval tOPEN Figure 2 Enable Turn-On Time tON(EN) Figure 3 Enable Turn-Off Time tOFF(EN) Figure 3 Write Turn-On Time tON(WR) Figure 4 Reset Turn-Off Time tOFF(RS) Figure 6 100 TA = +25°C 275 20 100 TA = TMIN to TMAX ns 150 250 TA = +25°C 80 150 TA = TMIN to TMAX 250 TA = +25°C 150 TA = TMIN to TMAX 250 TA = +25°C 150 TA = TMIN to TMAX 250 ns ns VCTE CL = 100pF, VNO = 0V VISO VEN = 0V, RL = 1kΩ, f = 100kHz TA = +25°C -75 dB VCT VEN = 2.4V, f = 100kHz, VGEN = 1Vp-p, RL = 1kΩ TA = +25°C -92 dB CIN f = 1MHz TA = +25°C 8 pF f = 1MHz, VEN = VCOM = 0V TA = +25°C 11 pF NO-Off Capacitance CNO(OFF) COM-Off Capacitance f = 1MHz, CCOM(OFF) VEN = VCOM = 0V MAX382 COM-On Capacitance CCOM(ON) f = 1MHz, VEN = VCOM = 0V MAX382 MAX384 MAX384 40 TA = +25°C 20 54 TA = +25°C 34 5 ns Off Isolation (Note 7) Logic Input Capacitance 2 ns Charge Injection (Note 3) Crosstalk Between Channels TA = +25°C ns pC pF pF MINIMUM INPUT TIMING REQUIREMENTS Write Pulse Width tW Figure 5 TA = +25°C 100 ns AX, EN Data Setup Time tS Figure 5 TA = +25°C 100 ns _______________________________________________________________________________________ 3 MAX382/MAX384 ELECTRICAL CHARACTERISTICS—Dual Supplies (continued) MAX382/MAX384 Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs ELECTRICAL CHARACTERISTICS—Single +5V Supply (V+ = +5V ±10%, V- = 0V, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX, unless otherwise noted.) PARAMETER SYMBOL MIN CONDITIONS TYP MAX (Note 2) UNITS AX, EN Data Hold Time tH Figure 5 TA = +25°C 100 ns Reset Pulse Width tRS Figure 6, V+ = 5V TA = +25°C 100 ns SWITCH SWITCH Analog Signal Range VCOM, VNO (Note 3) V- V+ RON INO = 1mA, VCOM = 3.5V, V+ = 4.5V TA = +25°C TA = TMIN to TMAX 280 On-Resistance Matching Between Channels (Note 4) ∆RON INO = 1mA, VCOM = 3.5V, V+ = 4.5V TA = +25°C 10 TA = TMIN to TMAX 12 On-Resistance Flatness RFLAT INO = 1mA; VCOM = 3V, 2V, 1V; TA = +25°C V+ = 5V TA = TMIN to TMAX NO-Off Leakage Current (Note 8) INO(OFF) On-Resistance COM-Off Leakage Current (Note 8) VNO = 4.5V, VCOM = 0V, V+ = 5.5V VCOM = 4.5V, VNO = 0V, V+ = 5.5V ICOM(OFF) VCOM = 4.5V, VNO = 0V, V+ = 5.5V 150 TA = +25°C TA = TMIN to TMAX ICOM(ON) VCOM = 4.5V, VNO = 4.5V, V+ = 5.5V MAX382 TA = TMIN to TMAX 0.1 1.0 M -10 10 -0.2 0.2 C, E -2.5 2.5 M -20 20 -0.2 0.2 C, E -1.5 1.5 M -10 10 -0.4 0.4 C, E -5 5 M -40 40 -0.2 0.2 C, E -2.5 2.5 M -20 20 TA = +25°C MAX384 TA = TMIN to TMAX 20 -1.0 TA = +25°C COM-On Leakage Current (Note 8) 16 15 -0.1 TA = +25°C MAX384 TA = TMIN to TMAX 10 C, E TA = +25°C MAX382 TA = TMIN to TMAX 225 V Ω Ω Ω nA nA nA DIGITAL DIGITAL LOGIC LOGIC INPUT INPUT Logic High Input Voltage VH, VENH TA = TMIN to TMAX Logic Low Input Voltage VL, VENL TA = TMIN to TMAX Input Current with Input Voltage High IH, IENH VH = 2.4V, VL = 0.8V Input Current with Input Voltage Low IL, IENL 2.4 V 0.8 V -0.1 0.1 µA VH = 2.4V, VL = 0.8V -0.1 0.1 µA SUPPLY SUPPLY Power-Supply Range 2.4 15 V Positive Supply Current I+ VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V -1.0 1.0 µA Negative Supply Current I- VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V µA IGND Supply Current 4 IGND VEN = V+, 0V; VA = 0V; V+ = 5.5V; V- = 0V -1.0 1.0 TA = +25°C -1.0 1.0 TA = TMIN to TMAX -1.0 1.0 _______________________________________________________________________________________ µA Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs (V+ = +5V ±10%, V- = 0V, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX (Note 2) UNITS DYNAMIC Transition Time tTRANS Figure 1, VNO = 3V Break-Before-Make Interval tOPEN Figure 2 (Note 3) Enable Turn-On Time (Note 3) tON(EN) Figure 3 Enable Turn-Off Time (Note 3) tOFF(EN) Figure 3 Write Turn-On Time (Note 3) tON(WR) Figure 4 Reset Turn-Off Time (Note 3) tOFF(RS) Figure 4 Charge Injection (Note 3) VCTE 90 TA = +25°C 5 TA = +25°C 130 TA = TMIN to TMAX 80 200 TA = TMIN to TMAX 275 TA = +25°C 200 TA = TMIN to TMAX 275 TA = +25°C 200 TA = TMIN to TMAX 275 TA = +25°C 1.5 ns ns 200 275 TA = +25°C Figure 7, CL = 100pF, VNO = 0V 280 40 5 ns ns ns ns pC pC ELECTRICAL CHARACTERISTICS—Single +3V Supply (V+ = +3V ±10%, V- = 0V, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, WR = 0V, RS = 2.4V, TA = TMIN to TMAX, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX (Note 2) UNITS SWITCH Analog Signal Range On-Resistance VANALOG RON (Note 3) INO = 1mA, VCOM = 1.5V, V+ = 3V VTA = +25°C V+ 230 TA = TMIN to TMAX 375 425 V Ω DYNAMIC Transition Time (Note 3) tTRANS Figure 1, VIN = 2.4V, VN01 = 1.5V, VN08 = 0V TA = +25°C 230 575 ns Enable Turn-On Time (Note 3) tON(EN) Figure 3, VINH = 2.4V, VINL = 0V, VN01 = 1.5V TA = +25°C 200 500 ns Enable Turn-Off Time (Note 3) tOFF(EN) Figure 3, VINH = 2.4V, VINL = 0V, VN01 = 1.5V TA = +25°C 75 400 ns Write Turn-On Time (Note 3) tON(WR) Figure 4 TA = +25°C 200 500 ns Reset Turn-Off Time (Note 3) tOFF(RS) Figure 4 TA = +25°C 75 400 ns Figure 7, CL = 100pF, VNO = 0V TA = +25°C 1 5 pC Charge Injection (Note 3) VCTE The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet. Guaranteed by design. ∆RON = RON(max) - RON(min). Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges, i.e., VNO = 3V to 0V and 0V to -3V. Note 6: Leakage parameters are 100% tested at maximum rated hot operating temperature, and guaranteed by correlation at +25°C. Note 7: Worst-case isolation is on channel 4 because of its proximity to the COM pin. Off isolation = 20log VCOM/VNO, VCOM = output, VNO = input to off switch. Note 8: Leakage testing at single supply is guaranteed by correlation testing with dual supplies. Note 2: Note 3: Note 4: Note 5: _______________________________________________________________________________________ 5 MAX382/MAX384 ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued) __________________________________________Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) ON-RESISTANCE vs. VCOM AND TEMPERATURE (DUAL SUPPLIES) V+ = 5V V- = -5V 100 250 225 RON (Ω) 70 60 V± = ±5V 80 TA = +125°C 70 TA = +85°C 60 TA = +25°C -5 -4 -3 -2 -1 1 2 3 4 0 1 2 3 4 5 0 2 1 3 4 VCOM (V) VCOM (V) ON-RESISTANCE vs. VCOM AND TEMPERATURE (SINGLE SUPPLY) OFF-LEAKAGE vs. TEMPERATURE ON-LEAKAGE vs. TEMPERATURE TA = +125°C 10,000 MAX398/9 TOC5 1000 V+ = 5.5V V- = -5.5V 120 TA = +25°C 100 80 TA = -55°C ON-LEAKAGE (pA) OFF-LEAKAGE (pA) TA = +85°C 10 1 60 V+ = 5.5V V- = -5.5V 1000 100 140 5 MAX398/9 TOC6 VCOM (V) V+ = 5V V- = 0V 160 50 -5 -4 -3 -2 -1 5 MAX398/9 TOC4 180 0 V+ = 5V 75 30 30 V+ = 3V 150 100 TA = -55°C 40 40 175 125 50 50 200 RON (Ω) V± = ±3V 80 V- = 0V 275 90 90 RON (Ω) 300 MAX398/9 TOC3 110 MAX398/9 TOC1 110 100 ON-RESISTANCE vs. VCOM (SINGLE SUPPLY) MAX398/9 TOC2 ON-RESISTANCE vs. VCOM (DUAL SUPPLIES) RON (Ω) 100 10 1 40 0.1 0.1 2 1 3 4 5 -50 VCOM (V) -25 0 25 50 75 TEMPERATURE (°C) 100 -50 125 -25 0 25 50 75 TEMPERATURE (°C) SUPPLY CURRENT vs. TEMPERATURE CHARGE INJECTION vs. VCOM 10 MAX398/9 TOC7 5 MAX398/9 TOC8 0 V+ = 5V V- = -5V VEN = VA = 0V, 5V I+, I- (nA) I+ Qj (pC) MAX382/MAX384 Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs 0 V+ = 5V V- = 0V V+ = 5V V- = -5V -5 I- 0.1 -5 -4 -3 -2 -1 0 1 VCOM (V) 6 1 2 3 4 5 -50 -25 0 25 50 75 TEMPERATURE (°C) _______________________________________________________________________________________ 100 125 100 125 Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs PIN MAX382 MAX384 NAME* FUNCTION 1 1 WR 2, 16, 17 — A0, A2, A1 WRITE Logic Input Address Logic Inputs (see Truth Tables at end of data sheet) — 2, 17 A0, A1 Address Logic Inputs (see Truth Tables at end of data sheet) 3 3 EN Enable Logic Input (see Truth Tables at end of data sheet) Negative Supply Voltage Input. Connect to GND for single-supply operation. 4 4 V- 5–8 — NO1–NO4 Analog Signal Inputs—bidirectional — 5–8 NO1A–NO4A Analog Signal Inputs—bidirectional 9 — COM Analog Signal Output—bidirectional — 9, 10 COMA, COMB Analog Signal Outputs—bidirectional 10–13 — NO8–NO5 Analog Signal Inputs—bidirectional Analog Signal Inputs—bidirectional — 11–14 NO4B–NO1B 14 15 V+ 15 16 GND 18 18 RS Positive Supply Voltage Input Ground RESET Logic Input *Analog inputs and outputs are names of convenience only. Inputs and outputs are identical and interchangeable. __________Applications Information The internal structures of the MAX382/MAX384 include translators for the A2/A1/EN/WR/RS digital inputs, latches, and a decode section for channel selection (see Truth Tables). The analog-signal switches consist of parallel combinations of N and P MOSFETs. WRITE (WR) and RESET (RS) strobes are provided for interfacing with µP-bus lines, alleviating the need for the µP to provide constant address inputs to the mux to hold a particular channel (Figures 2–7). When the WR strobe is in the low state (less than 0.8V) and the RS strobe is in the high state (greater than 2.4V), the muxes are in the transparent mode—they act similar to nonlatching devices, such as the MAX398/MAX399. When the WR goes high, the previous BCD address input is latched and held in that state indefinitely. RS turns off all channels when it is low. All switches stay off until RS and EN are high and WR is low. The MAX382/MAX384 work with both single and dual supplies and function over the +2.4V to +16V singlesupply range. For example, with a single +5V power supply, analog signals in the 0V to +5V range can be switched normally. If negative signals around 0V are expected, a negative supply is needed. The EN latch allows all switches to be turned off under program control. This is useful when two or more are cascaded to build 16-line and larger analog-signal multiplexers. _______________________________________________________________________________________ 7 MAX382/MAX384 ______________________________________________________________Pin Description ______________________________________________Test Circuits/Timing Diagrams +5V V+ NO1 RS +2.4V EN A0 A1 ±3V NO2–NO7 MAX382 NO8 A2 ± GND WR LOGIC INPUT VOUT V- 50Ω 35pF -5V MAX384 A0 NO1A–NO4A COMA, N02B–N03B NO4B A1 GND WR SWITCH OUTPUT VOUT ±3V NO1B EN 90% 0V 90% VNO_ 3V tTRANS VOUT COMB V- 50Ω 50% VNO_ V+ RS tR < 20ns tF < 20ns +3V 0V 300Ω +5V +2.4V 3V COM ± MAX382/MAX384 Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs 300Ω tTRANS 35pF -5V Figure 1. Transition Time +5V V+ VAH = +3V VA 0V VA VOUT 50% 50% A2 N01 A1 N02– N08 50Ω A0 +2.4V EN RS MAX382* +5V COM WR GND V- VOUT 1k tOPEN -5V *SIMILAR CONNECTION FOR MAX384 Figure 2. Break-Before-Make Interval (tOPEN) 8 _______________________________________________________________________________________ 35pF Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs MAX382/MAX384 +5V V+ VAH = +3V A2 N01 A1 N02– N03 50% 50% 0V VEN MAX382* A0 0.9 VO VEN VOUT 0V COM, COMB EN RS 50Ω tOFF(EN) tON(EN) +2.4V +10V 35pF 1k V- WR GND VOUT -5V *SIMILAR CONNECTION FOR MAX384 Figure 3. Enable Delay (tON(EN), tOFF(EN)) +5V V+ VWR +3V +1.5V 0V A0, A1, (A2) 50% tON (WR) +2.4V LOGIC INPUT 0V RS WR +5V ALL N0_ MAX382* 0.2VO VOUT N01 or N01B EN +2.4V COM, COMB V- GND VOUT 1k 35pF -5V *SIMILAR CONNECTION FOR MAX384 DEVICE MUST BE RESET PRIOR TO APPLYING WR PULSE Figure 4. Write Turn-On Time (tON(WR)) WR 3V 3V 50% RS 0V 50% 0V tRS tW tS A0, A1, (A2) 3V EN 0V 20% tH 80% SWITCH V OUTPUT O tOFF (RS) 80% Figure 5. Write, Setup, and Hold Timing (tW, tS, tH) _______________________________________________________________________________________ 9 MAX382/MAX384 Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs +5V V+ +2.4V RS +3V VOUT +5V N01 A0, A1, MAX382 (A2) 50% +1.5V EN N01– N08 tOFF (RS) 0V VO RS 0.8VO LOGIC INPUT VOUT COM, COMB WR GND V- 1k 35pF -5V Figure 6. Reset Turn-Off Time (tOFF(RS)) +5V V+ OFF ON EN A0, A1, (A2) OFF RGEN ∆VOUT VOUT RS N0_ +2.4V COM IN VGEN ∆VOUT IS THE MEASURED VOLTAGE ERROR DUE TO CHARGE INJECTION. THE CHARGE IN COULOMBS IS Q = CL x ∆VO 3V GND WR MAX382 MAX384 VOUT CL 100pF V-5V Figure 7. Charge Injection (VCTE) Operation with Supply Voltages Other than ±5V Using supply voltages less than ±5V reduces the analog signal range. The MAX382/MAX384 muxes operate with ±3V to ±8V bipolar supplies or with a +2.7V to +16.5V single supply. Connect V- to GND when operating with a single supply. Both devices can also operate with unbalanced supplies, such as +10V and -5V. The Typical Operating Characteristics graphs show typical on-resistance with ±3V, ±5V, +3V and +5V supplies. (Switching times increase by a factor of two or more for operation at +5V or below.) 10 Overvoltage Protection Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 8). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices’ low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 17V. These protection diodes are not recommended when using a single supply. ______________________________________________________________________________________ Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs MAX382/MAX384 +5V D1 V+ MAX382 MAX384 * * * * NO COM VD2 -5V * INTERNAL PROTECTION DIODES Figure 8. Overvoltage Protection Using External Blocking Diodes __________________________________________Functional Diagrams/Truth Tables MAX384 DIFFERENTIAL 4-CHANNEL MULTIPLEXER MAX382 8-CHANNEL SINGLE-ENDED MULTIPLEXER V+ V- V+ GND NO1 NO1A NO2 NO3 NO2A NO3A NO4 V- GND COMA NO4A COM NO5 NO1B NO6 NO7 NO2B NO3B NO8 NO4B COMB DECODERS / DRIVERS DECODERS / DRIVERS LATCHES LATCHES WR RS A2 A2 A1 A1 A0 EN A0 WR RS ON SWITCH X X X X X X 0 1 1 1 1 1 1 1 1 1 Maintains previous switch condition X 0 NONE (latches cleared) A1 A0 EN X X X X WR A0 RS EN ON SWITCH 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 NONE 1 2 3 4 5 6 7 8 X 1 Maintains previous switch condition X 0 NONE (latches cleared) 0 0 0 0 0 1 1 1 1 1 NONE 1 2 3 4 Reset X 0 0 1 1 0 0 1 1 X 0 1 0 1 0 1 0 1 X Transparent Operation Transparent Operation X 0 0 0 0 1 1 1 1 A1 Latching Reset X RS EN Latching X WR X 0 0 1 1 X 0 1 0 1 0 1 1 1 1 LOGIC "0" = VAL ≤ 0.8V, LOGIC "1" VAH ≥ 2.4V ______________________________________________________________________________________ 11 MAX382/MAX384 Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers with Latchable Inputs _Ordering Information (continued) PART TEMP. RANGE MAX384CPN 0°C to +70°C 18 Plastic DIP PIN-PACKAGE MAX384CWN MAX384C/D MAX384EPN MAX384EWN MAX384EJN MAX384MJN 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -55°C to +125°C 18 Wide SO Dice* 18 Plastic DIP 18 Wide SO 18 CERDIP** 18 CERDIP** * Contact factory for dice specifications. ** Contact factory for package availability. __________________________________________________________Chip Topographies MAX384 MAX382 AO WR RS A1 AO WR A2 RS A1 N.C. EN EN GND V- GND V- V+ V+ 0.116" N.C. (2.95mm) NO1 0.116" NO1B (2.95mm) NO1A NO2B NO5 NO2A NO2 NO3A NO3 NO3B NO6 NO4B NO7 NO4 NO4A COM NO8 COM COM NO8 COMA NO8 COMB 0.082" (2.08mm) 0.082" (2.08mm) TRANSISTOR COUNT: 165 SUBSTRATE CONNECTED TO V+ Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 © 1995 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.