SEMICONDUCTOR TECHNICAL DATA High–Performance Silicon–Gate CMOS The MC54/74HC160 and HC162 are identical in pinout to the LS160 and LS162, respectively. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. The HC160 and HC162 are programmable BCD counters with asynchronous and synchronous Reset inputs, respectively. J SUFFIX CERAMIC PACKAGE CASE 620–10 16 • • • • • • 1 Output Drive Capability: 10 LSTTL Loads Outputs Directly Interface to CMOS, NMOS, and TTL Operating Voltage Range: 2 to 6 V Low Input Current: 1 µA High Noise Immunity Characteristic of CMOS Devices In Compliance with the Requirements Defined by JEDEC Standard No. 7A • Chip Complexity: 234 FETs or 58.5 Equivalent Gates N SUFFIX PLASTIC PACKAGE CASE 648–08 16 1 D SUFFIX SOIC PACKAGE CASE 751B–05 16 1 LOGIC DIAGRAM ORDERING INFORMATION P0 PRESENT DATA INPUTS P1 P2 P3 CLOCK 3 14 4 13 5 12 6 11 2 15 MC54HCXXXJ MC74HCXXXN MC74HCXXXD Q0 Q1 Q2 BCD OR BINARY OUTPUTS Q3 PIN ASSIGNMENT RESET 1 16 CLOCK 2 15 P0 3 14 VCC RIPPLE CARRY OUT Q0 P1 4 13 Q1 P2 5 12 Q2 P3 6 11 Q3 ENABLE P 7 10 ENABLE T GND 8 9 RIPPLE CARRY OUT RESET LOAD ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ COUNT ENABLES ENABLE P ENABLE T Device Count Mode PIN 16 = VCC PIN 8 = GND BCD Asynchronous HC162 BCD Synchronous LOAD FUNCTION TABLE Inputs Reset Mode HC160 Ceramic Plastic SOIC Clock Output Reset* Load Enable P Enable T Q L H H H H X L H H H X X H L X X X H X L Reset Load Preset Data Count No Count No Count * HC162 only. HC160 is an Asynchronous Reset Device H = high level L = low level X = don’t care 10/95 Motorola, Inc. 1995 1 REV 6 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MC54/74HC160 MC54/74HC162 MAXIMUM RATINGS* Symbol VCC Parameter DC Supply Voltage (Referenced to GND) Value Unit – 0.5 to + 7.0 V Vin DC Input Voltage (Referenced to GND) – 1.5 to VCC + 1.5 V Vout DC Output Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V DC Input Current, per Pin ± 20 mA Iout DC Output Current, per Pin ± 25 mA ICC DC Supply Current, VCC and GND Pins ± 50 mA PD Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package† 750 500 mW Tstg Storage Temperature – 65 to + 150 _C Iin TL This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND (Vin or Vout) VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. v v _C Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package) (Ceramic DIP) 260 300 * Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. †Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C Ceramic DIP: – 10 mW/_C from 100_ to 125_C SOIC Package: – 7 mW/_C from 65_ to 125_C For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ v ÎÎÎÎ v ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RECOMMENDED OPERATING CONDITIONS Symbol VCC Vin, Vout Parameter DC Supply Voltage (Referenced to GND) Min Max Unit 2.0 6.0 V 0 VCC V – 55 + 125 _C 0 0 0 1000 500 400 ns DC Input Voltage, Output Voltage (Referenced to GND) TA Operating Temperature, All Package Types tr, tf Input Rise and Fall Time (Figure 1) VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) Guaranteed Limit Symbol Parameter Test Conditions VCC V – 55 to 25_C 85_C 125_C Unit VIH Minimum High–Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| 20 µA 2.0 4.5 6.0 1.5 3.15 4.2 1.5 3.15 4.2 1.5 3.15 4.2 V VIL Maximum Low–Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| 20 µA 2.0 4.5 6.0 0.3 0.9 1.2 0.3 0.9 1.2 0.3 0.9 1.2 V Minimum High–Level Output Voltage Vin = VIH or VIL |Iout| 20 µA 2.0 4.5 6.0 1.9 4.4 5.9 1.9 4.4 5.9 1.9 4.4 5.9 V 4.5 6.0 3.98 5.48 3.84 5.34 3.70 5.20 2.0 4.5 6.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 4.5 6.0 0.26 0.26 0.33 0.33 0.40 0.40 6.0 ± 0.1 ± 1.0 ± 1.0 VOH Vin = VIH or VIL |Iout| |Iout| VOL Maximum Low–Level Output Voltage Vin = VIH or VIL |Iout| 20 µA Vin = VIH or VIL |Iout| |Iout| Iin Maximum Input Leakage Current 4.0 mA 5.2 mA Vin = VCC or GND 4.0 mA 5.2 mA V µA Vin = VCC or GND 6.0 8 80 160 µA Iout = 0 µA NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). ICC MOTOROLA Maximum Quiescent Supply Current (per Package) 2 High–Speed CMOS Logic Data DL129 — Rev 6 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎ v ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MC54/74HC160 MC54/74HC162 AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns) Guaranteed Limit VCC V – 55 to 25_C 85_C 125_C Unit fmax Maximum Clock Frequency (50% Duty Cycle)* (Figures 1 and 7) 2.0 4.5 6.0 6.0 30 35 4.8 24 28 4.0 20 24 MHz tPLH Maximum Propagation Delay, Clock to Q (Figures 1 and 7) 2.0 4.5 6.0 170 34 29 215 43 37 255 51 43 ns 2.0 4.5 6.0 205 41 35 255 51 43 310 62 53 Symbol Parameter tPHL tPHL Maximum Propagation Delay, Reset to Q (HC160 Only) (Figures 2 and 7) 2.0 4.5 6.0 210 42 36 265 53 45 315 63 54 ns tPLH Maximum Propagation Delay, Enable T to Ripple Carry Out (Figures 3 and 7) 2.0 4.5 6.0 160 32 27 200 40 34 240 48 41 ns 2.0 4.5 6.0 195 39 33 245 49 42 295 59 50 2.0 4.5 6.0 175 35 30 220 44 37 265 53 45 2.0 4.5 6.0 215 43 37 270 54 46 325 65 55 tPHL tPLH Maximum Propagation Delay, Clock to Ripple Carry Out (Figures 1 and 7) tPHL ns tPHL Maximum Propagation Delay, Reset to Ripple Carry Out (HC160 Only) (Figures 2 and 7) 2.0 4.5 6.0 220 44 37 275 55 47 330 66 56 ns tTLH, tTHL Maximum Output Transition Time, Any Output (Figures 1 and 7) 2.0 4.5 6.0 75 15 13 95 19 16 110 22 19 ns Maximum Input Capacitance — 10 10 10 pF Cin * Applies to noncascaded/nonsynchronously clocked configurations only. With synchronously cascaded counters, (1) Clock to Ripple Carry Out propagation delays, (2) Enable T or Enable P to Clock setup times, and (3) Clock to Enable T or Enable P hold times determine f max. However, if Ripple Carry Out of each stage is tied to the Clock of the next stage (nonsynchronously clocked), the f max in the table above is applicable. See Applications Information in this data sheet. NOTES: 1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). 2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). Typical @ 25°C, VCC = 5.0 V CPD Power Dissipation Capacitance (Per Package)* 60 pF * Used to determine the no–load dynamic power consumption: PD = CPD VCC 2 f + ICC VCC . For load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). High–Speed CMOS Logic Data DL129 — Rev 6 3 MOTOROLA ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎ v ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MC54/74HC160 MC54/74HC162 TIMING REQUIREMENTS (Input tr = tf = 6 ns) Guaranteed Limit VCC V – 55 to 25_C 85_C 125_C tsu Minimum Setup Time, Preset Data Inputs to Clock (Figure 5) 2.0 4.5 6.0 150 30 26 190 38 33 225 45 38 ns tsu Minimum Setup Time, Load to Clock (Figure 5) 2.0 4.5 6.0 135 27 23 170 34 29 205 41 35 ns tsu Minimum Setup Time, Reset to Clock (HC162 only) (Figure 4) 2.0 4.5 6.0 160 32 27 200 40 34 240 48 41 ns tsu Minimum Setup Time, Enable T or Enable P to Clock (Figure 6) 2.0 4.5 6.0 200 40 34 250 50 43 300 60 51 ns th Minimum Hold Time, Clock to Preset Data Inputs (Figure 5) 2.0 4.5 6.0 50 10 9 65 13 11 75 15 13 ns th Minimum Hold Time, Clock to Load (Figure 5) 2.0 4.5 6.0 3 3 3 3 3 3 3 3 3 ns th Minimum Hold Time, Clock to Reset (HC162 only) (Figure 4) 2.0 4.5 6.0 3 3 3 3 3 3 3 3 3 ns th Minimum Hold Time, Clock to Enable T or Enable P (Figure 6) 2.0 4.5 6.0 3 3 3 3 3 3 3 3 3 ns trec Minimum Recovery Time, Reset Inactive to Clock (HC160 only) (Figure 2) 2.0 4.5 6.0 125 25 21 155 31 26 190 38 32 ns trec Minimum Recovery Time, Load Inactive to Clock (Figure 5) 2.0 4.5 6.0 125 25 21 155 31 26 190 38 32 ns tw Minimum Pulse Width, Clock (Figure 1) 2.0 4.5 6.0 80 16 14 100 20 17 120 24 20 ns tw Minimum Pulse Width, Reset (HC160 only) (Figure 2) 2.0 4.5 6.0 80 16 14 100 20 17 120 24 20 ns Maximum Input Rise and Fall Times (Figure 1) 2.0 4.5 6.0 1000 500 400 1000 500 400 1000 500 400 ns Symbol tr, tf Parameter Unit NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). MOTOROLA 4 High–Speed CMOS Logic Data DL129 — Rev 6 MC54/74HC160 MC54/74HC162 CONTROL FUNCTIONS FUNCTION DESCRIPTION Resetting The HC160/162 are programmable 4–bit synchronous counters that feature parallel Load, synchronous or asynchronous Reset, a Carry Output for cascading, and count– enable controls. The HC160 and HC162 are BCD counters with asynchronous Reset, and synchronous Reset, respectively. A low level on the Reset pin (pin 1) resets the internal flip– flops and sets the outputs (Q0 through Q3) to a low level. The HC160 resets asynchronously and the HC162 resets with the rising edge of the Clock input (synchronous reset). Loading With the rising edge of the Clock, a low level on Load (pin 9) loads the data from the Preset Data Input pins (P0, P1, P2, P3) into the internal flip–flops and onto the output pins, Q0 through Q3. The count function is disabled as long as Load is low. Although the HC160 and HC162 are BCD counters, they may be programmed to any state. If they are loaded with a state disallowed in BCD code, they will return to their normal count sequence within two clock pulses (see the Output State Diagram). INPUTS Clock (Pin 2) The internal flip–flops toggle and the output count advances with the rising edge of the Clock input. In addition, control functions, such as resetting (HC162) and loading occur with the rising edge of the Clock input. Preset Data Inputs P0, P1, P2, P3 (Pins 3, 4, 5, 6) These are the data inputs for programmable counting. Data on these pins may be synchronously loaded into the internal flip–flops and appear at the counter outputs. P0 (pin 3) is the least–significant bit and P3 (pin 6) is the most–significant bit. Count Enable/Disable These devices have two count–enable control pins: Enable P (pin 7) and Enable T (pin 10). The devices count when these two pins and the Load pin are high. The logic equation is: Count Enable = Enable P Enable T Load OUTPUTS Q0, Q1, Q2, Q3 (Pins 14, 13, 12, 11) The count is either enabled or disabled by the control inputs according to Table 1. In general, Enable P is a count– enable control; Enable T is both a count–enable and a Ripple–Carry Output control. These are the counter outputs (BCD or binary). Q0 (pin 14) is the least–significant bit and Q3 (pin 11) is the most–significant bit. Table 1. Count Enable/Disable Ripple Carry Out (Pin 15) Control Inputs When the counter is in its maximum state (1001 for the BCD counters or 1111 for the binary counters), this output goes high, providing an external look–ahead carry pulse that may be used to enable successive cascaded counters. Ripple Carry Out remains high only during the maximum count state. The logic equation for this output is: Ripple Carry Out = Enable T Q0 Q1 Q2 Q3 for BCD counters HC160 and HC162 Result at Outputs Load Enable P Enable T Q0 – Q3 Ripple Carry Out H H H Count High when Q0 – Q3 are maximum* L H H No Count X L H No Count High when Q0 – Q3 are maximum* X X L No Count L * Q0 through Q3 are maximum for the HC160 and HC162 when Q3 Q2 Q1 Q0 = 1001. OUTPUT STATE DIAGRAMS HC160 and HC162 BCD Counters 0 2 3 4 15 5 14 6 13 7 12 High–Speed CMOS Logic Data DL129 — Rev 6 1 11 10 5 9 8 MOTOROLA MC54/74HC160 MC54/74HC162 SWITCHING WAVEFORMS tr 90% 50% 10% CLOCK tf tw VCC GND GND tPHL tw 1/fmax tPLH tPHL ANY OUTPUT VCC 50% RESET 50% ANY OUTPUT 90% 50% 10% trec VCC tTLH 50% CLOCK tTHL GND Figure 1. Figure 2. tr tf VCC 90% 50% 10% tPLH 90% 50% 10% ENABLE T RIPPLE CARRY OUT 50% RESET GND th tsu tPHL VCC 50% CLOCK tTLH GND tTHL Figure 3. Figure 4. HC162 Only VALID INPUTS P0, P1, P2, P3 VCC 50% GND tsu th VALID VCC LOAD 50% ENABLE T OR ENABLE P GND tsu CLOCK th trec VCC 50% GND tsu th VCC VCC CLOCK 50% 50% GND GND Figure 5. Figure 6. TEST CIRCUIT TEST POINT OUTPUT DEVICE UNDER TEST CL* * Includes all probe and jig capacitance Figure 7. MOTOROLA 6 High–Speed CMOS Logic Data DL129 — Rev 6 High–Speed CMOS Logic Data DL129 — Rev 6 3 7 LOAD CLOCK RESET ENABLE T ENABLE P P3 P2 3 2 1 10 7 6 5 P1 4 P0 LOAD LOAD C C R Q3 Q3 Q2 Q2 Q1 Q1 Q0 Q0 VCC = PIN 16 GND = PIN 8 Q3 Q2 Q1 Q0 15 RIPPLE CARRY OUT 11 12 13 14 The flip–flops shown in the circuit diagrams are Toggle–Enable flip–flops. A Toggle– Enable flip–flop is a combination of a D flip–flop and a T flip–flop. When loading data from Preset inputs P0, P1, P2, and P3, the Load signal is used to disable the Toggle input (Tn) of the flip–flop. The logic level at the Pn input is then clocked to the Q output of the flip–flop on the next rising edge of the clock. A logic zero on the Reset device input forces the internal clock (C) high and resets the Q output of the flip–flop low. T3 R C C LOAD LOAD P3 T2 R C C LOAD LOAD P2 T1 R C C LOAD LOAD P1 T0 R C C LOAD LOAD P0 MC54HC160 • MC74HC160 BCD Counter with Asynchronous Reset MC54/74HC160 MC54/74HC162 MOTOROLA MC54/74HC160 MC54/74HC162 HC160, HC162 TIMING DIAGRAM Sequence illustrated in waveforms: 1. Reset outputs to zero. 2. Preset to BCD seven. 3. Count to eight, nine, zero, one, two, and three. 4. Inhibit. RESET (HC160) (ASYNCHRONOUS) RESET (HC162) (SYNCHRONOUS) LOAD P0 PRESET DATA INPUTS P1 P2 P3 CLOCK (HC160) CLOCK (HC162) COUNT ENABLES ENABLE P ENABLE T Q0 Q1 OUTPUTS Q2 Q3 RIPPLE CARRY OUT 7 8 9 0 1 COUNT RESET MOTOROLA 2 3 INHIBIT LOAD 8 High–Speed CMOS Logic Data DL129 — Rev 6 High–Speed CMOS Logic Data DL129 — Rev 6 9 LOAD CLOCK RESET ENABLE T ENABLE P P3 P2 P1 P0 3 2 1 10 7 6 5 4 3 LOAD LOAD C C R Q3 Q3 Q2 Q2 Q1 Q1 Q0 Q0 VCC = PIN 16 GND = PIN 8 Q3 Q2 Q1 Q0 15 RIPPLE CARRY OUT 11 12 13 14 The flip–flops shown in the circuit diagrams are Toggle–Enable flip–flops. A Toggle– Enable flip–flop is a combination of a D flip–flop and a T flip–flop. When loading data from Preset inputs P0, P1, P2, and P3, the Load signal is used to disable the Toggle input (Tn) of the flip–flop. The logic level at the Pn input is then clocked to the Q output of the flip–flop on the next rising edge of the clock. A logic zero on the Reset device input forces the internal clock (C) high and resets the Q output of the flip–flop low. T3 R C C LOAD LOAD P3 T2 R C C LOAD LOAD P2 T1 R C C LOAD LOAD P1 T0 R C C LOAD LOAD P0 MC54HC160 • MC74HC160 BCD Counter with Synchronous Reset MC54/74HC160 MC54/74HC162 MOTOROLA MC54/74HC160 MC54/74HC162 TYPICAL APPLICATIONS CASCADING N–Bit Synchronous Counters LOAD INPUTS INPUTS LOAD H = COUNT L = DISABLE H = COUNT L = DISABLE P0 P1 P2 P3 LOAD P0 P1 P2 P3 RIPPLE CARRY OUT ENABLE T LOAD P0 P1 P2 P3 ENABLE P ENABLE P ENABLE P INPUTS RIPPLE CARRY OUT ENABLE T CLOCK CLOCK CLOCK R R R Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 RIPPLE CARRY OUT ENABLE T TO MORE SIGNIFICANT STAGES Q0 Q1 Q2 Q3 RESET OUTPUTS OUTPUTS OUTPUTS CLOCK NOTE: When used in these cascaded configurations the clock fmax guaranteed limits may not apply. Actual performance will depend on number of stages. This limitation is due to set up times between Enable (Port) and Clock. Nibble Ripple Counter INPUTS INPUTS INPUTS LOAD ENABLE P ENABLE T LOAD P0 P1 P2 P3 CLOCK P0 P1 P2 P3 RIPPLE CARRY OUT LOAD P0 P1 P2 P3 ENABLE P ENABLE P ENABLE P ENABLE T LOAD RIPPLE CARRY OUT ENABLE T ENABLE T CLOCK CLOCK CLOCK R R R Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 RIPPLE CARRY OUT TO MORE SIGNIFICANT STAGES Q0 Q1 Q2 Q3 RESET OUTPUTS MOTOROLA OUTPUTS 10 OUTPUTS High–Speed CMOS Logic Data DL129 — Rev 6 MC54/74HC160 MC54/74HC162 TYPICAL APPLICATION HC162 OTHER INPUTS Q0 OPTIONAL BUFFER FOR NOISE REJECTION Q1 Q2 OUTPUT Q3 RESET Modulo–5 Counter The HC162 facilitates designing counters of any modulus with minimal external logic. The output is glitch–free due to the synchronous Reset. High–Speed CMOS Logic Data DL129 — Rev 6 11 MOTOROLA MC54/74HC160 MC54/74HC162 OUTLINE DIMENSIONS J SUFFIX CERAMIC PACKAGE CASE 620–10 ISSUE V –A – 16 9 1 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. –B – L C DIM A B C D E F G J K L M N –T K N SEATING – PLANE E M F J 16 PL 0.25 (0.010) G D 16 PL 0.25 (0.010) T A M 9 1 8 T B N SUFFIX PLASTIC PACKAGE CASE 648–08 ISSUE R –A – 16 M C DIM A B C D F G H J K L M S L S –T – SEATING PLANE K H D 16 PL 0.25 (0.010) M M J G T A M D SUFFIX PLASTIC SOIC PACKAGE CASE 751B–05 ISSUE J –A – 16 1 P 8 PL 0.25 (0.010) 8 M B M G K F R X 45° C –T SEATING – PLANE MOTOROLA J M D 16 PL 0.25 (0.010) M T B S A S 12 INCHES MILLIMETERS MIN MAX MIN MAX 0.740 0.770 18.80 19.55 6.35 0.250 0.270 6.85 3.69 0.145 0.175 4.44 0.39 0.015 0.021 0.53 1.02 0.040 0.070 1.77 0.100 BSC 2.54 BSC 0.050 BSC 1.27 BSC 0.21 0.008 0.015 0.38 2.80 0.110 0.130 3.30 7.50 0.295 0.305 7.74 0° 0° 10° 10° 0.020 0.040 0.51 1.01 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 9 –B – MILLIMETERS MIN MAX 19.05 19.93 6.10 7.49 — 5.08 0.39 0.50 1.27 BSC 1.40 1.65 2.54 BSC 0.21 0.38 3.18 4.31 7.62 BSC 15° 0° 1.01 0.51 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B F S S INCHES MIN MAX 0.750 0.785 0.240 0.295 — 0.200 0.015 0.020 0.050 BSC 0.055 0.065 0.100 BSC 0.008 0.015 0.125 0.170 0.300 BSC 15° 0° 0.020 0.040 DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0° 7° 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0° 7° 0.229 0.244 0.010 0.019 High–Speed CMOS Logic Data DL129 — Rev 6 MC54/74HC160 MC54/74HC162 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 MFAX: [email protected] –TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 High–Speed CMOS Logic Data DL129 — Rev 6 ◊ CODELINE 13 *MC54/74HC160/D* MC54/74HC160/D MOTOROLA