ONSEMI MC74VHCT139ADTRG

MC74VHCT139A
Dual 2−to−4 Decoder/
Demultiplexer
The MC74VHCT139A is an advanced high speed CMOS 2−to−4
decoder/demultiplexer fabricated with silicon gate CMOS technology.
It achieves high speed operation similar to equivalent Bipolar
Schottky TTL devices while maintaining CMOS low power
dissipation.
When the device is enabled (E = low), it can be used for gating or as
a data input for demultiplexing operations. When the enable input is
held high, all four outputs are fixed high, independent of other inputs.
The internal circuit is composed of three stages, including a buffer
output which provides high noise immunity and stable output.
The device output is compatible with TTL−type input thresholds
and the output has a full 5.0 V CMOS level output swing. The input
protection circuitry on this device allows overvoltage tolerance on the
input, allowing the device to be used as a logic−level translator from
3.0 V CMOS logic to 5.0 V CMOS logic, or from 1.8 V CMOS logic
to 3.0 V CMOS logic while operating at the high−voltage power
supply
The MC74VHCT139A input structure provides protection when
voltages up to 7.0 V are applied, regardless of the supply voltage. This
allows the MC74VHCT139A to be used to interface 5.0 V circuits to
3.0 V circuits. The output structures also provide protection when
VCC = 0 V. These input and output structures help prevent device
destruction caused by supply voltage−input/output voltage mismatch,
battery backup, hot insertion, etc.
•
•
MARKING
DIAGRAMS
16
SOIC−16
D SUFFIX
CASE 751B
1
High Speed: tPD = 5.0 ns (Typ) at VCC = 5.0 V
Low Power Dissipation: ICC = 4 mΑ (Max) at TA = 25°C
TTL−Compatible Inputs: VIL = 0.8 V; VIH = 2.0 V
Power Down Protection Provided on Inputs and Outputs
Balanced Propagation Delays
Designed for 2.0 V to 5.5 V Operating Range
Low Noise: VOLP = 0.8 V (Max)
Pin and Function Compatible with Other Standard Logic Families
Latchup Performance Exceeds 300 mA
ESD Performance:
Human Body Model > 2000 V;
Machine Model > 200 V
Chip Complexity: 100 FETs or 25 Equivalent Gates
Pb−Free Packages are Available*
VHCT139AG
AWLYWW
1
16
VHCT
139A
ALYWG
G
TSSOP−16
DT SUFFIX
CASE 948F
1
1
16
SOEIAJ−16
M SUFFIX
CASE 966
1
Features
•
•
•
•
•
•
•
•
•
•
http://onsemi.com
74VHCT139
ALYWG
1
A
= Assembly Location
WL, L
= Wafer Lot
Y
= Year
WW, W = Work Week
G or G
= Pb−Free Package
(Note: Microdot may be in either location)
FUNCTION TABLE
Inputs
Outputs
E
A1
A0
Y0
Y1 Y2
Y3
H
L
L
L
L
X
L
L
H
H
X
L
H
L
H
H
L
H
H
H
H
H
L
H
H
H
H
H
H
L
H
H
H
L
H
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2006
January, 2006 − Rev. 4
1
Publication Order Number:
MC74VHCT139A/D
MC74VHCT139A
ADDRESS
INPUTS
Ea
1
16
VCC
A0a
2
15
Eb
A1a
3
14
A0b
Y0a
4
13
A1b
Y1a
5
12
Y0b
Y2a
6
11
Y1b
Y3a
7
10
Y2b
GND
8
9
Y3b
A0a
A1a
2
4
3
5
6
7
Y1a
Y2a
ACTIVE−LOW
OUTPUTS
Y3a
1
Ea
ADDRESS
INPUTS
Y0a
A0b
A1b
14
12
13
11
10
9
Figure 1. Pin Assignment
Eb
Y0b
Y1b
Y2b
ACTIVE−LOW
OUTPUTS
Y3b
15
Figure 2. Logic Diagram
En
Y0
Y1
A0
Y2
Y3
A1
Figure 3. Expanded Logic Diagram
(1/2 of Device)
A1a
3
A0a
2
Ea
1
1
X/Y
0
2
1
EN
2
3
INPUT
4 Y0a
5 Y1a
A1a
3
A0a
2
6 Y2a
7 Y3a
Ea
1
0
1
DMUX
0
0
G
3
1
2
3
12 Y0b
4 Y0a
5 Y1a
6 Y2a
7 Y3a
12 Y0b
A1b 13
A0b 14
11 Y1b
10 Y2b
A1b 13
A0b 14
11 Y1b
10 Y2b
Eb 15
9 Y3b
Eb 15
9 Y3b
Figure 5. IEC Logic Diagram
Figure 4. Input Equivalent Circuit
http://onsemi.com
2
MC74VHCT139A
MAXIMUM RATINGS (Note 1)
Value
Unit
VCC
Positive DC Supply Voltage
Parameter
−0.5 to +7.0
V
VIN
Digital Input Voltage
−0.5 to +7.0
V
VOUT
DC Output Voltage
−0.5 to +7.0
−0.5 to VCC +0.5
V
IIK
Input Diode Current
−20
mA
IOK
Output Diode Current
$20
mA
IOUT
DC Output Current, per Pin
$25
mA
ICC
DC Supply Current, VCC and GND Pins
PD
Power Dissipation in Still Air
TSTG
Storage Temperature Range
VESD
ESD Withstand Voltage
Symbol
ILATCHUP
qJA
Latchup Performance
Output in 3−State
High or Low State
SOIC Package
TSSOP
$75
mA
200
180
mW
−65 to +150
°C
Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4)
>2000
>200
>2000
V
Above VCC and Below GND at 125°C (Note 5)
$300
mA
143
164
°C/W
Thermal Resistance, Junction−to−Ambient
SOIC Package
TSSOP
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the
Recommended Operating Conditions.
2. Tested to EIA/JESD22−A114−A
3. Tested to EIA/JESD22−A115−A
4. Tested to JESD22−C101−A
5. Tested to EIA/JESD78
RECOMMENDED OPERATING CONDITIONS
Symbol
Characteristics
Min
Max
Unit
4.5
5.5
V
VCC
DC Supply Voltage
VIN
DC Input Voltage
0
5.5
V
DC Output Voltage Output in 3−State
High or Low State
0
0
5.5
VCC
V
−55
125
°C
0
20
ns/V
VOUT
TA
Operating Temperature Range, all Package Types
tr, tf
Input Rise or Fall Time
VCC = 5.0 V + 0.5 V
47.9
100
178,700
20.4
110
79,600
9.4
120
37,000
4.2
130
17,800
2.0
140
8,900
1.0
TJ = 80° C
117.8
419,300
TJ = 90 ° C
1,032,200
90
TJ = 100° C
80
FAILURE RATE OF PLASTIC = CERAMIC
UNTIL INTERMETALLICS OCCUR
TJ = 110° C
Time, Years
TJ = 120° C
Time, Hours
TJ = 130° C
Junction
Temperature °C
NORMALIZED FAILURE RATE
DEVICE JUNCTION TEMPERATURE VERSUS TIME
TO 0.1% BOND FAILURES
1
1
10
100
1000
TIME, YEARS
Figure 6. Failure Rate vs. Time Junction Temperature
http://onsemi.com
3
MC74VHCT139A
DC CHARACTERISTICS (Voltages Referenced to GND)
VCC
Symbol
Parameter
(V)
Min
VIH
Minimum High−Level Input
Voltage
4.5 to 5.5
2
VIL
Maximum Low−Level Input
Voltage
4.5 to 5.5
VOH
Maximum High−Level
Output Voltage
VOL
Maximum Low−Level
Output Voltage
Condition
TA ≤ 85°C
TA = 25°C
Typ
Max
Min
Max
2
0.8
VIN = VIH or VIL
IOH = −50 mA
4.5
4.4
VIN = VIH or VIL
IOH = −8 mA
4.5
3.94
VIN = VIH or VIL
IOL = 50 mA
4.5
VIN = VIH or VIL
IOH = 8 mA
TA = − 55 to
125°C
Min
Max
2
0.8
Unit
V
0.8
V
V
4.5
4.4
4.4
3.8
3.66
V
0
0.1
0.1
0.1
4.5
0.36
0.44
0.52
IIN
Input Leakage Current
VIN = 5.5 V or GND
0 to 5.5
±0.1
±1.0
±1.0
mA
ICC
Maximum Quiescent
Supply Current
VIN = VCC or GND
5.5
4.0
40.0
40.0
mA
ICCT
Additional Quiescent
Supply Current (per Pin)
Any one input:
VIN = 3.4 V
All other inputs:
VIN = VCC or GND
5.5
1.35
1.5
1.5
mA
mA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
IOPD
Output Leakage Current
VOUT = 5.5 V
0
0.5
5
5
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns)
TA ≤ 85°C
TA = 25°C
Symbol
tPLH,
tPHL
tPLH,
tPHL
CIN
Parameter
Maximum Propagation
Delay, A to Y
Maximum Propagation
Delay, E to Y
Test Conditions
Min
TA = − 55 to
125°C
Typ
Max
Min
Max
Min
Max
Unit
ns
VCC = 3.3 ± 0.3 V
CL = 15 pF
CL = 50 pF
7.2
9.7
11.0
14.5
1.0
1.0
13.0
16.5
1.0
1.0
13.0
16.5
VCC = 5.0 ± 0.5 V
CL = 15 pF
CL = 50 pF
5.0
6.5
7.2
9.2
1.0
1.0
8.5
10.5
1.0
1.0
8.5
10.5
VCC = 3.3 ± 0.3 V
CL = 15 pF
CL = 50 pF
6.4
8.9
9.2
12.7
1.0
1.0
11.0
14.5
1.0
1.0
11.0
14.5
VCC = 5.0 ± 0.5 V
CL = 15 pF
CL = 50 pF
4.4
5.9
6.3
8.3
1.0
1.0
7.5
9.5
1.0
1.0
7.5
9.5
4
10
Maximum Input
Capacitance
10
10
ns
pF
Typical @ 25°C, VCC = 5.0V
CPD
26
Power Dissipation Capacitance (Note 6)
pF
6. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC/2 (per decoder). CPD is used to determine the
no−load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC.
http://onsemi.com
4
MC74VHCT139A
A
3.0 V
1.5 V
E
GND
1.5 V
tPHL
tPLH
Y
3.0 V
tPLH
tPHL
VOH
1.5 V
Figure 7. Switching Waveform
VOH
1.5 V
Y
VOL
GND
VOL
Figure 8. Switching Waveform
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
C L*
*Includes all probe and jig capacitance
Figure 9. Test Circuit
ORDERING INFORMATION
Package
Shipping †
MC74VHCT139AD
SOIC−16
48 Units / Rail
MC74VHCT139ADG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74VHCT139ADR2
SOIC−16
2500 Tape & Reel
MC74VHCT139ADR2G
SOIC−16
(Pb−Free)
2500 Tape & Reel
MC74VHCT139ADT
TSSOP−16*
96 Units / Rail
MC74VHCT139ADTG
TSSOP−16*
96 Units / Rail
MC74VHCT139ADTR2
TSSOP−16*
2500 Tape & Reel
MC74VHCT139ADTRG
TSSOP−16*
2500 Tape & Reel
MC74VHCT139AM
SOEIAJ−16
50 Units / Rail
MC74VHCT139AMG
SOEIAJ−16
(Pb−Free)
50 Units / Rail
MC74VHCT139AMEL
SOEIAJ−16
2000 Tape & Reel
MC74VHCT139AMELG
SOEIAJ−16
(Pb−Free)
2000 Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
5
MC74VHCT139A
PACKAGE DIMENSIONS
SOIC−16
D SUFFIX
CASE 751B−05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
−A−
16
9
−B−
1
P
8 PL
0.25 (0.010)
8
B
M
S
G
R
K
DIM
A
B
C
D
F
G
J
K
M
P
R
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
S
TSSOP−16
DT SUFFIX
CASE 948F−01
ISSUE A
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
K
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
8
1
N
0.15 (0.006) T U
S
0.25 (0.010)
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
M
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DETAIL E
G
http://onsemi.com
6
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC74VHCT139A
PACKAGE DIMENSIONS
SOEIAJ−16
M SUFFIX
CASE 966−01
ISSUE A
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
K
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
8
1
N
0.15 (0.006) T U
S
0.25 (0.010)
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
M
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
DETAIL E
G
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
7
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
MC74VHCT139A/D