FREESCALE MK20DN64VLH5

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: K20P64M50SF0
Rev. 4 5/2012
K20P64M50SF0
K20 Sub-Family
Supports the following:
MK20DN32VLH5, MK20DX32VLH5,
MK20DN64VLH5, MK20DX64VLH5,
MK20DN128VLH5, MK20DX128VLH5,
MK20DN32VMP5, MK20DX32VMP5,
MK20DN64VMP5, MK20DX64VMP5,
MK20DN128VMP5, MK20DX128VMP5
Features
• Operating Characteristics
– Voltage range: 1.71 to 3.6 V
– Flash write voltage range: 1.71 to 3.6 V
– Temperature range (ambient): -40 to 105°C
• Performance
– Up to 50 MHz ARM Cortex-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
• Memories and memory interfaces
– Up to 128 KB program flash.
– Up to 32 KB FlexNVM on FlexMemory devices
– 2 KB FlexRAM on FlexMemory devices
– Up to 16 KB RAM
– Serial programming interface (EzPort)
• Clocks
– 3 to 32 MHz crystal oscillator
– 32 kHz crystal oscillator
– Multi-purpose clock generator
• System peripherals
– Multiple low-power modes to provide power
optimization based on application requirements
– 4-channel DMA controller, supporting up to 41
request sources
– External watchdog monitor
– Software watchdog
– Low-leakage wakeup unit
• Security and integrity modules
– Hardware CRC module to support fast cyclic
redundancy checks
– 128-bit unique identification (ID) number per chip
• Analog modules
– 16-bit SAR ADC
– Two analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
– Voltage reference
• Timers
– Programmable delay block
– Eight-channel motor control/general purpose/PWM
timer
– Two-channel quadrature decoder/general purpose
timer
– Periodic interrupt timers
– 16-bit low-power timer
– Carrier modulator transmitter
– Real-time clock
• Communication interfaces
– USB full-/low-speed On-the-Go controller with onchip transceiver
– SPI module
– I2C module
– Three UART modules
– I2S module
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2011–2012 Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................3
5.4.1
Thermal operating requirements...........................21
1.1 Determining valid orderable parts......................................3
5.4.2
Thermal attributes.................................................21
2 Part identification......................................................................3
6 Peripheral operating requirements and behaviors....................22
2.1 Description.........................................................................3
6.1 Core modules....................................................................22
2.2 Format...............................................................................3
6.1.1
JTAG electricals....................................................22
2.3 Fields.................................................................................3
6.2 System modules................................................................25
2.4 Example............................................................................4
6.3 Clock modules...................................................................25
3 Terminology and guidelines......................................................4
6.3.1
MCG specifications...............................................25
3.1 Definition: Operating requirement......................................4
6.3.2
Oscillator electrical specifications.........................27
3.2 Definition: Operating behavior...........................................5
6.3.3
32 kHz Oscillator Electrical Characteristics...........29
3.3 Definition: Attribute............................................................5
6.4 Memories and memory interfaces.....................................30
3.4 Definition: Rating...............................................................6
6.4.1
Flash electrical specifications................................30
3.5 Result of exceeding a rating..............................................6
6.4.2
EzPort Switching Specifications............................34
3.6 Relationship between ratings and operating
requirements......................................................................6
6.5 Security and integrity modules..........................................35
6.6 Analog...............................................................................35
3.7 Guidelines for ratings and operating requirements............7
6.6.1
ADC electrical specifications.................................35
3.8 Definition: Typical value.....................................................7
6.6.2
CMP and 6-bit DAC electrical specifications.........40
3.9 Typical value conditions....................................................8
6.6.3
Voltage reference electrical specifications............43
4 Ratings......................................................................................9
6.7 Timers................................................................................44
4.1 Thermal handling ratings...................................................9
6.8 Communication interfaces.................................................44
4.2 Moisture handling ratings..................................................9
6.8.1
USB electrical specifications.................................44
4.3 ESD handling ratings.........................................................9
6.8.2
USB DCD electrical specifications........................45
4.4 Voltage and current operating ratings...............................9
6.8.3
USB VREG electrical specifications......................45
5 General.....................................................................................10
6.8.4
DSPI switching specifications (limited voltage
5.1 AC electrical characteristics..............................................10
5.2 Nonswitching electrical specifications...............................11
range)....................................................................46
6.8.5
DSPI switching specifications (full voltage range).47
5.2.1
Voltage and current operating requirements.........11
6.8.6
I2C switching specifications..................................49
5.2.2
LVD and POR operating requirements.................11
6.8.7
UART switching specifications..............................49
5.2.3
Voltage and current operating behaviors..............12
6.8.8
I2S/SAI Switching Specifications..........................49
5.2.4
Power mode transition operating behaviors..........13
5.2.5
Power consumption operating behaviors..............14
5.2.6
EMC radiated emissions operating behaviors.......18
7 Dimensions...............................................................................55
5.2.7
Designing with radiated emissions in mind...........19
7.1 Obtaining package dimensions.........................................55
5.2.8
Capacitance attributes..........................................19
8 Pinout........................................................................................56
5.3 Switching specifications.....................................................19
8.1 K20 Signal Multiplexing and Pin Assignments..................56
6.9 Human-machine interfaces (HMI)......................................54
6.9.1
TSI electrical specifications...................................54
5.3.1
Device clock specifications...................................19
8.2 K20 Pinouts.......................................................................58
5.3.2
General switching specifications...........................20
9 Revision History........................................................................60
5.4 Thermal specifications.......................................................21
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
2
Freescale Semiconductor, Inc.
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to http://www.freescale.com and perform a part number
search for the following device numbers: PK20 and MK20 .
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
K##
Kinetis family
• K20
A
Key attribute
• D = Cortex-M4 w/ DSP
• F = Cortex-M4 w/ DSP and FPU
M
Flash memory type
• N = Program flash only
• X = Program flash and FlexMemory
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
3
Terminology and guidelines
Field
Description
Values
FFF
Program flash memory size
•
•
•
•
•
•
32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
R
Silicon revision
• Z = Initial
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
• C = –40 to 85
PP
Package identifier
•
•
•
•
•
•
•
•
•
•
•
•
•
FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
MP = 64 MAPBGA (5 mm x 5 mm)
LK = 80 LQFP (12 mm x 12 mm)
MB = 81 MAPBGA (8 mm x 8 mm)
LL = 100 LQFP (14 mm x 14 mm)
ML = 104 MAPBGA (8 mm x 8 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
MJ = 256 MAPBGA (17 mm x 17 mm)
CC
Maximum CPU frequency (MHz)
•
•
•
•
•
5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
2.4 Example
This is an example part number:
MK20DN32VLH5
3 Terminology and guidelines
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
4
Freescale Semiconductor, Inc.
Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
3.1.1 Example
This is an example of an operating requirement, which you must meet for the
accompanying operating behaviors to be guaranteed:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
1.1
Unit
V
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the
accompanying operating requirements:
Symbol
IWP
Description
Digital I/O weak pullup/ 10
pulldown current
Min.
Max.
130
Unit
µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
5
Terminology and guidelines
3.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Max.
7
Unit
pF
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
–0.3
Max.
1.2
Unit
V
3.5 Result of exceeding a rating
Failures in time (ppm)
40
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
6
Freescale Semiconductor, Inc.
Terminology and guidelines
3.6 Relationship between ratings and operating requirements
e
Op
ing
rat
r
(
ng
ati
in.
t (m
)
n.
mi
rat
e
Op
ing
)
t (m
e
ir
qu
re
n
me
ing
rat
e
Op
ax
.)
e
ir
qu
re
n
me
ing
rat
e
Op
ng
ati
ax
(m
.)
r
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
g
lin
nd
Ha
in
rat
n.)
mi
g(
nd
Ha
g
lin
ing
rat
ax
(m
.)
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
–∞
Handling (power off)
∞
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
7
Terminology and guidelines
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
Description
IWP
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
70
Max.
130
Unit
µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.00
1.05
1.10
VDD (V)
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
8
Freescale Semiconductor, Inc.
Ratings
4 Ratings
4.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device model
-500
+500
V
2
Latch-up current at ambient temperature of 105°C
-100
+100
mA
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol
VDD
Description
Min.
Max.
Unit
Digital supply voltage
–0.3
3.8
V
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
9
General
Symbol
IDD
Description
Digital supply current
Min.
Max.
Unit
—
155
mA
VDIO
Digital input voltage (except RESET, EXTAL, and XTAL)
–0.3
VDD + 0.3
V
VAIO
Analog1, RESET, EXTAL, and XTAL input voltage
–0.3
VDD + 0.3
V
Maximum current single pin limit (applies to all port pins)
–25
25
mA
ID
VDDA
Analog supply voltage
VDD – 0.3
VDD + 0.3
V
VUSB_DP
USB_DP input voltage
–0.3
3.63
V
VUSB_DM
USB_DM input voltage
–0.3
3.63
V
VREGIN
USB regulator input
–0.3
6.0
V
RTC battery supply voltage
–0.3
3.8
V
VBAT
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
5 General
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Figure 1. Input signal measurement reference
All digital I/O switching characteristics assume:
1. output pins
• have CL=30pF loads,
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
• are configured for high drive strength (PORTx_PCRn[DSE]=1)
2. input pins
• have their passive filter disabled (PORTx_PCRn[PFE]=0)
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
10
Freescale Semiconductor, Inc.
General
5.2 Nonswitching electrical specifications
5.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
1.71
3.6
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
VBAT
VIH
VIL
RTC battery supply voltage
Input high voltage
Input low voltage
VHYS
Input hysteresis
IICIO
I/O pin DC injection current — single pin
• VIN < VSS-0.3V (Negative current injection)
• VIN > VDD+0.3V (Positive current injection)
IICcont
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
• Negative current injection
• Positive current injection
VRAM
VRFVBAT
Notes
VDD voltage required to retain RAM
VBAT voltage required to retain the VBAT register file
1
mA
-3
—
—
+3
-25
—
—
+25
1.2
—
V
VPOR_VBAT
—
V
mA
1. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
11
General
5.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
2.48
2.56
2.64
V
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV=01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV=10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV=11)
2.92
3.00
3.08
V
—
±80
—
mV
1.54
1.60
1.66
V
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low range
(LVDV=00)
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV=01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV=10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV=11)
2.04
2.10
2.16
V
—
±60
—
mV
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
Notes
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
1. Rising thresholds are falling threshold + hysteresis voltage
Table 3. VBAT power operating requirements
Symbol
Description
VPOR_VBAT Falling VBAT supply POR detect voltage
Min.
Typ.
Max.
Unit
0.8
1.1
1.5
V
Notes
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
12
Freescale Semiconductor, Inc.
General
5.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol
VOH
Description
Min.
Max.
Unit
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA
VDD – 0.5
—
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA
VDD – 0.5
—
V
—
100
mA
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA
—
0.5
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA
—
0.5
V
—
100
mA
• @ full temperature range
—
1.0
μA
• @ 25 °C
—
0.1
μA
Notes
Output high voltage — high drive strength
Output high voltage — low drive strength
IOHT
Output high current total for all ports
VOL
Output low voltage — high drive strength
Output low voltage — low drive strength
IOLT
IIN
Output low current total for all ports
Input leakage current (per pin)
1
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
IOZ
Total Hi-Z (off-state) leakage current (all input pins)
—
4
μA
RPU
Internal pullup resistors
22
50
kΩ
2
RPD
Internal pulldown resistors
22
50
kΩ
3
1. Tested by ganged leakage method
2. Measured at Vinput = VSS
3. Measured at Vinput = VDD
5.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx→RUN recovery times in the following table
assume this clock configuration:
• CPU and system clocks = 50 MHz
• Bus clock = 50 MHz
• Flash clock = 25 MHz
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
13
General
Table 5. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
• VLLS0 → RUN
• VLLS1 → RUN
• VLLS2 → RUN
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
Min.
Max.
Unit
Notes
—
300
μs
1
—
130
μs
—
130
μs
—
70
μs
—
70
μs
—
6
μs
—
5.2
μs
—
5.2
μs
1. Normal boot (FTFL_OPT[LPBOOT]=1)
5.2.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol
IDDA
IDD_RUN
Description
Analog supply current
Run mode current — all peripheral clocks
disabled, code executing from flash
• @ 1.8V
Min.
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
2
—
13.7
15.1
mA
—
13.9
15.3
mA
• @ 3.0V
IDD_RUN
Run mode current — all peripheral clocks
enabled, code executing from flash
3, 4
—
16.1
18.2
mA
—
16.3
17.7
mA
—
16.7
18.4
mA
• @ 1.8V
• @ 3.0V
• @ 25°C
• @ 125°C
IDD_WAIT
Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
—
7.5
8.4
mA
2
IDD_WAIT
Wait mode reduced frequency current at 3.0 V
— all peripheral clocks disabled
—
5.6
6.4
mA
5
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
14
Freescale Semiconductor, Inc.
General
Table 6. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
—
867
—
μA
6
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
—
1.1
—
mA
7
IDD_VLPW
Very-low-power wait mode current at 3.0 V
—
509
—
μA
8
IDD_STOP
Stop mode current at 3.0 V
• @ –40 to 25°C
—
310
426
μA
• @ 70°C
—
384
458
μA
• @ 105°C
—
629
1100
μA
• @ –40 to 25°C
—
3.5
22.6
μA
• @ 70°C
—
20.7
52.9
μA
• @ 105°C
—
85
220
μA
• @ –40 to 25°C
—
2.1
3.7
μA
• @ 70°C
—
7.7
43.1
μA
• @ 105°C
—
32.2
68
μA
• @ –40 to 25°C
—
1.5
2.9
μA
• @ 70°C
—
4.8
22.5
μA
• @ 105°C
—
20
37.8
μA
• @ –40 to 25°C
—
1.4
2.8
μA
• @ 70°C
—
4.1
19.2
μA
• @ 105°C
—
17.3
32.4
μA
• @ –40 to 25°C
—
0.678
1.3
μA
• @ 70°C
—
2.8
13.6
μA
• @ 105°C
—
13.6
24.5
μA
—
0.367
1.0
μA
—
2.4
13.3
μA
—
13.2
24.1
μA
IDD_VLPS
IDD_LLS
IDD_VLLS3
IDD_VLLS2
IDD_VLLS1
IDD_VLLS0
Very-low-power stop mode current at 3.0 V
Low leakage stop mode current at 3.0 V
Very low-leakage stop mode 3 current at 3.0 V
Very low-leakage stop mode 2 current at 3.0 V
Very low-leakage stop mode 1 current at 3.0 V
Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
• @ –40 to 25°C
• @ 70°C
• @ 105°C
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
15
General
Table 6. Power consumption operating behaviors (continued)
Symbol
IDD_VLLS0
Description
• @ 70°C
• @ 105°C
Max.
Unit
—
0.176
0.859
μA
—
2.2
13.1
μA
—
13
23.9
μA
—
0.19
0.22
μA
—
0.49
0.64
μA
—
2.2
3.2
μA
Notes
Average current with RTC and 32kHz disabled at
3.0 V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
IDD_VBAT
Typ.
Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
• @ –40 to 25°C
IDD_VBAT
Min.
Average current when CPU is not accessing
RTC registers
9
• @ 1.8V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
—
0.57
0.67
μA
—
0.90
1.2
μA
—
2.4
3.5
μA
—
0.67
0.94
μA
—
1.0
1.4
μA
—
2.7
3.9
μA
• @ 3.0V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral
clocks disabled.
3. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral
clocks enabled, and peripherals are in active operation.
4. Max values are measured with CPU executing DSP instructions
5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz flash clock. MCG configured for FEI mode.
6. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
Code executing from flash.
7. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled
but peripherals are not in active operation. Code executing from flash.
8. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
9. Includes 32kHz oscillator current and RTC operation.
5.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
• MCG in FBE mode
• USB regulator disabled
• No GPIOs toggled
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
16
Freescale Semiconductor, Inc.
General
• Code execution from flash with cache enabled
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL
Figure 2. Run mode supply current vs. core frequency
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
17
General
Figure 3. VLPR mode supply current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors for 64LQFP
Symbol
Description
Frequency
band (MHz)
Typ.
Unit
Notes
1,2
VRE1
Radiated emissions voltage, band 1
0.15–50
19
dBμV
VRE2
Radiated emissions voltage, band 2
50–150
21
dBμV
VRE3
Radiated emissions voltage, band 3
150–500
19
dBμV
VRE4
Radiated emissions voltage, band 4
500–1000
11
dBμV
IEC level
0.15–1000
L
—
VRE_IEC
2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
18
Freescale Semiconductor, Inc.
General
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 48 MHz, fBUS = 48MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to http://www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
5.3 Switching specifications
5.3.1 Device clock specifications
Table 9. Device clock specifications
Symbol
Description
Min.
Max.
Unit
System and core clock
—
50
MHz
System and core clock when Full Speed USB in
operation
20
—
MHz
Bus clock
—
50
MHz
fFLASH
Flash clock
—
25
MHz
fLPTMR
LPTMR clock
—
25
MHz
Notes
Normal run mode
fSYS
fSYS_USB
fBUS
VLPR mode1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
4
MHz
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
19
General
Table 9. Device clock specifications (continued)
Symbol
Description
Min.
Max.
Unit
fFLASH
Flash clock
—
1
MHz
fERCLK
External reference clock
—
16
MHz
LPTMR clock
—
25
MHz
LPTMR external reference clock
—
16
MHz
fI2S_MCLK
I2S master clock
—
12.5
MHz
fI2S_BCLK
I2S bit clock
—
4
MHz
fLPTMR_pin
fLPTMR_ERCLK
Notes
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any
other module.
5.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
CMT, and I2C signals.
Table 10. General switching specifications
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5
—
Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100
—
ns
3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
50
—
ns
3
External reset pulse width (digital glitch filter disabled)
100
—
ns
3
2
—
Bus clock
cycles
Mode select (EZP_CS) hold time after reset
deassertion
Port rise and fall time (high drive strength)
4
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
• 2.7 ≤ VDD ≤ 3.6V
—
13
ns
ns
7
• Slew enabled
• 1.71 ≤ VDD ≤ 2.7V
—
• 2.7 ≤ VDD ≤ 3.6V
—
ns
36
ns
24
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
20
Freescale Semiconductor, Inc.
General
Table 10. General switching specifications (continued)
Symbol
Description
Min.
Max.
Unit
Notes
Port rise and fall time (low drive strength)
5
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
12
ns
• 2.7 ≤ VDD ≤ 3.6V
—
6
ns
• 1.71 ≤ VDD ≤ 2.7V
—
36
ns
• 2.7 ≤ VDD ≤ 3.6V
—
24
ns
• Slew enabled
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be
recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and
VLLSx modes.
4. 75pF load
5. 15pF load
5.4 Thermal specifications
5.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
5.4.2 Thermal attributes
Board type
Symbol
Description
Single-layer
(1s)
RθJA
Four-layer
(2s2p)
RθJA
64 MAPBGA
64 LQFP
Unit
Notes
Thermal
107
resistance,
junction to
ambient (natural
convection)
65
°C/W
1, 2
Thermal
56
resistance,
junction to
ambient (natural
convection)
46
°C/W
1, 3
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
21
Peripheral operating requirements and behaviors
Board type
Symbol
Description
64 LQFP
Unit
Notes
Single-layer
(1s)
RθJMA
Thermal
90
resistance,
junction to
ambient (200 ft./
min. air speed)
53
°C/W
1,3
Four-layer
(2s2p)
RθJMA
Thermal
51
resistance,
junction to
ambient (200 ft./
min. air speed)
40
°C/W
,
—
RθJB
Thermal
resistance,
junction to
board
31
28
°C/W
5
—
RθJC
Thermal
resistance,
junction to case
31
15
°C/W
6
—
ΨJT
Thermal
6
characterization
parameter,
junction to
package top
outside center
(natural
convection)
3
°C/W
7
1.
2.
3.
5.
6.
7.
64 MAPBGA
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the
JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.
Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental
Conditions—Forced Convection (Moving Air) with the board horizontal.
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
6.1 Core modules
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
22
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.1.1 JTAG electricals
Table 12. JTAG voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
2.7
5.5
V
TCLK frequency of operation
MHz
• JTAG
—
10
• CJTAG
—
5
J2
TCLK cycle period
1/J1
—
ns
J3
TCLK clock pulse width
• JTAG
100
—
ns
• CJTAG
200
—
ns
ns
J4
TCLK rise and fall times
J5
TMS input data setup time to TCLK rise
• JTAG
• CJTAG
J6
TDI input data setup time to TCLK rise
J7
TMS input data hold time after TCLK rise
• JTAG
• CJTAG
J8
TDI input data hold time after TCLK rise
J9
TCLK low to TMS data valid
• JTAG
• CJTAG
—
1
53
—
112
—
8
—
3.4
—
3.4
—
3.4
—
—
48
—
85
ns
ns
ns
ns
ns
ns
J10
TCLK low to TDO data valid
—
48
ns
J11
Output data hold/invalid time after clock edge1
—
3
ns
1. They are common for JTAG and CJTAG. Input transition = 1 ns and Output load = 50pf
J2
J3
J3
TCLK (input)
J4
J4
Figure 4. Test clock input timing
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
23
Peripheral operating requirements and behaviors
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
J8
Data outputs
J7
Data outputs
Output data valid
Figure 5. Boundary scan (JTAG) timing
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 6. Test Access Port timing
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
24
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
TCLK
J14
J13
TRST
Figure 7. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
6.3.1 MCG specifications
Table 13. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
—
32.768
—
kHz
31.25
—
39.0625
kHz
Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
—
± 0.3
± 0.6
%fdco
1
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
+0.5/-0.7
±3
%fdco
1
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
—
± 0.3
—
%fdco
1
fintf_ft
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
—
4
—
MHz
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
fints_t
Internal reference frequency (slow clock) — user
trimmed
Δfdco_res_t
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
Notes
FLL
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
25
Peripheral operating requirements and behaviors
Table 13. MCG specifications (continued)
Symbol
ffll_ref
fdco
Description
FLL reference frequency range
DCO output
frequency range
Low range (DRS=00)
Min.
Typ.
Max.
Unit
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
71.99
—
MHz
—
95.98
—
MHz
—
180
—
—
150
—
—
—
1
ms
48.0
—
100
MHz
—
1060
—
µA
—
600
—
µA
2.0
—
4.0
MHz
Notes
2, 3
640 × ffll_ref
Mid range (DRS=01)
1280 × ffll_ref
Mid-high range (DRS=10)
1920 × ffll_ref
High range (DRS=11)
2560 × ffll_ref
fdco_t_DMX3 DCO output
frequency
2
Low range (DRS=00)
4, 5
732 × ffll_ref
Mid range (DRS=01)
1464 × ffll_ref
Mid-high range (DRS=10)
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
Jcyc_fll
FLL period jitter
• fVCO = 48 MHz
• fVCO = 98 MHz
tfll_acquire
FLL target frequency acquisition time
ps
6
PLL
fvco
VCO operating frequency
Ipll
PLL operating current
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 48)
Ipll
PLL operating current
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 24)
fpll_ref
PLL reference frequency range
Jcyc_pll
PLL period jitter (RMS)
7
7
8
• fvco = 48 MHz
—
120
—
ps
• fvco = 100 MHz
—
50
—
ps
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
26
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 13. MCG specifications (continued)
Symbol
Description
Min.
Jacc_pll
PLL accumulated jitter over 1µs (RMS)
Typ.
Max.
Unit
Notes
8
• fvco = 48 MHz
—
1350
—
ps
• fvco = 100 MHz
—
600
—
ps
Dlock
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
tpll_lock
Lock detector detection time
—
—
150 × 10-6
+ 1075(1/
fpll_ref)
s
9
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature should be considered.
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
6.3.2 Oscillator electrical specifications
This section provides the electrical characteristics of the module.
6.3.2.1
Symbol
VDD
IDDOSC
Oscillator DC electrical specifications
Table 14. Oscillator DC electrical specifications
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
27
Peripheral operating requirements and behaviors
Table 14. Oscillator DC electrical specifications (continued)
Symbol
Description
Min.
IDDOSC
Supply current — high gain mode (HGO=1)
Typ.
Max.
Unit
Notes
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain mode
(HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
RS
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
Vpp5
1.
2.
3.
4.
VDD=3.3 V, Temperature =25 °C
See crystal or resonator manufacturer's recommendation
Cx,Cy can be provided by using either the integrated capacitors or by using external components.
When low power mode is selected, RF is integrated and must not be attached externally.
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
28
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other devices.
6.3.2.2
Symbol
Oscillator frequency specifications
Table 15. Oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
fosc_lo
Oscillator crystal or resonator frequency — low
frequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency — high
frequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
50
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
tcst
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it
remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register
being set.
6.3.3 32 kHz Oscillator Electrical Characteristics
This section describes the module electrical characteristics.
6.3.3.1
Symbol
VBAT
RF
32 kHz oscillator DC electrical specifications
Table 16. 32kHz oscillator DC electrical specifications
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
—
100
—
MΩ
Internal feedback resistor
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
29
Peripheral operating requirements and behaviors
Table 16. 32kHz oscillator DC electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Cpara
Parasitical capacitance of EXTAL32 and XTAL32
—
5
7
pF
Vpp1
Peak-to-peak amplitude of oscillation
—
0.6
—
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to
required oscillator components and must not be connected to any other devices.
6.3.3.2
Symbol
32kHz oscillator frequency specifications
Table 17. 32kHz oscillator frequency specifications
Min.
Typ.
Max.
Unit
Oscillator crystal
—
32.768
—
kHz
Crystal start-up time
—
1000
—
ms
1
fec_extal32
Externally provided input clock frequency
—
32.768
—
kHz
2
vec_extal32
Externally provided input clock amplitude
700
—
VBAT
mV
2, 3
fosc_lo
tstart
Description
Notes
1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The
oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied
clock must be within the range of VSS to VBAT.
6.4 Memories and memory interfaces
6.4.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
6.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 18. NVM program/erase timing specifications
Symbol
Description
thvpgm4
thversscr
thversblk32k
Min.
Typ.
Max.
Unit
Longword Program high-voltage time
—
7.5
18
μs
Sector Erase high-voltage time
—
13
113
ms
1
Erase Block high-voltage time for 32 KB
—
52
452
ms
1
—
52
452
ms
1
thversblk128k Erase Block high-voltage time for 128 KB
Notes
1. Maximum time based on expectations at cycling end-of-life.
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
30
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.4.1.2
Symbol
Flash timing specifications — commands
Table 19. Flash command timing specifications
Description
Min.
Typ.
Max.
Unit
Notes
Read 1s Block execution time
trd1blk32k
• 32 KB data flash
—
—
0.5
ms
trd1blk128k
• 128 KB program flash
—
—
1.7
ms
trd1sec1k
Read 1s Section execution time (flash sector)
—
—
60
μs
1
tpgmchk
Program Check execution time
—
—
45
μs
1
trdrsrc
Read Resource execution time
—
—
30
μs
1
tpgm4
Program Longword execution time
—
65
145
μs
Erase Flash Block execution time
2
tersblk32k
• 32 KB data flash
—
55
465
ms
tersblk128k
• 128 KB program flash
—
61
495
ms
—
14
114
ms
tersscr
Erase Flash Sector execution time
2
Program Section execution time
tpgmsec512
• 512 B flash
—
4.7
—
ms
tpgmsec1k
• 1 KB flash
—
9.3
—
ms
trd1all
Read 1s All Blocks execution time
—
—
1.8
ms
trdonce
Read Once execution time
—
—
25
μs
Program Once execution time
—
65
—
μs
tersall
Erase All Blocks execution time
—
115
1000
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
—
70
—
ms
tpgmonce
1
Program Partition for EEPROM execution time
tpgmpart32k
• 32 KB FlexNVM
Set FlexRAM Function execution time:
tsetramff
• Control Code 0xFF
—
50
—
μs
tsetram8k
• 8 KB EEPROM backup
—
0.3
0.5
ms
tsetram32k
• 32 KB EEPROM backup
—
0.7
1.0
ms
Byte-write to FlexRAM for EEPROM operation
teewr8bers
Byte-write to erased FlexRAM location execution
time
—
175
260
μs
3
Byte-write to FlexRAM execution time:
teewr8b8k
• 8 KB EEPROM backup
—
340
1700
μs
teewr8b16k
• 16 KB EEPROM backup
—
385
1800
μs
teewr8b32k
• 32 KB EEPROM backup
—
475
2000
μs
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
31
Peripheral operating requirements and behaviors
Table 19. Flash command timing specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
Word-write to FlexRAM for EEPROM operation
teewr16bers
Word-write to erased FlexRAM location
execution time
—
175
260
μs
Word-write to FlexRAM execution time:
teewr16b8k
• 8 KB EEPROM backup
—
340
1700
μs
teewr16b16k
• 16 KB EEPROM backup
—
385
1800
μs
teewr16b32k
• 32 KB EEPROM backup
—
475
2000
μs
Longword-write to FlexRAM for EEPROM operation
teewr32bers
Longword-write to erased FlexRAM location
execution time
—
360
540
μs
Longword-write to FlexRAM execution time:
teewr32b8k
• 8 KB EEPROM backup
—
545
1950
μs
teewr32b16k
• 16 KB EEPROM backup
—
630
2050
μs
teewr32b32k
• 32 KB EEPROM backup
—
810
2250
μs
1. Assumes 25MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
6.4.1.3
Flash high voltage current behaviors
Table 20. Flash high voltage current behaviors
Symbol
Description
IDD_PGM
IDD_ERS
6.4.1.4
Symbol
Min.
Typ.
Max.
Unit
Average current adder during high voltage
flash programming operation
—
2.5
6.0
mA
Average current adder during high voltage
flash erase operation
—
1.5
4.0
mA
Reliability specifications
Table 21. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k
Data retention after up to 10 K cycles
5
50
—
years
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
50
—
years
2
Data Flash
tnvmretd10k
Data retention after up to 10 K cycles
5
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
32
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 21. NVM reliability specifications (continued)
Symbol
Description
tnvmretd1k
Data retention after up to 1 K cycles
nnvmcycd
Cycling endurance
Min.
Typ.1
Max.
Unit
20
100
—
years
10 K
50 K
—
cycles
Notes
2
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance
5
50
—
years
tnvmretee10
20
100
—
years
Data retention up to 10% of write endurance
Write endurance
3
nnvmwree16
• EEPROM backup to FlexRAM ratio = 16
35 K
175 K
—
writes
nnvmwree128
• EEPROM backup to FlexRAM ratio = 128
315 K
1.6 M
—
writes
nnvmwree512
• EEPROM backup to FlexRAM ratio = 512
1.27 M
6.4 M
—
writes
nnvmwree4k
• EEPROM backup to FlexRAM ratio = 4096
10 M
50 M
—
writes
• EEPROM backup to FlexRAM ratio = 8192
20 M
100 M
—
writes
nnvmwree8k
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant
25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering
Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup. Minimum and typical values
assume all byte-writes to FlexRAM.
6.4.1.5
Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size
can be set to any of several non-zero values.
The bytes not assigned to data flash via the FlexNVM partition code are used by the flash
memory module to obtain an effective endurance increase for the EEPROM data. The
built-in EEPROM record management system raises the number of program/erase cycles
that can be attained prior to device wear-out by cycling the EEPROM data through a
larger EEPROM NVM storage space.
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size is used throughout the
entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
Writes_FlexRAM =
EEPROM – 2 × EEESIZE
EEESIZE
× Write_efficiency × nnvmcycd
where
• Writes_FlexRAM — minimum number of writes to each FlexRAM location
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
33
Peripheral operating requirements and behaviors
• EEPROM — allocated FlexNVM based on DEPART; entered with the Program
Partition command
• EEESIZE — allocated FlexRAM based on DEPART; entered with the Program
Partition command
• Write_efficiency —
• 0.25 for 8-bit writes to FlexRAM
• 0.50 for 16-bit or 32-bit writes to FlexRAM
• nnvmcycd — data flash cycling endurance (the following graph assumes 10,000
cycles)
Figure 8. EEPROM backup writes to FlexRAM
6.4.2 EzPort Switching Specifications
Table 22. EzPort switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
34
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 22. EzPort switching specifications (continued)
Num
Description
Min.
Max.
Unit
EP1
EZP_CK frequency of operation (all commands except
READ)
—
fSYS/2
MHz
EP1a
EZP_CK frequency of operation (READ command)
—
fSYS/8
MHz
EP2
EZP_CS negation to next EZP_CS assertion
2 x tEZP_CK
—
ns
EP3
EZP_CS input valid to EZP_CK high (setup)
5
—
ns
EP4
EZP_CK high to EZP_CS input invalid (hold)
5
—
ns
EP5
EZP_D input valid to EZP_CK high (setup)
2
—
ns
EP6
EZP_CK high to EZP_D input invalid (hold)
5
—
ns
EP7
EZP_CK low to EZP_Q output valid
—
17
ns
EP8
EZP_CK low to EZP_Q output invalid (hold)
0
—
ns
EP9
EZP_CS negation to EZP_Q tri-state
—
12
ns
EZP_CK
EP3
EP2
EP4
EZP_CS
EP9
EP7
EP8
EZP_Q (output)
EP5
EP6
EZP_D (input)
Figure 9. EzPort Timing Diagram
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
35
Peripheral operating requirements and behaviors
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 23 and Table 24 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
6.6.1.1
16-bit ADC operating conditions
Table 23. 16-bit ADC operating conditions
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDDVDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSSVSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
VREFL
Reference
voltage low
VSSA
VSSA
VSSA
V
VADIN
Input voltage
VREFL
—
VREFH
V
CADIN
Input
capacitance
• 16 bit modes
—
8
10
pF
• 8/10/12 bit
modes
—
4
5
—
2
5
Symbol
RADIN
RAS
fADCK
fADCK
Crate
Input resistance
Analog source
resistance
13/12 bit modes
ADC conversion
clock frequency
≤ 13 bit modes
ADC conversion
clock frequency
16 bit modes
ADC conversion
rate
≤ 13 bit modes
fADCK < 4MHz
Notes
kΩ
3
—
—
5
kΩ
4
1.0
—
18.0
MHz
4
2.0
No ADC hardware
averaging
—
12.0
MHz
5
20.000
—
818.330
Ksps
Continuous
conversions enabled,
subsequent conversion
time
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
36
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 23. 16-bit ADC operating conditions (continued)
Symbol
Crate
Description
Conditions
ADC conversion
rate
16 bit modes
Typ.1
Min.
Max.
Unit
Notes
5
No ADC hardware
averaging
37.037
—
461.467
Ksps
Continuous
conversions enabled,
subsequent conversion
time
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS/
CAS time constant should be kept to <1ns.
4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/
files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Z ADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
Z AS
R AS
ADC SAR
ENGINE
R ADIN
V ADIN
C AS
V AS
R ADIN
INPUT PIN
R ADIN
INPUT PIN
R ADIN
INPUT PIN
C ADIN
Figure 10. ADC input impedance equivalency diagram
6.6.1.2
16-bit ADC electrical characteristics
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
IDDA_ADC
Supply current
Conditions1
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
37
Peripheral operating requirements and behaviors
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
fADACK
Description
ADC
asynchronous
clock source
Sample Time
TUE
DNL
INL
EFS
Conditions1
Min.
Typ.2
Max.
Unit
Notes
• ADLPC=1, ADHSC=0
1.2
2.4
3.9
MHz
• ADLPC=1, ADHSC=1
3.0
4.0
7.3
MHz
tADACK = 1/
fADACK
• ADLPC=0, ADHSC=0
2.4
5.2
6.1
MHz
• ADLPC=0, ADHSC=1
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
LSB4
VADIN =
VDDA
See Reference Manual chapter for sample times
Total unadjusted
error
• 12 bit modes
—
±4
±6.8
• <12 bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12 bit modes
—
±0.7
-1.1 to
+1.9
• <12 bit modes
—
±0.2
• 12 bit modes
—
±1.0
• <12 bit modes
—
±0.5
-0.7 to
+0.5
• 12 bit modes
—
-4
-5.4
• <12 bit modes
—
-1.4
-1.8
Integral nonlinearity
Full-scale error
-0.3 to 0.5
-2.7 to
+1.9
5
EQ
ENOB
Quantization
error
• 16 bit modes
—
-1 to 0
—
• ≤13 bit modes
—
—
±0.5
Effective number 16 bit differential mode
of bits
• Avg=32
• Avg=4
LSB4
6
12.8
14.5
—
bits
11.9
13.8
—
bits
12.2
13.9
—
bits
11.4
13.1
—
bits
16 bit single-ended mode
• Avg=32
• Avg=4
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16 bit differential mode
6.02 × ENOB + 1.76
• Avg=32
16 bit single-ended mode
• Avg=32
dB
7
—
–94
—
dB
—
-85
—
dB
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
38
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
SFDR
Description
Conditions1
Spurious free
dynamic range
16 bit differential mode
• Avg=32
16 bit single-ended mode
• Avg=32
EIL
Min.
Typ.2
Max.
Unit
Notes
7
82
95
—
dB
78
90
—
dB
Input leakage
error
IIn × RAS
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and
current
operating
ratings)
VTEMP25
Temp sensor
slope
–40°C to 105°C
—
1.715
—
mV/°C
Temp sensor
voltage
25°C
—
719
—
mV
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock
speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
39
Peripheral operating requirements and behaviors
Figure 11. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Figure 12. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
40
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.2 CMP and 6-bit DAC electrical specifications
Table 25. Comparator and 6-bit DAC electrical specifications
Symbol
VDD
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, High-speed mode (EN=1, PMODE=1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN=1, PMODE=0)
—
—
20
μA
VAIN
Analog input voltage
VSS – 0.3
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
VH
Analog comparator hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN=1,
PMODE=1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN=1,
PMODE=0)
80
250
600
ns
Analog comparator initialization delay2
—
—
40
μs
6-bit DAC current adder (enabled)
—
7
—
μA
IDAC6b
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
41
Peripheral operating requirements and behaviors
0.08
0.07
0.06
HYSTCTR
Setting
CM P Hystereris (V)
0.05
00
0.04
01
10
11
0.03
0.02
0.01
0
0.1
0.4
0.7
1
1.3
1.6
1.9
Vin level (V)
2.2
2.5
2.8
3.1
Figure 13. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
42
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
0.18
0.16
0.14
CMP
P Hystereris (V)
0.12
HYSTCTR
Setting
0.1
00
01
0
08
0.08
10
11
0.06
0.04
0.02
0
0.1
0.4
0.7
1
1.3
1.6
Vin level (V)
1.9
2.2
2.5
2.8
3.1
Figure 14. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)
6.6.3 Voltage reference electrical specifications
Table 26. VREF full-range operating requirements
Symbol
Description
Min.
Max.
Unit
Supply voltage
1.71
3.6
V
TA
Temperature
−40
105
°C
CL
Output load capacitance
VDDA
100
nF
Notes
1, 2
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of
the device.
Table 27. VREF full-range operating behaviors
Symbol
Vout
Description
Voltage reference output with factory trim at
nominal VDDA and temperature=25C
Min.
Typ.
Max.
Unit
1.1915
1.195
1.1977
V
Notes
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
43
Peripheral operating requirements and behaviors
Table 27. VREF full-range operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
Vout
Voltage reference output — factory trim
1.1584
—
1.2376
V
Vout
Voltage reference output — user trim
1.193
—
1.197
V
Vstep
Voltage reference trim step
—
0.5
—
mV
Vtdrift
Temperature drift (Vmax -Vmin across the full
temperature range)
—
—
80
mV
Ibg
Bandgap only current
—
—
80
µA
1
Ilp
Low-power buffer current
—
—
360
uA
1
Ihp
High-power buffer current
—
—
1
mA
1
µV
1, 2
ΔVLOAD
Load regulation
• current = ± 1.0 mA
—
200
—
Tstup
Buffer startup time
—
—
100
µs
Vvdrift
Voltage drift (Vmax -Vmin across the full voltage
range)
—
2
—
mV
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load
Table 28. VREF limited-range operating requirements
Symbol
Description
Min.
Max.
Unit
TA
Temperature
0
50
°C
Notes
Table 29. VREF limited-range operating behaviors
Symbol
Vout
Description
Voltage reference output with factory trim
Min.
Max.
Unit
1.173
1.225
V
Notes
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
44
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.8.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit http://www.usb.org.
6.8.2 USB DCD electrical specifications
Table 30. USB DCD electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDP_SRC
USB_DP source voltage (up to 250 μA)
0.5
—
0.7
V
Threshold voltage for logic high
0.8
—
2.0
V
VLGC
IDP_SRC
USB_DP source current
7
10
13
μA
IDM_SINK
USB_DM sink current
50
100
150
μA
RDM_DWN
D- pulldown resistance for data pin contact detect
14.25
—
24.8
kΩ
VDAT_REF
Data detect voltage
0.25
0.33
0.4
V
6.8.3 USB VREG electrical specifications
Table 31. USB VREG electrical specifications
Symbol
Description
Min.
Typ.1
Max.
Unit
VREGIN
Input supply voltage
2.7
—
5.5
V
IDDon
Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
—
120
186
μA
IDDstby
Quiescent current — Standby mode, load
current equal zero
—
1.1
1.54
μA
IDDoff
Quiescent current — Shutdown mode
—
650
—
nA
—
—
4
μA
• VREGIN = 5.0 V and temperature=25C
• Across operating voltage and temperature
ILOADrun
Maximum load current — Run mode
—
—
120
mA
ILOADstby
Maximum load current — Standby mode
—
—
1
mA
VReg33out
Regulator output voltage — Input supply
(VREGIN) > 3.6 V
3
3.3
3.6
V
2.1
2.8
3.6
V
2.1
—
3.6
V
• Run mode
• Standby mode
VReg33out
Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
Notes
2
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
45
Peripheral operating requirements and behaviors
Table 31. USB VREG electrical specifications
(continued)
Symbol
Description
Min.
Typ.1
Max.
Unit
COUT
External output capacitor
1.76
2.2
8.16
μF
ESR
External output capacitor equivalent series
resistance
1
—
100
mΩ
ILIM
Short circuit current
—
290
—
mA
Notes
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
6.8.4 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 32. Master mode DSPI timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
25
MHz
2 x tBUS
—
ns
Notes
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
2
—
ns
1
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
2
—
ns
2
DS5
DSPI_SCK to DSPI_SOUT valid
—
8
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
14
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
46
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
DS8
DS7
(CPOL=0)
DSPI_SIN
Data
First data
Last data
DS5
DSPI_SOUT
DS6
First data
Data
Last data
Figure 15. DSPI classic SPI timing — master mode
Table 33. Slave mode DSPI timing (limited voltage range)
Num
Description
Operating voltage
Min.
Max.
Unit
2.7
3.6
V
12.5
MHz
4 x tBUS
—
ns
(tSCK/2) − 2
(tSCK/2) + 2
ns
Frequency of operation
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
20
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
14
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
14
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 16. DSPI classic SPI timing — slave mode
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
47
Peripheral operating requirements and behaviors
6.8.5 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 34. Master mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
12.5
MHz
4 x tBUS
—
ns
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
4
—
ns
2
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
4
—
ns
3
DS5
DSPI_SCK to DSPI_SOUT valid
—
8.5
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
-1.2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
19.1
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
DS7
DS8
Data
First data
Last data
DS5
First data
DS6
Data
Last data
Figure 17. DSPI classic SPI timing — master mode
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
48
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 35. Slave mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
1.71
3.6
V
—
6.25
MHz
8 x tBUS
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
24
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
3.2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
19
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
19
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 18. DSPI classic SPI timing — slave mode
6.8.6 I2C switching specifications
See General switching specifications.
6.8.7 UART switching specifications
See General switching specifications.
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
49
Peripheral operating requirements and behaviors
6.8.8 I2S/SAI Switching Specifications
This section provides the AC timing for the I2S/SAI module in master mode (clocks are
driven) and slave mode (clocks are input). All timing is given for noninverted serial clock
polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]
is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been
inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the
frame sync (FS) signal shown in the following figures.
6.8.8.1
Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 36. I2S/SAI master mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
80
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
15
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
25
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK
0
—
ns
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
50
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 19. I2S/SAI timing — master modes
Table 37. I2S/SAI slave mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
80
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
10
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
29
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
10
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
S19
I2S_TX_FS input assertion to I2S_TXD output valid1
—
21
ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
51
Peripheral operating requirements and behaviors
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 20. I2S/SAI timing — slave modes
6.8.8.2
VLPR, VLPW, and VLPS mode performance over the full operating
voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 38. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
62.5
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
250
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
45
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
45
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
45
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK
0
—
ns
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
52
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 21. I2S/SAI timing — master modes
Table 39. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
250
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
3
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
63
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
30
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
S19
I2S_TX_FS input assertion to I2S_TXD output valid1
—
72
ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
53
Peripheral operating requirements and behaviors
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 22. I2S/SAI timing — slave modes
6.9 Human-machine interfaces (HMI)
6.9.1 TSI electrical specifications
Table 40. TSI electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDDTSI
Operating voltage
1.71
—
3.6
V
Target electrode capacitance range
1
20
500
pF
1
fREFmax
Reference oscillator frequency
—
8
15
MHz
2, 3
fELEmax
Electrode oscillator frequency
—
1
1.8
MHz
2, 4
Internal reference capacitor
—
1
—
pF
Oscillator delta voltage
—
500
—
mV
2, 5
—
2
3
μA
2, 6
—
36
50
—
2
3
μA
2, 7
—
36
50
CELE
CREF
VDELTA
IREF
IELE
Reference oscillator current source base current
• 2 μA setting (REFCHRG = 0)
• 32 μA setting (REFCHRG = 15)
Electrode oscillator current source base current
• 2 μA setting (EXTCHRG = 0)
• 32 μA setting (EXTCHRG = 15)
Notes
Pres5
Electrode capacitance measurement precision
—
8.3333
38400
fF/count
8
Pres20
Electrode capacitance measurement precision
—
8.3333
38400
fF/count
9
Pres100
Electrode capacitance measurement precision
—
8.3333
38400
fF/count
10
MaxSens
Maximum sensitivity
0.008
1.46
—
fF/count
11
—
—
16
bits
Res
Resolution
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
54
Freescale Semiconductor, Inc.
Dimensions
Table 40. TSI electrical specifications (continued)
Symbol
Description
TCon20
ITSI_RUN
ITSI_LP
Min.
Typ.
Max.
Unit
Notes
Response time @ 20 pF
8
15
25
μs
12
Current added in run mode
—
55
—
μA
Low power mode current adder
—
1.3
2.5
μA
13
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
2. Fixed external capacitance of 20 pF.
3. REFCHRG = 2, EXTCHRG=0.
4. REFCHRG = 0, EXTCHRG = 10.
5. VDD = 3.0 V.
6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.
10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.
11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity
depends on the configuration used. The documented values are provided as examples calculated for a specific
configuration of operating conditions using the following equation: (Cref * Iext)/( Iref * PS * NSCN)
The typical value is calculated with the following configuration:
Iext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, Iref = 16 μA (REFCHRG = 7), Cref = 1.0 pF
The minimum value is calculated with the following configuration:
Iext = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, Iref = 32 μA (REFCHRG = 15), Cref = 0.5 pF
The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be
measured by a single count.
12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1
electrode, EXTCHRG = 7.
13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of
20 pF. Data is captured with an average of 7 periods window.
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to http://www.freescale.com and perform a keyword
search for the drawing’s document number:
If you want the drawing for this package
Then use this document number
64-pin LQFP
98ASS23234W
64-pin MAPBGA
98ASA00420D
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
55
Pinout
8 Pinout
8.1 K20 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
64
64
MAP LQFP
BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
A1
1
PTE0
DISABLED
PTE0
UART1_TX
B1
2
PTE1/
LLWU_P0
DISABLED
PTE1/
LLWU_P0
UART1_RX
C5
3
VDD
VDD
VDD
C4
4
VSS
VSS
VSS
E1
5
USB0_DP
USB0_DP
USB0_DP
D1
6
USB0_DM
USB0_DM
USB0_DM
E2
7
VOUT33
VOUT33
VOUT33
D2
8
VREGIN
VREGIN
VREGIN
G1
9
ADC0_DP0
ADC0_DP0
ADC0_DP0
F1
10
ADC0_DM0
ADC0_DM0
ADC0_DM0
G2
11
ADC0_DP3
ADC0_DP3
ADC0_DP3
F2
12
ADC0_DM3
ADC0_DM3
ADC0_DM3
ALT4
ALT5
ALT6
ALT7
EzPort
RTC_CLKOUT
F4
13
VDDA
VDDA
VDDA
G4
14
VREFH
VREFH
VREFH
G3
15
VREFL
VREFL
VREFL
F3
16
VSSA
VSSA
VSSA
H1
17
VREF_OUT/
CMP1_IN5/
CMP0_IN5
VREF_OUT/
CMP1_IN5/
CMP0_IN5
VREF_OUT/
CMP1_IN5/
CMP0_IN5
H2
18
CMP1_IN3/
ADC0_SE23
CMP1_IN3/
ADC0_SE23
CMP1_IN3/
ADC0_SE23
H3
19
XTAL32
XTAL32
XTAL32
H4
20
EXTAL32
EXTAL32
EXTAL32
H5
21
VBAT
VBAT
VBAT
D3
22
PTA0
JTAG_TCLK/
SWD_CLK/
EZP_CLK
TSI0_CH1
PTA0
UART0_CTS_ FTM0_CH5
b/
UART0_COL_
b
JTAG_TCLK/
SWD_CLK
EZP_CLK
D4
23
PTA1
JTAG_TDI/
EZP_DI
TSI0_CH2
PTA1
UART0_RX
JTAG_TDI
EZP_DI
FTM0_CH6
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
56
Freescale Semiconductor, Inc.
Pinout
64
64
MAP LQFP
BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
E5
24
PTA2
JTAG_TDO/ TSI0_CH3
TRACE_SWO/
EZP_DO
PTA2
UART0_TX
D5
25
PTA3
JTAG_TMS/
SWD_DIO
TSI0_CH4
PTA3
UART0_RTS_ FTM0_CH0
b
G5
26
PTA4/
LLWU_P3
NMI_b/
EZP_CS_b
TSI0_CH5
PTA4/
LLWU_P3
F5
27
PTA5
DISABLED
PTA5
H6
28
PTA12
DISABLED
G6
29
PTA13/
LLWU_P4
DISABLED
G7
30
VDD
VDD
VDD
H7
31
VSS
VSS
VSS
H8
32
PTA18
EXTAL0
G8
33
PTA19
F8
34
F7
ALT4
ALT5
ALT6
FTM0_CH7
EzPort
JTAG_TDO/ EZP_DO
TRACE_SWO
JTAG_TMS/
SWD_DIO
FTM0_CH1
USB_CLKIN
ALT7
NMI_b
FTM0_CH2
I2S0_TX_
BCLK
JTAG_TRST_
b
PTA12
FTM1_CH0
I2S0_TXD0
FTM1_QD_
PHA
PTA13/
LLWU_P4
FTM1_CH1
I2S0_TX_FS
FTM1_QD_
PHB
EXTAL0
PTA18
FTM0_FLT2
FTM_CLKIN0
XTAL0
XTAL0
PTA19
FTM1_FLT0
FTM_CLKIN1
RESET_b
RESET_b
RESET_b
35
PTB0/
LLWU_P5
ADC0_SE8/
TSI0_CH0
ADC0_SE8/
TSI0_CH0
PTB0/
LLWU_P5
I2C0_SCL
FTM1_CH0
FTM1_QD_
PHA
F6
36
PTB1
ADC0_SE9/
TSI0_CH6
ADC0_SE9/
TSI0_CH6
PTB1
I2C0_SDA
FTM1_CH1
FTM1_QD_
PHB
E7
37
PTB2
ADC0_SE12/
TSI0_CH7
ADC0_SE12/
TSI0_CH7
PTB2
I2C0_SCL
UART0_RTS_
b
FTM0_FLT3
E8
38
PTB3
ADC0_SE13/
TSI0_CH8
ADC0_SE13/
TSI0_CH8
PTB3
I2C0_SDA
UART0_CTS_
b/
UART0_COL_
b
FTM0_FLT0
LPTMR0_
ALT1
E6
39
PTB16
TSI0_CH9
TSI0_CH9
PTB16
UART0_RX
EWM_IN
D7
40
PTB17
TSI0_CH10
TSI0_CH10
PTB17
UART0_TX
EWM_OUT_b
D6
41
PTB18
TSI0_CH11
TSI0_CH11
PTB18
I2S0_TX_
BCLK
C7
42
PTB19
TSI0_CH12
TSI0_CH12
PTB19
I2S0_TX_FS
D8
43
PTC0
ADC0_SE14/
TSI0_CH13
ADC0_SE14/
TSI0_CH13
PTC0
SPI0_PCS4
PDB0_EXTRG
C6
44
PTC1/
LLWU_P6
ADC0_SE15/
TSI0_CH14
ADC0_SE15/
TSI0_CH14
PTC1/
LLWU_P6
SPI0_PCS3
UART1_RTS_ FTM0_CH0
b
I2S0_TXD0
B7
45
PTC2
ADC0_SE4b/
CMP1_IN0/
TSI0_CH15
ADC0_SE4b/
CMP1_IN0/
TSI0_CH15
PTC2
SPI0_PCS2
UART1_CTS_ FTM0_CH1
b
I2S0_TX_FS
C8
46
PTC3/
LLWU_P7
CMP1_IN1
CMP1_IN1
PTC3/
LLWU_P7
SPI0_PCS1
UART1_RX
I2S0_TX_
BCLK
E3
47
VSS
VSS
VSS
E4
48
VDD
VDD
VDD
FTM0_CH2
EZP_CS_b
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
57
Pinout
64
64
MAP LQFP
BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
B8
49
PTC4/
LLWU_P8
DISABLED
PTC4/
LLWU_P8
SPI0_PCS0
UART1_TX
FTM0_CH3
CMP1_OUT
A8
50
PTC5/
LLWU_P9
DISABLED
PTC5/
LLWU_P9
SPI0_SCK
LPTMR0_
ALT2
I2S0_RXD0
CMP0_OUT
A7
51
PTC6/
LLWU_P10
CMP0_IN0
CMP0_IN0
PTC6/
LLWU_P10
SPI0_SOUT
PDB0_EXTRG I2S0_RX_
BCLK
B6
52
PTC7
CMP0_IN1
CMP0_IN1
PTC7
SPI0_SIN
USB_SOF_
OUT
A6
53
PTC8
CMP0_IN2
CMP0_IN2
PTC8
I2S0_MCLK
B5
54
PTC9
CMP0_IN3
CMP0_IN3
PTC9
I2S0_RX_
BCLK
B4
55
PTC10
DISABLED
PTC10
I2S0_RX_FS
A5
56
PTC11/
LLWU_P11
DISABLED
PTC11/
LLWU_P11
C3
57
PTD0/
LLWU_P12
DISABLED
PTD0/
LLWU_P12
SPI0_PCS0
UART2_RTS_
b
A4
58
PTD1
ADC0_SE5b
PTD1
SPI0_SCK
UART2_CTS_
b
C2
59
PTD2/
LLWU_P13
DISABLED
PTD2/
LLWU_P13
SPI0_SOUT
UART2_RX
B3
60
PTD3
DISABLED
PTD3
SPI0_SIN
UART2_TX
A3
61
PTD4/
LLWU_P14
DISABLED
PTD4/
LLWU_P14
SPI0_PCS1
UART0_RTS_ FTM0_CH4
b
EWM_IN
C1
62
PTD5
ADC0_SE6b
ADC0_SE6b
PTD5
SPI0_PCS2
UART0_CTS_ FTM0_CH5
b/
UART0_COL_
b
EWM_OUT_b
B2
63
PTD6/
LLWU_P15
ADC0_SE7b
ADC0_SE7b
PTD6/
LLWU_P15
SPI0_PCS3
UART0_RX
FTM0_CH6
FTM0_FLT0
A2
64
PTD7
DISABLED
PTD7
CMT_IRO
UART0_TX
FTM0_CH7
FTM0_FLT1
ADC0_SE5b
ALT7
EzPort
I2S0_MCLK
I2S0_RX_FS
8.2 K20 Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
58
Freescale Semiconductor, Inc.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2/LLWU_P13
PTD1
PTD0/LLWU_P12
PTC11/LLWU_P11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Pinout
ADC0_DP0
9
40
PTB17
ADC0_DM0
10
39
PTB16
ADC0_DP3
11
38
PTB3
ADC0_DM3
12
37
PTB2
VDDA
13
36
PTB1
VREFH
14
35
PTB0/LLWU_P5
VREFL
15
34
RESET_b
VSSA
16
33
PTA19
32
PTB18
PTA18
41
31
8
VSS
VREGIN
30
PTB19
VDD
42
29
7
PTA13/LLWU_P4
VOUT33
28
PTC0
PTA12
43
27
6
PTA5
USB0_DM
26
PTC1/LLWU_P6
PTA4/LLWU_P3
44
25
5
PTA3
USB0_DP
24
PTC2
PTA2
45
23
4
PTA1
VSS
22
PTC3/LLWU_P7
PTA0
46
21
3
VBAT
VDD
20
VSS
EXTAL32
47
19
2
XTAL32
PTE1/LLWU_P0
18
VDD
CMP1_IN3/ADC0_SE23
48
17
1
VREF_OUT/CMP1_IN5/CMP0_IN5
PTE0
Figure 23. K20 64 LQFP Pinout Diagram
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
59
Revision History
A
B
1
2
3
4
5
6
PTE0
PTD7
PTD4/
LLWU_P14
PTD1
PTC11/
LLWU_P11
PTC8
PTD3
PTC10
PTC9
PTC7
VSS
VDD
PTD6/
PTE1/
LLWU_P0 LLWU_P15
PTD2/
PTD0/
LLWU_P13 LLWU_P12
7
8
PTC6/
PTC5/
LLWU_P10 LLWU_P9
A
PTC2
PTC4/
LLWU_P8
B
PTC1/
LLWU_P6
PTB19
PTC3/
LLWU_P7
C
C
PTD5
D
USB0_DM
VREGIN
PTA0
PTA1
PTA3
PTB18
PTB17
PTC0
D
E
USB0_DP
VOUT33
VSS
VDD
PTA2
PTB16
PTB2
PTB3
E
F
ADC0_DM0 ADC0_DM3
VSSA
VDDA
PTA5
PTB1
PTB0/
LLWU_P5
RESET_b
F
G
ADC0_DP0 ADC0_DP3
VREFL
VREFH
PTA4/
LLWU_P3
PTA13/
LLWU_P4
VDD
PTA19
G
H
VREF_OUT/
CMP1_IN3/
CMP1_IN5/
ADC0_SE23
CMP0_IN5
XTAL32
EXTAL32
VBAT
PTA12
VSS
PTA18
H
3
4
5
6
7
8
1
2
Figure 24. K20 64 MAPBGA Pinout Diagram
9 Revision History
The following table provides a revision history for this document.
Table 41. Revision History
Rev. No.
Date
2
2/2012
3
4/2012
Substantial Changes
Initial public release
•
•
•
•
•
•
•
•
•
•
Replaced TBDs throughout.
Updated "Power mode transition operating behaviors" table.
Updated "Power consumption operating behaviors" table.
For "Diagram: Typical IDD_RUN operating behavior" section, added "VLPR mode
supply current vs. core frequency" figure.
Updated "EMC radiated emissions operating behaviors" section.
Updated "Thermal operating requirements" section.
Updated "MCG specifications" table.
Updated "VREF full-range operating behaviors" table.
Updated "I2S/SAI Switching Specifications" section.
Updated "TSI electrical specifications" table.
Table continues on the next page...
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
60
Freescale Semiconductor, Inc.
Revision History
Table 41. Revision History (continued)
Rev. No.
Date
4
5/2012
Substantial Changes
• For the "32kHz oscillator frequency specifications", added specifications for an
externally driven clock.
• Renamed section "Flash current and power specfications" to section "Flash high
voltage current behaviors" and improved the specifications.
• For the "VREF full-range operating behaviors" table, removed the Ac (aging coefficient)
specification.
• Corrected the following DSPI switching specifications: tightened DS5, DS6, and DS7;
relaxed DS11 and DS13.
• For the "TSI electrical specifications", changed and clarified the example calculations
for the MaxSens specification.
K20 Sub-Family Data Sheet, Rev. 4 5/2012.
Freescale Semiconductor, Inc.
61
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Document Number: K20P64M50SF0
Rev. 4 5/2012
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.
For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© 2011–2012 Freescale Semiconductor, Inc.