FREESCALE MK30DN512ZVLQ10

Freescale Semiconductor
Data Sheet: Technical Data
K30 Sub-Family Data Sheet
Document Number: K30P144M100SF2
Rev. 6, 9/2011
K30P144M100SF2
Supports the following:
MK30DX128ZVLQ10,
MK30DX128ZVMD10,
MK30DX256ZVLQ10,
MK30DX256ZVMD10,
MK30DN512ZVLQ10,
MK30DN512ZVMD10
Features
• Operating Characteristics
– Voltage range: 1.71 to 3.6 V
– Flash write voltage range: 1.71 to 3.6 V
– Temperature range (ambient): -40 to 105°C
• Performance
– Up to 100 MHz ARM Cortex-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
• Memories and memory interfaces
– Up to 512 KB program flash memory on nonFlexMemory devices
– Up to 128 KB RAM
– Serial programming interface (EzPort)
– FlexBus external bus interface
• Clocks
– 3 to 32 MHz crystal oscillator
– 32 kHz crystal oscillator
– Multi-purpose clock generator
• System peripherals
– 10 low-power modes to provide power optimization
based on application requirements
– Memory protection unit with multi-master
protection
– 16-channel DMA controller, supporting up to 64
request sources
– External watchdog monitor
– Software watchdog
– Low-leakage wakeup unit
• Security and integrity modules
– Hardware CRC module to support fast cyclic
redundancy checks
– 128-bit unique identification (ID) number per chip
• Human-machine interface
– Segment LCD controller supporting up to 40
frontplanes and 8 backplanes, or 44 frontplanes and
4 backplanes
– Low-power hardware touch sensor interface (TSI)
– General-purpose input/output
• Analog modules
– Two 16-bit SAR ADCs
– Programmable gain amplifier (PGA) (up to x64)
integrated into each ADC
– Two 12-bit DACs
– Three analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
– Voltage reference
• Timers
– Programmable delay block
– Eight-channel motor control/general purpose/PWM
timer
– Two 2-channel quadrature decoder/general purpose
timers
– Periodic interrupt timers
– 16-bit low-power timer
– Carrier modulator transmitter
– Real-time clock
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2010–2011 Freescale Semiconductor, Inc.
• Communication interfaces
– Two Controller Area Network (CAN) modules
– Three SPI modules
– Two I2C modules
– Six UART modules
– Secure Digital host controller (SDHC)
– I2S module
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
2
Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................4
5.4.2
Thermal attributes.................................................21
1.1 Determining valid orderable parts......................................4
6 Peripheral operating requirements and behaviors....................21
2 Part identification......................................................................4
6.1 Core modules....................................................................22
2.1 Description.........................................................................4
6.1.1
Debug trace timing specifications.........................22
2.2 Format...............................................................................4
6.1.2
JTAG electricals....................................................22
2.3 Fields.................................................................................4
6.2 System modules................................................................25
2.4 Example............................................................................5
6.3 Clock modules...................................................................25
3 Terminology and guidelines......................................................5
6.3.1
MCG specifications...............................................25
3.1 Definition: Operating requirement......................................5
6.3.2
Oscillator electrical specifications.........................28
3.2 Definition: Operating behavior...........................................6
6.3.3
32kHz Oscillator Electrical Characteristics............30
3.3 Definition: Attribute............................................................6
6.4 Memories and memory interfaces.....................................31
3.4 Definition: Rating...............................................................7
6.4.1
Flash (FTFL) electrical specifications....................31
3.5 Result of exceeding a rating..............................................7
6.4.2
EzPort Switching Specifications............................33
3.6 Relationship between ratings and operating
6.4.3
Flexbus Switching Specifications..........................33
requirements......................................................................7
6.5 Security and integrity modules..........................................36
3.7 Guidelines for ratings and operating requirements............8
6.6 Analog...............................................................................36
3.8 Definition: Typical value.....................................................8
6.6.1
ADC electrical specifications.................................36
3.9 Typical value conditions....................................................9
6.6.2
CMP and 6-bit DAC electrical specifications.........44
4 Ratings......................................................................................9
6.6.3
12-bit DAC electrical characteristics.....................47
6.6.4
Voltage reference electrical specifications............50
4.1 Thermal handling ratings...................................................10
4.2 Moisture handling ratings..................................................10
6.7 Timers................................................................................51
4.3 ESD handling ratings.........................................................10
6.8 Communication interfaces.................................................51
4.4 Voltage and current operating ratings...............................10
6.8.1
CAN switching specifications................................51
5 General.....................................................................................11
6.8.2
DSPI switching specifications (limited voltage
5.1 AC electrical characteristics..............................................11
5.2 Nonswitching electrical specifications...............................11
range)....................................................................52
6.8.3
DSPI switching specifications (full voltage range).53
5.2.1
Voltage and current operating requirements.........11
6.8.4
I2C switching specifications..................................55
5.2.2
LVD and POR operating requirements.................13
6.8.5
UART switching specifications..............................55
5.2.3
Voltage and current operating behaviors..............13
6.8.6
SDHC specifications.............................................55
5.2.4
Power mode transition operating behaviors..........14
6.8.7
I2S switching specifications..................................56
5.2.5
Power consumption operating behaviors..............15
5.2.6
EMC radiated emissions operating behaviors.......18
6.9.1
TSI electrical specifications...................................58
5.2.7
Designing with radiated emissions in mind...........19
6.9.2
LCD electrical characteristics................................59
5.2.8
Capacitance attributes..........................................19
7 Dimensions...............................................................................61
5.3 Switching specifications.....................................................19
7.1 Obtaining package dimensions.........................................61
6.9 Human-machine interfaces (HMI)......................................58
5.3.1
Device clock specifications...................................19
8 Pinout........................................................................................61
5.3.2
General switching specifications...........................19
8.1 K30 Signal Multiplexing and Pin Assignments..................61
5.4 Thermal specifications.......................................................20
8.2 K30 Pinouts.......................................................................67
5.4.1
Thermal operating requirements...........................20
9 Revision History........................................................................69
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
3
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to http://www.freescale.com and perform a part number
search for the following device numbers: PK30 and MK30.
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
K##
Kinetis family
• K30
A
Key attribute
• D = Cortex-M4 w/ DSP
• F = Cortex-M4 w/ DSP and FPU
M
Flash memory type
• N = Program flash only
• X = Program flash and FlexMemory
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
4
Freescale Semiconductor, Inc.
Terminology and guidelines
Field
Description
Values
FFF
Program flash memory size
•
•
•
•
•
•
32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
R
Silicon revision
• Z = Initial
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
• C = –40 to 85
PP
Package identifier
•
•
•
•
•
•
•
•
•
•
•
•
•
FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
EX = 64 LQFN (9 mm x 9 mm)
LH = 64 LQFP (10 mm x 10 mm)
LK = 80 LQFP (12 mm x 12 mm)
MB = 81 MAPBGA (8 mm x 8 mm)
LL = 100 LQFP (14 mm x 14 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
MF = 196 MAPBGA (15 mm x 15 mm)
MJ = 256 MAPBGA (17 mm x 17 mm)
CC
Maximum CPU frequency (MHz)
•
•
•
•
•
5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
2.4 Example
This is an example part number:
MK30DN512ZVMD10
3 Terminology and guidelines
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
5
Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
3.1.1 Example
This is an example of an operating requirement, which you must meet for the
accompanying operating behaviors to be guaranteed:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
1.1
Unit
V
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the
accompanying operating requirements:
Symbol
IWP
Description
Digital I/O weak pullup/ 10
pulldown current
Min.
Max.
130
Unit
µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
6
Freescale Semiconductor, Inc.
Terminology and guidelines
3.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Max.
7
Unit
pF
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
–0.3
Max.
1.2
Unit
V
3.5 Result of exceeding a rating
Failures in time (ppm)
40
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
7
Terminology and guidelines
3.6 Relationship between ratings and operating requirements
g(
tin
era
Op
nd
go
a
rh
g
lin
in
rat
n.)
mi
tin
era
Op
e
gr
em
ir
qu
n.
mi
t(
en
)
Op
tin
e
gr
era
em
ir
qu
x
ma
t(
en
.)
x.)
ma
g(
g
lin
nd
ha
tin
era
Op
r
go
in
rat
Fatal
range
Limited
operating
range
Normal
operating
range
Limited
operating
range
Fatal
range
- Probable permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- Probable permanent failure
Handling range
- No permanent failure
∞
–∞
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
8
Freescale Semiconductor, Inc.
Ratings
Symbol
Description
IWP
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
70
Max.
130
Unit
µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.00
1.05
1.10
VDD (V)
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
4 Ratings
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
9
Ratings
4.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
Solder temperature, leaded
—
245
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device model
-500
+500
V
2
Latch-up current at ambient temperature of 105°C
-100
+100
mA
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
185
mA
–0.3
5.5
V
VDIO
Digital input voltage (except RESET, EXTAL, and XTAL)
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
10
Freescale Semiconductor, Inc.
General
Symbol
VAIO
ID
Description
Min.
Max.
Unit
Analog1,
–0.3
VDD + 0.3
V
–25
25
mA
VDD – 0.3
VDD + 0.3
V
–0.3
3.8
V
RESET, EXTAL, and XTAL input voltage
Instantaneous maximum current single pin limit (applies to all
port pins)
VDDA
Analog supply voltage
VBAT
RTC battery supply voltage
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
5 General
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Figure 1. Input signal measurement reference
All digital I/O switching characteristics assume:
1. output pins
• have CL=30pF loads,
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
• are configured for high drive strength (PORTx_PCRn[DSE]=1)
2. input pins
• have their passive filter disabled (PORTx_PCRn[PFE]=0)
5.2 Nonswitching electrical specifications
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
11
General
5.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
1.71
3.6
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
-5
—
mA
VBAT
VIH
VIL
RTC battery supply voltage
Input high voltage
Input low voltage
VHYS
Input hysteresis
IICDIO
Digital pin negative DC injection current — single pin
• VIN < VSS-0.3V
IICAIO
IICcont
3
mA
• VIN < VSS-0.3V (Negative current injection)
-5
—
• VIN > VDD+0.3V (Positive current injection)
—
+5
-25
—
—
+25
1.2
—
V
VPOR_VBAT
—
V
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
• Positive current injection
VRFVBAT
1
Analog2, EXTAL, and XTAL pin DC injection current
— single pin
• Negative current injection
VRAM
Notes
VDD voltage required to retain RAM
VBAT voltage required to retain the VBAT register file
mA
1. All 5 volt tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode
connection to VDD. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting
resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection
current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IIC|.
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
12
Freescale Semiconductor, Inc.
General
5.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
2.48
2.56
2.64
V
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV=01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV=10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV=11)
2.92
3.00
3.08
V
—
±80
—
mV
1.54
1.60
1.66
V
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low range
(LVDV=00)
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV=01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV=10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV=11)
2.04
2.10
2.16
V
—
±60
—
mV
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
Notes
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
1. Rising thresholds are falling threshold + hysteresis voltage
Table 3. VBAT power operating requirements
Symbol
Description
VPOR_VBAT Falling VBAT supply POR detect voltage
Min.
Typ.
Max.
Unit
0.8
1.1
1.5
V
Notes
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
13
General
5.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol
Min.
Max.
Unit
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA
VDD – 0.5
—
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA
VDD – 0.5
—
V
—
100
mA
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA
—
0.5
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA
—
0.5
V
Output low current total for all ports
—
100
mA
IIN
Input leakage current (per pin) for full temperature
range
—
1
μA
1
IIN
Input leakage current (per pin) at 25°C
—
0.025
μA
1
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
RPU
Internal pullup resistors
20
50
kΩ
2
RPD
Internal pulldown resistors
20
50
kΩ
3
VOH
Description
Notes
Output high voltage — high drive strength
Output high voltage — low drive strength
IOHT
Output high current total for all ports
VOL
Output low voltage — high drive strength
Output low voltage — low drive strength
IOLT
1. Measured at VDD=3.6V
2. Measured at VDD supply voltage = VDD min and Vinput = VSS
3. Measured at VDD supply voltage = VDD min and Vinput = VDD
5.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx→RUN recovery times in the following table
assume this clock configuration:
•
•
•
•
CPU and system clocks = 100 MHz
Bus clock = 50 MHz
FlexBus clock = 50 MHz
Flash clock = 25 MHz
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
14
Freescale Semiconductor, Inc.
General
Table 5. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
• VLLS1 → RUN
• VLLS2 → RUN
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
Min.
Max.
Unit
Notes
—
300
μs
1
—
112
μs
—
74
μs
—
73
μs
—
5.9
μs
—
5.8
μs
—
4.2
μs
1. Normal boot (FTFL_OPT[LPBOOT]=1)
5.2.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol
IDDA
IDD_RUN
Description
Analog supply current
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
Run mode current — all peripheral clocks
disabled, code executing from flash
• @ 1.8V
• @ 3.0V
IDD_RUN
Min.
2
—
45
70
mA
—
47
72
mA
Run mode current — all peripheral clocks
enabled, code executing from flash
• @ 1.8V
3, 4
—
61
85
mA
—
63
71
mA
—
72
87
mA
• @ 3.0V
• @ 25°C
• @ 125°C
IDD_WAIT
Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
—
35
—
mA
2
IDD_WAIT
Wait mode reduced frequency current at 3.0 V
— all peripheral clocks disabled
—
15
—
mA
5
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
—
N/A
—
mA
6
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
15
General
Table 6. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
—
N/A
—
mA
7
IDD_VLPW
Very-low-power wait mode current at 3.0 V — all
peripheral clocks disabled
—
N/A
—
mA
8
IDD_STOP
Stop mode current at 3.0 V
• @ –40 to 25°C
—
0.59
1.4
mA
• @ 70°C
—
2.26
7.9
mA
• @ 105°C
—
5.94
19.2
mA
• @ –40 to 25°C
—
93
435
μA
• @ 70°C
—
520
2000
μA
• @ 105°C
—
1350
4000
μA
IDD_VLPS
IDD_LLS
IDD_VLLS3
IDD_VLLS2
IDD_VLLS1
IDD_VBAT
Very-low-power stop mode current at 3.0 V
Low leakage stop mode current at 3.0 V
9
• @ –40 to 25°C
—
4.8
20
μA
• @ 70°C
—
28
68
μA
• @ 105°C
—
126
270
μA
Very low-leakage stop mode 3 current at 3.0 V
9
• @ –40 to 25°C
—
3.1
8.9
μA
• @ 70°C
—
17
35
μA
• @ 105°C
—
82
148
μA
• @ –40 to 25°C
—
2.2
5.4
μA
• @ 70°C
—
7.1
12.5
μA
• @ 105°C
—
41
125
μA
• @ –40 to 25°C
—
2.1
7.6
μA
• @ 70°C
—
6.2
13.5
μA
• @ 105°C
—
30
46
μA
—
0.33
0.39
μA
—
0.60
0.78
μA
—
1.97
2.9
μA
Very low-leakage stop mode 2 current at 3.0 V
Very low-leakage stop mode 1 current at 3.0 V
Average current with RTC and 32kHz disabled at
3.0 V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
16
Freescale Semiconductor, Inc.
General
Table 6. Power consumption operating behaviors (continued)
Symbol
Description
Min.
IDD_VBAT
Average current when CPU is not accessing
RTC registers
Typ.
Max.
Unit
Notes
10
• @ 1.8V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
—
0.71
0.81
μA
—
1.01
1.3
μA
—
2.82
4.3
μA
—
0.84
0.94
μA
—
1.17
1.5
μA
—
3.16
4.6
μA
• @ 3.0V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode.
All peripheral clocks disabled.
3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All
peripheral clocks enabled.
4. Max values are measured with CPU executing DSP instructions.
5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.
6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
disabled. Code executing from flash.
7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
enabled but peripherals are not in active operation. Code executing from flash.
8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
disabled.
9. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA. For
devices with 32 KB of RAM, power consumption is reduced by 3 μA.
10. Includes 32kHz oscillator current and RTC operation.
5.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
• MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater
than 50 MHz frequencies
• No GPIOs toggled
• Code execution from flash with cache enabled
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
17
General
Figure 2. Run mode supply current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors for 144LQFP
Symbol
Description
Frequency
band (MHz)
Typ.
Unit
Notes
1, 2
VRE1
Radiated emissions voltage, band 1
0.15–50
23
dBμV
VRE2
Radiated emissions voltage, band 2
50–150
27
dBμV
VRE3
Radiated emissions voltage, band 3
150–500
28
dBμV
VRE4
Radiated emissions voltage, band 4
500–1000
14
dBμV
IEC level
0.15–1000
K
—
VRE_IEC
2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
18
Freescale Semiconductor, Inc.
General
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48 MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to http://www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
5.3 Switching specifications
5.3.1 Device clock specifications
Table 9. Device clock specifications
Symbol
Description
Min.
Max.
Unit
Notes
Normal run mode
fSYS
System and core clock
—
100
MHz
fBUS
Bus clock
—
50
MHz
FlexBus clock
—
50
MHz
fFLASH
Flash clock
—
25
MHz
fLPTMR
LPTMR clock
—
25
MHz
FB_CLK
5.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
CAN, CMT, and I2C signals.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
19
General
Table 10. General switching specifications
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5
—
Bus clock
cycles
1
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100
—
ns
2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
16
—
ns
2
External reset pulse width (digital glitch filter disabled)
100
—
ns
2
2
—
Bus clock
cycles
Mode select (EZP_CS) hold time after reset
deassertion
Port rise and fall time (high drive strength)
3
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
12
ns
• 2.7 ≤ VDD ≤ 3.6V
—
6
ns
• 1.71 ≤ VDD ≤ 2.7V
—
36
ns
• 2.7 ≤ VDD ≤ 3.6V
—
24
ns
• Slew enabled
Port rise and fall time (low drive strength)
4
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
12
ns
• 2.7 ≤ VDD ≤ 3.6V
—
6
ns
• 1.71 ≤ VDD ≤ 2.7V
—
36
ns
• 2.7 ≤ VDD ≤ 3.6V
—
24
ns
• Slew enabled
1.
2.
3.
4.
The greater synchronous and asynchronous timing must be met.
This is the shortest pulse that is guaranteed to be recognized.
75pF load
15pF load
5.4 Thermal specifications
5.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
20
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
5.4.2 Thermal attributes
Board type
Symbol
Description
Unit
Notes
Single-layer
(1s)
RθJA
Thermal
45
resistance,
junction to
ambient (natural
convection)
48
°C/W
1
Four-layer
(2s2p)
RθJA
Thermal
36
resistance,
junction to
ambient (natural
convection)
29
°C/W
1
Single-layer
(1s)
RθJMA
Thermal
36
resistance,
junction to
ambient (200 ft./
min. air speed)
38
°C/W
1
Four-layer
(2s2p)
RθJMA
Thermal
30
resistance,
junction to
ambient (200 ft./
min. air speed)
25
°C/W
1
—
RθJB
Thermal
resistance,
junction to
board
24
16
°C/W
2
—
RθJC
Thermal
resistance,
junction to case
9
9
°C/W
3
—
ΨJT
Thermal
2
characterization
parameter,
junction to
package top
outside center
(natural
convection)
2
°C/W
4
1.
2.
3.
4.
144 LQFP
144
MAPBGA
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
21
Peripheral operating requirements and behaviors
6.1 Core modules
6.1.1 Debug trace timing specifications
Table 12. Debug trace operating behaviors
Symbol
Description
Min.
Max.
Unit
Tcyc
Clock period
Frequency dependent
MHz
Twl
Low pulse width
2
—
ns
Twh
High pulse width
2
—
ns
Tr
Clock and data rise time
—
3
ns
Tf
Clock and data fall time
—
3
ns
Ts
Data setup
3
—
ns
Th
Data hold
2
—
ns
Figure 3. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts
Th
Ts
Th
TRACE_D[3:0]
Figure 4. Trace data specifications
6.1.2 JTAG electricals
Table 13. JTAG limited voltage range electricals
Symbol
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
22
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 13. JTAG limited voltage range electricals (continued)
Symbol
J1
Description
Min.
Max.
TCLK frequency of operation
Unit
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
25
• Serial Wire Debug
0
50
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
20
—
ns
• Serial Wire Debug
10
—
ns
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1
—
ns
J11
TCLK low to TDO data valid
—
17
ns
J12
TCLK low to TDO high-Z
—
17
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
Table 14. JTAG full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
TCLK frequency of operation
• Boundary Scan
0
10
• JTAG and CJTAG
0
20
• Serial Wire Debug
0
40
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
25
—
ns
• Serial Wire Debug
12.5
—
ns
—
3
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
J4
MHz
TCLK rise and fall times
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
23
Peripheral operating requirements and behaviors
Table 14. JTAG full voltage range electricals (continued)
Symbol
Description
Min.
Max.
Unit
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1.4
—
ns
J11
TCLK low to TDO data valid
—
22.1
ns
J12
TCLK low to TDO high-Z
—
22.1
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
J2
J3
J3
TCLK (input)
J4
J4
Figure 5. Test clock input timing
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
J8
Data outputs
J7
Data outputs
Output data valid
Figure 6. Boundary scan (JTAG) timing
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
24
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 7. Test Access Port timing
TCLK
J14
J13
TRST
Figure 8. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
25
Peripheral operating requirements and behaviors
6.3.1 MCG specifications
Table 15. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
—
32.768
—
kHz
31.25
—
38.2
kHz
Internal reference (slow clock) current
—
20
—
µA
Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
—
± 0.3
± 0.6
%fdco
1
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
—
± 1.5
± 4.5
%fdco
1
fintf_ft
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
—
4
—
MHz
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
Internal reference (fast clock) current
—
25
—
µA
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
fints_t
Internal reference frequency (slow clock) — user
trimmed
Iints
Δfdco_res_t
Δfdco_t
Iintf
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
Notes
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS=00)
2, 3
640 × ffll_ref
Mid range (DRS=01)
1280 × ffll_ref
Mid-high range (DRS=10)
1920 × ffll_ref
High range (DRS=11)
2560 × ffll_ref
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
26
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 15. MCG specifications (continued)
Symbol
Description
fdco_t_DMX3 DCO output
frequency
2
Low range (DRS=00)
Min.
Typ.
Max.
Unit
Notes
—
23.99
—
MHz
4, 5
—
47.97
—
MHz
—
71.99
—
MHz
—
95.98
—
MHz
—
180
—
—
150
—
—
—
1
ms
48.0
—
100
MHz
—
1060
—
µA
—
600
—
µA
2.0
—
4.0
MHz
732 × ffll_ref
Mid range (DRS=01)
1464 × ffll_ref
Mid-high range (DRS=10)
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
Jcyc_fll
FLL period jitter
• fVCO = 48 MHz
• fVCO = 98 MHz
tfll_acquire
FLL target frequency acquisition time
ps
6
PLL
fvco
VCO operating frequency
Ipll
PLL operating current
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 48)
Ipll
PLL operating current
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 24)
fpll_ref
PLL reference frequency range
Jcyc_pll
PLL period jitter (RMS)
Jacc_pll
7
7
8
• fvco = 48 MHz
—
120
—
ps
• fvco = 100 MHz
—
50
—
ps
PLL accumulated jitter over 1µs (RMS)
8
• fvco = 48 MHz
—
1350
—
ps
• fvco = 100 MHz
—
600
—
ps
Dlock
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
tpll_lock
Lock detector detection time
—
—
150 × 10-6
+ 1075(1/
fpll_ref)
s
9
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature should be considered.
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
27
Peripheral operating requirements and behaviors
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
6.3.2 Oscillator electrical specifications
This section provides the electrical characteristics of the module.
6.3.2.1
Symbol
VDD
IDDOSC
IDDOSC
Oscillator DC electrical specifications
Table 16. Oscillator DC electrical specifications
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high gain mode (HGO=1)
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
28
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 16. Oscillator DC electrical specifications (continued)
Symbol
RF
RS
Description
Min.
Typ.
Max.
Unit
Notes
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
2, 4
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain mode
(HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Series resistor — high-frequency, high-gain
mode (HGO=1)
Vpp5
1.
2.
3.
4.
5.
VDD=3.3 V, Temperature =25 °C
See crystal or resonator manufacturer's recommendation
Cx,Cy can be provided by using either the integrated capacitors or by using external components.
When low power mode is selected, RF is integrated and must not be attached externally.
The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other devices.
6.3.2.2
Symbol
fosc_lo
Oscillator frequency specifications
Table 17. Oscillator frequency specifications
Description
Oscillator crystal or resonator frequency — low
frequency mode (MCG_C2[RANGE]=00)
Min.
Typ.
Max.
Unit
32
—
40
kHz
Notes
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
29
Peripheral operating requirements and behaviors
Table 17. Oscillator frequency specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
fosc_hi_1
Oscillator crystal or resonator frequency — high
frequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
50
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
tcst
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it
remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register
being set.
6.3.3 32kHz Oscillator Electrical Characteristics
This section describes the module electrical characteristics.
6.3.3.1
Symbol
32kHz oscillator DC electrical specifications
Table 18. 32kHz oscillator DC electrical specifications
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
Internal feedback resistor
—
100
—
MΩ
Cpara
Parasitical capacitance of EXTAL32 and XTAL32
—
5
7
pF
Cload
Internal load capacitance (programmable)
—
15
—
pF
Vpp1
Peak-to-peak amplitude of oscillation
—
0.6
—
V
VBAT
RF
1. The EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to
any other devices.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
30
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.3.3.2
Symbol
fosc_lo
tstart
32kHz oscillator frequency specifications
Table 19. 32kHz oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
Oscillator crystal
—
32.768
—
kHz
Crystal start-up time
—
1000
—
ms
Notes
1
1. Proper PC board layout procedures must be followed to achieve specifications.
6.4 Memories and memory interfaces
6.4.1 Flash (FTFL) electrical specifications
This section describes the electrical characteristics of the FTFL module.
6.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 20. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm4
thversscr
Longword Program high-voltage time
—
7.5
18
μs
Sector Erase high-voltage time
—
13
113
ms
1
—
416
3616
ms
1
Notes
thversblk256k Erase Block high-voltage time for 256 KB
Notes
1. Maximum time based on expectations at cycling end-of-life.
6.4.1.2
Symbol
Flash timing specifications — commands
Table 21. Flash command timing specifications
Description
Min.
Typ.
Max.
Unit
—
—
1.7
ms
Read 1s Block execution time
trd1blk256k
• 256 KB program/data flash
trd1sec2k
Read 1s Section execution time (flash sector)
—
—
60
μs
1
tpgmchk
Program Check execution time
—
—
45
μs
1
trdrsrc
Read Resource execution time
—
—
30
μs
1
tpgm4
Program Longword execution time
—
65
145
μs
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
31
Peripheral operating requirements and behaviors
Table 21. Flash command timing specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
Erase Flash Block execution time
tersblk256k
tersscr
2
• 256 KB program/data flash
Erase Flash Sector execution time
—
435
3700
ms
—
14
114
ms
2
Program Section execution time
tpgmsec512
• 512 B flash
—
2.4
—
ms
tpgmsec1k
• 1 KB flash
—
4.7
—
ms
tpgmsec2k
• 2 KB flash
—
9.3
—
ms
trd1all
Read 1s All Blocks execution time
—
—
1.8
ms
trdonce
Read Once execution time
—
—
25
μs
Program Once execution time
—
65
—
μs
tersall
Erase All Blocks execution time
—
870
7400
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
tpgmonce
1
Swap Control execution time
tswapx01
• control code 0x01
—
200
—
μs
tswapx02
• control code 0x02
—
70
150
μs
tswapx04
• control code 0x04
—
70
150
μs
tswapx08
• control code 0x08
—
—
30
μs
1. Assumes 25MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
6.4.1.3
Flash (FTFL) current and power specfications
Table 22. Flash (FTFL) current and power specfications
Symbol
Description
IDD_PGM
Worst case programming current in program flash
6.4.1.4
Symbol
Typ.
Unit
10
mA
Reliability specifications
Table 23. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k
Data retention after up to 10 K cycles
5
50
—
years
2
tnvmretp1k
Data retention after up to 1 K cycles
10
100
—
years
2
tnvmretp100
Data retention after up to 100 cycles
15
100
—
years
2
10 K
35 K
—
cycles
3
nnvmcycp
Cycling endurance
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
32
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant
25°C use profile. Engineering Bulletin EB618 does not apply to this technology.
2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application).
3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
6.4.2 EzPort Switching Specifications
Table 24. EzPort switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
EP1
EZP_CK frequency of operation (all commands except
READ)
—
fSYS/2
MHz
EP1a
EZP_CK frequency of operation (READ command)
—
fSYS/8
MHz
EP2
EZP_CS negation to next EZP_CS assertion
2 x tEZP_CK
—
ns
EP3
EZP_CS input valid to EZP_CK high (setup)
5
—
ns
EP4
EZP_CK high to EZP_CS input invalid (hold)
5
—
ns
EP5
EZP_D input valid to EZP_CK high (setup)
2
—
ns
EP6
EZP_CK high to EZP_D input invalid (hold)
5
—
ns
EP7
EZP_CK low to EZP_Q output valid
—
16
ns
EP8
EZP_CK low to EZP_Q output invalid (hold)
0
—
ns
EP9
EZP_CS negation to EZP_Q tri-state
—
12
ns
EZP_CK
EP3
EP2
EP4
EZP_CS
EP9
EP7
EP8
EZP_Q (output)
EP5
EP6
EZP_D (input)
Figure 9. EzPort Timing Diagram
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
33
Peripheral operating requirements and behaviors
6.4.3 Flexbus Switching Specifications
All processor bus timings are synchronous; input setup/hold and output delay are given in
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be
the same as the internal system bus frequency or an integer divider of that frequency.
The following timing numbers indicate when data is latched or driven onto the external
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be
derived from these values.
Table 25. Flexbus limited voltage range switching specifications
Num
Description
Min.
Max.
Unit
Notes
Operating voltage
2.7
3.6
V
Frequency of operation
—
FB_CLK
MHz
FB1
Clock period
20
—
ns
FB2
Address, data, and control output valid
—
11.5
ns
1
FB3
Address, data, and control output hold
0.5
—
ns
1
FB4
Data and FB_TA input setup
8.5
—
ns
2
FB5
Data and FB_TA input hold
0.5
—
ns
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,
and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Table 26. Flexbus full voltage range switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
—
FB_CLK
MHz
1/FB_CLK
—
ns
Frequency of operation
Notes
FB1
Clock period
FB2
Address, data, and control output valid
—
13.5
ns
1
FB3
Address, data, and control output hold
0
—
ns
1
FB4
Data and FB_TA input setup
13.7
—
ns
2
FB5
Data and FB_TA input hold
0.5
—
ns
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,
and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
34
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB3
FB5
FB_A[Y]
Address
FB4
FB2
FB_D[X]
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
FB4
FB_BEn
FB5
AA=1
FB_TA
FB_TSIZ[1:0]
AA=0
TSIZ
Figure 10. FlexBus read timing diagram
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
35
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB2
FB3
FB_A[Y]
FB_D[X]
Address
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
FB4
FB_BEn
FB5
AA=1
FB_TA
FB_TSIZ[1:0]
AA=0
TSIZ
Figure 11. FlexBus write timing diagram
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
36
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the
differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and
ADCx_DM3.
The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are
not direct device pins. Accuracy specifications for these pins are defined in Table 29 and
Table 30.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
6.6.1.1
16-bit ADC operating conditions
Table 27. 16-bit ADC operating conditions
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDDVDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSSVSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
VREFL
Reference
voltage low
VSSA
VSSA
VSSA
V
VADIN
Input voltage
VREFL
—
VREFH
V
CADIN
Input
capacitance
• 16 bit modes
—
8
10
pF
• 8/10/12 bit
modes
—
4
5
—
2
5
Symbol
RADIN
RAS
fADCK
fADCK
Input resistance
Analog source
resistance
13/12 bit modes
ADC conversion
clock frequency
≤ 13 bit modes
ADC conversion
clock frequency
16 bit modes
fADCK < 4MHz
Notes
kΩ
3
—
—
5
kΩ
4
1.0
—
18.0
MHz
4
2.0
—
12.0
MHz
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
37
Peripheral operating requirements and behaviors
Table 27. 16-bit ADC operating conditions (continued)
Symbol
Crate
Description
Conditions
ADC conversion
rate
≤ 13 bit modes
Min.
Typ.1
Max.
Unit
Notes
5
No ADC hardware
averaging
20.000
—
818.330
Ksps
Continuous
conversions enabled,
subsequent conversion
time
Crate
ADC conversion
rate
16 bit modes
5
No ADC hardware
averaging
37.037
—
461.467
Ksps
Continuous
conversions enabled,
subsequent conversion
time
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS/
CAS time constant should be kept to <1ns.
4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/
files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Pad
leakage
due to
input
protection
Z AS
R AS
Z ADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
R ADIN
ADC SAR
ENGINE
V ADIN
V AS
C AS
R ADIN
INPUT PIN
INPUT PIN
R ADIN
R ADIN
INPUT PIN
C ADIN
Figure 12. ADC input impedance equivalency diagram
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
38
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.1.2
16-bit ADC electrical characteristics
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
IDDA_ADC
Supply current
fADACK
ADC
asynchronous
clock source
Sample Time
TUE
DNL
INL
EFS
Conditions1
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
• ADLPC=1, ADHSC=0
1.2
2.4
3.9
MHz
• ADLPC=1, ADHSC=1
3.0
4.0
7.3
MHz
tADACK = 1/
fADACK
• ADLPC=0, ADHSC=0
2.4
5.2
6.1
MHz
• ADLPC=0, ADHSC=1
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
LSB4
VADIN =
VDDA
See Reference Manual chapter for sample times
Total unadjusted
error
• 12 bit modes
—
±4
±6.8
• <12 bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12 bit modes
—
±0.7
-1.1 to
+1.9
• <12 bit modes
—
±0.2
• 12 bit modes
—
±1.0
• <12 bit modes
—
±0.5
-0.7 to
+0.5
• 12 bit modes
—
-4
-5.4
• <12 bit modes
—
-1.4
-1.8
Integral nonlinearity
Full-scale error
-0.3 to 0.5
-2.7 to
+1.9
5
EQ
ENOB
Quantization
error
• 16 bit modes
—
-1 to 0
—
• ≤13 bit modes
—
—
±0.5
Effective number 16 bit differential mode
of bits
• Avg=32
• Avg=4
LSB4
6
12.8
14.5
—
bits
11.9
13.8
—
bits
12.2
13.9
—
bits
11.4
13.1
—
bits
16 bit single-ended mode
• Avg=32
• Avg=4
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16 bit differential mode
6.02 × ENOB + 1.76
• Avg=32
16 bit single-ended mode
• Avg=32
dB
7
—
–94
—
dB
—
-85
—
dB
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
39
Peripheral operating requirements and behaviors
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
SFDR
Description
Conditions1
Spurious free
dynamic range
16 bit differential mode
• Avg=32
16 bit single-ended mode
• Avg=32
EIL
Min.
Typ.2
Max.
Unit
Notes
7
82
95
—
dB
78
90
—
dB
Input leakage
error
IIn × RAS
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and
current
operating
ratings)
VTEMP25
Temp sensor
slope
–40°C to 105°C
—
1.715
—
mV/°C
Temp sensor
voltage
25°C
—
719
—
mV
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock
speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
40
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Figure 13. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Figure 14. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
41
Peripheral operating requirements and behaviors
6.6.1.3
16-bit ADC with PGA operating conditions
Table 29. 16-bit ADC with PGA operating conditions
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
VREFPGA
PGA ref voltage
Symbol
VADIN
VCM
RPGAD
VREF_OU VREF_OU VREF_OU
T
T
T
V
Notes
2, 3
Input voltage
VSSA
—
VDDA
V
Input Common
Mode range
VSSA
—
VDDA
V
Gain = 1, 2, 4, 8
—
128
—
kΩ
IN+ to IN-4
Gain = 16, 32
—
64
—
Gain = 64
—
32
—
Differential input
impedance
RAS
Analog source
resistance
—
100
—
Ω
5
TS
ADC sampling
time
1.25
—
—
µs
6
18.484
—
450
Ksps
7
37.037
—
250
Ksps
8
Crate
ADC conversion
rate
≤ 13 bit modes
No ADC hardware
averaging
Continuous
conversions enabled
Peripheral clock = 50
MHz
16 bit modes
No ADC hardware
averaging
Continuous
conversions enabled
Peripheral clock = 50
MHz
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. ADC must be configured to use the internal voltage reference (VREF_OUT)
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other
than the output of the VREF module, the VREF module must be disabled.
4. For single ended configurations the input impedance of the driven input is RPGAD/2
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at
8 MHz ADC clock.
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
42
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.1.4
16-bit ADC with PGA characteristics
Table 30. 16-bit ADC with PGA characteristics
Symbol
Description
Conditions
IDDA_PGA
Supply current
Low power
(ADC_PGA[PGALPb]=0)
IDC_PGA
Input DC current
G
BW
Gain4
Input signal
bandwidth
PSRR
Power supply
rejection ratio
CMRR
Common mode
rejection ratio
Min.
Typ.1
Max.
Unit
Notes
—
420
644
μA
2
A
3
Gain =1, VREFPGA=1.2V,
VCM=0.5V
—
1.54
—
μA
Gain =64, VREFPGA=1.2V,
VCM=0.1V
—
0.57
—
μA
• PGAG=0
0.95
1
1.05
• PGAG=1
1.9
2
2.1
• PGAG=2
3.8
4
4.2
• PGAG=3
7.6
8
8.4
• PGAG=4
15.2
16
16.6
• PGAG=5
30.0
31.6
33.2
• PGAG=6
58.8
63.3
67.8
—
—
4
kHz
—
—
40
kHz
—
-84
—
dB
VDDA= 3V
±100mV,
fVDDA= 50Hz,
60Hz
• Gain=1
—
-84
—
dB
• Gain=64
—
-85
—
dB
VCM=
500mVpp,
fVCM= 50Hz,
100Hz
• 16-bit modes
• < 16-bit modes
Gain=1
RAS < 100Ω
VOFS
Input offset
voltage
—
0.2
—
mV
Output offset =
VOFS*(Gain+1)
TGSW
Gain switching
settling time
—
—
10
µs
5
EIL
Input leakage
error
mV
IIn = leakage
current
All modes
IIn × RAS
(refer to the
MCU's voltage
and current
operating
ratings)
VPP,DIFF
Maximum
differential input
signal swing
V
6
where VX = VREFPGA × 0.583
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
43
Peripheral operating requirements and behaviors
Table 30. 16-bit ADC with PGA characteristics (continued)
Symbol
SNR
THD
SFDR
ENOB
SINAD
Description
Conditions
Min.
Typ.1
Max.
Unit
Notes
16-bit
differential
mode,
Average=32
Signal-to-noise
ratio
• Gain=1
80
90
—
dB
• Gain=64
52
66
—
dB
Total harmonic
distortion
• Gain=1
85
100
—
dB
• Gain=64
49
95
—
dB
Spurious free
dynamic range
• Gain=1
85
105
—
dB
• Gain=64
53
88
—
dB
Effective number
of bits
• Gain=1, Average=4
11.6
13.4
—
bits
• Gain=64, Average=4
7.2
9.6
—
bits
• Gain=1, Average=32
12.8
14.5
—
bits
• Gain=2, Average=32
11.0
14.3
—
bits
• Gain=4, Average=32
7.9
13.8
—
bits
• Gain=8, Average=32
7.3
13.1
—
bits
• Gain=16, Average=32
6.8
12.5
—
bits
• Gain=32, Average=32
6.8
11.5
—
bits
• Gain=64, Average=32
7.5
10.6
—
bits
Signal-to-noise
plus distortion
ratio
See ENOB
6.02 × ENOB + 1.76
16-bit
differential
mode,
Average=32,
fin=100Hz
16-bit
differential
mode,
Average=32,
fin=100Hz
16-bit
differential
mode,fin=100H
z
dB
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.
2. This current is a PGA module adder, in addition to and ADC conversion currents.
3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong
function of input common mode voltage (VCM) and the PGA gain.
4. Gain = 2PGAG
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the
PGA reference voltage and gain setting.
6.6.2 CMP and 6-bit DAC electrical specifications
Table 31. Comparator and 6-bit DAC electrical specifications
Symbol
VDD
IDDHS
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
—
—
200
μA
Supply current, High-speed mode (EN=1, PMODE=1)
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
44
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 31. Comparator and 6-bit DAC electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
—
—
20
μA
VSS – 0.3
—
VDD
V
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
IDDLS
Supply current, low-speed mode (EN=1, PMODE=0)
VAIN
Analog input voltage
VAIO
Analog input offset voltage
VH
Analog comparator hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN=1,
PMODE=1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN=1,
PMODE=0)
120
250
600
ns
Analog comparator initialization delay2
—
—
40
μs
6-bit DAC current adder (enabled)
—
7
—
μA
IDAC6b
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
45
Peripheral operating requirements and behaviors
0.08
0.07
0.06
HYSTCTR
Setting
CM P Hystereris (V)
0.05
00
0.04
01
10
11
0.03
0.02
0.01
0
0.1
0.4
0.7
1
1.3
1.6
1.9
Vin level (V)
2.2
2.5
2.8
3.1
Figure 15. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
46
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
0.18
0.16
0.14
CMP
P Hystereris (V)
0.12
HYSTCTR
Setting
0.1
00
01
0
08
0.08
10
11
0.06
0.04
0.02
0
0.1
0.4
0.7
1
1.3
1.6
Vin level (V)
1.9
2.2
2.5
2.8
3.1
Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)
6.6.3 12-bit DAC electrical characteristics
6.6.3.1
Symbol
12-bit DAC operating requirements
Table 32. 12-bit DAC operating requirements
Desciption
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VDACR
Reference voltage
1.13
3.6
V
TA
Temperature
−40
105
°C
CL
Output load capacitance
—
100
pF
IL
Output load current
—
1
mA
Notes
1
2
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
47
Peripheral operating requirements and behaviors
6.6.3.2
Symbol
12-bit DAC operating behaviors
Table 33. 12-bit DAC operating behaviors
Description
IDDA_DACL Supply current — low-power mode
Min.
Typ.
Max.
Unit
—
—
150
μA
—
—
700
μA
Notes
P
IDDA_DAC Supply current — high-speed mode
HP
tDACLP
Full-scale settling time (0x080 to 0xF7F) —
low-power mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) —
high-power mode
—
15
30
μs
1
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08) — low-power mode and high-speed
mode
—
0.7
1
μs
1
Vdacoutl
DAC output voltage range low — highspeed mode, no load, DAC set to 0x000
—
—
100
mV
Vdacouth
DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed
mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2
V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREF_OUT
—
—
±1
LSB
4
VOFFSET
Offset error
—
±0.4
±0.8
%FSR
5
EG
Gain error
—
±0.1
±0.6
%FSR
5
Power supply rejection ratio, VDDA > = 2.4 V
60
90
dB
TCO
Temperature coefficient offset voltage
—
3.7
—
μV/C
TGE
Temperature coefficient gain error
—
0.000421
—
%FSR/C
Rop
Output resistance load = 3 kΩ
—
—
250
Ω
SR
Slew rate -80h→ F7Fh→ 80h
PSRR
1.
2.
3.
4.
5.
V/μs
• High power (SPHP)
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
—
—
-80
CT
Channel to channel cross talk
BW
3dB bandwidth
6
dB
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Settling within ±1 LSB
The INL is measured for 0+100mV to VDACR−100 mV
The DNL is measured for 0+100 mV to VDACR−100 mV
The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V
Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
48
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set
to 0x800, Temp range from -40C to 105C
Figure 17. Typical INL error vs. digital code
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
49
Peripheral operating requirements and behaviors
Figure 18. Offset at half scale vs. temperature
6.6.4 Voltage reference electrical specifications
Table 34. VREF full-range operating requirements
Symbol
Description
Min.
Max.
Unit
Supply voltage
1.71
3.6
V
TA
Temperature
−40
105
°C
CL
Output load capacitance
VDDA
100
Notes
nF
1
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
50
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 35. VREF full-range operating behaviors
Symbol
Description
Min.
Typ.
Max.
Unit
Vout
Voltage reference output with factory trim at
nominal VDDA and temperature=25C
1.1965
1.2
1.2027
V
Vout
Voltage reference output with— factory trim
1.1584
—
1.2376
V
Vstep
Voltage reference trim step
—
0.5
—
mV
Vtdrift
Temperature drift (Vmax -Vmin across the full
temperature range)
—
—
80
mV
Ibg
Bandgap only (MODE_LV = 00) current
—
—
80
µA
Itr
Tight-regulation buffer (MODE_LV =10) current
—
—
1.1
mA
ΔVLOAD
Load regulation (MODE_LV = 10)
Notes
mV
• current = + 1.0 mA
—
2
—
• current = - 1.0 mA
—
5
—
Tstup
Buffer startup time
—
—
100
µs
Vvdrift
Voltage drift (Vmax -Vmin across the full voltage
range) (MODE_LV = 10, REGEN = 1)
—
2
—
mV
1
1. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load
Table 36. VREF limited-range operating requirements
Symbol
Description
Min.
Max.
Unit
TA
Temperature
0
50
°C
Notes
Table 37. VREF limited-range operating behaviors
Symbol
Vout
Description
Voltage reference output with factory trim
Min.
Max.
Unit
1.173
1.225
V
Notes
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
6.8.1 CAN switching specifications
See General switching specifications.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
51
Peripheral operating requirements and behaviors
6.8.2 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 38. Master mode DSPI timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
25
MHz
2 x tBUS
—
ns
Notes
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
2
—
ns
1
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
2
—
ns
2
DS5
DSPI_SCK to DSPI_SOUT valid
—
8.5
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
−2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
15
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
DS7
DS8
Data
First data
Last data
DS5
First data
DS6
Data
Last data
Figure 19. DSPI classic SPI timing — master mode
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
52
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 39. Slave mode DSPI timing (limited voltage range)
Num
Description
Operating voltage
Min.
Max.
Unit
2.7
3.6
V
12.5
MHz
4 x tBUS
—
ns
(tSCK/2) − 2
(tSCK/2) + 2
ns
Frequency of operation
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
10
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
14
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
14
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Last data
Data
DS14
First data
Data
Last data
Figure 20. DSPI classic SPI timing — slave mode
6.8.3 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 40. Master mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
12.5
MHz
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
53
Peripheral operating requirements and behaviors
Table 40. Master mode DSPI timing (full voltage range) (continued)
Num
Description
Min.
Max.
Unit
4 x tBUS
—
ns
Notes
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
4
—
ns
2
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
4
—
ns
3
DS5
DSPI_SCK to DSPI_SOUT valid
—
10
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
-4.5
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
20.5
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
DS8
DS7
(CPOL=0)
DSPI_SIN
Data
First data
Last data
DS5
DSPI_SOUT
First data
DS6
Data
Last data
Figure 21. DSPI classic SPI timing — master mode
Table 41. Slave mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
1.71
3.6
V
—
6.25
MHz
8 x tBUS
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
20
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
19
ns
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
54
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 41. Slave mode DSPI timing (full voltage range) (continued)
Num
DS16
Description
DSPI_SS inactive to DSPI_SOUT not driven
Min.
Max.
Unit
—
19
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DS12
DSPI_SOUT
First data
DS13
DS16
DS11
Data
Last data
DS14
DSPI_SIN
First data
Data
Last data
Figure 22. DSPI classic SPI timing — slave mode
6.8.4 I2C switching specifications
See General switching specifications.
6.8.5 UART switching specifications
See General switching specifications.
6.8.6 SDHC specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
Table 42. SDHC switching specifications
Num
Symbol
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Card input clock
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
55
Peripheral operating requirements and behaviors
Table 42. SDHC switching specifications
(continued)
Num
Symbol
SD1
fpp
Description
Min.
Max.
Unit
Clock frequency (low speed)
0
400
kHz
fpp
Clock frequency (SD\SDIO full speed)
0
25
MHz
fpp
Clock frequency (MMC full speed)
0
20
MHz
fOD
Clock frequency (identification mode)
0
400
kHz
SD2
tWL
Clock low time
7
—
ns
SD3
tWH
Clock high time
7
—
ns
SD4
tTLH
Clock rise time
—
3
ns
SD5
tTHL
Clock fall time
—
3
ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6
tOD
SDHC output delay (output valid)
-5
6.5
ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7
tISU
SDHC input setup time
5
—
ns
SD8
tIH
SDHC input hold time
0
—
ns
SD3
SD2
SD1
SDHC_CLK
SD6
Output SDHC_CMD
Output SDHC_DAT[3:0]
SD7
SD8
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 23. SDHC timing
6.8.7 I2S switching specifications
This section provides the AC timings for the I2S in master (clocks driven) and slave
modes (clocks input). All timings are given for non-inverted serial clock polarity
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0,
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
56
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all
the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync
(I2S_FS) shown in the figures below.
Table 43. I2S master mode timing
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
S1
I2S_MCLK cycle time
2 x tSYS
S2
I2S_MCLK pulse width high/low
S3
I2S_BCLK cycle time
S4
I2S_BCLK pulse width high/low
S5
I2S_BCLK to I2S_FS output valid
S6
I2S_BCLK to I2S_FS output invalid
S7
ns
45%
55%
MCLK period
5 x tSYS
—
ns
45%
55%
BCLK period
—
15
ns
-2.5
—
ns
I2S_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_BCLK to I2S_TXD invalid
-3
—
ns
S9
I2S_RXD/I2S_FS input setup before I2S_BCLK
20
—
ns
S10
I2S_RXD/I2S_FS input hold after I2S_BCLK
0
—
ns
S1
S2
S2
I2S_MCLK (output)
S3
I2S_BCLK (output)
S4
S4
S6
S5
I2S_FS (output)
S10
S9
I2S_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 24. I2S timing — master mode
Table 44. I2S slave mode timing
Num
S11
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
8 x tSYS
—
ns
I2S_BCLK cycle time (input)
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
57
Peripheral operating requirements and behaviors
Table 44. I2S slave mode timing (continued)
Num
Description
Min.
Max.
Unit
S12
I2S_BCLK pulse width high/low (input)
45%
55%
MCLK period
S13
I2S_FS input setup before I2S_BCLK
10
—
ns
S14
I2S_FS input hold after I2S_BCLK
3
—
ns
S15
I2S_BCLK to I2S_TXD/I2S_FS output valid
—
20
ns
S16
I2S_BCLK to I2S_TXD/I2S_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_BCLK
10
—
ns
S18
I2S_RXD hold after I2S_BCLK
2
—
ns
S11
S12
I2S_BCLK (input)
S12
S15
S16
I2S_FS (output)
S13
S14
I2S_FS (input)
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 25. I2S timing — slave modes
6.9 Human-machine interfaces (HMI)
6.9.1 TSI electrical specifications
Table 45. TSI electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDDTSI
Operating voltage
1.71
—
3.6
V
Target electrode capacitance range
1
20
500
pF
1
fREFmax
Reference oscillator frequency
—
5.5
12.7
MHz
2
fELEmax
Electrode oscillator frequency
—
0.5
4.0
MHz
3
Internal reference capacitor
0.5
1
1.2
pF
Oscillator delta voltage
100
600
760
mV
CELE
CREF
VDELTA
Notes
4
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
58
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 45. TSI electrical specifications (continued)
Symbol
IREF
IELE
Description
Min.
Reference oscillator current source base current
• 1uA setting (REFCHRG=0)
• 32uA setting (REFCHRG=31)
Electrode oscillator current source base current
• 1uA setting (EXTCHRG=0)
• 32uA setting (EXTCHRG=31)
Typ.
Max.
—
1.133
1.5
—
36
50
—
1.133
1.5
—
36
50
Unit
Notes
μA
3, 5
μA
3,6
Pres5
Electrode capacitance measurement precision
—
8.3333
38400
%
7
Pres20
Electrode capacitance measurement precision
—
8.3333
38400
%
8
Pres100
Electrode capacitance measurement precision
—
8.3333
38400
%
9
MaxSens
Maximum sensitivity
0.003
12.5
—
fF/count
10
Resolution
—
—
16
bits
Response time @ 20 pF
8
15
25
μs
Current added in run mode
—
55
—
μA
Low power mode current adder
—
1.3
2.5
μA
Res
TCon20
ITSI_RUN
ITSI_LP
11
12
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.
3. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF.
4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF.
5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.
8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.
10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (Cref
* Iext)/( Iref * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following
configuration: Iext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, Iref = 16 μA, REFCHRG = 15, Cref = 1.0 pF. The
minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best
sensitivity but is described as a minimum because it’s the smallest number). The minimum sensitivity parameter is based
on the following configuration: Iext = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, Iref = 32 μA, REFCHRG = 31, Cref= 0.5
pF
11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1
electrode, DELVOL = 2, EXTCHRG = 15.
12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and
fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.
6.9.2 LCD electrical characteristics
Table 46. LCD electricals
Symbol
Description
Min.
Typ.
Max.
Unit
fFrame
LCD frame frequency
28
30
58
Hz
CLCD
LCD charge pump capacitance — nominal value
—
100
—
nF
Notes
1
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
59
Peripheral operating requirements and behaviors
Table 46. LCD electricals (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
CBYLCD
LCD bypass capacitance — nominal value
—
100
—
nF
1
CGlass
LCD glass capacitance
—
2000
8000
pF
2
VIREG
VIREG
3
• HREFSEL=0, RVTRIM=1111
—
1.11
—
V
• HREFSEL=0, RVTRIM=1000
—
1.01
—
V
• HREFSEL=0, RVTRIM=0000
—
0.91
—
V
—
1.84
—
V
—
1.69
—
V
—
1.54
—
V
—
—
3.0
% VIREG
• HREFSEL = 0
—
—
30
mV
• HREFSEL = 1
—
—
50
mV
—
1
—
µA
—
10
—
µA
—
1
—
µA
—
0.28
—
MΩ
—
2.98
—
MΩ
• HREFSEL = 0
2.0 − 5%
2.0
—
V
• HREFSEL = 1
3.3 − 5%
3.3
—
V
• HREFSEL = 0
3.0 − 5%
3.0
—
V
• HREFSEL = 1
5 − 5%
5
—
V
• HREFSEL=1, RVTRIM=1111
• HREFSEL=1, RVTRIM=1000
• HREFSEL=1, RVTRIM=0000
ΔRTRIM
—
VIREG TRIM resolution
VIREG ripple
IVIREG
VIREG current adder — RVEN = 1
IRBIAS
RBIAS current adder
• LADJ = 10 or 11 — High load (LCD glass
capacitance ≤ 8000 pF)
4
• LADJ = 00 or 01 — Low load (LCD glass
capacitance ≤ 2000 pF)
RRBIAS
RBIAS resistor values
• LADJ = 10 or 11 — High load (LCD glass
capacitance ≤ 8000 pF)
• LADJ = 00 or 01 — Low load (LCD glass
capacitance ≤ 2000 pF)
VLL2
VLL3
VLL2 voltage
VLL3 voltage
1. The actual value used could vary with tolerance.
2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter
within the device's reference manual.
3. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V
4. 2000 pF load LCD, 32 Hz frame frequency
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
60
Freescale Semiconductor, Inc.
Dimensions
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to http://www.freescale.com and perform a keyword
search for the drawing’s document number:
If you want the drawing for this package
Then use this document number
144-pin LQFP
98ASS23177W
144-pin MAPBGA
98ASA00222D
8 Pinout
8.1 K30 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
—
L5
RESERVED RESERVED RESERVED
—
M5
NC
NC
NC
1
D3
PTE0
ADC1_SE4
a
ADC1_SE4
a
PTE0
SPI1_PCS1 UART1_TX
SDHC0_D1
FB_AD27
I2C1_SDA
2
D2
PTE1
ADC1_SE5
a
ADC1_SE5
a
PTE1
SPI1_SOUT UART1_RX
SDHC0_D0
FB_AD26
I2C1_SCL
3
D1
PTE2
ADC1_SE6
a
ADC1_SE6
a
PTE2
SPI1_SCK
UART1_CT
S_b
SDHC0_DC FB_AD25
LK
4
E4
PTE3
ADC1_SE7
a
ADC1_SE7
a
PTE3
SPI1_SIN
UART1_RT
S_b
SDHC0_CM FB_AD24
D
5
E5
VDD
VDD
VDD
6
F6
VSS
VSS
VSS
7
E3
PTE4
DISABLED
PTE4
SPI1_PCS0 UART3_TX
SDHC0_D3
ALT7
EzPort
FB_CS3_b/ FB_TA_b
FB_BE7_0_
BLS31_24_
b
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
61
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
FB_TBST_b
/FB_CS2_b/
FB_BE15_8
_BLS23_16
_b
ALT6
8
E2
PTE5
DISABLED
PTE5
SPI1_PCS2 UART3_RX
SDHC0_D2
9
E1
PTE6
DISABLED
PTE6
SPI1_PCS3 UART3_CT
S_b
I2S0_MCLK FB_ALE/
FB_CS1_b/
FB_TS_b
10
F4
PTE7
DISABLED
PTE7
UART3_RT
S_b
I2S0_RXD
FB_CS0_b
11
F3
PTE8
DISABLED
PTE8
UART5_TX
I2S0_RX_F
S
FB_AD4
12
F2
PTE9
DISABLED
PTE9
UART5_RX
I2S0_RX_B
CLK
FB_AD3
13
F1
PTE10
DISABLED
PTE10
UART5_CT
S_b
I2S0_TXD
FB_AD2
14
G4
PTE11
DISABLED
PTE11
UART5_RT
S_b
I2S0_TX_F
S
FB_AD1
15
G3
PTE12
DISABLED
PTE12
I2S0_TX_B
CLK
FB_AD0
16
E6
VDD
VDD
VDD
17
F7
VSS
VSS
VSS
18
H1
PTE16
ADC0_SE4
a
ADC0_SE4
a
PTE16
SPI0_PCS0 UART2_TX
FTM_CLKIN
0
FTM0_FLT3
19
H2
PTE17
ADC0_SE5
a
ADC0_SE5
a
PTE17
SPI0_SCK
FTM_CLKIN
1
LPT0_ALT3
20
G1
PTE18
ADC0_SE6
a
ADC0_SE6
a
PTE18
SPI0_SOUT UART2_CT
S_b
I2C0_SDA
21
G2
PTE19
ADC0_SE7
a
ADC0_SE7
a
PTE19
SPI0_SIN
I2C0_SCL
22
H3
VSS
VSS
VSS
23
J1
ADC0_DP1
ADC0_DP1
ADC0_DP1
24
J2
ADC0_DM1 ADC0_DM1 ADC0_DM1
25
K1
ADC1_DP1
26
K2
ADC1_DM1 ADC1_DM1 ADC1_DM1
27
L1
PGA0_DP/ PGA0_DP/ PGA0_DP/
ADC0_DP0/ ADC0_DP0/ ADC0_DP0/
ADC1_DP3 ADC1_DP3 ADC1_DP3
28
L2
PGA0_DM/ PGA0_DM/ PGA0_DM/
ADC0_DM0/ ADC0_DM0/ ADC0_DM0/
ADC1_DM3 ADC1_DM3 ADC1_DM3
29
M1
PGA1_DP/ PGA1_DP/ PGA1_DP/
ADC1_DP0/ ADC1_DP0/ ADC1_DP0/
ADC0_DP3 ADC0_DP3 ADC0_DP3
30
M2
PGA1_DM/ PGA1_DM/ PGA1_DM/
ADC1_DM0/ ADC1_DM0/ ADC1_DM0/
ADC0_DM3 ADC0_DM3 ADC0_DM3
ADC1_DP1
UART2_RX
UART2_RT
S_b
ALT7
EzPort
I2S0_CLKIN
ADC1_DP1
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
62
Freescale Semiconductor, Inc.
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
31
H5
VDDA
VDDA
VDDA
32
G5
VREFH
VREFH
VREFH
33
G6
VREFL
VREFL
VREFL
34
H6
VSSA
VSSA
VSSA
35
K3
ADC1_SE1
6/
CMP2_IN2/
ADC0_SE2
2
ADC1_SE1
6/
CMP2_IN2/
ADC0_SE2
2
ADC1_SE1
6/
CMP2_IN2/
ADC0_SE2
2
36
J3
ADC0_SE1
6/
CMP1_IN2/
ADC0_SE2
1
ADC0_SE1
6/
CMP1_IN2/
ADC0_SE2
1
ADC0_SE1
6/
CMP1_IN2/
ADC0_SE2
1
37
M3
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE1
8
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE1
8
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE1
8
38
L3
DAC0_OUT/
CMP1_IN3/
ADC0_SE2
3
DAC0_OUT/
CMP1_IN3/
ADC0_SE2
3
DAC0_OUT/
CMP1_IN3/
ADC0_SE2
3
39
L4
DAC1_OUT/
CMP2_IN3/
ADC1_SE2
3
DAC1_OUT/
CMP2_IN3/
ADC1_SE2
3
DAC1_OUT/
CMP2_IN3/
ADC1_SE2
3
40
M7
XTAL32
XTAL32
XTAL32
41
M6
EXTAL32
EXTAL32
EXTAL32
42
L6
VBAT
VBAT
VBAT
43
—
VDD
VDD
VDD
44
—
VSS
VSS
VSS
45
M4
PTE24
ADC0_SE1
7
ADC0_SE1
7
PTE24
CAN1_TX
UART4_TX
46
K5
PTE25
ADC0_SE1
8
ADC0_SE1
8
PTE25
CAN1_RX
UART4_RX
FB_AD23
EWM_IN
47
K4
PTE26
DISABLED
PTE26
UART4_CT
S_b
FB_AD22
RTC_CLKO
UT
48
J4
PTE27
DISABLED
PTE27
UART4_RT
S_b
FB_AD21
49
H4
PTE28
DISABLED
PTE28
50
J5
PTA0
JTAG_TCL
K/
SWD_CLK/
EZP_CLK
TSI0_CH1
PTA0
UART0_CT
S_b
FTM0_CH5
JTAG_TCL
K/
SWD_CLK
EZP_CLK
51
J6
PTA1
JTAG_TDI/
EZP_DI
TSI0_CH2
PTA1
UART0_RX
FTM0_CH6
JTAG_TDI
EZP_DI
EWM_OUT
_b
FB_AD20
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
63
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
52
K6
PTA2
JTAG_TDO/ TSI0_CH3
TRACE_SW
O/EZP_DO
PTA2
UART0_TX
FTM0_CH7
JTAG_TDO/ EZP_DO
TRACE_SW
O
53
K7
PTA3
JTAG_TMS/ TSI0_CH4
SWD_DIO
PTA3
UART0_RT
S_b
FTM0_CH0
JTAG_TMS/
SWD_DIO
54
L7
PTA4
NMI_b/
EZP_CS_b
PTA4
FTM0_CH1
NMI_b
55
M8
PTA5
DISABLED
PTA5
FTM0_CH2
CMP2_OUT I2S0_RX_B
CLK
JTAG_TRS
T
56
E7
VDD
VDD
VDD
57
G7
VSS
VSS
VSS
58
J7
PTA6
DISABLED
PTA6
FTM0_CH3
FB_CLKOU
T
TRACE_CL
KOUT
59
J8
PTA7
ADC0_SE1
0
ADC0_SE1
0
PTA7
FTM0_CH4
FB_AD18
TRACE_D3
60
K8
PTA8
ADC0_SE1
1
ADC0_SE1
1
PTA8
FTM1_CH0
FB_AD17
FTM1_QD_
PHA
TRACE_D2
61
L8
PTA9
DISABLED
PTA9
FTM1_CH1
FB_AD16
FTM1_QD_
PHB
TRACE_D1
62
M9
PTA10
DISABLED
PTA10
FTM2_CH0
FB_AD15
FTM2_QD_
PHA
TRACE_D0
63
L9
PTA11
DISABLED
PTA11
FTM2_CH1
FB_OE_b
FTM2_QD_
PHB
64
K9
PTA12
CMP2_IN0
CMP2_IN0
PTA12
CAN0_TX
FTM1_CH0
FB_CS5_b/ I2S0_TXD
FB_TSIZ1/
FB_BE23_1
6_BLS15_8
_b
FTM1_QD_
PHA
65
J9
PTA13
CMP2_IN1
CMP2_IN1
PTA13
CAN0_RX
FTM1_CH1
FB_CS4_b/ I2S0_TX_F
FB_TSIZ0/ S
FB_BE31_2
4_BLS7_0_
b
FTM1_QD_
PHB
66
L10 PTA14
DISABLED
PTA14
SPI0_PCS0 UART0_TX
FB_AD31
I2S0_TX_B
CLK
67
L11 PTA15
DISABLED
PTA15
SPI0_SCK
UART0_RX
FB_AD30
I2S0_RXD
68
K10 PTA16
DISABLED
PTA16
SPI0_SOUT UART0_CT
S_b
FB_AD29
I2S0_RX_F
S
69
K11 PTA17
ADC1_SE1
7
ADC1_SE1
7
PTA17
SPI0_SIN
FB_AD28
I2S0_MCLK I2S0_CLKIN
70
E8
VDD
VDD
VDD
71
G8
VSS
VSS
VSS
72
M12 PTA18
EXTAL
EXTAL
PTA18
FTM0_FLT2 FTM_CLKIN
0
73
M11 PTA19
XTAL
XTAL
PTA19
FTM1_FLT0 FTM_CLKIN
1
74
L12 RESET_b
RESET_b
RESET_b
TSI0_CH5
UART0_RT
S_b
EZP_CS_b
LPT0_ALT1
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
64
Freescale Semiconductor, Inc.
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
75
K12 PTA24
DISABLED
PTA24
FB_AD14
76
J12
PTA25
DISABLED
PTA25
FB_AD13
77
J11
PTA26
DISABLED
PTA26
FB_AD12
78
J10
PTA27
DISABLED
PTA27
FB_AD11
79
H12 PTA28
DISABLED
PTA28
FB_AD10
80
H11 PTA29
DISABLED
PTA29
FB_AD19
81
H10 PTB0
LCD_P0/
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
LCD_P0/
PTB0
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
I2C0_SCL
FTM1_CH0
FTM1_QD_
PHA
LCD_P0
82
H9
LCD_P1/
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
LCD_P1/
PTB1
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
I2C0_SDA
FTM1_CH1
FTM1_QD_
PHB
LCD_P1
83
G12 PTB2
LCD_P2/
LCD_P2/
PTB2
ADC0_SE1 ADC0_SE1
2/TSI0_CH7 2/TSI0_CH7
I2C0_SCL
UART0_RT
S_b
FTM0_FLT3 LCD_P2
84
G11 PTB3
LCD_P3/
LCD_P3/
PTB3
ADC0_SE1 ADC0_SE1
3/TSI0_CH8 3/TSI0_CH8
I2C0_SDA
UART0_CT
S_b
FTM0_FLT0 LCD_P3
85
G10 PTB4
LCD_P4/
ADC1_SE1
0
LCD_P4/
ADC1_SE1
0
PTB4
FTM1_FLT0 LCD_P4
86
G9
PTB5
LCD_P5/
ADC1_SE1
1
LCD_P5/
ADC1_SE1
1
PTB5
FTM2_FLT0 LCD_P5
87
F12 PTB6
LCD_P6/
ADC1_SE1
2
LCD_P6/
ADC1_SE1
2
PTB6
LCD_P6
88
F11 PTB7
LCD_P7/
ADC1_SE1
3
LCD_P7/
ADC1_SE1
3
PTB7
LCD_P7
89
F10 PTB8
LCD_P8
LCD_P8
PTB8
UART3_RT
S_b
LCD_P8
90
F9
LCD_P9
LCD_P9
PTB9
SPI1_PCS1 UART3_CT
S_b
LCD_P9
91
E12 PTB10
LCD_P10/
ADC1_SE1
4
LCD_P10/
ADC1_SE1
4
PTB10
SPI1_PCS0 UART3_RX
FTM0_FLT1 LCD_P10
92
E11 PTB11
LCD_P11/
ADC1_SE1
5
LCD_P11/
ADC1_SE1
5
PTB11
SPI1_SCK
FTM0_FLT2 LCD_P11
93
H7
VSS
VSS
VSS
94
F5
VDD
VDD
VDD
95
E10 PTB16
LCD_P12/
TSI0_CH9
LCD_P12/
TSI0_CH9
PTB16
SPI1_SOUT UART0_RX
EWM_IN
LCD_P12
96
E9
LCD_P13/
TSI0_CH10
LCD_P13/
TSI0_CH10
PTB17
SPI1_SIN
EWM_OUT
_b
LCD_P13
PTB1
PTB9
PTB17
UART3_TX
UART0_TX
EzPort
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
65
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
97
D12 PTB18
LCD_P14/
TSI0_CH11
LCD_P14/
TSI0_CH11
PTB18
CAN0_TX
FTM2_CH0
I2S0_TX_B
CLK
FTM2_QD_
PHA
LCD_P14
98
D11 PTB19
LCD_P15/
TSI0_CH12
LCD_P15/
TSI0_CH12
PTB19
CAN0_RX
FTM2_CH1
I2S0_TX_F
S
FTM2_QD_
PHB
LCD_P15
99
D10 PTB20
LCD_P16
LCD_P16
PTB20
SPI2_PCS0
CMP0_OUT LCD_P16
100
D9
PTB21
LCD_P17
LCD_P17
PTB21
SPI2_SCK
CMP1_OUT LCD_P17
101
C12 PTB22
LCD_P18
LCD_P18
PTB22
SPI2_SOUT
CMP2_OUT LCD_P18
102
C11 PTB23
LCD_P19
LCD_P19
PTB23
SPI2_SIN
103
B12 PTC0
LCD_P20/
ADC0_SE1
4/
TSI0_CH13
LCD_P20/
ADC0_SE1
4/
TSI0_CH13
PTC0
SPI0_PCS4 PDB0_EXT
RG
I2S0_TXD
LCD_P20
104
B11 PTC1
LCD_P21/
ADC0_SE1
5/
TSI0_CH14
LCD_P21/
ADC0_SE1
5/
TSI0_CH14
PTC1
SPI0_PCS3 UART1_RT
S_b
FTM0_CH0
LCD_P21
105
A12 PTC2
LCD_P22/
ADC0_SE4
b/
CMP1_IN0/
TSI0_CH15
LCD_P22/
ADC0_SE4
b/
CMP1_IN0/
TSI0_CH15
PTC2
SPI0_PCS2 UART1_CT
S_b
FTM0_CH1
LCD_P22
106
A11 PTC3
LCD_P23/
CMP1_IN1
LCD_P23/
CMP1_IN1
PTC3
SPI0_PCS1 UART1_RX
FTM0_CH2
LCD_P23
107
H8
VSS
VSS
VSS
108
C10 VLL3
VLL3
VLL3
109
C9
VLL2
VLL2
VLL2
110
B9
VLL1
VLL1
VLL1
111
B10 VCAP2
VCAP2
VCAP2
112
A10 VCAP1
VCAP1
VCAP1
113
A9
PTC4
LCD_P24
LCD_P24
PTC4
SPI0_PCS0 UART1_TX
FTM0_CH3
CMP1_OUT LCD_P24
114
D8
PTC5
LCD_P25
LCD_P25
PTC5
SPI0_SCK
LPT0_ALT2
CMP0_OUT LCD_P25
115
C8
PTC6
LCD_P26/
CMP0_IN0
LCD_P26/
CMP0_IN0
PTC6
SPI0_SOUT PDB0_EXT
RG
LCD_P26
116
B8
PTC7
LCD_P27/
CMP0_IN1
LCD_P27/
CMP0_IN1
PTC7
SPI0_SIN
LCD_P27
117
A8
PTC8
LCD_P28/
ADC1_SE4
b/
CMP0_IN2
LCD_P28/
ADC1_SE4
b/
CMP0_IN2
PTC8
I2S0_MCLK I2S0_CLKIN
LCD_P28
118
D7
PTC9
LCD_P29/
ADC1_SE5
b/
CMP0_IN3
LCD_P29/
ADC1_SE5
b/
CMP0_IN3
PTC9
I2S0_RX_B
CLK
FTM2_FLT0 LCD_P29
119
C7
PTC10
LCD_P30/
ADC1_SE6
b/
CMP0_IN4
LCD_P30/
ADC1_SE6
b/
CMP0_IN4
PTC10
I2S0_RX_F
S
LCD_P30
I2C1_SCL
SPI0_PCS5
EzPort
LCD_P19
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
66
Freescale Semiconductor, Inc.
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
I2C1_SDA
ALT4
ALT5
ALT6
I2S0_RXD
ALT7
120
B7
PTC11
LCD_P31/
ADC1_SE7
b
LCD_P31/
ADC1_SE7
b
PTC11
121
A7
PTC12
LCD_P32
LCD_P32
PTC12
UART4_RT
S_b
LCD_P32
122
D6
PTC13
LCD_P33
LCD_P33
PTC13
UART4_CT
S_b
LCD_P33
123
C6
PTC14
LCD_P34
LCD_P34
PTC14
UART4_RX
LCD_P34
124
B6
PTC15
LCD_P35
LCD_P35
PTC15
UART4_TX
LCD_P35
125
A6
PTC16
LCD_P36
LCD_P36
PTC16
CAN1_RX
UART3_RX
LCD_P36
126
D5
PTC17
LCD_P37
LCD_P37
PTC17
CAN1_TX
UART3_TX
LCD_P37
127
C5
PTC18
LCD_P38
LCD_P38
PTC18
UART3_RT
S_b
LCD_P38
128
B5
PTC19
LCD_P39
LCD_P39
PTC19
UART3_CT
S_b
LCD_P39
129
A5
PTD0
LCD_P40
LCD_P40
PTD0
SPI0_PCS0 UART2_RT
S_b
LCD_P40
130
D4
PTD1
LCD_P41/
ADC0_SE5
b
LCD_P41/
ADC0_SE5
b
PTD1
SPI0_SCK
UART2_CT
S_b
LCD_P41
131
C4
PTD2
LCD_P42
LCD_P42
PTD2
SPI0_SOUT UART2_RX
LCD_P42
132
B4
PTD3
LCD_P43
LCD_P43
PTD3
SPI0_SIN
LCD_P43
133
A4
PTD4
LCD_P44
LCD_P44
PTD4
SPI0_PCS1 UART0_RT
S_b
FTM0_CH4
EWM_IN
LCD_P44
134
A3
PTD5
LCD_P45/
ADC0_SE6
b
LCD_P45/
ADC0_SE6
b
PTD5
SPI0_PCS2 UART0_CT
S_b
FTM0_CH5
EWM_OUT
_b
LCD_P45
135
A2
PTD6
LCD_P46/
ADC0_SE7
b
LCD_P46/
ADC0_SE7
b
PTD6
SPI0_PCS3 UART0_RX
FTM0_CH6
FTM0_FLT0 LCD_P46
136
M10 VSS
VSS
VSS
137
F8
VDD
VDD
VDD
138
A1
PTD7
LCD_P47
LCD_P47
PTD7
CMT_IRO
LCD_P31
FTM0_CH7
FTM0_FLT1 LCD_P47
139
B3
PTD10
DISABLED
PTD10
UART5_RT
S_b
140
B2
PTD11
DISABLED
PTD11
SPI2_PCS0 UART5_CT
S_b
SDHC0_CL
KIN
FB_AD8
141
B1
PTD12
DISABLED
PTD12
SPI2_SCK
SDHC0_D4
FB_AD7
142
C3
PTD13
DISABLED
PTD13
SPI2_SOUT
SDHC0_D5
FB_AD6
143
C2
PTD14
DISABLED
PTD14
SPI2_SIN
SDHC0_D6
FB_AD5
144
C1
PTD15
DISABLED
PTD15
SPI2_PCS1
SDHC0_D7
FB_RW_b
UART2_TX
UART0_TX
EzPort
FB_AD9
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
67
Pinout
8.2 K30 Pinouts
PTD15
PTD14
PTD13
PTD12
PTD11
PTD10
PTD7
VDD
VSS
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
PTC19
PTC18
PTC17
PTC16
PTC15
PTC14
PTC13
PTC12
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6
PTC5
PTC4
VCAP1
VCAP2
VLL1
VLL2
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
PTE0
1
108
VLL3
PTE1
2
107
VSS
PTE2
3
106
PTC3
PTE3
4
105
PTC2
VDD
5
104
PTC1
VSS
6
103
PTC0
PTE4
7
102
PTB23
PTE5
8
101
PTB22
PTE6
9
100
PTB21
PTE7
10
99
PTB20
RESET_b
ADC0_SE16/CMP1_IN2/ADC0_SE21
36
73
PTA19
72
74
PTA18
35
71
PTA24
ADC1_SE16/CMP2_IN2/ADC0_SE22
VSS
75
70
34
VDD
PTA25
VSSA
69
PTA26
76
PTA17
77
33
68
32
VREFL
PTA16
VREFH
67
PTA27
PTA15
78
66
31
PTA14
PTA28
VDDA
65
79
PTA13
30
64
PTA29
PGA1_DM/ADC1_DM0/ADC0_DM3
PTA12
80
63
29
PTA11
PTB0
PGA1_DP/ADC1_DP0/ADC0_DP3
62
81
PTA10
28
61
PTB1
PGA0_DM/ADC0_DM0/ADC1_DM3
PTA9
82
60
27
PTA8
PTB2
PGA0_DP/ADC0_DP0/ADC1_DP3
59
83
PTA7
26
58
PTB3
ADC1_DM1
PTA6
84
57
25
VSS
PTB4
ADC1_DP1
56
85
VDD
24
55
PTB5
ADC0_DM1
PTA5
86
54
23
PTA4
PTB6
ADC0_DP1
53
87
PTA3
22
52
PTB7
VSS
PTA2
88
51
21
PTA1
PTB8
PTE19
50
89
PTA0
20
49
PTB9
PTE18
PTE28
90
48
19
PTE27
PTB10
PTE17
47
91
PTE26
18
46
PTB11
PTE16
PTE25
92
45
17
PTE24
VSS
VSS
44
93
VSS
16
43
VDD
VDD
VDD
94
42
15
VBAT
PTB16
PTE12
41
95
EXTAL32
14
40
PTB17
PTE11
XTAL32
96
39
13
DAC1_OUT/CMP2_IN3/ADC1_SE23
PTB18
PTE10
38
PTB19
97
37
98
12
DAC0_OUT/CMP1_IN3/ADC0_SE23
11
VREF_OUT/CMP1_IN5/
CMP0_IN5/ADC1_SE18
PTE8
PTE9
Figure 26. K30 144 LQFP Pinout Diagram
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
68
Freescale Semiconductor, Inc.
Revision History
1
2
3
4
5
6
7
8
9
10
11
12
A
PTD7
PTD6
PTD5
PTD4
PTD0
PTC16
PTC12
PTC8
PTC4
VCAP1
PTC3
PTC2
A
B
PTD12
PTD11
PTD10
PTD3
PTC19
PTC15
PTC11
PTC7
VLL1
VCAP2
PTC1
PTC0
B
C
PTD15
PTD14
PTD13
PTD2
PTC18
PTC14
PTC10
PTC6
VLL2
VLL3
PTB23
PTB22
C
D
PTE2
PTE1
PTE0
PTD1
PTC17
PTC13
PTC9
PTC5
PTB21
PTB20
PTB19
PTB18
D
E
PTE6
PTE5
PTE4
PTE3
VDD
VDD
VDD
VDD
PTB17
PTB16
PTB11
PTB10
E
F
PTE10
PTE9
PTE8
PTE7
VDD
VSS
VSS
VDD
PTB9
PTB8
PTB7
PTB6
F
G
PTE18
PTE19
PTE12
PTE11
VREFH
VREFL
VSS
VSS
PTB5
PTB4
PTB3
PTB2
G
H
PTE16
PTE17
VSS
PTE28
VDDA
VSSA
VSS
VSS
PTB1
PTB0
PTA29
PTA28
H
J
ADC0_DP1
ADC0_DM1
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
PTE27
PTA0
PTA1
PTA6
PTA7
PTA13
PTA27
PTA26
PTA25
J
K
ADC1_DP1
ADC1_DM1
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
PTE26
PTE25
PTA2
PTA3
PTA8
PTA12
PTA16
PTA17
PTA24
K
L
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC1_OUT/
CMP2_IN3/
ADC1_SE23
RESERVED
VBAT
PTA4
PTA9
PTA11
PTA14
PTA15
RESET_b
L
PGA1_DP/
M ADC1_DP0/
ADC0_DP3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
PTE24
NC
EXTAL32
XTAL32
PTA5
PTA10
VSS
PTA19
PTA18
M
2
3
4
5
6
7
8
9
10
11
12
1
Figure 27. K30 144 MAPBGA Pinout Diagram
9 Revision History
The following table provides a revision history for this document.
Table 47. Revision History
Rev. No.
Date
1
11/2010
Substantial Changes
Initial public revision
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
69
Revision History
Table 47. Revision History (continued)
Rev. No.
Date
Substantial Changes
2
3/2011
Many updates throughout
3
3/2011
Added sections that were inadvertently removed in previous revision
4
3/2011
Reworded IIC footnote in "Voltage and Current Operating Requirements" table.
Added paragraph to "Peripheral operating requirements and behaviors" section.
Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.
5
6/2011
• Changed supported part numbers per new part number scheme
• Changed DC injection current specs in "Voltage and current operating requirements"
table
• Changed Input leakage current and internal pullup/pulldown resistor specs in "Voltage
and current operating behaviors" table
• Split Low power stop mode current specs by temperature range in "Power
consumption operating behaviors" table
• Changed typical IDD_VBAT spec in "Power consumption operating behaviors" table
• Added LPTMR clock specs to "Device clock specifications" table
• Changed Minimum external reset pulse width in "General switching specifications"
table
• Changed PLL operating current in "MCG specifications" table
• Added footnote to PLL period jitter in "MCG specifications" table
• Changed Supply current in "Oscillator DC electrical specifications" table
• Changed Crystal startup time in "Oscillator frequency specifications" table
• Changed Operating voltage in "EzPort switching specifications" table
• Changed title of "FlexBus switching specifications" table and added Output valid and
hold specs
• Added "FlexBus full range switching specifications" table
• Changed ADC asynchronous clock source specs in "16-bit ADC characteristics" table
• Changed Gain spec in "16-bit ADC with PGA characteristics" table
• Added typical Input DC current to "16-bit ADC with PGA characteristics" table
• Changed Input offset voltage and ENOB notes field in "16-bit ADC with PGA
characteristics" table
• Changed Analog comparator initialization delay in "Comparator and 6-bit DAC
electrical specifications"
• Changed Code-to-code settling time, DAC output voltage range low, and Temperature
coefficient offset voltage in "12-bit DAC operating behaviors" table
• Changed Temperature drift and Load regulation in "VREF full-range operating
behaviors" table
• Changed DSPI_SCK cycle time specs in "DSPI timing" tables
• Changed DSPI_SS specs in "Slave mode DSPI timing (low-speed mode)" table
• Changed DSPI_SCK to DSPI_SOUT valid spec in "Slave mode DSPI timing (highspeed mode)" table
• Changed Reference oscillator current source base current spec and added Lowpower current adder footer in "TSI electrical specifications" table
• Added LCD glass capacitance footnote
Table continues on the next page...
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
70
Freescale Semiconductor, Inc.
Revision History
Table 47. Revision History (continued)
Rev. No.
Date
6
9/2011
Substantial Changes
•
•
•
•
•
•
•
•
•
•
Added AC electrical specifications.
Replaced TBDs with silicon data throughout.
In "Power mode transition operating behaviors" table, removed entry times.
Updated "EMC radiated emissions operating behaviors" to remove SAE level and also
added data for 144LQFP.
Clarified "EP7" in "EzPort switching specifications" table and "EzPort Timing Diagram".
Added "ENOB vs. ADC_CLK for 16-bit differential and 16-bit single-ended modes"
figures.
Updated IDD_RUN numbers in 'Power consumption operating behaviors' section.
Clarified 'Diagram: Typical IDD_RUN operating behavior' section and updated 'Run
mode supply current vs. core frequency — all peripheral clocks disabled' figure.
In 'Voltage reference electrical specifications' section, updated CL, Vtdrift, and Vvdrift
values.
In 'LCD electrical characteristics' section, updated VIREG and ΔRTRIM values.
K30 Sub-Family Data Sheet Data Sheet, Rev. 6, 9/2011.
Freescale Semiconductor, Inc.
71
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Document Number: K30P144M100SF2
Rev. 6, 9/2011
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.
For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© 2010–2011 Freescale Semiconductor, Inc.