OKI MSM56V16160D

Pr
E2G1049-18-33
el
im
y
2-Bank ¥ 524,288-Word ¥ 16-Bit SYNCHRONOUS DYNAMIC RAM
DESCRIPTION
The MSM56V16160D/DH is a 2-bank ¥ 524,288-word ¥ 16-bit synchronous dynamic RAM,
fabricated in Oki's CMOS silicon-gate process technology. The device operates at 3.3 V. The
inputs and outputs are LVTTL compatible.
FEATURES
•
•
•
•
•
•
•
Silicon gate, quadruple polysilicon CMOS, 1-transistor memory cell
2-bank ¥ 524,288-word ¥ 16-bit configuration
3.3 V power supply, ±0.3 V tolerance
Input
: LVTTL compatible
Output : LVTTL compatible
Refresh : 4096 cycles/64 ms
Programmable data transfer mode
– CAS latency (1, 2, 3)
– CAS latency (2, 3)*1
– Burst length (1, 2, 4, 8, full page)
– Burst length (1, 2, 4, 8)*1
– Data scramble (sequential, interleave)
*1 : H version only.
• CBR auto-refresh, Self-refresh capability
• Package:
50-pin 400 mil plastic TSOP (Type II) (TSOPII50-P-400-0.80-K)
(Product : MSM56V16160D/DH-xxTS-K)
xx indicates speed rank.
PRODUCT FAMILY
Family
Max.
Frequency
Access Time (Max.)
tAC2
tAC3
MSM56V16160D-10
100 MHz
9 ns
9 ns
MSM56V16160D-12
83 MHz
14 ns
10 ns
MSM56V16160DH-15
66 MHz
9 ns
9 ns
ar
ThisMSM56V16160D/DH
version: Mar. 1998
in
¡ Semiconductor
MSM56V16160D/DH
¡ Semiconductor
1/30
¡ Semiconductor
MSM56V16160D/DH
PIN CONFIGURATION (TOP VIEW)
VCC
DQ1
DQ2
VSSQ
DQ3
DQ4
VCCQ
DQ5
DQ6
VSSQ
DQ7
DQ8
VCCQ
LDQM
WE
CAS
RAS
CS
A11
A10
A0
A1
A2
A3
VCC
1
50 VSS
2
49 DQ16
3
48 DQ15
4
47 VSSQ
5
46 DQ14
6
45 DQ13
7
44 VCCQ
8
43 DQ12
9
42 DQ11
10
41 VSSQ
11
40 DQ10
12
39 DQ9
13
38 VCCQ
14
37 NC
15
36 UDQM
16
35 CLK
17
34 CKE
18
33 NC
19
32 A9
20
31 A8
21
30 A7
22
29 A6
23
28 A5
24
27 A4
25
26 VSS
50-Pin Plastic TSOP (II)
(K Type)
Pin Name
CLK
Note:
Function
Pin Name
Function
System Clock
UDQM, LDQM Data Input/Output Mask
CS
Chip Select
DQi
Data Input/Output
CKE
Clock Enable
VCC
Power Supply (3.3 V)
A0 - A10
Address
VSS
Ground (0 V)
A11
Bank Select Address
VCCQ
Data Output Power Supply (3.3 V)
RAS
Row Address Strobe
VSSQ
Data Output Ground (0 V)
CAS
Column Address Strobe
NC
No Connection
WE
Write Enable
The same power supply voltage must be provided to every VCC pin and VCCQ pin.
The same GND voltage level must be provided to every VSS pin and VSSQ pin.
2/30
¡ Semiconductor
MSM56V16160D/DH
PIN DESCRIPTION
CLK
Fetches all inputs at the "H" edge.
CS
Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE,
CKE
Masks system clock to deactivate the subsequent CLK operation.
UDQM and LDQM.
If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is
deactivated. CKE should be asserted at least one cycle prior to a new command.
Address
Row & column multiplexed.
Row address: RA0 – RA10
Column address: CA0 – CA7
A11
Selects bank to be activated during row address latch time and selects bank for precharge and read/
write during column address latch time. A11 = "L" : Bank A, A11 = "H" : Bank B
RAS
CAS
Functionality depends on the combination. For details, see the function truth table.
WE
UDQM,
LDQM
Masks the read data of two clocks later when UDQM and LDQM are set "H" at the "H" edge of the clock signal.
Masks the write data of the same clock when UDQM and LDQM are set "H" at the "H" edge of the clock signal.
UDQM controls upper byte and LDQM controls lower byte.
DQi
Data inputs/outputs are multiplexed on the same pin.
3/30
¡ Semiconductor
MSM56V16160D/DH
BLOCK DIAGRAM
CKE
CLK
CS
RAS
CAS
WE
UDQM
LDQM
Latency
& Burst
Controller
Programing
Register
Timing
Register
I/O
Controller
Bank
Controller
A11
Internal
Col.
Address
Counter
A0 A11
8
Input
Data
Register
Column
Address
Buffers
8
12
Row
Address
Buffers
12
16
16
Column Decoders
Sense Amplifier
Internal
Row
Address
Counter
Input
Buffers
Row
Decoders
Word
Drivers
8Mb
Memory
Cells
Row
Decoders
Word
Drivers
8Mb
Memory
Cells
16
Read
Data
Register
16
16
Output
Buffers
DQ1 DQ16
Sense Amplifier
Column Decoders
4/30
¡ Semiconductor
MSM56V16160D/DH
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
(Voltages referenced to VSS)
Parameter
Symbol
Rating
Unit
Voltage on Any Pin Relative to VSS
VIN, VOUT
–0.5 to VCC + 0.5
V
VCC Supply Voltage
VCC, VCCQ
–0.5 to 4.6
V
Storage Temperature
Tstg
–55 to 150
°C
Power Dissipation
PD*
600
mW
Short Circuit Current
IOS
50
mA
Operating Temperature
Topr
0 to 70
°C
*: Ta = 25°C
Recommended Operating Conditions
(Voltages referenced to VSS = 0 V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Power Supply Voltage
VCC, VCCQ
3.0
3.3
3.6
V
Input High Voltage
VIH
2.0
—
VCC + 0.2
V
Input Low Voltage
VIL
–0.3
—
0.8
V
Capacitance
(VCC = 3.3 V ±0.3 V, Ta = 25°C, f = 1 MHz)
Parameter
Input Capacitance (A0 - A11)
Input Capacitance (CLK, CKE, CS,
RAS, CAS, WE, UDQM, LDQM)
Input/Output Capacitance
(DQ1 - DQ16)
Symbol
Min.
Max.
Unit
CIN1
2
5
pF
CIN2
2
5
pF
COUT
2
7
pF
5/30
¡ Semiconductor
MSM56V16160D/DH
DC Characteristics
Condition
Parameter
Symbol
Bank
CKE
Output High Voltage VOH
—
—
IOH = –2 mA
Output Low Voltage
VOL
—
—
IOL = 2 mA
Input Leakage Current
ILI
—
—
Output Leakage Current
ILO
—
—
ICC1
Average Power
Supply Current
(Operating)
One Bank
Active
ICC1D Both Banks
Active
Others
0.4 — 0.4
V
—
–10 10 –10 10 –10 10
mA
—
–10 10 –10 10 –10 10
mA
—
70
—
60 mA 1, 2
CKE ≥ VIH tCC = min
tRC = min
tRRD = min
No Burst
— 115 —
95
—
80 mA 1, 2
—
35
—
30
—
25 mA
3
—
3
—
3
—
3
mA
2
—
40
—
35
—
30 mA
3
Average Power
ICC3S Both Banks
Active
Supply Current
(Clock Suspension)
CKE £ VIL tCC = min
CKE ≥ VIH tCC = min
ICC4
Both Banks
Active
CKE ≥ VIH tCC = min
— 100 —
85
—
70 mA 1, 2
ICC5
One Bank
Active
CKE ≥ VIH tCC = min
tRC = min
—
80
—
70
—
60 mA
Both Banks
Precharge
CKE £ VIL tCC = min
—
2
—
2
—
2
mA
Both Banks
Precharge
CKE £ VIL tCC = min
—
2
—
2
—
2
mA
ICC3
Power Supply
Current (Burst)
Power Supply
Current
(Auto-Refresh)
Average Power
Supply Current
(Self-Refresh)
Notes:
80
One Bank
Active
Average Power
Supply Current
(Active Stand by)
Average Power
Supply Current
(Power down)
0.4 —
—
CKE ≥ VIH tCC = min
ICC2
—
CKE ≥ VIH tCC = min
tRC = min
No Burst
Both Banks
Precharge
Power Supply
Current (Stand by)
Version
D-10
D-12
DH-15 Unit Note
Min. Max. Min. Max. Min. Max.
2.4 — 2.4 — 2.4 — V
ICC6
ICC7
2
1. Measured with outputs open.
2. The address and data can be changed once or left unchanged during one cycle.
3. The address and data can be changed once or left unchanged during two cycles.
6/30
¡ Semiconductor
MSM56V16160D/DH
Mode Set Address Keys
CAS Latency
Burst Type
Burst Length
A6
A5
A4
CL
A3
BT
A2
A1
A0
BT = 0
BT = 1
0
0
0
Reserved
0
Sequential
0
0
0
1
1
1
Interleave
0
0
1
2
2
0
1
0
4
4
8
8
0
0
1
1*2
0
1
0
2
0
1
1
3
0
1
1
1
0
0
Reserved
1
0
0
Reserved Reserved
1
0
1
Reserved
1
0
1
Reserved Reserved
1
1
0
Reserved
1
1
0
Reserved Reserved
1
1
1
Reserved
1
1
1
Full Page*2 Reserved
*2 : Not applicable to H version.
Note:
A7, A8, A9, A10 and A11 should stay "L" during mode set cycle.
POWER ON SEQUENCE
1. With inputs in NOP state, turn on the power supply and start the system clock.
2. After the VCC voltage has reached the specified level, pause for 200 ms or more with
the input kept in NOP state.
3. Issue the precharge all bank command.
4. Apply a CBR auto-refresh eight or more times.
5. Enter the mode register setting command.
7/30
¡ Semiconductor
MSM56V16160D/DH
AC Characteristics
Parameter
Note 1, 2
Symbol
MSM56V16160D-10 MSM56V16160D-12 MSM56V16160DH-15
Unit Note
Min.
Max.
Min.
Max.
Min.
Max.
10
—
12
—
15
—
ns
15
—
17.5
—
15
—
ns
CL = 1
30
—
35
—
—
—
ns
CL = 3
—
9
—
10
—
9
ns
3, 4
—
9
—
14
—
9
ns
3, 4
—
27
—
30
—
—
ns
3, 4
CL = 3
Clock Cycles Time CL = 2
tCC
Access Time from CL = 2
Clock
CL = 1
tAC
Clock "H" Pulse Time
tCH
3
—
3
—
3
—
ns
Clock "L" Pulse Time
tCL
3
—
3
—
3
—
ns
Input Setup Time
tSI
3
—
3
—
3
—
ns
Input Hold Time
tHI
1
—
1
—
1
—
ns
Output Low Impedance
Time from Clock
tOLZ
3
—
3
—
3
—
ns
Output High Impedance
Time from Clock
tOHZ
—
8
—
10
—
8
ns
Output Hold from Clock
tOH
3
—
3
—
3
—
ns
RAS Cycle Time
tRC
100
—
115
—
105
—
ns
RAS Precharge Time
tRP
30
—
35
—
30
—
ns
ns
RAS Active Time
tRAS
60
105
70
105
70
105
RAS to CAS Delay Time
tRCD
30
—
35
—
30
—
ns
Write Recovery Time
tWR
15
—
24
—
15
—
ns
RAS to RAS Bank Active
Delay Time
tRRD
20
—
24
—
24
—
ns
Refresh Time
tREF
—
64
—
64
—
64
ms
Power-down Exit Set-up Time
tPDE tSI + 1 CLK
—
tSI + 1 CLK
—
tSI + 1 CLK
—
ns
3
—
3
—
3
ns
Input Level Transition Time
tT
CAS to CAS Delay Time (Min.)
lCCD
1
1
1
Cycle
Clock Disable Time from CKE
lCKE
1
1
1
Cycle
Data Output High Impedance
Time from UDQM, LDQM
lDOZ
2
2
2
Cycle
Data Input Mask Time from
UDQM, LDQM
lDOD
0
0
0
Cycle
Data Input Time from Write
Command
lDWD
0
0
0
Cycle
Data Output High
Impedance Time from
Precharge Command
lROH
1
1
—
Cycle
2
2
2
Cycle
CL = 1
CL > 1
—
Active Command Input Time from Mode
Register Set Command Input (Min.)
lMRD
3
3
3
Cycle
Write Command Input Time
from Output
lOWD
2
2
2
Cycle
3
8/30
¡ Semiconductor
MSM56V16160D/DH
Notes : 1. AC measurements assume that tT = 1 ns and VIH/VIL = 2.0 V/0.8 V.
2. The reference level for timing of input signals is 1.4 V.
3. Output load.
1.4 V
Z = 50 W
50 W
Output
50 pF
4. The access time is defined at 1.4 V.
5. If tT is longer than 1 ns, then the reference level for timing of input signals is VIH and
VIL.
9/30
,
,
,
,
,
¡ Semiconductor
MSM56V16160D/DH
TIMING WAVEFORM
Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tRC
CKE
CS
tRP
RAS
tRCD
CAS
ADDR
Ra
Ca0
Rb
Cb0
A11
A10
Ra
Rb
tOH
DQ
Qa0
Qa1
Qa2
Qa3
Db0
Db1
tOHZ
tAC
Db2
Db3
tWR
WE
UDQM,
LDQM
Row Active
Read Command
Row Active
Write Command
Precharge Command
Precharge Command
10/30
¡ Semiconductor
MSM56V16160D/DH
Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 2, Burst Length = 4
tCH
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
,
,,
,,
tCC
tCL
High
CKE
CS
tSI
tHI
RAS
lCCD
tHI
tSI
CAS
tSI
ADDR
tSI
tSI
Ra
Ca
Cb
tHI
A11
BS
A10
Ra
Cc
tHI
BS
BS
tAC
DQ
Qa
BS
BS
tHI
Db
tOLZ
Qc
tSI
tOH
tHI
tOHZ
lOWD
WE
tSI
UDQM,
LDQM
Row Active
Write Command
Read Command
Precharge Command
Read Command
11/30
¡ Semiconductor
*Notes:
MSM56V16160D/DH
1. When CS is set "High" at a clock transition from "Low" to "High", all inputs except CKE, UDQM, and
LDQM are invalid.
2. When issuing an active, read or write command, the bank is selected by A11.
A11
Active, read or write
0
Bank A
1
Bank B
3. The auto precharge function is enabled or disabled by the A10 input when the read or write command
is issued.
A10
A11
0
0
After the end of burst, bank A holds the idle status.
Operation
1
0
After the end of burst, bank A is precharged automatically.
0
1
After the end of burst, bank B holds the idle status.
1
1
After the end of burst, bank B is precharged automatically.
4. When issuing a precharge command, the bank to be precharged is selected by the A10 and A11
inputs.
A10
A11
0
0
Bank A is precharged.
0
1
Bank B is precharged.
1
X
Both banks A and B are precharged.
Operation
5. The input data and the write command are latched by the same clock (Write latency = 0).
6. The output is forced to high impedance by (1 CLK + tOHZ) after UDQM, LDQM entry.
12/30
¡ Semiconductor
MSM56V16160D/DH
,,
,
,
,
,,
,
,
,
,
Page Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
Bank A Active
RAS
CAS
lCCD
ADDR
Ca0
Cb0
Cc0
Cd0
A11
A10
DQ
Qa0
Qa1
Qb0 Qb1
Dc0
Dc1
lOWD
Dd0
tWR *Note2
WE
*Note1
UDQM,
LDQM
Read Command
Read Command
Write Command
Write Command
Precharge Command
*Notes:
1. To write data before a burst read ends, UDQM and LDQM should be asserted three cycles prior to the
write command to avoid bus contention.
2. To assert row precharge before a burst write ends, wait tWR after the last write data input.
Input data during the precharge input cycle will be masked internally.
13/30
,
,,,,
,,
,
,,
¡ Semiconductor
MSM56V16160D/DH
Read & Write Cycle with Auto Precharge @ Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
17
18
19
CLK
High
CKE
CS
RAS
tRRD
CAS
ADDR
Ra
Rb
Ra
Rb
Ca
Cb
A11
A10
WE
CAS Latency = 1 *Note1
DQ
Qa0
Qa1
Qa2
Qa3
A-Bank Precharge Start
UDQM,
LDQM
CAS Latency = 2
DQ
Qa0
Qa1
Qa2
Qa3
A-Bank Precharge Start
UDQM,
LDQM
CAS Latency = 3
DQ
Qa0
Qa1
Qa2
Qa3
A-Bank Precharge Start
tWR
UDQM,
LDQM
Row Active
(A-Bank)
*Note:
A Bank Read with
Auto Precharge
Row Active
(B-Bank)
B Bank Write with
Auto Precharge
B Bank Precharge
Start Point
1. Not applicable to H version.
14/30
,
,
,
,
,
,
,
¡ Semiconductor
MSM56V16160D/DH
Bank Interleave Random Row Read Cycle @ CAS Latency = 2, Burst Length = 4
0
CLK
CKE
CS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
High
tRC
RAS
CAS
ADDR
A11
A10
DQ
WE
tRRD
RAa
CAa
RAa
RBb
CBb
RAc
RBb
CAc
RAc
QAa0 QAa1 QAa2 QAa3
QBb1 QBb2 QBb3 QBb4
QAc0 QAc1 QAc2 QAc3
UDQM,
LDQM
Row Active
(A-Bank)
Read Command
(A-Bank)
Read Command
(B-Bank)
Row Active
(B-Bank)
Precharge Command
(A-Bank)
Read Command
(A-Bank)
Precharge Command
(B-Bank)
Row Active
(A-Bank)
15/30
¡ Semiconductor
MSM56V16160D/DH
Bank Interleave Random Row Write Cycle @ CAS Latency = 2, Burst Length = 4
,
,,
,
,,
,,,
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CA
A11
A10
RAa
DQ
RBb
RAc
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3
DAc0 DAc1
WE
UDQM,
LDQM
Row Active
(A-Bank)
Write Command
(A-Bank)
Precharge
Command
(A-Bank)
Write Command
(B-Bank)
Write Command
(A-Bank)
Row Active
(B-Bank)
Row Active
(A-Bank)
Precharge Command
(A-Bank)
Precharge Command
(B-Bank)
16/30
,,,,
,
,
¡ Semiconductor
MSM56V16160D/DH
Bank Interleave Page Read Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
*Note1
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
CAe
A11
A10
RAa
RAa
DQ
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1
lROH
WE
UDQM,
LDQM
Row Active
(A-Bank)
Row Active
(B-Bank)
Read Command
(A-Bank)
*Note:
Read Command
(B-Bank)
Read Command
(B-Bank)
Read Command
(A-Bank)
Precharge Command
(A-Bank)
Read Command
(A-Bank)
1. CS is ignored when RAS, CAS and WE are high at the same cycle.
17/30
,,,
,
,
,
,
,,
,
¡ Semiconductor
MSM56V16160D/DH
Bank Interleave Page Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
A11
A10
RAa
DQ
RAb
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0
WE
UDQM,
LDQM
Row Active
(A-Bank)
Row Active
(B-Bank)
Write Command
(A-Bank)
Write Command
(B-Bank)
Write Command
(B-Bank)
Write Command
(A-Bank)
Precharge Command
(Both Bank)
18/30
¡ Semiconductor
MSM56V16160D/DH
,,
,
,
,
Bank Interleave Random Row Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CAc
A11
A10
RAa
RBb
DQ
QAa0 QAa1 QAa2 QAa3
RAc
DBb0 DBb1 DBb2 DBb3
QAc0 QAc1 QAc2 QAc3
WE
UDQM,
LDQM
Row Active
(A-Bank)
Row Active
(B-Bank)
Read Command
(A-Bank)
Precharge Command
(A-Bank)
Write Command
(B-Bank)
Read Command
(A-Bank)
Row Active
(A-Bank)
19/30
¡ Semiconductor
MSM56V16160D/DH
Bank Interleave Page Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
CKE
CS
RAS
CAS
ADDR
A11
A10
DQ
WE
UDQM,
LDQM
,,,
,,,
,
High
CAa0
CBb0
QAa0 QAa1 QAa2 QAa3
Read Command
(A-Bank)
CAc0
DBb0 DBb1 DBb2 DBb3
Write Command
(B-Bank)
QAc0 QAc1 QAc2 QAc3
Read Command
(A-Bank)
20/30
¡ Semiconductor
MSM56V16160D/DH
Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4
0
CKE
CS
RAS
CAS
ADDR
A11
A10
DQ0 - 7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
¨
,
,
,
,
,
,
,
Ra
¨
CLK
*Note1
*Note1
Ca
Cb
Cc
Ra
Qa0
Qa1
Qa2
Qb0
Qb1
tOHZ
*Note4
DQ8 - 15
Qa0
Qa2
Qa3
Dc0
tOHZ
Qb0
Qb1
Dc2
*Note3
Dc0
Dc1
*Note2
WE
LDQM
*Note4
UDQM
Row Active
Read
DQM
Read
Command
*Notes:
1.
2.
3.
4.
CLOCK
Suspension
Read DQM
Read
Command
Read DQM
Write
DQM
Write
Command
CLOCK
Suspension
Write
DQM
When Clock Suspension is asserted, the next clock cycle is ignored.
When LDQM and UDQM are asserted, the read data after two clock cycles is masked.
When LDQM and UDQM are asserted, the write data in the same clock cycle is masked.
When LDQM is set High, the input/output data of DQ0 - DQ7 is masked.
When UDQM is set High, the input/output data of DQ8 - DQ15 is masked.
21/30
,,
,
,
,
,,
¡ Semiconductor
MSM56V16160D/DH
Read to Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
Da1
Da2
Da3
12
13
14
15
16
17
18
19
CLK
CKE
CS
*Note1
RAS
tRCD
CAS
ADDR
Ra
Ca0
Ca0
A11
A10
Ra
DQ
Da0
tWR
WE
UDQM,
LDQM
Row Active
Read Command
Precharge Command
Write Command
*Note:
1. In case CAS latency is 3, READ can be interrupted by WRITE.
The minimum command interval is [burst length + 1] cycles.
UDQM, LDQM must be high at least 3 clocks prior to the write command.
22/30
¡ Semiconductor
MSM56V16160D/DH
Read Interruption by Precharge Command @ Burst Length = 8
,
,
,,,,
,,
,
,,
,
,,
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
Ra
Ca
A11
A10
Ra
WE
CAS Latency = 1 *Note3
*Note1
Qa0
DQ
Qa1
Qa2
Qa3
Qa4
Qa5
Qa0
Qa1
Qa2
Qa3
Qa4
Qa5
Qa0
Qa1
Qa2
Qa3
Qa4
UDQM,
LDQM
CAS Latency = 2
*Note2
DQ
UDQM,
LDQM
CAS Latency = 3
*Note2
DQ
UDQM,
LDQM
Row Active
*Notes:
Read Command
Precharge Command
1. When the CAS latency = 1, and if row precharge is asserted before a burst read ends, then the read data
will not output after the next clock cycle of the precharge command.
2. When the CAS latency = 2 or 3, and if row precharge is asserted before burst read ends, then the read
data will not output after the second clock cycle of the precharge command.
3. Not applicable to H version.
23/30
,
,
,
,
,
,
¡ Semiconductor
MSM56V16160D/DH
Power Down Mode @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tSI
*Note1
tPDE *Note2
tSI
tSI
CKE
CS
RAS
CAS
Ra
ADDR
Ca
A11
Ra
A10
DQ
Qa0
Qa1
Qa2
WE
UDQM,
LDQM
Row Active
Power-down
Entry
*Notes:
Power-down
Exit
Clock
Suspention
Entry
Clock
Suspention
Exit
Read
Command
Precharge
Command
1. When both banks are in precharge state, and if CKE is set low, then the MSM56V16160D/DH enters
power-down mode and maintains the mode while CKE is low.
2. To release the circuit from power-down mode, CKE has to be set high for longer than tPDE (tSI + 1 CLK).
24/30
,
,
,,,
,
¡ Semiconductor
MSM56V16160D/DH
Self Refresh Cycle
0
CLK
1
2
tRC
CKE
tSI
CS
RAS
CAS
ADDR
A11
A10
DQ
WE
UDQM,
LDQM
Ra
BS
Ra
Hi - Z
Self
Refresh
Entry
Hi - Z
Self
Refresh
Exit
Row
Active
25/30
¡ Semiconductor
MSM56V16160D/DH
Auto Refresh Cycle
Mode Register Set Cycle
0
CLK
CKE
CS
1
2
3
4
5
6
0
1
2
3
CAS
ADDR
DQ
WE
UDQM,
LDQM
5
6
7
8
9
10
11
12
,,
,,,
,
High
High
tRC
lMRD
RAS
4
key
Ra
Hi - Z
MRS
New Command
Hi - Z
Auto Refresh
Auto Refresh
26/30
¡ Semiconductor
MSM56V16160D/DH
FUNCTION TRUTH TABLE (Table 1) (1/2)
Current State1 CS RAS CAS WE BA
Idle
Row Active
Read
Write
Action
ADDR
X
NOP
X
X
NOP
BA
X
ILLEGAL 2
CA
ILLEGAL 2
BA
RA
Row Active
BA
A10
NOP 4
X
X
H
X
X
X
X
L
H
H
H
L
H
H
L
L
H
L
X
BA
L
L
H
H
L
L
H
L
L
L
L
H
Auto-Refresh or Self-Refresh 5
L
L
L
L
L
OP Code
H
X
X
X
X
X
Mode Register Write
NOP
L
H
H
X
X
X
NOP
L
H
L
H
BA
CA, A10
Read
L
H
L
L
BA
CA, A10
Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Precharge
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
BA
X
Reserved
L
H
L
H
BA
CA, A10
Term Burst, start new Burst Read
L
H
L
L
BA
CA, A10
Term Burst, start new Burst Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Term Burst, execute Row Precharge
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
Term Burst, start new Burst Read
L
H
L
L
BA
CA, A10
Term Burst, start new Burst Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Term Burst, execute Row Precharge
L
L
L
X
X
X
ILLEGAL
Read with
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
Auto Precharge
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A10
ILLEGAL
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
Write with
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
Auto Precharge
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A10
L
L
L
X
X
X
ILLEGAL
ILLEGAL 2
ILLEGAL
27/30
¡ Semiconductor
MSM56V16160D/DH
FUNCTION TRUTH TABLE (Table 1) (2/2)
Current State1 CS RAS CAS WE BA
Precharge
Write Recovery
Row Active
Refresh
Action
ADDR
H
X
X
X
X
X
NOP --> Idle after tRP
L
H
H
H
X
X
NOP --> Idle after tRP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
NOP 4
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Row Active after tRCD
L
H
H
H
X
X
NOP --> Row Active after tRCD
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Idle after tRC
L
H
H
X
X
X
NOP --> Idle after tRC
L
H
L
X
X
X
ILLEGAL
L
L
H
X
X
X
ILLEGAL
L
L
L
X
X
X
ILLEGAL
Mode Register
H
X
X
X
X
X
NOP
Access
L
H
H
H
X
X
NOP
L
H
H
L
X
X
ILLEGAL
L
H
L
X
X
X
ILLEGAL
L
L
X
X
X
X
ILLEGAL
ABBREVIATIONS
RA = Row Address
CA = Column Address
Notes:
BA = Bank Address
AP = Auto Precharge
NOP = No OPeration command
1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs.
2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank
selection.
3. Satisfy the timing of tCCD and tWR to prevent bus contention.
4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A10.
5. Illegal if any bank is not idle.
28/30
¡ Semiconductor
MSM56V16160D/DH
FUNCTION TRUTH TABLE for CKE (Table 2)
Current State (n) CKEn-1
Self Refresh
Power Down
All Banks Idle
6
(ABI)
CKEn
CS RAS CAS WE
Action
ADDR
X
INVALID
X
X
Exit Self Refresh --> ABI
H
X
Exit Self Refresh --> ABI
L
X
ILLEGAL
X
X
ILLEGAL
X
X
ILLEGAL
X
X
NOP (Maintain Self Refresh)
X
X
INVALID
X
X
Exit Power Down --> ABI
H
X
Exit Power Down --> ABI
L
X
ILLEGAL
X
X
ILLEGAL
X
X
ILLEGAL 6
X
X
X
NOP (Continue power down mode)
X
X
X
X
Refer to Table 1
X
X
X
X
Enter Power Down
L
H
H
H
X
Enter Power Down
L
H
H
L
X
ILLEGAL
L
L
H
L
X
X
ILLEGAL
H
L
L
L
H
L
X
ILLEGAL
H
L
L
L
L
H
X
Enter Self Refresh
H
X
X
L
H
H
X
X
L
H
L
H
H
L
H
L
H
H
L
H
L
H
L
L
H
L
L
X
L
L
X
X
X
H
X
X
X
X
L
H
H
X
X
L
H
L
H
H
L
H
L
H
H
L
H
L
H
L
L
H
L
L
X
L
L
X
X
H
H
X
H
L
H
H
L
H
L
H
X
X
X
H
L
L
L
L
L
X
ILLEGAL
L
L
X
X
X
X
X
NOP
Any State Other
H
H
X
X
X
X
X
Refer to Operations in Table 1
than Listed Above
H
L
X
X
X
X
X
Begin Clock Suspend Next Cycle
L
H
X
X
X
X
X
Enable Clock of Next Cycle
L
L
X
X
X
X
X
Continue Clock Suspension
Note:
6. Power-down and self refresh can be entered only when all the banks are in an idle state.
29/30
¡ Semiconductor
MSM56V16160D/DH
PACKAGE DIMENSIONS
(Unit : mm)
TSOPII50-P-400-0.80-K
Mirror finish
Package material
Lead frame material
Pin treatment
Solder plate thickness
Package weight (g)
Epoxy resin
42 alloy
Solder plating
5 mm or more
0.61 TYP.
Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which
are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki’s responsible sales person for the
product name, package name, pin number, package code and desired mounting conditions
(reflow method, temperature and times).
30/30