SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 D Low Supply Voltage Range 1.8 V to 3.6 V D Ultralow-Power Consumption D D D D D D D D D − Active Mode: 220 µA at 1 MHz, 2.2 V − Standby Mode: 0.5 µA − Off Mode (RAM Retention): 0.1 µA Five Power-Saving Modes Ultrafast Wake-Up From Standby Mode in less than 1 µs 16-Bit RISC Architecture, 62.5 ns Instruction Cycle Time Basic Clock Module Configurations: − Internal Frequencies up to 16MHz with 4 Calibrated Frequencies to ±1% − Internal Very Low Power LF oscillator − 32-kHz Crystal − External Digital Clock Source 16-Bit Timer_A With Two Capture/Compare Registers On-Chip Comparator for Analog Signal Compare Function or Slope A/D (MSP430x20x1 only) 10-Bit, 200-ksps A/D Converter with Internal Reference, Sample-and-Hold, and Autoscan. (MSP430x20x2 only) 16-Bit Sigma-Delta A/D Converter with Differential PGA Inputs, and Internal Reference (MSP430x20x3 only) Universal Serial Interface (USI), supporting SPI and I2C (MSP430x20x2 and MSP430x20x3 only) D Brownout Detector D Serial Onboard Programming, D D D D No External Programming Voltage Needed Programmable Code Protection by Security Fuse On-Chip Emulation Logic with Spy-Bi-Wire Interface Family Members Include: MSP430F2001†: 1KB + 256B Flash Memory 128B RAM MSP430F2011†: 2KB + 256B Flash Memory 128B RAM MSP430F2002†: 1KB + 256B Flash Memory 128B RAM MSP430F2012†: 2KB + 256B Flash Memory 128B RAM MSP430F2003: 1KB + 256B Flash Memory 128B RAM MSP430F2013: 2KB + 256B Flash Memory 128B RAM Available in a 14-Pin Plastic Small-Outline Thin Package (TSSOP), 14-Pin Plastic Dual Inline Package (PDIP), and 16-Pin QFN For Complete Module Descriptions, Refer to the MSP430x2xx Family User’s Guide † Product Preview description The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1µs. The MSP430x20xx series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer, and ten I/O pins. In addition the MSP430x20x1 has a versatile analog comparator. The MSP430x20x2 and MSP430x20x3 have built-in communication capability using synchronous protocols (SPI or I2C), and a 10-bit A/D converter (MSP430x20x2) or a 16-bit sigma-delta A/D converter (MSP430x20x3). Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system. Stand alone RF sensor front end is another area of application. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2005 Texas Instruments Incorporated ! "#$ ! %#&'" ($) (#"! " !%$""! %$ *$ $! $! !#$! !(( +,) (#" %"$!!- ($! $"$!!', "'#($ $!- '' %$$!) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 AVAILABLE OPTIONS PACKAGED DEVICES PLASTIC 14-PIN TSSOP (PW) PLASTIC 14-PIN DIP† (N) PLASTIC 16-PIN QFN (RSA) MSP430F2001IPW† MSP430F2011IPW† MSP430F2002IPW† MSP430F2012IPW† MSP430F2003IPW MSP430F2013IPW MSP430F2001IN† MSP430F2011IN† MSP430F2002IN† MSP430F2012IN† MSP430F2003IN† MSP430F2013IN† MSP430F2001IRSA† MSP430F2011IRSA† MSP430F2002IRSA† MSP430F2012IRSA† MSP430F2003IRSA† MSP430F2013IRSA† TA −40°C to 85°C † Product Preview device pinout, MSP430x20x1 PW or N PACKAGE (TOP VIEW) VCC P1.0/TACLK/ACLK/CA0 1 14 2 13 VSS XIN/P2.6/TA1 P1.1/TA0/CA1 3 12 XOUT/P2.7 P1.2/TA1/CA2 4 11 TEST/SBWTCK P1.3/CAOUT/CA3 5 10 P1.4/SMCLK/CA4/TCK P1.5/TA0/CA5/TMS 6 9 RST/NMI/SBWTDIO P1.7/CAOUT/CA7/TDO/TDI 7 8 P1.6/TA1/CA6/TDI/TCLK NC VSS 15 14 2 11 XOUT/P2.7 P1.2/TA1/CA2 3 10 TEST/SBWTCK P1.3/CAOUT/CA3 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6 7 9 P1.7/CAOUT/CA7/TDO/TDI P1.1/TA0/CA1 P1.6/TA1/CA6/TDI/TCLK XIN/P2.6/TA1 1 P1.5/TA0/CA5/TMS 12 P1.0/TACLK/ACLK/CA0 P1.4/SMCLK/CA4/TCK 2 NC VCC RSA PACKAGE (TOP VIEW) RST/NMI/SBWTDIO SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 device pinout, MSP430x20x2 PW or N PACKAGE (TOP VIEW) VCC P1.0/TACLK/ACLK/A0 1 14 2 13 VSS XIN/P2.6/TA1 P1.1/TA0/A1 3 12 XOUT/P2.7 P1.2/TA1/A2 4 11 TEST/SBWTCK P1.3/ADC10CLK/A3/VREF−/VeREF− 5 10 P1.4/SMCLK/A4/VREF+/VeREF+/TCK P1.5/TA0/A5/SCLK/TMS 6 9 RST/NMI/SBWTDIO P1.7/A7/SDI/SDA/TDO/TDI 7 8 P1.6/TA1/A6/SDO/SCL/TDI/TCLK 15 14 AVSS DVSS AVCC DVCC RSA PACKAGE (TOP VIEW) 2 11 XOUT/P2.7 P1.2/TA1/A2 3 10 TEST/SBWTCK P1.3/ADC10CLK/A3/VREF−/VeREF− 4 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6 7 RST/NMI/SBWTDIO P1.7/A7/SDI/SDA/TDO/TDI P1.4/SMCLK/A4/VREF+/VeREF+/TCK P1.1/TA0/A1 P1.6/TA1/A6/SDO/SCL/TDI/TCLK XIN/P2.6/TA1 1 P1.5/TA0/A5/SCLK/TMS 12 P1.0/TACLK/ACLK/A0 3 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 device pinout, MSP430x20x3 PW or N PACKAGE (TOP VIEW) VCC P1.0/TACLK/ACLK/A0+ 1 14 2 13 VSS XIN/P2.6/TA1 P1.1/TA0/A0−/A4+ 3 12 XOUT/P2.7 P1.2/TA1/A1+/A4− 4 11 TEST/SBWTCK P1.3/VREF/A1− 5 10 P1.4/SMCLK/A2+/TCK P1.5/TA0/A2−/SCLK/TMS 6 9 RST/NMI/SBWTDIO P1.7/A3−/SDI/SDA/TDO/TDI 7 8 P1.6/TA1/A3+/SDO/SCL/TDI/TCLK AVSS DVSS 15 14 11 XOUT/P2.7 P1.2/TA1/A1+/A4− 3 10 TEST/SBWTCK P1.3/VREF/A1− 4 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6 7 P1.7/A3−/SDI/SDA/TDO/TDI 2 P1.1/TA0/A0−/A4+ P1.5/TA0/A2−/SCLK/TMS XIN/P2.6/TA1 1 P1.6/TA1/A3+/SDO/SCL/TDI/TCLK 12 P1.0/TACLK/ACLK/A0+ P1.4/SMCLK/A2+/TCK 4 AVCC DVCC RSA PACKAGE (TOP VIEW) RST/NMI/SBWTDIO SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 functional block diagram, MSP430x20x1 VCC VSS P1.x & JTAG 8 P2.x & XIN/XOUT 2 XOUT XIN Basic Clock System+ ACLK SMCLK MCLK Flash RAM 2kB 1kB 128B 128B Comparator _A+ 8 channel input mux Port P1 Port P2 8 I/O Interrupt capability, pull−up/down resistors 2 I/O Interrupt capability, pull−up/down resistors MAB 16MHz CPU incl. 16 Registers MDB Emulation (2BP) JTAG Interface Watchdog WDT+ Brownout Protection 15/16−Bit Timer_A2 2 CC Registers Spy−Bi Wire RST/NMI NOTE: See port schematics section for detailed I/O information. functional block diagram, MSP430x20x2 VCC VSS P1.x & JTAG 8 P2.x & XIN/XOUT 2 XOUT XIN Basic Clock System+ ADC10 ACLK SMCLK MCLK 16MHz CPU incl. 16 Registers Flash RAM 2kB 1kB 128B 128B 10−bit 8 Channels Autoscan DTC Port P1 Port P2 8 I/O Interrupt capability, pull−up/down resistors 2 I/O Interrupt capability, pull−up/down resistors MAB MDB Emulation (2BP) JTAG Interface USI Watchdog WDT+ Brownout Protection 15/16−Bit Timer_A2 2 CC Registers Spy−Bi Wire Universal Serial Interface SPI, I2C RST/NMI NOTE: See port schematics section for detailed I/O information. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 functional block diagram, MSP430x20x3 VCC VSS P1.x & JTAG 8 XOUT XIN Basic Clock System+ 16MHz CPU incl. 16 Registers Port P1 Port P2 8 I/O Interrupt capability, pull−up/down resistors 2 I/O Interrupt capability, pull−up/down resistors SD16_A ACLK SMCLK MCLK Flash RAM 2kB 1kB 128B 128B 16−bit Sigma− Delta A/D Converter MAB MDB Emulation (2BP) JTAG Interface USI Watchdog WDT+ Brownout Protection 15/16−Bit Timer_A2 2 CC Registers Spy−Bi Wire RST/NMI NOTE: See port schematics section for detailed I/O information. 6 P2.x & XIN/XOUT 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Universal Serial Interface SPI, I2C SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Terminal Functions, MSP430x20x1 TERMINAL PW, or N RSA NO. NO. P1.0/TACLK/ACLK/CA0 2 1 I/O General-purpose digital I/O pin Timer_A, clock signal TACLK input ACLK signal ouput Comparator_A+, CA0 input P1.1/TA0/CA1 3 2 I/O General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: Out0 output Comparator_A+, CA1 input P1.2/TA1/CA2 4 3 I/O General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: Out1 output Comparator_A+, CA2 input P1.3/CAOUT/CA3 5 4 I/O General-purpose digital I/O pin Comparator_A+, output / CA3 input P1.4/SMCLK/C4/TCK 6 5 I/O General-purpose digital I/O pin SMCLK signal output Comparator_A+, CA4 input JTAG test clock, input terminal for device programming and test P1.5/TA0/CA5/TMS 7 6 I/O General-purpose digital I/O pin Timer_A, compare: Out0 output Comparator_A+, CA5 input JTAG test mode select, input terminal for device programming and test P1.6/TA1/CA6/TDI/TCLK 8 7 I/O General-purpose digital I/O pin Timer_A, compare: Out1 output Comparator_A+, CA6 input JTAG test data input or test clock input during programming and test P1.7/CAOUT/CA7/TDO/TDI† 9 8 I/O General-purpose digital I/O pin Comparator_A+, output / CA7 input JTAG test data output terminal or test data input during programming and test XIN/P2.6/TA1 13 12 I/O Input terminal of crystal oscillator General-purpose digital I/O pin Timer_A, compare: Out1 output XOUT/P2.7 12 11 I/O Output terminal of crystal oscillator General-purpose digital I/O pin RST/NMI/SBWTDIO 10 9 I Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test TEST/SBWTCK 11 10 I Selects test mode for JTAG pins on Port1. The device protection fuse is connected to TEST. Spy-Bi-Wire test clock input during programming and test VCC VSS 1 16 Supply voltage 14 14 Ground reference NC NA 13, 15 QFN Pad NA Package Pad NAME DESCRIPTION I/O Not connected NA QFN package pad connection to VSS recommended. † TDO or TDI is selected via JTAG instruction. NOTE: If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Terminal Functions, MSP430x20x2 TERMINAL PW, or N RSA NO. NO. P1.0/TACLK/ACLK/A0 2 1 I/O General-purpose digital I/O pin Timer_A, clock signal TACLK input ACLK signal ouput ADC10 analog input A0 P1.1/TA0/A1 3 2 I/O General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: Out0 output ADC10 analog input A1 P1.2/TA1/A2 4 3 I/O General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: Out1 output ADC10 analog input A2 P1.3/ADC10CLK/ A3/VREF−/VeREF− 5 4 I/O General-purpose digital I/O pin ADC10 conversion clock output ADC10 analog input A3 Input for negative external reference voltage/negative internal reference voltage output P1.4/SMCLK/A4/VREF+/VeREF+/ TCK 6 5 I/O General-purpose digital I/O pin SMCLK signal output ADC10 analog input A4 Input for positive external reference voltage/positive internal reference voltage output JTAG test clock, input terminal for device programming and test P1.5/TA0/A5/SCLK/TMS 7 6 I/O General-purpose digital I/O pin Timer_A, compare: Out0 output ADC10 analog input A5 USI: external clock input in SPI or I2C mode; clock output in SPI mode JTAG test mode select, input terminal for device programming and test P1.6/TA1/A6/SDO/SCL/TDI/TCLK 8 7 I/O General-purpose digital I/O pin Timer_A, capture: CCI1B input, compare: Out1 output ADC10 analog input A6 USI: Data output in SPI mode; I2C clock in I2C mode JTAG test data input or test clock input during programming and test P1.7/A7/SDI/SDA/TDO/TDI† 9 8 I/O General-purpose digital I/O pin ADC10 analog input A7 USI: Data input in SPI mode; I2C data in I2C mode JTAG test data output terminal or test data input during programming and test XIN/P2.6/TA1 13 12 I/O Input terminal of crystal oscillator General-purpose digital I/O pin Timer_A, compare: Out1 output XOUT/P2.7 12 11 I/O Output terminal of crystal oscillator General-purpose digital I/O pin RST/NMI/SBWTDIO 10 9 I Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test TEST/SBWTCK 11 10 I Selects test mode for JTAG pins on Port1. The device protection fuse is connected to TEST. Spy-Bi-Wire test clock input during programming and test VCC VSS 1 NA Supply voltage 14 NA Ground reference NAME 8 DESCRIPTION I/O POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Terminal Functions, MSP430x20x2 (Continued) TERMINAL PW, or N RSA NO. NO. DVCC NA 16 Digital supply voltage AVCC DVSS NA 15 Analog supply voltage NA 14 Digital ground reference AVSS QFN Pad NA 13 NA Package Pad NAME DESCRIPTION I/O Analog ground reference NA QFN package pad connection to VSS recommended. † TDO or TDI is selected via JTAG instruction. NOTE: If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset. Terminal Functions, MSP430x20x3 TERMINAL PW, or N RSA NO. NO. P1.0/TACLK/ACLK/A0+ 2 1 I/O General-purpose digital I/O pin Timer_A, clock signal TACLK input ACLK signal ouput SD16_A positive analog input A0 P1.1/TA0/A0−/A4+ 3 2 I/O General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: Out0 output SD16_A negative analog input A0 SD16_A positive analog input A4 P1.2/TA1/A1+/A4− 4 3 I/O General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: Out1 output SD16_A positive analog input A1 SD16_A negative analog input A4 P1.3/VREF/A1− 5 4 I/O General-purpose digital I/O pin Input for an external reference voltage/internal reference voltage output (can be used as mid-voltage) SD16_A negative analog input A1 P1.4/SMCLK/A2+/TCK 6 5 I/O General-purpose digital I/O pin SMCLK signal output SD16_A positive analog input A2 JTAG test clock, input terminal for device programming and test P1.5/TA0/A2−/SCLK/TMS 7 6 I/O General-purpose digital I/O pin Timer_A, compare: Out0 output SD16_A negative analog input A2 USI: external clock input in SPI or I2C mode; clock output in SPI mode JTAG test mode select, input terminal for device programming and test P1.6/TA1/A3+/SDO/SCL/TDI/TCLK 8 7 I/O General-purpose digital I/O pin Timer_A, capture: CCI1B input, compare: Out1 output SD16_A positive analog input A3 USI: Data output in SPI mode; I2C clock in I2C mode JTAG test data input or test clock input during programming and test P1.7/A3−/SDI/SDA/TDO/TDI† 9 8 I/O General-purpose digital I/O pin SD16_A negative analog input A3 USI: Data input in SPI mode; I2C data in I2C mode JTAG test data output terminal or test data input during programming and test NAME DESCRIPTION I/O POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Terminal Functions, MSP430x20x3 (Continued) TERMINAL PW, or N RSA NO. NO. XIN/P2.6/TA1 13 12 I/O Input terminal of crystal oscillator General-purpose digital I/O pin Timer_A, compare: Out1 output XOUT/P2.7 12 11 I/O Output terminal of crystal oscillator General-purpose digital I/O pin RST/NMI/SBWTDIO 10 9 I Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test TEST/SBWTCK 11 10 I Selects test mode for JTAG pins on Port1. The device protection fuse is connected to TEST. Spy-Bi-Wire test clock input during programming and test VCC VSS 1 NA Supply voltage 14 NA Ground reference DVCC NA 16 Digital supply voltage AVCC DVSS NA 15 Analog supply voltage NA 14 Digital ground reference AVSS QFN Pad NA 13 Analog ground reference NA Package Pad NAME DESCRIPTION I/O NA QFN package pad connection to VSS recommended. † TDO or TDI is selected via JTAG instruction. NOTE: If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g. CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D SYNTAX EXAMPLE OPERATION Register F F MOV Rs,Rd MOV R10,R11 Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) F F MOV EDE,TONI M(EDE) −−> M(TONI) Absolute F F MOV &MEM,&TCDAT M(MEM) −−> M(TCDAT) R10 −−> R11 M(2+R5)−−> M(6+R6) Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) −−> M(Tab+R6) Indirect autoincrement F MOV @Rn+,Rm MOV @R10+,R11 M(R10) −−> R11 R10 + 2−−> R10 F MOV #X,TONI MOV #45,TONI Immediate NOTE: S = source #45 −−> M(TONI) D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode AM; − All clocks are active D Low-power mode 0 (LPM0); − CPU is disabled ACLK and SMCLK remain active. MCLK is disabled D Low-power mode 1 (LPM1); − CPU is disabled ACLK and SMCLK remain active. MCLK is disabled DCO’s dc-generator is disabled if DCO not used in active mode D Low-power mode 2 (LPM2); − CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3); − CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4); − 12 CPU is disabled ACLK is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh−0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence. If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g. flash is not programmed) the CPU will go into LPM4 immediately after power-up. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External reset Watchdog Timer+ Flash key violation PC out-of-range (see Note 1) PORIFG RSTIFG WDTIFG KEYV (see Note 2) Reset 0FFFEh 31, highest NMI Oscillator fault Flash memory access violation NMIIFG OFIFG ACCVIFG (see Notes 2 & 4) (non)-maskable, (non)-maskable, (non)-maskable 0FFFCh 30 0FFFAh 29 0FFF8h 28 Comparator_A+ (MSP430x20x1 only) CAIFG (see Note 3) maskable 0FFF6h 27 Watchdog Timer+ WDTIFG maskable 0FFF4h 26 Timer_A2 TACCR0 CCIFG (see Note 3) maskable 0FFF2h 25 Timer_A2 TACCR1 CCIFG. TAIFG (see Notes 2 & 3) maskable 0FFF0h 24 0FFEEh 23 0FFECh 22 0FFEAh 21 ADC10 (MSP430x20x2 only) ADC10IFG (see Note 3) maskable SD16_A (MSP430x20x3 only) SD16CCTL0 SD16OVIFG, SD16CCTL0 SD16IFG (see Notes 2 & 3) maskable USI (MSP430x20x2, MSP430x20x3 only) USIIFG, USISTTIFG (see Notes 2 & 3) maskable 0FFE8h 20 I/O Port P2 (two flags) P2IFG.6 to P2IFG.7 (see Notes 2 & 3) maskable 0FFE6h 19 I/O Port P1 (eight flags) P1IFG.0 to P1IFG.7 (see Notes 2 & 3) maskable 0FFE4h 18 0FFE2h 17 0FFE0h 16 0FFDEh ... 0FFC0h 15 ... 0, lowest (see Note 5) NOTES: 1. 2. 3. 4. 5. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh). Multiple source flags Interrupt flags are located in the module (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot. The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 special function registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. interrupt enable 1 and 2 Address 7 6 0h 5 4 ACCVIE NMIIE rw-0 WDTIE: OFIE: NMIIE: ACCVIE: Address 3 2 1 OFIE rw-0 0 WDTIE rw-0 rw-0 Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode. Oscillator fault enable (Non)maskable interrupt enable Flash access violation interrupt enable 7 6 5 6 5 4 3 2 1 0 01h interrupt flag register 1 and 2 Address 7 02h 4 3 2 1 NMIIFG RSTIFG PORIFG OFIFG rw-0 WDTIFG: OFIFG: RSTIFG: PORIFG: NMIIFG: Address rw-(0) 7 6 5 4 3 rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device 14 rw-(0) Set on Watchdog Timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. Flag set on oscillator fault External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up Power-On Reset interrupt flag. Set on VCC power-up. Set via RST/NMI-pin 03h Legend rw-1 rw-(1) 0 WDTIFG POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2 1 0 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 memory organization MSP430F200x MSP430F201x Memory Main: interrupt vector Main: code memory Size Flash Flash 1KB Flash 0FFFFh−0FFC0h 0FFFFh−0FC00h 2KB Flash 0FFFFh−0FFC0h 0FFFFh−0F800h Information memory Size Flash 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h Size 128 Byte 027Fh − 0200h 128 Byte 027Fh − 0200h 16-bit 8-bit 8-bit SFR 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h RAM Peripherals flash memory The flash memory can be programmed via the Spy-Bi-Wire/JTAG port, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A to D can be erased individually, or as a group with segments 0−n. Segments A to D are also called information memory. D Segment A contains calibration data. After reset segment A is protected against programming and erasing. It can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is required. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x2xx Family User’s Guide. oscillator and system clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low frequency oscillator and an internal digitally-controlled oscillator (DCO). The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator. D Main clock (MCLK), the system clock used by the CPU. D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. DCO Calibration Data (provided from factory in flash info memory segment A) DCO Frequency Calibration Register Size 1 MHz CALBC1_1MHz byte 010FFh CALDCO_1MHz byte 010FEh 8 MHz 12 MHz 16 MHz Address CALBC1_8MHz byte 010FDh CALDCO_8MHz byte 010FCh CALBC1_12MHz byte 010FBh CALDCO_12MHz byte 010FAh CALBC1_16MHz byte 010F9h CALDCO_16MHz byte 010F8h brownout The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. digital I/O There is one 8-bit I/O port implemented—port P1—and two bits of I/O port P2: D D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt condition is possible. Edge-selectable interrupt input capability for all the eight bits of port P1 and the two bits of port P2. Read/write access to port-control registers is supported by all instructions. Each I/O has an individually programmable pull-up/pull-down resistor. WDT+ watchdog timer The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 timer_A2 Timer_A2 is a 16-bit timer/counter with two capture/compare registers. Timer_A2 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_A2 Signal Connections (MSP43020x1 only) Input Pin Number PW, N RSA 2 - P1.0 1 - P1.0 Device Input Signal Module Input Name TACLK TACLK ACLK ACLK SMCLK SMCLK Module Block Timer Module Output Signal Output Pin Number PW, N RSA NA 2 - P1.0 1 - P1.0 TACLK INCLK 3 - P1.1 2 - P1.1 TA0 CCI0A 3 - P1.1 2 - P1.1 ACLK (internal) CCI0B 7 - P1.5 6 - P1.5 4 - P1.2 3 - P1.2 4 - P1.2 3 - P1.2 VSS VCC TA1 GND VCC CCI1A CAOUT (internal) CCI1B VSS VCC GND CCR0 CCR1 TA0 TA1 8 - P1.6 7 - P1.6 13 - P2.6 12 - P2.6 VCC Timer_A2 Signal Connections (MSP430F20x2, MSP430F20x3) Input Pin Number PW, N RSA 2 - P1.0 1 - P1.0 Device Input Signal Module Input Name TACLK TACLK ACLK ACLK SMCLK SMCLK TACLK INCLK Module Block Timer Module Output Signal Output Pin Number PW, N RSA NA 2 - P1.0 1 - P1.0 3 - P1.1 2 - P1.1 TA0 CCI0A 3 - P1.1 2 - P1.1 7 - P1.5 6 - P1.5 ACLK (internal) CCI0B 7 - P1.5 6 - P1.5 VSS VCC GND 4 - P1.2 3 - P1.2 4 - P1.2 3 - P1.2 8 - P1.6 7 - P1.6 TA1 VCC CCI1A TA1 CCI1B VSS VCC GND CCR0 CCR1 TA0 TA1 8 - P1.6 7 - P1.6 13 - P2.6 12 - P2.6 VCC comparator_A+ (MSP430x20x1 only) The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 USI (MSP430x20x2 and MSP430x20x3 only) The universal serial interface (USI) module is used for serial data communication and provides the basic hardware for synchronous communication protocols like SPI and I2C. ADC10 (MSP430x20x2 only) The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion result handling allowing ADC samples to be converted and stored without any CPU intervention. SD16_A (MSP430x20x3 only) The SD16_A module supports 16-bit analog-to-digital conversions. The module implements a 16-bit sigma-delta core and reference generator. In addition to external analog inputs, an internal VCC sense and temperature sensor are also available. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 peripheral file map PERIPHERALS WITH WORD ACCESS ADC10 (MSP430x20x2 only) ADC control 0 ADC control 1 ADC memory ADC10CTL0 ADC10CTL0 ADC10MEM 01B0h 01B2h 01B4h SD16_A (MSP430x20x3 only) General Control Channel 0 Control Interrupt vector word register Channel 0 conversion memory SD16CTL SD16CCTL0 SD16IV SD16MEM0 0100h 0102h 0110h 0112h Timer_A Capture/compare register Capture/compare register Timer_A register Capture/compare control Capture/compare control Timer_A control Timer_A interrupt vector TACCR1 TACCR0 TAR TACCTL1 TACCTL0 TACTL TAIV 0174h 0172h 0170h 0164h 0162h 0160h 012Eh Flash Memory Flash control 3 Flash control 2 Flash control 1 FCTL3 FCTL2 FCTL1 012Ch 012Ah 0128h Watchdog Timer+ Watchdog/timer control WDTCTL 0120h PERIPHERALS WITH BYTE ACCESS ADC10 (MSP430x20x2 only) Analog enable ADC10AE 04Ah SD16_A (MSP430x20x3 only) Channel 0 Input Control Analog Enable SD16INCTL0 SD16AE 0B0h 0B7h USI (MSP430x20x2 and MSP430x20x3 only) USI control 0 USI control 1 USI clock control USI bit counter USI shift register USICTL0 USICTL1 USICKCTL USICNT USISR 078h 079h 07Ah 07Bh 07Ch Comparator_A+ (MSP430x20x1 only) Comparator_A+ port disable Comparator_A+ control 2 Comparator_A+ control 1 CAPD CACTL2 CACTL1 05Bh 05Ah 059h Basic Clock System+ Basic clock system control 3 Basic clock system control 2 Basic clock system control 1 DCO clock frequency control BCSCTL3 BCSCTL2 BCSCTL1 DCOCTL 053h 058h 057h 056h Port P2 Port P2 resistor enable Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input P2REN P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN 02Fh 02Eh 02Dh 02Ch 02Bh 02Ah 029h 028h Port P1 Port P1 resistor enable Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input P1REN P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN 027h 026h 025h 024h 023h 022h 021h 020h Special Function SFR interrupt flag 2 SFR interrupt flag 1 SFR interrupt enable 2 SFR interrupt enable 1 IFG2 IFG1 IE2 IE1 003h 002h 001h 000h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 absolute maximum ratings† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC+0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature, Tstg (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Storage temperature, Tstg (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse. 3. Higher temperature may be applied during board soldering process according to the current JEDEC J−STD−020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. recommended operating conditions MIN NOM MAX UNITS Supply voltage during program execution, VCC 1.8 3.6 V Supply voltage during program/erase flash memory, VCC 2.2 3.6 V Supply voltage, VSS 0 Operating free-air temperature range, TA Processor frequency fSYSTEM (Maximum MCLK frequency) V −40 85 VCC = 1.8 V, Duty Cycle = 50% ±10% dc 6 VCC = 2.7 V, Duty Cycle = 50% ±10% dc 12 VCC ≥ 3.3 V, Duty Cycle = 50% ±10% dc 16 °C MHz NOTES: 1. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. 2. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this datasheet. System Frequency −MHz 16 MHz 12 MHz 6 MHz 1.8 V ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ 2.2 V 2.7 V 3.3 V ÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ Legend: Supply voltage range, during flash memory programming Supply voltage range, during program execution 3.6 V Supply Voltage −V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 1. Save Operating Area 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) active mode supply current (into VCC) excluding external current (see Notes 1 and 2) PARAMETER IAM, 1MHz IAM, 1MHz IAM, 4kHz IAM,100kHz TEST CONDITIONS Active mode (AM) current (1MHz) Active mode (AM) current (1MHz) Active mode (AM) current (4kHz) Active mode (AM) current (100kHz) VCC fDCO = fMCLK = fSMCLK = 1MHz, fACLK = 32,768Hz, Program executes in flash, BCSCTL1 = CALBC1_1MHz, DCOCTL = CALDCO_1MHz, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 MIN TYP MAX 2.2 V 220 270 3V 300 370 2.2 V 190 UNIT µA fDCO = fMCLK = fSMCLK = 1MHz, fACLK = 32,768Hz, Program executes in RAM, BCSCTL1 = CALBC1_1MHz, DCOCTL = CALDCO_1MHz, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 µA fMCLK = fSMCLK = fACLK = 32,768Hz/8 = 4,096Hz, fDCO = 0Hz, Program executes in flash, SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 3V 260 2.2 V 1.2 3 3V 1.6 4 2.2 V 37 50 3V 40 55 µA fMCLK = fSMCLK = fDCO(0, 0) ≈ 100kHz, fACLK = 0Hz, Program executes in flash, RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1 µA NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a Micro Crystal CC4V−T1A SMD cyrstal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9pF. typical characteristics − active mode supply current (into VCC) 4.0 fDCO = 16 MHz 4.0 Active Mode Current − mA Active Mode Current − mA 5.0 3.0 fDCO = 12 MHz 2.0 1.0 fDCO = 8 MHz TA = 25 °C 2.0 2.0 2.5 3.0 3.5 4.0 TA = 25 °C 1.0 VCC = 2.2 V 0.0 0.0 VCC − Supply Voltage − V Figure 2. Active mode current vs VCC, TA = 25°C POST OFFICE BOX 655303 VCC = 3 V TA = 85 °C fDCO = 1 MHz 0.0 1.5 TA = 85 °C 3.0 4.0 8.0 12.0 16.0 fDCO − DCO Frequency − MHz Figure 3. Active mode current vs DCO frequency • DALLAS, TEXAS 75265 21 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) low power mode supply currents (into VCC) excluding external current (see Notes 1 and 2) PARAMETER TEST CONDITIONS VCC Low-power mode 0 (LPM0) current, see Note 3 fMCLK = 0MHz, fSMCLK = fDCO = 1MHz, fACLK = 32,768Hz, BCSCTL1 = CALBC1_1MHz, DCOCTL = CALDCO_1MHz, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 Low-power mode ILPM0,100kHz 0 (LPM0) current, see Note 3 fMCLK = 0MHz, fSMCLK = fDCO(0, 0) ≈ 100kHz, fACLK = 0Hz, RSELx = 0, DCOx = 0, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1 Low-power mode 1 (LPM2) current, see Note 4 fMCLK = fSMCLK = 0MHz, fDCO = 1MHz, fACLK = 32,768Hz, BCSCTL1 = CALBC1_1MHz, DCOCTL = CALDCO_1MHz, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 ILPM0, 1MHz ILPM2 Low-power mode 3 (LPM3) current, ILPM3,LFXT1 see Note 4 ILPM3,VLO ILPM4 Low-power mode 3 current, (LPM3) see Note 4 Low-power mode 4 (LPM4) current, see Note 5 fDCO = fMCLK = fSMCLK = 0MHz, fACLK = 32,768Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 fDCO = fMCLK = fSMCLK = 0MHz, fACLK from internal LF oscillator (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 fDCO = fMCLK = fSMCLK = 0MHz, fACLK = 32,768Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 TA = −40°C TA = 25°C 2.2 V TA = −40°C TA = 25°C TA = 85°C 65 80 85 100 2.2 V 37 48 3V 41 52 2.2 V 22 29 3V 25 32 0.7 1.2 0.7 1.0 1.4 2.3 0.9 1.2 0.9 1.2 1.6 2.8 0.4 0.7 0.5 0.7 1.0 1.6 0.5 0.9 0.6 0.9 1.3 1.8 0.1 0.5 0.1 0.5 0.8 1.5 µA 2.2 V 3V 2.2 V 3V 2.2 V/3 V NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a Micro Crystal CC4V−T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9pF. 3. Current for brownout and WDT clocked by SMCLK included. 4. Current for brownout and WDT clocked by ACLK included. 5. Current for brownout included. 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT µA TA = −40°C TA = 25°C MAX 3V TA = 85°C TA = −40°C TA = 25°C TA = 85°C TYP µA TA = 85°C TA = −40°C TA = 25°C TA = 85°C MIN µA µA µA SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Schmitt-trigger inputs − Ports P1 and P2 PARAMETER VIT+ VIT− TEST CONDITIONS Positive-going input threshold voltage Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ − VIT−) RPull Pull-up/pull-down resistor For pull-up: VIN = VSS; For pull-down: VIN = VCC CI Input Capacitance VIN = VSS or VCC VCC MIN TYP MAX UNIT VCC 0.45 0.75 2.2 V 1.00 1.65 3V 1.35 2.25 0.25 0.55 2.2 V 0.55 1.20 3V 0.75 1.65 2.2 V 0.2 1.0 3V 0.3 1.0 20 35 50 5 V VCC V V kW pF inputs − Ports P1 and P2 PARAMETER t(int) External interrupt timing TEST CONDITIONS Port P1, P2: P1.x to P2.x, External trigger puls width to set interrupt flag, (see Note 1) VCC 2.2 V/3 V MIN TYP MAX 20 UNIT ns NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t(int) is met. It may be set even with trigger signals shorter than t(int). leakage current − Ports P1 and P2 PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT Ilkg(Px.x) High-impedance leakage current see Notes 1 and 2 2.2 V/3 V ±50 nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pull-up/pull-down resistor is disabled. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1 and P2 PARAMETER VOH VOL High-level output voltage Low-level output voltage TEST CONDITIONS VCC MIN I(OHmax) = −1.5 mA (see Notes 1) I(OHmax) = −6 mA (see Notes 2) 2.2 V VCC−0.25 VCC−0.6 VCC VCC I(OHmax) = −1.5 mA (see Notes 1) I(OHmax) = −6 mA (see Notes 2) 3V VCC−0.25 VCC−0.6 VCC VCC VSS+0.25 VSS+0.6 VSS+0.25 2.2 V 3V I(OLmax) = 1.5 mA (see Notes 1) I(OLmax) = 6 mA (see Notes 2) 2.2 V 2.2 V VSS VSS I(OLmax) = 1.5 mA (see Notes 1) 3V VSS TYP MAX UNIT V V I(OLmax) = 6 mA (see Notes 2) 3V VSS VSS+0.6 NOTES: 1. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified. 2. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. output frequency − Ports P1 and P2 PARAMETER fPx.y fPort_CLK Port output frequency (with load) Clock output frequency TEST CONDITIONS VCC MIN TYP MAX UNIT P1.4/SMCLK, CL = 20 pF, RL = 1 kOhm (see Note 1 and 2) 2.2 V 10 MHz 3V 12 MHz P2.0/ACLK, P1.4/SMCLK, CL = 20 pF (see Note 2) 2.2 V 12 MHz 3V 16 MHz NOTES: 1. A resistive divider with 2 times 0.5 kW between VCC and VSS is used as load. The output is connected to the center tap of the divider. 2. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics − outputs TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 VCC = 2.2 V P1.7 TA = 25°C 25.0 TA = 85°C 20.0 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 I OL − Typical Low-Level Output Current − mA I OL − Typical Low-Level Output Current − mA 30.0 VCC = 3 V P1.7 40.0 TA = 85°C 30.0 20.0 10.0 0.0 0.0 2.5 0.5 VOL − Low-Level Output Voltage − V 1.5 2.0 2.5 3.0 3.5 Figure 5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 I OH − Typical High-Level Output Current − mA 0.0 I OH − Typical High-Level Output Current − mA 1.0 VOL − Low-Level Output Voltage − V Figure 4 VCC = 2.2 V P1.7 −5.0 −10.0 −15.0 TA = 85°C −20.0 −25.0 0.0 TA = 25°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 VOH − High-Level Output Voltage − V VCC = 3 V P1.7 −10.0 −20.0 −30.0 TA = 85°C −40.0 TA = 25°C −50.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH − High-Level Output Voltage − V Figure 6 Figure 7 NOTE: One output loaded at a time. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) POR/brownout reset (BOR) (see Notes 1 and 2) PARAMETER TEST CONDITIONS VCC(start) (see Figure 8) dVCC/dt ≤ 3 V/s V(B_IT−) Vhys(B_IT−) (see Figure 8 through Figure 10) dVCC/dt ≤ 3 V/s dVCC/dt ≤ 3 V/s td(BOR) (see Figure 8) t(reset) Pulse length needed at RST/NMI pin to accepted reset internally (see Figure 8) VCC MIN TYP MAX 0.7 × V(B_IT−) 70 2.2 V/3 V 2 130 UNIT V 1.71 V 180 mV 2000 µs µs NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT−) + Vhys(B_IT−) is ≤ 1.8V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 t d(BOR) Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics − POR/brownout reset (BOR) VCC 3V 2 VCC(drop) − V VCC = 3 V Typical Conditions t pw 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw − Pulse Width − µs 1 ns tpw − Pulse Width − µs Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC VCC(drop) − V 2 1.5 t pw 3V VCC = 3 V Typical Conditions 1 VCC(drop) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw − Pulse Width − µs tpw − Pulse Width − µs Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) main DCO characteristics D All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. D DCO control bits DCOx have a step size as defined by parameter SDCO. D Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to: f average + MOD 32 f DCO(RSEL,DCO) f DCO(RSEL,DCO)1) f DCO(RSEL,DCO))(32*MOD) f DCO(RSEL,DCO)1) DCO frequency PARAMETER Vcc Supply voltage range TEST CONDITIONS VCC MIN TYP MAX UNIT RSELx < 14 1.8 3.6 V RSELx = 14 2.2 3.6 V RSELx = 15 3.0 3.6 V fDCO(0,0) fDCO(0,3) DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V/3 V 0.06 0.14 MHz DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V/3 V 0.07 0.17 MHz fDCO(1,3) fDCO(2,3) DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V/3 V 0.10 0.20 MHz DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V/3 V 0.14 0.28 MHz fDCO(3,3) fDCO(4,3) DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V/3 V 0.20 0.40 MHz DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 0.28 0.54 MHz fDCO(5,3) fDCO(6,3) DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V/3 V 0.39 0.77 MHz DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V/3 V 0.54 1.06 MHz fDCO(7,3) fDCO(8,3) DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V/3 V 0.80 1.50 MHz DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V/3 V 1.10 2.10 MHz fDCO(9,3) fDCO(10,3) DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V/3 V 1.60 3.00 MHz DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V/3 V 2.50 4.30 MHz fDCO(11,3) fDCO(12,3) DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V/3 V 3.00 5.50 MHz DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V/3 V 4.30 7.30 MHz fDCO(13,3) fDCO(14,3) DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V/3 V 6.00 9.60 MHz DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V/3 V 8.60 13.9 MHz fDCO(15,3) fDCO(15,7) DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3V 12.0 18.5 MHz DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3V 16.0 26.0 MHz SRSEL Frequency step between range RSEL and RSEL+1 SRSEL f = /fDCO(RSEL,DCO) DCO(RSEL+1,DCO) 2.2 V/3 V SDCO Frequency step between tap DCO and DCO+1 SDCO f= /fDCO(RSEL,DCO) DCO(RSEL,DCO+1) 2.2 V/3 V 1.05 1.08 1.12 Measured at P1.4/SMCLK 2.2 V/3 V 40 50 60 Duty Cycle 28 1.55 ratio POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 % SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies − tolerance at calibration PARAMETER TEST CONDITIONS Frequency tolerance at calibration TA 25°C VCC MIN TYP MAX UNIT 3V −1 ±0.2 +1 25°C 3V 0.990 1 1.010 MHz % fCAL(1MHz) 1MHz calibration value BCSCTL1= CALBC1_1MHz; DCOCTL = CALDCO_1MHz Gating time: 5ms fCAL(8MHz) 8MHz calibration value BCSCTL1= CALBC1_8MHz; DCOCTL = CALDCO_8MHz Gating time: 5ms 25°C 3V 7.920 8 8.080 MHz fCAL(12MHz) 12MHz calibration value BCSCTL1= CALBC1_12MHz; DCOCTL = CALDCO_12MHz Gating time: 5ms 25°C 3V 11.88 12 12.12 MHz fCAL(16MHz) 16MHz calibration value BCSCTL1= CALBC1_16MHz; DCOCTL = CALDCO_16MHz Gating time: 2ms 25°C 3V 15.84 16 16.16 MHz VCC MIN MAX UNIT calibrated DCO frequencies − tolerance over temperature 0°C − +85°C PARAMETER 1 MHz tolerance over temperature TA 0°C − +85°C 3.0 V −2.5 ±0.5 +2.5 % 8 MHz tolerance over temperature 0°C − +85°C 3.0 V −2.5 ±1.0 +2.5 % 12 MHz tolerance over temperature 0°C − +85°C 3.0 V −2.5 ±1.0 +2.5 % 16 MHz tolerance over temperature 0°C − +85°C 3.0 V −3.0 ±2.0 +3.0 % 2.2 V 0.970 1 1.030 MHz 3.0 V 0.975 1 1.025 MHz 3.6 V 0.970 1 1.030 MHz 2.2 V 7.760 8 8.400 MHz 3.0 V 7.800 8 8.200 MHz 3.6 V 7.600 8 8.240 MHz 2.2 V 11.70 12 12.30 MHz 3.0 V 11.70 12 12.30 MHz 3.6 V 11.70 12 12.30 MHz 3.0 V 15.52 16 16.48 MHz 3.6 V 15.00 16 16.48 MHz fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) 1MHz calibration value 8MHz calibration value 12MHz calibration value 16MHz calibration value TEST CONDITIONS BCSCTL1= CALBC1_1MHz; DCOCTL = CALDCO_1MHz Gating time: 5ms BCSCTL1= CALBC1_8MHz; DCOCTL = CALDCO_8MHz Gating time: 5ms 0°C 0 C − +85 +85°C C 0°C 0 C − +85 +85°C C BCSCTL1= CALBC1_12MHz; DCOCTL = CALDCO_12MHz Gating time: 5ms 0°C 0 C − +85 +85°C C BCSCTL1= CALBC1_16MHz; DCOCTL = CALDCO_16MHz Gating time: 2ms 0°C − +85°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYP 29 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies − tolerance over supply voltage VCC PARAMETER TEST CONDITIONS 1 MHz tolerance over VCC TA 25°C VCC MIN TYP MAX UNIT 1.8 V − 3.6 V −2.5 ±2 +2.5 % 8 MHz tolerance over VCC 25°C 1.8 V − 3.6 V −2.5 ±2 +2.5 % 12 MHz tolerance over VCC 25°C 2.2 V − 3.6 V −2.5 ±2 +2.5 % 16 MHz tolerance over VCC 25°C 3.0 V − 3.6 V −3 ±2 +3 % 25°C 1.8 V − 3.6 V 0.970 1 1.030 MHz fCAL(1MHz) 1MHz calibration value BCSCTL1= CALBC1_1MHz; DCOCTL = CALDCO_1MHz Gating time: 5ms fCAL(8MHz) 8MHz calibration value BCSCTL1= CALBC1_8MHz; DCOCTL = CALDCO_8MHz Gating time: 5ms 25°C 1.8 V − 3.6 V 7.760 8 8.240 MHz fCAL(12MHz) 12MHz calibration value BCSCTL1= CALBC1_12MHz; DCOCTL = CALDCO_12MHz Gating time: 5ms 25°C 2.2 V − 3.6 V 11.64 12 12.36 MHz fCAL(16MHz) 16MHz calibration value BCSCTL1= CALBC1_16MHz; DCOCTL = CALDCO_16MHz Gating time: 2ms 25°C 3.0 V − 3.6 V 15.00 16 16.48 MHz VCC MIN MAX UNIT 1 MHz tolerance overall TA −40°C − +85°C 1.8 V − 3.6 V −5 ±2 +5 % 8 MHz tolerance overall −40°C − +85°C 1.8 V − 3.6 V −5 ±2 +5 % 12 MHz tolerance overall −40°C − +85°C 2.2 V − 3.6 V −5 ±2 +5 % 16 MHz tolerance overall −40°C − +85°C 3.0 V − 3.6 V −6 ±3 +6 % −40°C − +85°C 1.8 V − 3.6 V 0.950 1 1.050 MHz calibrated DCO frequencies − overall tolerance PARAMETER TEST CONDITIONS TYP fCAL(1MHz) 1MHz calibration value BCSCTL1= CALBC1_1MHz; DCOCTL = CALDCO_1MHz Gating time: 5ms fCAL(8MHz) 8MHz calibration value BCSCTL1= CALBC1_8MHz; DCOCTL = CALDCO_8MHz Gating time: 5ms −40°C − +85°C 1.8 V − 3.6 V 7.600 8 8.400 MHz fCAL(12MHz) 12MHz calibration value BCSCTL1= CALBC1_12MHz; DCOCTL = CALDCO_12MHz Gating time: 5ms −40°C − +85°C 2.2 V − 3.6 V 11.40 12 12.60 MHz fCAL(16MHz) 16MHz calibration value BCSCTL1= CALBC1_16MHz; DCOCTL = CALDCO_16MHz Gating time: 2ms −40°C − +85°C 3.0 V − 3.6 V 15.00 16 17.00 MHz 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics − calibrated 1MHz DCO frequency 1.03 1.02 VCC = 1.8 V Frequency − MHz 1.01 VCC = 2.2 V 1.00 VCC = 3.0 V 0.99 VCC = 3.6 V 0.98 0.97 −50.0 −25.0 0.0 25.0 50.0 75.0 100.0 TA − Temperature − °C Figure 11. Calibrated 1 MHz Frequency vs. Temperature 1.03 Frequency − MHz 1.02 1.01 TA = 85 °C 1.00 TA = 25 °C 0.99 TA = −40 °C 0.98 0.97 1.5 2.0 2.5 3.0 3.5 4.0 VCC − Supply Voltage − V Figure 12. Calibrated 1 MHz Frequency vs. VCC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) wake-up from lower power modes (LPM3/4) PARAMETER TEST CONDITIONS DCO clock wake-up time from tDCO,LPM3/4 LPM3/4 (see Note 1) VCC MIN TYP MAX BCSCTL1= CALBC1_1MHz; DCOCTL = CALDCO_1MHz 2.2 V/3 V 2 BCSCTL1= CALBC1_8MHz; DCOCTL = CALDCO_8MHz 2.2 V/3 V 1.5 BCSCTL1= CALBC1_12MHz; DCOCTL = CALDCO_12MHz 2.2 V/3 V 1 BCSCTL1= CALBC1_16MHz; DCOCTL = CALDCO_16MHz 3V 1 UNIT µss 1/fMCLK + tClock,LPM3/4 NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g. port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). 2. Parameter applicable only if DCOCLK is used for MCLK. tCPU,LPM3/4 CPU wake-up time from LPM3/4 (see Note 2) typical characteristics − DCO clock wake-up time from LPM3/4 DCO Wake Time − us 10.00 RSELx = 0...11 RSELx = 12...15 1.00 0.10 0.10 1.00 10.00 DCO Frequency − MHz Figure 13. Clock wake-up time from LPM3 vs DCO frequency 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, low frequency modes (see Note 4) PARAMETER fLFXT1,LF LFXT1 oscillator crystal frequency, LF mode 0, 1 LFXT1 oscillator logic level fLFXT1,LF,logic square wave input frequency, LF mode OALF CL,eff Oscillation Allowance for LF crystals Integrated effective Load Capacitance, LF mode (see Note 1) TEST CONDITIONS VCC XTS = 0, LFXT1Sx = 0 or 1 1.8 V − 3.6 V XTS = 0, LFXT1Sx = 3 1.8 V − 3.6 V MIN TYP MAX 32,768 10,000 XTS = 0, LFXT1Sx = 0; fLFXT1,LF = 32,768 kHz, CL,eff = 6 pF XTS = 0, LFXT1Sx = 0; fLFXT1,LF = 32,768 kHz, CL,eff = 12 pF 32,768 UNIT Hz 50,000 Hz 500 kW 200 kW XTS = 0, XCAPx = 0 1 pF XTS = 0, XCAPx = 1 5.5 pF XTS = 0, XCAPx = 2 8.5 pF XTS = 0, XCAPx = 3 11 pF Duty Cycle LF mode XTS = 0, Measured at P1.4/ACLK, fLFXT1,LF = 32,768 Hz 2.2 V/3 V 30 fFault,LF Osc. fault frequency threshold, LF mode (see Note 3) XTS = 0, LFXT1Sx = 3 (see Note 2) 2.2 V/3 V 10 50 70 % 10,000 Hz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Measured with logic level input frequency but also applies to operation with crystals. 3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag. 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. − Keep as short of a trace as possible between the device and the crystal. − Design a good ground plane around the oscillator pins. − Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. − Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. − Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. − If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. − Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. internal very low power, low frequency oscillator (VLO) PARAMETER fVLO dfVLO/dT dfVLO/dVCC TEST CONDITIONS VLO frequency VCC 2.2 V/3 V VLO frequency temperature drift (see Note 1) 2.2 V/3 V VLO frequency supply voltage drift TA = 25°C (see Note 2) 1.8V...3.6V MIN 4 TYP MAX 12 20 UNIT kHz 0.5 %/°C 4 %/V NOTES: 1. Calculated using the box method: (MAX(−40...85_C) − MIN(−40...85_C))/MIN(−40...85_C)/(85_C − (−40_C)) 2. Calculated using the box method: (MAX(1.8...3.6V) − MIN(1.8...3.6V))/MIN(1.8...3.6V)/(3.6V − 1.8V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Timer_A PARAMETER TEST CONDITIONS fTA Timer_A clock frequency tTA,cap Timer_A, capture timing VCC Internal: SMCLK, ACLK; External: TACLK, INCLK; Duty Cycle = 50% ±10% MIN TYP MAX 2.2 V 10 3V 16 UNIT MHz TA0, TA1 2.2 V/3 V 20 ns USI, Universal Serial Interface (MSP430x20x2, MSP430x20x3 only) PARAMETER TEST CONDITIONS VCC External: SCLK; Duty Cycle = 50% ±10%; SPI Slave Mode fUSI USI clock frequency VOL,I2C Low-level output voltage on SDA and SCL MIN TYP MAX 2.2 V 10 3V 16 UNIT MHz USI module in I2C mode I(OLmax) = 1.5 mA 2.2 V/3 V VSS VSS+0.4 V typical characteristics − USI low-level output voltage on SDA and SCL (MSP430x20x2, MSP430x20x3 only) 5.0 5.0 3.0 TA = 85°C 2.0 1.0 0.2 0.4 0.6 0.8 1.0 I OL − Low-Level Output Current − mA I OL − Low-Level Output Current − mA TA = 25°C 4.0 0.0 0.0 4.0 Figure 14. USI Low-Level Output Voltage vs. Output Current POST OFFICE BOX 655303 TA = 85°C 3.0 2.0 1.0 0.0 0.0 0.2 0.4 0.6 0.8 VOL − Low-Level Output Voltage − V VOL − Low-Level Output Voltage − V 34 TA = 25°C VCC = 3 V VCC = 2.2 V Figure 15. USI Low-Level Output Voltage vs. Output Current • DALLAS, TEXAS 75265 1.0 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x1 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) Comparator_A+ (see Note 1, MSP430x20x1 only) PARAMETER TEST CONDITIONS I(DD) CAON=1, CARSEL=0, CAREF=0 I(Refladder/RefDiode) CAON=1, CARSEL=0, CAREF=1/2/3, no load at P1.0/CA0 and P1.1/CA1 V(IC) V(Ref025) V(Ref050) Common-mode input voltage Voltage @ 0.25 V CC V Voltage @ 0.5V V CC CC node CC MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 71 CAON=1 2.2 V/3 V 0 VCC−1 PCA0=1, CARSEL=1, CAREF=1, no load at P1.0/CA0 and P1.1/CA1 2.2 V/3 V 0.23 0.24 0.25 PCA0=1, CARSEL=1, CAREF=2, no load at P1.0/CA0 and P1.1/CA1 2.2 V/3 V 0.47 0.48 0.5 2.2 V 390 480 540 490 550 UNIT µA µA V 3V 400 Offset voltage PCA0=1, CARSEL=1, CAREF=3, no load at P1.0/CA0 and P1.1/CA1, TA = 85°C See Note 2 2.2 V/3 V −30 30 mV Input hysteresis CAON=1 2.2 V/3 V 0 0.7 1.4 mV 2.2 V 80 165 300 3V 70 120 240 V(RefVT) (see Figure 19 and Figure 20) V(offset) Vhys t(response) node VCC Response time (low−high and high−low) TA = 25°C, Overdrive 10 mV, Without filter: CAF=0 (see Note 3, Figure 16 and Figure 17) mV ns TA = 25°C, Overdrive 10 mV, 2.2 V 1.4 1.9 2.8 With filter: CAF=1 µs (see Note 3, Figure 16 and 3V 0.9 1.5 2.2 Figure 17) NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. 3. Response time measured at P1.3/CAOUT. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x1 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 0 V VCC 0 1 CAF CAON To Internal Modules Low Pass Filter + _ V+ V− 0 0 1 1 CAOUT Set CAIFG Flag τ ≈ 2.0 µs Figure 16. Block Diagram of Comparator_A+ Module VCAOUT Overdrive V− 400 mV t(response) V+ Figure 17. Overdrive Definition CASHORT CA0 CA1 1 VIN + − IOUT = 10µA Comparator_A+ CASHORT = 1 Figure 18. Comparator_A+ Short Resistance Test Condition 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x1 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics − Comparator_A+ (MSP430x20x1 only) 650 650 VCC = 2.2 V V(REFVT) − Reference Volts −mV 600 Typical 550 500 450 400 −45 −25 −5 15 35 55 75 600 Typical 550 500 450 400 −45 95 −25 −5 15 35 55 75 95 TA − Free-Air Temperature − °C TA − Free-Air Temperature − °C Figure 20. V(RefVT) vs Temperature, VCC = 2.2 V Figure 19. V(RefVT) vs Temperature, VCC = 3 V 100.00 Short Resistance − kOhms V(REFVT) − Reference Volts −mV VCC = 3 V VCC = 1.8V VCC = 2.2V VCC = 3.0V 10.00 VCC = 3.6V 1.00 0.0 0.2 0.4 0.6 0.8 1.0 VIN/VCC − Normalized Input Voltage − V/V Figure 21. Short Resistance vs VIN/VCC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, power supply and input range conditions (see Note 1, MSP430x20x2 only) PARAMETER TEST CONDITIONS VCC TYP MAX VCC Analog supply voltage range VAx Analog input voltage range (see Note 2) fADC10CLK = 5.0 MHz ADC10ON = 1, REFON = 0 ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0 2.2 V 0.52 1.05 IADC10 ADC10 supply current (see Note 3) 3V 0.6 1.2 Reference supply current, reference buffer disabled (see Note 4) fADC10CLK = 5.0 MHz REF2_5V=0 ADC10ON = 0, REFON = 1, REF2_5V=1 REFOUT = 0 2.2 V/3 V 0.25 0.4 Reference buffer supply current (see Note 4) fADC10CLK = 5.0 MHz ADC10SR=0 ADC10ON = 0, REFON = 1, REF2_5V = 0 ADC10SR=1 REFOUT = 1 IREF+ IREFB CI RI NOTES: 1. 2. 3. 4. 38 Input capacitance VSS = 0 V All Ax terminals. Analog inputs selected in ADC10AE register. MIN Only one terminal Ax selected at a time UNIT 2.2 3.6 V 0 VCC V mA mA mA 3V 2.2 V/3 V 1.1 1.4 mA 2.2 V/3 V 0.46 0.55 mA 27 pF Input MUX ON resistance 0V ≤ VAx ≤ VCC 2.2 V/3 V 2000 Ω The leakage current is defined in the leakage current table with Px.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR− for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC10. The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, built-in voltage reference (MSP430x20x2 only) PARAMETER VCC,REF+ TEST CONDITIONS Positive built-in reference analog supply voltage range VREF+ Positive built-in reference voltage ILD,VREF+ Maximum VREF+ load current VCC IVREF+ ≤ 1mA, REF2_5V=0 IVREF+ ≤ 0.5mA, REF2_5V=1 VREF+ load regulation response time TYP 2.2 VREF++0.15 VREF++0.15 MAX UNIT VCC VCC V IVREF+ ≤ 1mA, REF2_5V=1 IVREF+ ≤ IVREF+max, REF2_5V=0 2.2 V/3 V 1.41 1.5 VCC 1.59 V IVREF+ ≤ IVREF+max, REF2_5V=1 3V 2.35 2.5 2.65 V 2.2 V VREF+ load regulation MIN ±0.5 3V ±1 mA IVREF+ = 500 µA +/− 100 µA Analog input voltage VAx ≈ 0.75 V; REF2_5V=0 2.2 V/3 V ±2 LSB IVREF+ = 500 µA ± 100 µA Analog input voltage VAx ≈ 1.25 V; REF2_5V=1 3V ±2 LSB 3V 400 IVREF+ = 100µA→900µA, VAx ≈ 0.5 x VREF+ Error of conversion result ≤ 1 LSB ADC10SR=0 ns ADC10SR=1 3V 2000 100 CVREF+ Max. capacitance at pin VREF+ (see Note 1) IVREF+ ≤ ±1mA, REFON=1, REFOUT=1 2.2 V/3 V TCREF+ Temperature coefficient IVREF+ = const. with 0 mA ≤ IVREF+ ≤ 1 mA 2.2 V/3 V tREFON Settling time of internal reference voltage (see Note 2) IVREF+ = 0.5 mA, REF2_5V=0 REFON = 0 → 1 tREFBURST Settling time of reference buffer (see Note 2) IVREF+ = 0.5 mA, REF2_5V=0, REFON = 1, REFBURST = 1 pF ±100 ppm/°C 3.6 V 30 ADC10SR=0 2.2 V 1 ADC10SR=1 2.2 V 2.5 µs NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/VREF+/VeREF+ (REFOUT=1), must be limited; the reference buffer may become unstable otherwise. 2. The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, external reference (see Note 1, MSP430x20x2 only) PARAMETER VeREF+ TEST CONDITIONS Positive external reference input voltage range (see Note 2) TYP MAX UNIT 1.4 VCC V VeREF− ≤ VeREF+ ≤ VCC − 0.15V SREF1 = 1, SREF0 = 1 (see Note 3) 1.4 3.0 V 0 1.2 V 1.4 VCC V Negative external reference input voltage range (see Note 4) VeREF+ > VeREF− ∆VeREF Differential external reference input voltage range ∆VeREF = VeREF+ − VeREF− VeREF+ > VeREF− (see Note 5) Static input current into VeREF+ MIN VeREF+ > VeREF− SREF1 = 1, SREF0 = 0 VeREF− IVeREF+ VCC 0V ≤ VeREF+ ≤ VCC, SREF1 = 1, SREF0 = 0 2.2 V/3 V ±1 µA 0V ≤VeREF+ ≤ VCC − 0.15V ≤ 3V SREF1 = 1, SREF0 = 1 (see Note 3) 2.2 V/3 V 0 µA IVeREF− Static input current into VeREF− 0V ≤ VeREF− ≤ VCC 2.2 V/3 V ±1 µA NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1. 4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, timing parameters (MSP430x20x2 only) PARAMETER fADC10CLK fADC10OSC tCONVERT TEST CONDITIONS For specified performance of ADC10 linearity parameters ADC10 input clock frequency ADC10 built-in oscillator frequency Conversion time VCC MIN TYP MAX UNIT ADC10SR=0 2.2 V/3 V 0.45 6.3 ADC10SR=1 2.2 V/3 V 0.45 1.5 ADC10DIVx=0, ADC10SSELx = 0 fADC10CLK = fADC10OSC 2.2 V/3 V 3.7 6.3 MHz ADC10 built-in oscillator, ADC10SSELx = 0 fADC10CLK = fADC10OSC 2.2 V/3 V 2.06 3.51 µs MHz 13× ADC10DIV× 1/fADC10CLK fADC10CLK from ACLK, MCLK or SMCLK: ADC10SSELx ≠ 0 µs tADC10ON Turn on settling time of the ADC (see Note 1) 100 ns NOTES: 1. The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already settled. 10-bit ADC, linearity parameters (MSP430x20x2 only) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT EI ED Integral linearity error 2.2 V/3 V ±1 LSB Differential linearity error 2.2 V/3 V ±1 LSB EO Offset error ±1 LSB EG Gain error 2.2 V/3 V ±1.1 ±2 LSB ET Total unadjusted error 2.2 V/3 V ±2 ±5 LSB Source impedance RS < 100 Ω, POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2.2 V/3 V 41 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, temperature sensor and built-in VMID (MSP430x20x2 only) PARAMETER ISENSOR Temperature sensor supply current (see Note 1) TEST CONDITIONS REFON = 0, INCHx = 0Ah, TA = 25_C TCSENSOR† ADC10ON = 1, INCHx = 0Ah (see Notes 2, 3) VOffset,Sensor Sensor offset voltage ADC10ON = 1, INCHx = 0Ah (see Notes 2, 3) VSensor Sensor output voltage (see Note 4) Sample time required if tSensor(sample) channel 10 is selected (see Note 5) VCC MIN TYP MAX 2.2 V 40 120 3V 60 160 3.55 3.66 mV/°C 100 mV 2.2 V/3 V 3.44 −100 Temperature sensor voltage at TA = 85°C 2.2 V/3 V TBD TBD TBD Temperature sensor voltage at TA = 25°C 2.2 V/3 V TBD TBD TBD Temperature sensor voltage at TA = 0°C (see Note 2) 2.2 V/3 V 935 985 1035 ADC10ON = 1, INCHx = 0Ah, Error of conversion result ≤ 1 LSB 2.2 V/3 V 30 IVMID Current into divider at channel 11 (see Note 6) ADC10ON = 1, INCHx = 0Bh, VMID VCC divider at channel 11 ADC10ON = 1, INCHx = 0Bh, VMID is ≈0.5 x VCC UNIT µA A mV µs 2.2 V NA 3V NA 2.2 V 1.06 1.1 1.14 3V 1.46 1.5 1.54 µA A V Sample time required if 2.2 V 1400 ADC10ON = 1, INCHx = 0Bh, tVMID(sample) channel 11 is selected (see ns Error of conversion result ≤ 1 LSB 3V 1220 Note 7) † Not production tested, limits characterized NOTES: 1. The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON=1 and INCH=0Ah and sample signal is high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor input (INCH = 0Ah). 2. Not production tested, limits characterized. 3. The following formula can be used to calculate the temperature sensor output voltage: VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV] 4. Results based on characterization and/or production test, not TCSensor or VOffset,sensor. 5. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). 6. No additional current is needed. The VMID is used during sampling. 7. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) SD16_A, power supply and recommended operating conditions (MSP430x20x3 only) PARAMETER AVCC ISD16 fSD16 TEST CONDITIONS VCC AVCC = DVCC = VCC AVSS = DVSS = VSS = 0V Analog supply voltage range Analog supply current including internal reference SD16 input clock frequency MIN TYP 2.5 MAX 3.6 SD16LP = 0, fSD16 = 1 MHz, SD16OSR = 256 GAIN: 1,2 3V 730 1050 GAIN: 4,8,16 3V 810 1150 GAIN: 32 3V 1160 1700 SD16LP = 1, fSD16 = 0.5 MHz, SD16OSR = 256 GAIN: 1 3V 720 1030 GAIN: 32 3V 810 1150 1.1 SD16LP = 0 (Low power mode disabled) 3V 0.03 1 SD16LP = 1 (Low power mode enabled) 3V 0.03 0.5 UNIT V µA MHz SD16_A, input range (MSP430x20x3 only) PARAMETER VID,FSR VID TEST CONDITIONS Differential full scale input voltage range (see Note 1) Differential input voltage range for specified performance (see Note 1) VCC Bipolar Mode, SD16UNI = 0 Unipolar Mode, SD16UNI = 1 SD16REFON=1 MIN TYP MAX UNIT −(VREF/2)/ GAIN +(VREF/2)/ GAIN mV 0 +(VREF/2)/ GAIN mV SD16GAINx=1 ±500 SD16GAINx=2 ±250 SD16GAINx=4 ±125 SD16GAINx=8 ±62 SD16GAINx=16 ±31 mV ±15 SD16GAINx=32 SD16GAINx=1 3V 200 SD16GAINx=32 3V 75 SD16GAINx=1 3V 300 400 SD16GAINx=32 3V 100 150 ZI Input impedance (one input pin to AVSS) fSD16 = 1MHz ZID Differential Input impedance (IN+ to IN−) fSD16 = 1MHz VI Absolute input voltage range AVSS -0.1V AVCC V VIC Common-mode input voltage range AVSS -0.1V AVCC V kΩ kΩ NOTES: 1. The analog input range depends on the reference voltage applied to VREF. If VREF is sourced externally, the full-scale range is defined by VFSR+ = +(VREF/2)/GAIN and VFSR− = −(VREF/2)/GAIN. The analog input range should not exceed 80% of VFSR+ or VFSR−. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) SD16_A, SINAD performance (fSD16 = 1MHz, SD16OSRx = 1024, SD16REFON = 1, MSP430x20x3 only) PW, or N PARAMETER TEST CONDITIONS SD16GAINx = 1, Signal Amplitude: VIN = 500mV, Signal Frequency: fIN = 100Hz SD16GAINx = 2, Signal Amplitude: VIN = 250mV, Signal Frequency: fIN = 100Hz SINAD1024 Signal-to-Noise + Distortion Ratio (OSR = 1024) SD16GAINx = 4, Signal Amplitude: VIN = 125mV, Signal Frequency: fIN = 100Hz SD16GAINx = 8, Signal Amplitude: VIN = 62mV, Signal Frequency: fIN = 100Hz SD16GAINx = 16, Signal Amplitude: VIN = 31mV, Signal Frequency: fIN = 100Hz SD16GAINx = 32, Signal Amplitude: VIN = 15mV, Signal Frequency: fIN = 100Hz VCC MIN RSA TYP MIN TYP 3V 84 85 TBD TBD 3V 82 83 TBD TBD 3V 78 79 TBD TBD UNIT dB 3V 73 74 TBD TBD 3V 68 69 TBD TBD 3V 62 63 TBD TBD SD16_A, SINAD performance (fSD16 = 1MHz, SD16OSRx = 256, SD16REFON = 1, MSP430x20x3 only) PW, or N PARAMETER TEST CONDITIONS SD16GAINx = 1, Signal Amplitude: VIN = 500mV, Signal Frequency: fIN = 100Hz SD16GAINx = 2, Signal Amplitude: VIN = 250mV, Signal Frequency: fIN = 100Hz SINAD256 Signal-to-Noise + Distortion Ratio (OSR = 256) SD16GAINx = 4, Signal Amplitude: VIN = 125mV, Signal Frequency: fIN = 100Hz SD16GAINx = 8, Signal Amplitude: VIN = 62mV, Signal Frequency: fIN = 100Hz SD16GAINx = 16, Signal Amplitude: VIN = 31mV, Signal Frequency: fIN = 100Hz SD16GAINx = 32, Signal Amplitude: VIN = 15mV, Signal Frequency: fIN = 100Hz 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VCC MIN RSA TYP MIN TYP 3V 80 81 TBD TBD 3V 74 75 TBD TBD 3V 69 70 TBD TBD UNIT dB 3V 63 64 TBD TBD 3V 58 59 TBD TBD 3V 52 53 TBD TBD SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics − SD16_A SINAD performance over OSR (MSP430x20x3 only) 100.0 95.0 90.0 SINAD − dB 85.0 80.0 75.0 70.0 65.0 60.0 PW, or N 55.0 50.0 10.00 100.00 1000.00 OSR Figure 22. SINAD performance over OSR, fSD16 = 1MHz, SD16REFON = 1, SD16GAINx = 1 SD16_A, performance (fSD16 = 1MHz, SD16OSRx = 256, SD16REFON = 1, MSP430x20x3 only) PARAMETER G Nominal Gain (see Note 1) TEST CONDITIONS 1.02 SD16GAINx = 2 3V 1.90 1.96 2.02 SD16GAINx = 4 3V 3.76 3.86 3.96 SD16GAINx = 8 3V 7.36 7.62 7.84 SD16GAINx = 16 3V 14.56 15.04 15.52 SD16GAINx = 32 3V 27.20 28.35 29.76 3V dG/dVCC Gain Supply Voltage Drift SD16GAINx = 1; VCC = 2.5V - 3.6V (see Note 3) EOS Offset Error (see Note 1) dEOS/dT Offset Error Temperature Coefficient (see Note 1) Power Supply Rejection Ratio MAX 1.00 SD16GAINx = 1 (see Note 2) PSRR TYP 0.97 Gain Temperature Drift Common-Mode Rejection Ratio MIN 3V dG/dT CMRR VCC SD16GAINx = 1 2.5V-3.6V 15 UNIT ppm/_C 0.35 %/V SD16GAINx = 1 3V ±0.2 SD16GAINx = 32 3V ±1.5 %FSR SD16GAINx = 1 3V ±4 ±20 SD16GAINx = 32 3V ±20 ±100 ppm FSR/_C 3V >90 SD16GAINx = 1, Common-mode input signal: VID = 500 mV, fIN = 50 Hz, 100 Hz SD16GAINx = 32, Common-mode input signal: VID = 16 mV, fIN = 50 Hz, 100 Hz SD16GAINx = 1 dB 3V >75 3V >80 dB NOTES: 1. Not production tested, limits characterized. 2. Calculated using the box method: (MAX(−40...85_C) − MIN(−40...85_C))/MIN(−40...85_C)/(85_C − (−40_C)) 3. Calculated using the box method: (MAX(2.5...3.6V) − MIN(2.5...3.6V))/MIN(2.5...3.6V)/(3.6V − 2.5V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) SD16_A, temperature sensor (MSP430x20x3 only) PARAMETER TEST CONDITIONS TCSensor Sensor temperature coefficient VOffset,Sensor Sensor offset voltage VSensor Sensor output voltage (see Note 3) VCC MIN See Note 1 1.18 See Note 1 −100 TYP 1.32 MAX 1.46 mV/K 100 mV Temperature sensor voltage at TA = 85°C 3V 435 475 515 Temperature sensor voltage at TA = 25°C 3V 355 395 435 320 360 400 Temperature sensor voltage 3V at TA = 0°C (see Note 1) NOTES: 1. Not production tested, limits characterized. 2. The following formula can be used to calculate the temperature sensor output voltage: VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV] 3. Results based on characterization and/or production test, not TCSensor or VOffset,sensor. UNIT mV SD16_A, built-in voltage reference (MSP430x20x3 only) PARAMETER TEST CONDITIONS VCC MIN MAX UNIT VREF IREF Internal reference voltage SD16REFON = 1, SD16VMIDON = 0 3V 1.20 1.26 V Reference supply current SD16REFON = 1, SD16VMIDON = 0 3V 190 280 µA TC Temperature coefficient SD16REFON = 1, SD16VMIDON = 0 3V 18 50 ppm/K CREF VREF load capacitance SD16REFON = 1, SD16VMIDON = 0 (see Note 1) ILOAD VREF(I) maximum load current SD16REFON = 1; SD16VMIDON = 0 tON Turn on time PSRR Line regulation SD16REFON = 0 → 1; SD16VMIDON = 0; CREF = 100nF SD16REFON = 1; SD16VMIDON = 0 1.14 TYP 100 nF ±200 3V nA 3V 5 ms 3V 10 uV/V NOTES: 1. There is no capacitance required on VREF. However, a capacitance of at least 100nF is recommended to reduce any reference voltage noise. SD16_A, reference output buffer (MSP430x20x3 only) PARAMETER TEST CONDITIONS VCC MIN TYP VREF,BUF Reference buffer output voltage SD16REFON = 1, SD16VMIDON = 1 3V 1.2 IREF,BUF Reference Supply + Reference output buffer quiescent current SD16REFON = 1, SD16VMIDON = 1 3V 385 CREF(O) Required load capacitance on VREF SD16REFON = 1, SD16VMIDON = 1 ILOAD,Max Maximum load current on VREF Maximum voltage variation vs. load current tON Turn on time MAX V 600 470 SD16REFON = 1, SD16VMIDON = 1 3V |ILOAD| = 0 to 1mA 3V SD16REFON = 0 → 1; SD16VMIDON = 1; CREF = 470nF 3V UNIT µA nF −15 ±1 mA +15 mV µs 100 SD16_A, external reference input (MSP430x20x3 only) PARAMETER VREF(I) IREF(I) 46 TEST CONDITIONS VCC Input voltage range SD16REFON = 0 3V Input current SD16REFON = 0 3V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN 1.0 TYP 1.25 MAX UNIT 1.5 V 50 nA SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Flash Memory PARAMETER VCC(PGM/ ERASE) TEST CONDITIONS VCC Program and Erase supply voltage MIN TYP 2.2 fFTG IPGM Flash Timing Generator frequency Supply current from VCC during program 2.2 V/3.6 V 257 1 IERASE tCPT Supply current from VCC during erase 2.2 V/3.6 V 1 Cumulative program time (see Note 1) 2.2 V/3.6 V tCMErase Cumulative mass erase time 2.2 V/3.6 V Program/Erase endurance tRetention Data retention duration TJ = 25°C tWord tBlock, 0 Word or byte program time Block program time for 1st byte or word tBlock, 1-63 tBlock, End Block program time for each additional byte or word tMass Erase tSeg Erase Mass erase time Block program end-sequence wait time 20 104 MAX UNIT 3.6 V 476 kHz 5 mA 7 mA 10 ms ms 105 cycles 100 years 30 25 18 see Note 2 tFTG 6 10593 Segment erase time 4819 NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). RAM PARAMETER TEST CONDITIONS MIN TYP MAX UNIT V(RAMh) RAM retention supply voltage (see Note 1) CPU halted 1.6 V NOTE 1: This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) JTAG and Spy-Bi-Wire Interface TEST CONDITIONS PARAMETER fSBW tSBW,Low VCC MIN TYP MAX UNIT Spy-Bi-Wire input frequency 2.2 V / 3 V 0 20 MHz Spy-Bi-Wire low clock pulse length 2.2 V / 3 V 0.025 15 us tSBW,En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge, see Note 1) 2.2 V/ 3 V 1 us tSBW,Ret Spy-Bi-Wire return to normal operation time 2.2 V/ 3 V 15 100 2.2 V 0 5 MHz 3V 0 10 MHz fTCK TCK input frequency − 4-wire JTAG (see Note 2) us RInternal Internal pull-down resistance on TEST 2.2 V/ 3 V 25 60 90 kΩ NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before appling the first SBWCLK clock edge. 2. fTCK may be restricted to meet the timing requirements of the module selected. JTAG Fuse (see Note 1) TEST CONDITIONS PARAMETER VCC(FB) VFB Supply voltage during fuse-blow condition IFB tFB Supply current into TEST during fuse blow TA = 25°C Voltage level on TEST for fuse-blow VCC MIN MAX 2.5 6 Time to blow fuse TYP UNIT V 7 V 100 mA 1 ms NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible and JTAG is switched to bypass mode. 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 APPLICATION INFORMATION, MSP430x20x1 Port P1 (P1.0 to P1.3) pin functions, MSP430x20x1 PIN NAME (P1.X) P1.0/TACLK/ACLK/ CA0 P1.1/TA0/CA1 P1.2/TA1/CA2 CONTROL BITS / SIGNALS X FUNCTION 0 P1.0† Input/Output Timer_A2.TACLK/INCLK P1SEL.x CAPD.x 0/1 0 0 0 1 0 ACLK 1 1 0 CA0 (see Note 3) X X 1 0/1 0 0 Timer_A2.CCI0A 0 1 0 Timer_A2.TA0 1 1 0 CA1 (see Note 3) X X 1 0/1 0 0 0 1 0 1 P1.1† Input/Output 2 P1.2† Input/Output Timer_A2.CCI1A P1.3/CAOUT/CA3 P1DIR.x Timer_A2.TA1 1 1 0 CA2 (see Note 3) X X 1 0/1 0 0 N/A 0 1 0 CAOUT 1 1 0 CA3 (see Note 3) X X 3 P1.3† Input/Output 1 † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.0 to P1.3) pin schematics, MSP430x20x1 Pad Logic To Comparator_A+ From Comparator_A+ CAPD.x P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS P1.0/TACLK/ACLK/CA0 P1.1/TA0/CA1 P1.2/TA1/CA2 P1.3/CAOUT/CA3 Bus Keeper P1SEL.x EN P1IN.x EN Module X IN D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Control signal “From Comparator_A+” SIGNAL “FROM COMPARATOR_A+” = 1 PIN NAME FUNCTION P2CA4 P2CA0 P2CA3 P2CA2 P2CA1 N/A N/A N/A P1.0/TACLK/ACLK/CA0 CA0 0 1 P1.1/TA0/CA1 CA1 1 0 0 0 1 P1.2/TA1/CA2 CA2 1 1 0 1 0 P1.3/CAOUT/CA3 CA3 N/A N/A 0 1 1 NOTES: 1. N/A: Not available or not applicable. 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 OR SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.4 to P1.7) pin functions, MSP430x20x1 PIN NAME (P1.X) P1.4/SMCLK/CA4/ TCK CONTROL BITS / SIGNALS X FUNCTION P1DIR.x P1SEL.x CAPD.x JTAG Mode 0/1 0 0 0 N/A 0 1 0 0 SMCLK 1 1 0 0 CA4 (see Note 3) X X 1 0 4 P1.4† Input/Output TCK (see Note 4) P1.5/TA0/CA5/ TMS P1.6/TA1/CA6/ TDI P1.7/CAOUT/CA7/ TDO/TDI 5 P1.5† Input/Output N/A X X X 1 0/1 0 0 0 0 1 0 0 Timer_A2.TA0 1 1 0 0 CA5 (see Note 3) X X 1 0 TMS (see Note 4) X X X 1 6 P1.6† Input/Output 0/1 0 0 0 N/A 0 1 0 0 Timer_A2.TA1 1 1 0 0 CA6 (see Note 3) X X 1 0 TDI (see Note 4) X X X 1 7 P1.7† Input/Output 0/1 0 0 0 N/A 0 1 0 0 CAOUT 1 1 0 0 CA7 (see Note 3) X X 1 0 TDO/TDI (see Notes 4, 5) X X X 1 † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. 4. In JTAG mode the internal pull-up/down resistors are disabled. 5. Function controlled by JTAG POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.4 to P1.6) pin schematics, MSP430x20x1 Pad Logic To Comparator_A+ From Comparator_A+ CAPD.x P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS P1.4/SMCLK/CA4/TCK P1.5/TA0/CA5/TMS P1.6/TA1/CA6/TDI Bus Keeper P1SEL.x EN P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select To JTAG From JTAG Control signal “From Comparator_A+” SIGNAL “FROM COMPARATOR_A+” = 1 PIN NAME FUNCTION P2CA3 P2CA2 P2CA1 P1.4/SMCLK/CA4/TCK CA4 1 0 0 P1.5/TA0/CA5/TMS CA5 1 0 1 P1.6/TA1/CA6/TDI CA6 1 1 0 NOTES: 1. N/A: Not available or not applicable. 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.7) pin schematics, MSP430x20x1 Pad Logic To Comparator_A+ From Comparator_A+ CAPD.7 P1REN.7 P1DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P1OUT.7 DVSS P1.7/CAOUT/CA7/TDO/TDI Bus Keeper P1SEL.7 EN P1IN.7 EN Module X IN D P1IE.7 P1IRQ.7 EN Q P1IFG.7 P1SEL.7 P1IES.7 Set Interrupt Edge Select To JTAG From JTAG From JTAG From JTAG (TDO) Control signal “From Comparator_A+” SIGNAL “FROM COMPARATOR_A+” = 1 PIN NAME FUNCTION P1.7/CAOUT/CA7/TDO/TDI CA7 P2CA3 P2CA2 P2CA1 1 1 1 NOTES: 1. N/A: Not available or not applicable. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P2 (P2.6) pin schematics, MSP430x20x1 LFXT1 Oscillator BCSCTL3.LFXT1Sx = 11 P2.7/XOUT LFXT1 off 0 LFXT1CLK 1 P2SEL.7 Pad Logic P2REN.6 P2DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.6 DVSS P2.6/XIN/TA1 Bus Keeper P2SEL.6 EN P2IN.6 EN Module X IN D P2IE.6 P2IRQ.6 EN Q P2IFG.6 P2SEL.6 P2IES.6 Set Interrupt Edge Select Port P2 (P2.6) pin functions, MSP430x20x1 PIN NAME (P2.X) P2.6/XIN/TA1 CONTROL BITS / SIGNALS X FUNCTION P2DIR.x P2SEL.x 0/1 0 XIN† (see Note 3) 0 1 Timer_A2.TA1 1 1 6 P2.6 Input/Output † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. XIN is used as digital clock input if the bits LFXT1Sx in register BCSCTL3 are set to 11. 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P2 (P2.7) pin schematics, MSP430x20x1 LFXT1 Oscillator BCSCTL3.LFXT1Sx = 11 LFXT1 off 0 LFXT1CLK From P2.6/XIN 1 P2.6/XIN/TA1 Pad Logic P2SEL.6 P2REN.7 P2DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.7 DVSS P2.7/XOUT Bus Keeper P2SEL.7 EN P2IN.7 EN Module X IN D P2IE.7 P2IRQ.7 EN Q P2IFG.7 Set Interrupt Edge Select P2SEL.7 P2IES.7 Port P2 (P2.7) pin functions, MSP430x20x1 PIN NAME (P2.X) P2.7/XOUT CONTROL BITS / SIGNALS X FUNCTION 7 P2.7 Input/Output P2DIR.x P2SEL.x 0/1 0 DVSS 0 1 XOUT† (see Note 3) 1 1 † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. If the pin P2.7/XOUT is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this pin after reset. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 APPLICATION INFORMATION, MSP430x20x2 Port P1 (P1.0 to P1.2) pin functions, MSP430x20x2 PIN NAME (P1.X) P1.0/TACLK/ACLK/A0 CONTROL BITS / SIGNALS X FUNCTION 0 P1.0† Input/Output Timer_A2.TACLK/INCLK P1.1/TA0/A1 P1.2/TA1/A2 P1DIR.x P1SEL.x ADC10AE.x INCHx 0/1 0 0 N/A 0 1 0 N/A N/A ACLK 1 1 0 A0 (see Note 3) X X 1 0 1 P1.1† Input/Output 0/1 0 0 N/A Timer_A2.CCI0A 0 1 0 N/A Timer_A2.TA0 1 1 0 N/A A1 (see Note 3) X X 1 1 2 P1.2† Input/Output 0/1 0 0 N/A 0 1 0 N/A N/A Timer_A2.CCI1A Timer_A2.TA1 1 1 0 A2 (see Note 3) X X 1 2 † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. Setting the ADC10AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals. 56 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.0 to P1.2) pin schematics, MSP430x20x2 Pad Logic To ADC 10 INCHx = x ADC10AE.x P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS Bus Keeper P1SEL.x P1.0/TACLK/ACLK/A0 P1.1/TA0/A1 P1.2/TA1/A2 EN P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.3) pin schematics, MSP430x20x2 SREF2 VSS 0 To ADC 10 VR− Pad Logic 1 A3 INCHx = 3 ADC10AE.3 P1REN.3 P1DIR.3 0 P1OUT.3 0 1 0 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS DVCC P1.3/ADC10CLK/ A3/VREF−/VeREF− Bus Keeper P1SEL.3 EN P1IN.3 EN Module X IN D P1IE.3 P1IRQ.3 EN Q P1IFG.3 Set Interrupt Edge Select P1SEL.3 P1IES.3 Port P1 (P1.0 to P1.3) pin functions, MSP430x20x2 PIN NAME (P1.X) P1.3/ADC10CLK/ A3/VREF−/VeREF− CONTROL BITS / SIGNALS X FUNCTION 3 P1.3† Input/Output N/A P1DIR.x P1SEL.x ADC10AE.x INCHx 0/1 0 0 N/A 0 1 0 N/A N/A ADC10CLK 1 1 0 A3 (see Note 3) X X 1 3 VREF−/VeREF− (see Notes 3, 4) X X 1 N/A † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. Setting the ADC10AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals. 4. An applied voltage is used as negative reference if bit SREF3 in register ADC10CTL0 is set. 58 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.4 to P1.7) pin functions, MSP430x20x2 CONTROL BITS / SIGNALS PIN NAME (P1.X) P1.4/SMCLK/A4/ VREF+/VeREF+/ TCK X FUNCTION 4 P1.4† Input/Output N/A P1.6/TA1/SDO/SCL/A6/ TDI P1.7/SDI/SDA/A7/ TDO/TDI INCHx JTAG Mode 0 0 N/A 0 1 0 N/A 0 0 N/A 0 1 4 0 1 N/A 0 P1SEL.x 0/1 0 SMCLK 1 1 A4 (see Note 3) X X VREF+/VeREF+ (see Notes 3, 4) X X TCK (see Note 5) P1.5/TA0/SCLK/A5/ TMS ADC10AE.x P1DIR.x 5 P1.5† Input/Output N/A USIP.x N/A X X X X 1 0/1 0 X 0 N/A 0 0 1 X 0 N/A 0 Timer_A2.TA0 1 1 X 0 N/A 0 SCLK X X 1 0 N/A 0 A5 (see Note 3) X X X 1 5 0 TMS (see Note 5) X X X X X 1 0/1 0 X 0 N/A 0 Timer_A2.CCI1B 0 1 X 0 N/A 0 Timer_A2.TA1 1 1 X 0 N/A 0 SDO (SPI) / SCL (I2C) X X 1 0 N/A 0 A6 (see Note 3) X X X 1 6 0 TDI (see Note 5) X X X X X 1 7 P1.7† Input/Output 0/1 0 X 0 N/A 0 N/A 0 1 X 0 N/A 0 DVSS 1 1 X 0 N/A 0 SDI (SPI) / SDA (I2C) X X 1 0 N/A 0 A7 (see Note 3) X X X 1 7 0 TDO/TDI (see Notes 5, 6) X X X X X 1 6 P1.6† Input/Output † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. Setting the ADC10AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals. 4. The reference voltage is output if bit REFOUT in register ADC10CTL0 is set. An applied voltage is used as positive reference if bits SREF0/1 in register ADC10CTL0 are set to 10 or 11. 5. In JTAG mode the internal pull-up/down resistors are disabled. 6. Function controlled by JTAG POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 59 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.4) pin schematics, MSP430x20x2 Pad Logic To /from ADC10 positive reference A4 INCHx = 4 ADC10AE.4 P1REN.4 P1DIR.4 0 0 Module X OUT 1 0 DVCC 1 P1.4/SMCLK/A4/VREF+/VeREF+/TCK Bus Keeper P1SEL.4 EN EN Module X IN D P1IE.4 P1IRQ.4 EN Q P1IFG.4 P1SEL.4 P1IES.4 Set Interrupt Edge Select To JTAG From JTAG 60 1 Direction 0: Input 1: Output 1 P1OUT.4 DVSS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.5) pin schematics, MSP430x20x2 Pad Logic A5 INCHx = 5 ADC10AE.5 P1REN.5 P1SEL.5 USIPE5 P1DIR.5 0 USI Module Direction 1 P1OUT.5 0 Module X OUT 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1.5/TA0/SCLK/A5/TMS Bus Keeper EN P1IN.5 EN Module X IN D P1IE.5 P1IRQ.5 EN Q P1IFG.5 P1SEL.5 P1IES.5 Set Interrupt Edge Select To JTAG From JTAG POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 61 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.6) pin schematics, MSP430x20x2 Pad Logic A6 INCHx = 6 ADC10AE.6 P1REN.6 P1SEL.6 USIPE6 P1DIR.6 0 USI Module Direction 1 P1OUT.6 0 Module X OUT 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P1.6/TA1/SDO/SCL/A6/TDI USI Module Output (I2C Mode) Bus Keeper EN P1IN.6 EN Module X IN D P1IE.6 P1IRQ.6 EN Q P1IFG.6 P1SEL.6 P1IES.6 Set Interrupt Edge Select To JTAG From JTAG 62 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.7) pin schematics, MSP430x20x2 Pad Logic A7 INCHx = 7 ADC10AE.7 P1REN.7 P1SEL.7 USIPE7 P1DIR.7 0 USI Module Direction 1 P1OUT.7 0 Module X OUT 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1.7/SDI/SDA/A7/TDO/TDI USI Module Output (I2C Mode) Bus Keeper EN P1IN.7 EN Module X IN D P1IE.7 P1IRQ.7 EN Q P1IFG.7 P1SEL.7 P1IES.7 Set Interrupt Edge Select To JTAG From JTAG From JTAG From JTAG (TDO) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 63 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P2 (P2.6) pin schematics, MSP430x20x2 LFXT1 Oscillator BCSCTL3.LFXT1Sx = 11 P2.7/XOUT LFXT1 off 0 LFXT1CLK 1 P2SEL.7 Pad Logic P2REN.6 P2DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.6 DVSS P2.6/XIN/TA1 Bus Keeper P2SEL.6 EN P2IN.6 EN Module X IN D P2IE.6 P2IRQ.6 EN Q P2IFG.6 P2SEL.6 P2IES.6 Set Interrupt Edge Select Port P2 (P2.6) pin functions, MSP430x20x2 PIN NAME (P2.X) P2.6/XIN/TA1 CONTROL BITS / SIGNALS X FUNCTION P2DIR.x P2SEL.x 0/1 0 XIN† (see Note 3) 0 1 Timer_A2.TA1 1 1 6 P2.6 Input/Output † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. XIN is used as digital clock input if the bits LFXT1Sx in register BCSCTL3 are set to 11. 64 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P2 (P2.7) pin schematics, MSP430x20x2 LFXT1 Oscillator BCSCTL3.LFXT1Sx = 11 LFXT1 off 0 LFXT1CLK From P2.6/XIN 1 P2.6/XIN/TA1 Pad Logic P2SEL.6 P2REN.7 P2DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.7 DVSS P2.7/XOUT Bus Keeper P2SEL.7 EN P2IN.7 EN Module X IN D P2IE.7 P2IRQ.7 EN Q P2IFG.7 Set Interrupt Edge Select P2SEL.7 P2IES.7 Port P2 (P2.7) pin functions, MSP430x20x2 PIN NAME (P2.X) P2.7/XOUT CONTROL BITS / SIGNALS X FUNCTION 7 P2.7 Input/Output P2DIR.x P2SEL.x 0/1 0 DVSS 0 1 XOUT† (see Note 3) 1 1 † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. If the pin P2.7/XOUT is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this pin after reset. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 65 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 APPLICATION INFORMATION, MSP430x20x3 Port P1 (P1.0 to P1.3) pin functions, MSP430x20x3 PIN NAME (P1.X) P1.0/TACLK/ACLK/A0+ CONTROL BITS / SIGNALS X FUNCTION 0 P1.0† Input/Output Timer_A2.TACLK/INCLK P1.1/TA0/A0−/A4+ SD16AE.x INCHx 0 0 N/A 0 1 0 N/A N/A 1 1 0 A0+ (see Note 3) X X 1 0 0/1 0 0 N/A Timer_A2.CCI0A 0 1 0 N/A Timer_A2.TA0 1 1 0 N/A A0− (see Notes 3, 4) X X 1 0 1 P1.1† Input/Output X X 1 4 0/1 0 0 N/A Timer_A2.CCI1A 0 1 0 N/A Timer_A2.TA1 1 1 0 N/A A1+ (see Note 3) X X 1 1 2 P1.2† Input/Output A4− (see Notes 3, 4) P1.3/VREF/A1− P1SEL.x 0/1 ACLK A4+ (see Note 3) P1.2/TA1/A1+/A4− P1DIR.x 3 P1.3† Input/Output VREF X X 1 4 0/1 0 0 N/A X 1 0 N/A A1− (see Notes 3, 4) X X 1 1 † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. Setting the SD16AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals. 4. With SD16AE.x = 0 the negative inputs are connected to VSS if the corresponding input is selected. 66 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.0) pin schematics, MSP430x20x3 INCH=0 Pad Logic A0+ SD16AE.0 P1REN.0 P1DIR.0 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P1OUT.0 DVSS P1.0/TACLK/ACLK/A0+ Bus Keeper P1SEL.0 EN P1IN.0 EN Module X IN D P1IE.0 P1IRQ.0 EN Q Set P1IFG.0 P1SEL.0 P1IES.0 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 67 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.1) pin schematics, MSP430x20x3 INCH=4 Pad Logic A4+ INCH=0 0 A0− AV SS 1 SD16AE.1 P1REN.1 P1DIR.1 0 0 Module X OUT 1 0 1 P1.1/TA0/A0−/A4+ Bus Keeper P1SEL.1 EN P1IN.1 EN Module X IN D P1IE.1 P1IRQ.1 EN Q Set P1IFG.1 P1SEL.1 P1IES.1 68 1 Direction 0: Input 1: Output 1 P1OUT.1 DVSS DVCC Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.2) pin schematics, MSP430x20x3 INCH=1 Pad Logic A1+ INCH=4 0 A4− AV SS 1 SD16AE.2 P1REN.2 P1DIR.2 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P1OUT.2 DVSS DVCC P1.2/TA1/A1+/A4− Bus Keeper P1SEL.2 EN P1IN.2 EN Module X IN D P1IE.2 P1IRQ.2 EN Q Set P1IFG.2 P1SEL.2 P1IES.2 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 69 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.3) pin schematics, MSP430x20x3 Pad Logic VREF INCH=1 0 A1− AV SS 1 SD16AE.3 P1REN.3 P1DIR.3 0 0 1 1 Direction 0: Input 1: Output 1 P1OUT.3 DVSS DVCC 0 1 P1.3/VREF/A1− Bus Keeper P1SEL.3 EN P1IN.3 P1IE.3 P1IRQ.3 EN Q Set P1IFG.3 P1SEL.3 P1IES.3 70 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.4 to P1.7) pin functions, MSP430x20x3 CONTROL BITS / SIGNALS PIN NAME (P1.X) P1.4/SMCLK/A2+/ TCK P1.5/TA0/SCLK/A2−/ TMS P1.6/TA1/SDO/SCL/A3+/ TDI P1.7/SDI/SDA/A3−/ TDO/TDI X FUNCTION 4 P1.4† Input/Output N/A P1DIR.x P1SEL.x USIP.x SD16AE.x INCHx JTAG Mode 0/1 0 N/A 0 N/A 0 0 1 N/A 0 N/A 0 SMCLK 1 1 N/A 0 N/A 0 A2+ (see Note 3) X X N/A 1 2 0 TCK (see Note 5) X X N/A X X 1 5 P1.5† Input/Output 0/1 0 X 0 N/A 0 N/A 0 1 X 0 N/A 0 Timer_A2.TA0 1 1 X 0 N/A 0 SCLK X X 1 0 N/A 0 A2− (see Notes 3, 4) X X X 1 2 0 TMS (see Note 5) X X X X X 1 6 P1.6† Input/Output 0/1 0 X 0 N/A 0 Timer_A2.CCI1B 0 1 X 0 N/A 0 Timer_A2.TA1 1 1 X 0 N/A 0 SDO (SPI) / SCL (I2C) X X 1 0 N/A 0 A3+ (see Note 3) X X X 1 3 0 TDI (see Note 5) X X X X X 1 7 P1.7† Input/Output 0/1 0 X 0 N/A 0 0 1 X 0 N/A 0 N/A DVSS 1 1 X 0 N/A 0 SDI (SPI) / SDA (I2C) X X 1 0 N/A 0 A3− (see Notes 3, 4) X X X 1 3 0 TDO/TDI (see Notes 5, 6) X X X X X 1 † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. Setting the SD16AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals. 4. With SD16AE.x = 0 the negative inputs are connected to VSS if the corresponding input is selected. 5. In JTAG mode the internal pull-up/down resistors are disabled. 6. Function controlled by JTAG POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 71 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.4) pin schematics, MSP430x20x3 INCH=2 Pad Logic A2+ SD16AE.4 P1REN.4 P1DIR.4 0 0 Module X OUT 1 0 DVCC 1 P1.4/SMCLK/A2+/TCK Bus Keeper P1SEL.4 EN P1IN.4 EN Module X IN D P1IE.4 EN P1IRQ.4 Q Set P1IFG.4 P1SEL.4 P1IES.4 Interrupt Edge Select To JTAG From JTAG 72 1 Direction 0: Input 1: Output 1 P1OUT.4 DVSS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.5) pin schematics, MSP430x20x3 Pad Logic INCH=2 0 A2− AV SS 1 SD16AE.5 P1REN.5 P1SEL.5 USIPE5 P1DIR.5 0 USI Module Direction 1 P1OUT.5 0 Module X OUT 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1.5/TA0/SCLK/A2−/TMS Bus Keeper EN P1IN.5 EN Module X IN D P1IE.5 P1IRQ.5 EN Q Set P1IFG.5 P1SEL.5 P1IES.5 Interrupt Edge Select To JTAG From JTAG POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 73 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.6) pin schematics, MSP430x20x3 Pad Logic INCH=3 A3+ SD16AE.6 P1REN.6 P1SEL.6 USIPE6 P1DIR.6 0 USI Module Direction 1 P1OUT.6 0 Module X OUT 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P1.6/TA1/SDO/SCL/A3+/TDI USI Module Output (I2C Mode) Bus Keeper EN P1IN.6 EN Module X IN D P1IE.6 P1IRQ.6 EN Q Set P1IFG.6 P1SEL.6 P1IES.6 Interrupt Edge Select To JTAG From JTAG 74 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P1 (P1.7) pin schematics, MSP430x20x3 Pad Logic INCH=3 0 A3− AV SS 1 SD16AE.x P1REN.x P1SEL.x USIPE7 P1DIR.x 0 USI Module Direction 1 P1OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1.7/SDI/SDA/A3−/TDO/TDI USI Module Output (I2C Mode) Bus Keeper EN P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q Set P1IFG.x P1SEL.x P1IES.x Interrupt Edge Select To JTAG From JTAG From JTAG From JTAG (TDO) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P2 (P2.6) pin schematics, MSP430x20x3 LFXT1 Oscillator BCSCTL3.LFXT1Sx = 11 P2.7/XOUT LFXT1 off 0 LFXT1CLK 1 P2SEL.7 Pad Logic P2REN.6 P2DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.6 DVSS P2.6/XIN/TA1 Bus Keeper P2SEL.6 EN P2IN.6 EN Module X IN D P2IE.6 P2IRQ.6 EN Q P2IFG.6 P2SEL.6 P2IES.6 Set Interrupt Edge Select Port P2 (P2.6) pin functions, MSP430x20x3 PIN NAME (P2.X) P2.6/XIN/TA1 CONTROL BITS / SIGNALS X FUNCTION P2DIR.x P2SEL.x 0/1 0 XIN† (see Note 3) 0 1 Timer_A2.TA1 1 1 6 P2.6 Input/Output † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. XIN is used as digital clock input if the bits LFXT1Sx in register BCSCTL3 are set to 11. 76 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Port P2 (P2.7) pin schematics, MSP430x20x3 LFXT1 Oscillator BCSCTL3.LFXT1Sx = 11 LFXT1 off 0 LFXT1CLK From P2.6/XIN 1 P2.6/XIN/TA1 Pad Logic P2SEL.6 P2REN.7 P2DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.7 DVSS P2.7/XOUT Bus Keeper P2SEL.7 EN P2IN.7 EN Module X IN D P2IE.7 P2IRQ.7 EN Q P2IFG.7 Set Interrupt Edge Select P2SEL.7 P2IES.7 Port P2 (P2.7) pin functions, MSP430x20x3 PIN NAME (P2.X) P2.7/XOUT CONTROL BITS / SIGNALS X FUNCTION 7 P2.7 Input/Output P2DIR.x P2SEL.x 0/1 0 DVSS 0 1 XOUT† (see Note 3) 1 1 † Default after reset (PUC/POR) NOTES: 1. N/A: Not available or not applicable. 2. X: Don’t care. 3. If the pin P2.7/XOUT is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this pin after reset. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 77 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005 Data Sheet Revision History Literature Number SLAS491 SLAS491A Summary Preliminary PRODUCT PREVIEW datasheet release. MSP430x20x3 production datasheet release. Updated specification and added characterization graphs. NOTE: The referring page and figure numbers are referred to the respective document revision. 78 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated