TI MSP430F157IPM

SLAS368D− OCTOBER 2002− REVISED MARCH 2005
D Low Supply-Voltage Range, 1.8 V . . . 3.6 V
D Ultralow-Power Consumption:
D
D
D
D
D
D
D
D
D
D
D
D
D
D
− Active Mode: 330 µA at 1 MHz, 2.2 V
− Standby Mode: 1.1 µA
− Off Mode (RAM Retention): 0.2 µA
Five Power-Saving Modes
Wake-Up From Standby Mode in less
than 6 µs
16-Bit RISC Architecture, 125-ns
Instruction Cycle Time
Three-Channel Internal DMA
12-Bit A/D Converter With Internal
Reference, Sample-and-Hold and Autoscan
Feature
Dual 12-Bit D/A Converters With
Synchronization
16-Bit Timer_A With Three
Capture/Compare Registers
16-Bit Timer_B With Three or Seven
Capture/Compare-With-Shadow Registers
On-Chip Comparator
Serial Communication Interface (USART0),
Functions as Asynchronous UART or
Synchronous SPI or I2CTM Interface
Serial Communication Interface (USART1),
Functions as Asynchronous UART or
Synchronous SPI Interface
Supply Voltage Supervisor/Monitor With
Programmable Level Detection
Brownout Detector
Bootstrap Loader
I2C is a registered trademark of Philips Incorporated.
D Serial Onboard Programming,
D
D
D
No External Programming Voltage Needed
Programmable Code Protection by Security
Fuse
Family Members Include:
− MSP430F155:
16KB+256B Flash Memory
512B RAM
− MSP430F156:
24KB+256B Flash Memory
1KB RAM
− MSP430F157:
32KB+256B Flash Memory,
1KB RAM
− MSP430F167:
32KB+256B Flash Memory,
1KB RAM
− MSP430F168:
48KB+256B Flash Memory,
2KB RAM
− MSP430F169:
60KB+256B Flash Memory,
2KB RAM
− MSP430F1610:
32KB+256B Flash Memory
5KB RAM
− MSP430F1611:
48KB+256B Flash Memory
10KB RAM
− MSP430F1612:
55KB+256B Flash Memory
5KB RAM
Available in 64-Pin Quad Flat Pack (QFP)
and 64-pin QFN (see Available Options)
For Complete Module Descriptions, See the
MSP430x1xx Family User’s Guide,
Literature Number SLAU049
description
The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low power
modes is optimized to achieve extended battery life in portable measurement applications. The device features
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs.
The MSP430x15x/16x/161x series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit
A/D converter, dual 12-bit D/A converter, one or two universal serial synchronous/asynchronous
communication interfaces (USART), I2C, DMA, and 48 I/O pins. In addition, the MSP430x161x series offers
extended RAM addressing for memory-intensive applications and large C-stack requirements.
Typical applications include sensor systems, industrial control applications, hand-held meters, etc.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2002 − 2005, Texas Instruments Incorporated
! " #$%! " &$'(# ! ) !%*
)$#!" # ! "&%## !" &% !+% !%" % " "!$%!"
"! ) ) , !-* )$#! &#%"". )%" ! %#%"" (- #($)%
!%"!. (( & %!%"*
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
−40°C to 85°C
†
PLASTIC 64-PIN QFP (PM)
PLASTIC 64-PIN QFN (RTD)
MSP430F155IPM
MSP430F156IPM
MSP430F157IPM
MSP430F167IPM
MSP430F168IPM
MSP430F169IPM
MSP430F1610IPM
MSP430F1611IPM
MSP430F1612IPM
MSP430F155IRTD†
MSP430F156IRTD†
MSP430F157IRTD†
MSP430F167IRTD†
MSP430F168IRTD†
MSP430F169IRTD†
MSP430F1610IRTD
MSP430F1611IRTD
MSP430F1612IRTD
Product Preview
pin designation, MSP430F155, MSP430F156, and MSP430F157
AVCC
DVSS
AVSS
P6.2/A2
P6.1/A1
P6.0/A0
RST/NMI
TCK
TMS
TDI/TCLK
TDO/TDI
XT2IN
XT2OUT
P5.7/TBOUTH/SVSOUT
P5.6/ACLK
P5.5/SMCLK
PM, RTD PACKAGE
(TOP VIEW)
1
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P1.5/TA0
P1.6/TA1
P1.7/TA2
P2.0/ACLK
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/ROSC
P2.6/ADC12CLK/DMAE0
P2.7/TA0
P3.0/STE0
P3.1/SIMO0/SDA
P3.2/SOMI0
P3.3/UCLK0/SCL
P3.4/UTXD0
DVCC
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6/DAC0
P6.7/A7/DAC1/SVSIN
VREF+
XIN
XOUT
VeREF+
VREF−/VeREF−
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
P5.4/MCLK
P5.3
P5.2
P5.1
P5.0
P4.7/TBCLK
P4.6
P4.5
P4.4
P4.3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7
P3.6
P3.5/URXD0
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
pin designation, MSP430F167, MSP430F168, MSP430F169
AVCC
DVSS
AVSS
P6.2/A2
P6.1/A1
P6.0/A0
RST/NMI
TCK
TMS
TDI/TCLK
TDO/TDI
XT2IN
XT2OUT
P5.7/TBOUTH/SVSOUT
P5.6/ACLK
P5.5/SMCLK
PM, RTD PACKAGE
(TOP VIEW)
1
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P5.4/MCLK
P5.3/UCLK1
P5.2/SOMI1
P5.1/SIMO1
P5.0/STE1
P4.7/TBCLK
P4.6/TB6
P4.5/TB5
P4.4/TB4
P4.3/TB3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7/URXD1
P3.6/UTXD1
P3.5/URXD0
P1.5/TA0
P1.6/TA1
P1.7/TA2
P2.0/ACLK
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/ROSC
P2.6/ADC12CLK/DMAE0
P2.7/TA0
P3.0/STE0
P3.1/SIMO0/SDA
P3.2/SOMI0
P3.3/UCLK0/SCL
P3.4/UTXD0
DVCC
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6/DAC0
P6.7/A7/DAC1/SVSIN
VREF+
XIN
XOUT
VeREF+
VREF−/VeREF−
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
pin designation, MSP430F1610, MSP430F1611, MSP430F1612
AVCC
DVSS
AVSS
P6.2/A2
P6.1/A1
P6.0/A0
RST/NMI
TCK
TMS
TDI/TCLK
TDO/TDI
XT2IN
XT2OUT
P5.7/TBOUTH/SVSOUT
P5.6/ACLK
P5.5/SMCLK
PM, RTD PACKAGE
(TOP VIEW)
1
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P1.5/TA0
P1.6/TA1
P1.7/TA2
P2.0/ACLK
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/ROSC
P2.6/ADC12CLK/DMAE0
P2.7/TA0
P3.0/STE0
P3.1/SIMO0/SDA
P3.2/SOMI0
P3.3/UCLK0/SCL
P3.4/UTXD0
DVCC
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6/DAC0
P6.7/A7/DAC1/SVSIN
VREF+
XIN
XOUT
VeREF+
VREF−/VeREF−
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
P5.4/MCLK
P5.3/UCLK1
P5.2/SOMI1
P5.1/SIMO1
P5.0/STE1
P4.7/TBCLK
P4.6/TB6
P4.5/TB5
P4.4/TB4
P4.3/TB3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7/URXD1
P3.6/UTXD1
P3.5/URXD0
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
functional block diagrams
MSP430x15x
XIN
XOUT
DVCC
DVSS
AVCC
AVSS
P1
RST/NMI
P2
8
ROSC
Oscillator
XT2IN
System
Clock
XT2OUT
ACLK
32KB Flash
1KB RAM
ADC12
DAC12
SMCLK 24KB Flash
1KB RAM
16KB Flash
512B RAM
12-Bit
8 Channels
<10µs Conv.
12-Bit
2 Channels
Voltage out
P3
8
I/O Port 1/2
16 I/Os,
with
Interrupt
Capability
P4
8
P5
8
P6
8
I/O Port 3/4
16 I/Os
8
I/O Port 5/6
16 I/Os
MCLK
Test
MAB,
4 Bit
MAB,MAB,
16 Bit16-Bit
JTAG
CPU
MCB
Emulation
Module
Incl. 16 Reg.
Bus
Conv
MDB,
16-Bit
MDB,
16 Bit
MDB, 8 Bit
4
TMS
TCK
TDI/TCLK
DMA
Controller
Watchdog
Timer
3 Channels
15/16-Bit
TDO/TDI
Timer_B3
Timer_A3
3 CC Reg
Shadow
Reg
3 CC Reg
POR
SVS
Brownout
Comparator
A
USART0
UART Mode
SPI Mode
I2C Mode
MSP430x16x
XIN
XOUT
DVCC
DVSS
AVCC
AVSS
P1
RST/NMI
P2
8
ROSC
Oscillator
XT2IN
System
Clock
XT2OUT
ACLK
60KB Flash
2KB RAM
ADC12
DAC12
SMCLK 48KB Flash
2KB RAM
32KB Flash
1KB RAM
12-Bit
8 Channels
<10µs Conv.
12-Bit
2 Channels
Voltage out
P3
8
I/O Port 1/2
16 I/Os,
with
Interrupt
Capability
P4
8
P5
8
P6
8
I/O Port 3/4
16 I/Os
8
I/O Port 5/6
16 I/Os
MCLK
Test
MAB,
4 Bit
MAB,MAB,
16 Bit16-Bit
JTAG
CPU
MCB
Emulation
Module
Incl. 16 Reg.
Bus
Conv
MDB,
16-Bit
MDB,
16 Bit
MDB, 8 Bit
4
TMS
TCK
TDI/TCLK
TDO/TDI
Hardware
Multiplier
MPY, MPYS
MAC,MACS
DMA
Controller
3 Channels
Watchdog
Timer
15/16-Bit
Timer_B7
Timer_A3
7 CC Reg
Shadow
Reg
3 CC Reg
POST OFFICE BOX 655303
POR
SVS
Brownout
• DALLAS, TEXAS 75265
Comparator
A
USART0
USART1
UART Mode
SPI Mode
I2C Mode
UART Mode
SPI Mode
5
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
functional block diagrams (continued)
MSP430x161x
XIN
XOUT
DVCC
DVSS
AVCC
AVSS
P1
RST/NMI
P2
8
ROSC
Oscillator
XT2IN
System
Clock
XT2OUT
ACLK
55KB Flash
5KB RAM
ADC12
DAC12
SMCLK 48KB Flash
10KB RAM
32KB Flash
5KB RAM
12-Bit
8 Channels
<10µs Conv.
12-Bit
2 Channels
Voltage out
P3
8
I/O Port 1/2
16 I/Os,
with
Interrupt
Capability
P4
8
P5
8
P6
8
I/O Port 3/4
16 I/Os
8
I/O Port 5/6
16 I/Os
MCLK
Test
MAB,
4 Bit
MAB,MAB,
16 Bit16-Bit
JTAG
CPU
MCB
Emulation
Module
Incl. 16 Reg.
Bus
Conv
MDB,
16-Bit
MDB,
16 Bit
MDB, 8 Bit
4
TMS
TCK
TDI/TCLK
TDO/TDI
6
Hardware
Multiplier
MPY, MPYS
MAC,MACS
DMA
Controller
Watchdog
Timer
3 Channels
15/16-Bit
Timer_B7
Timer_A3
7 CC Reg
Shadow
Reg
3 CC Reg
POST OFFICE BOX 655303
POR
SVS
Brownout
• DALLAS, TEXAS 75265
Comparator
A
USART0
USART1
UART Mode
SPI Mode
I2C Mode
UART Mode
SPI Mode
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
Terminal Functions
TERMINAL
NAME
†
NO.
DESCRIPTION
I/O
AVCC
64
Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12 and DAC12.
AVSS
62
Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12 and DAC12.
DVCC
1
Digital supply voltage, positive terminal. Supplies all digital parts.
DVSS
63
P1.0/TACLK
12
I/O
General-purpose digital I/O pin/Timer_A, clock signal TACLK input
P1.1/TA0
13
I/O
General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit
P1.2/TA1
14
I/O
General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA2
15
I/O
General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK
16
I/O
General-purpose digital I/O pin/SMCLK signal output
P1.5/TA0
17
I/O
General-purpose digital I/O pin/Timer_A, compare: Out0 output
P1.6/TA1
18
I/O
General-purpose digital I/O pin/Timer_A, compare: Out1 output
P1.7/TA2
19
I/O
General-purpose digital I/O pin/Timer_A, compare: Out2 output
P2.0/ACLK
20
I/O
General-purpose digital I/O pin/ACLK output
P2.1/TAINCLK
21
I/O
General-purpose digital I/O pin/Timer_A, clock signal at INCLK
P2.2/CAOUT/TA0
22
I/O
General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive
P2.3/CA0/TA1
23
I/O
General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input
P2.4/CA1/TA2
24
I/O
General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input
P2.5/Rosc
25
I/O
General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency
P2.6/ADC12CLK/
DMAE0
26
I/O
General-purpose digital I/O pin/conversion clock – 12-bit ADC/DMA channel 0 external trigger
P2.7/TA0
27
I/O
General-purpose digital I/O pin/Timer_A, compare: Out0 output
P3.0/STE0
28
I/O
General-purpose digital I/O pin/slave transmit enable – USART0/SPI mode
P3.1/SIMO0/SDA
29
I/O
General-purpose digital I/O pin/slave in/master out of USART0/SPI mode, I2C data − USART0/I2C mode
P3.2/SOMI0
30
I/O
General-purpose digital I/O pin/slave out/master in of USART0/SPI mode
P3.3/UCLK0/SCL
31
I/O
General-purpose digital I/O pin/external clock input − USART0/UART or SPI mode, clock output –
USART0/SPI mode, I2C clock − USART0/I2C mode
P3.4/UTXD0
32
I/O
General-purpose digital I/O pin/transmit data out – USART0/UART mode
P3.5/URXD0
33
I/O
General-purpose digital I/O pin/receive data in – USART0/UART mode
P3.6/UTXD1†
34
I/O
General-purpose digital I/O pin/transmit data out – USART1/UART mode
P3.7/URXD1†
35
I/O
General-purpose digital I/O pin/receive data in – USART1/UART mode
P4.0/TB0
36
I/O
General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output
P4.1/TB1
37
I/O
General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out1 output
P4.2/TB2
38
I/O
General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out2 output
P4.3/TB3†
39
I/O
General-purpose digital I/O pin/Timer_B, capture: CCI3A/B input, compare: Out3 output
P4.4/TB4†
40
I/O
General-purpose digital I/O pin/Timer_B, capture: CCI4A/B input, compare: Out4 output
P4.5/TB5†
41
I/O
General-purpose digital I/O pin/Timer_B, capture: CCI5A/B input, compare: Out5 output
P4.6/TB6†
42
I/O
General-purpose digital I/O pin/Timer_B, capture: CCI6A input, compare: Out6 output
P4.7/TBCLK
43
I/O
General-purpose digital I/O pin/Timer_B, clock signal TBCLK input
P5.0/STE1†
44
I/O
General-purpose digital I/O pin/slave transmit enable – USART1/SPI mode
P5.1/SIMO1†
45
I/O
General-purpose digital I/O pin/slave in/master out of USART1/SPI mode
P5.2/SOMI1†
46
I/O
General-purpose digital I/O pin/slave out/master in of USART1/SPI mode
P5.3/UCLK1†
47
I/O
General-purpose digital I/O pin/external clock input – USART1/UART or SPI mode, clock output –
USART1/SPI mode
Digital supply voltage, negative terminal. Supplies all digital parts.
16x, 161x devices only
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
Terminal Functions (Continued)
TERMINAL
NAME
NO.
DESCRIPTION
I/O
P5.4/MCLK
48
I/O
General-purpose digital I/O pin/main system clock MCLK output
P5.5/SMCLK
49
I/O
General-purpose digital I/O pin/submain system clock SMCLK output
P5.6/ACLK
50
I/O
General-purpose digital I/O pin/auxiliary clock ACLK output
P5.7/TBOUTH/
SVSOUT
51
I/O
General-purpose digital I/O pin/switch all PWM digital output ports to high impedance − Timer_B TB0 to
TB6/SVS comparator output
P6.0/A0
59
I/O
General-purpose digital I/O pin/analog input a0 – 12-bit ADC
P6.1/A1
60
I/O
General-purpose digital I/O pin/analog input a1 – 12-bit ADC
P6.2/A2
61
I/O
General-purpose digital I/O pin/analog input a2 – 12-bit ADC
P6.3/A3
2
I/O
General-purpose digital I/O pin/analog input a3 – 12-bit ADC
P6.4/A4
3
I/O
General-purpose digital I/O pin/analog input a4 – 12-bit ADC
P6.5/A5
4
I/O
General-purpose digital I/O pin/analog input a5 – 12-bit ADC
P6.6/A6/DAC0
5
I/O
General-purpose digital I/O pin/analog input a6 – 12-bit ADC/DAC12.0 output
P6.7/A7/DAC1/
SVSIN
6
I/O
General-purpose digital I/O pin/analog input a7 – 12-bit ADC/DAC12.1 output/SVS input
RST/NMI
58
I
Reset input, nonmaskable interrupt input port, or bootstrap loader start (in Flash devices).
TCK
57
I
Test clock. TCK is the clock input port for device programming test and bootstrap loader start
TDI/TCLK
55
I
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TDO/TDI
54
I/O
TMS
56
I
Test mode select. TMS is used as an input port for device programming and test.
VeREF+
10
I
Input for an external reference voltage
VREF+
7
O
Output of positive terminal of the reference voltage in the ADC12
VREF−/VeREF−
11
I
Negative terminal for the reference voltage for both sources, the internal reference voltage, or an external
applied reference voltage
XIN
8
I
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT
9
O
Output terminal of crystal oscillator XT1
XT2IN
53
I
Input port for crystal oscillator XT2. Only standard crystals can be connected.
XT2OUT
52
O
Output terminal of crystal oscillator XT2
QFN Pad
NA
NA
8
Test data output port. TDO/TDI data output or programming data input terminal
QFN package pad connection to DVSS recommended (RTD package only)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
short-form description
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions,
are performed as register operations in
conjunction with seven addressing modes for
source operand and four addressing modes for
destination operand.
Program Counter
PC/R0
Stack Pointer
SP/R1
SR/CG1/R2
Status Register
Constant Generator
The CPU is integrated with 16 registers that
provide reduced instruction execution time. The
register-to-register operation execution time is
one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register,
and constant generator respectively. The
remaining registers are general-purpose
registers.
Peripherals are connected to the CPU using data,
address, and control buses, and can be handled
with all instructions.
instruction set
The instruction set consists of 51 instructions with
three formats and seven address modes. Each
instruction can operate on word and byte data.
Table 1 shows examples of the three types of
instruction formats; the address modes are listed
in Table 2.
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Table 1. Instruction Word Formats
Dual operands, source-destination
e.g. ADD R4,R5
R4 + R5 −−−> R5
Single operands, destination only
e.g. CALL
PC −−>(TOS), R8−−> PC
Relative jump, un/conditional
e.g. JNE
R8
Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE
S D
Indirect
D
D
D
D
D
Indirect
autoincrement
Register
Indexed
Symbolic (PC relative)
Absolute
Immediate
NOTE: S = source
D
D
D
D
SYNTAX
EXAMPLE
MOV Rs,Rd
MOV R10,R11
MOV X(Rn),Y(Rm)
MOV 2(R5),6(R6)
MOV EDE,TONI
OPERATION
R10
−−> R11
M(2+R5)−−> M(6+R6)
M(EDE) −−> M(TONI)
MOV &MEM,&TCDAT
M(MEM) −−> M(TCDAT)
MOV @Rn,Y(Rm)
MOV @R10,Tab(R6)
M(R10) −−> M(Tab+R6)
D
MOV @Rn+,Rm
MOV @R10+,R11
M(R10) −−> R11
R10 + 2−−> R10
D
MOV #X,TONI
MOV #45,TONI
#45
−−> M(TONI)
D = destination
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
operating modes
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt
event can wake up the device from any of the five low-power modes, service the request and restore back to
the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
D Active mode AM;
−
All clocks are active
D Low-power mode 0 (LPM0);
−
CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
D Low-power mode 1 (LPM1);
−
CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
DCO’s dc-generator is disabled if DCO not used in active mode
D Low-power mode 2 (LPM2);
−
CPU is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator remains enabled
ACLK remains active
D Low-power mode 3 (LPM3);
−
CPU is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator is disabled
ACLK remains active
D Low-power mode 4 (LPM4);
−
10
CPU is disabled
ACLK is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator is disabled
Crystal oscillator is stopped
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
interrupt vector addresses
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh − 0FFE0h.
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM INTERRUPT
WORD ADDRESS
PRIORITY
Power-up
External Reset
Watchdog
Flash memory
WDTIFG
KEYV
(see Note 1)
Reset
0FFFEh
15, highest
NMI
Oscillator Fault
Flash memory access violation
NMIIFG (see Notes 1 & 3)
OFIFG (see Notes 1 & 3)
ACCVIFG (see Notes 1 & 3)
(Non)maskable
(Non)maskable
(Non)maskable
0FFFCh
14
Timer_B7 (see Note 5)
TBCCR0 CCIFG
(see Note 2)
Maskable
0FFFAh
13
TBCCR1 to TBCCR6
CCIFGs, TBIFG
(see Notes 1 & 2)
Maskable
0FFF8h
12
Timer_B7 (see Note 5)
Comparator_A
CAIFG
Maskable
0FFF6h
11
Watchdog timer
WDTIFG
Maskable
0FFF4h
10
USART0 receive
URXIFG0
Maskable
0FFF2h
9
USART0 transmit
I2C transmit/receive/others
UTXIFG0
I2CIFG (see Note 4)
Maskable
0FFF0h
8
ADC12
ADC12IFG
(see Notes 1 & 2)
Maskable
0FFEEh
7
Timer_A3
TACCR0 CCIFG
(see Note 2)
Maskable
0FFECh
6
Timer_A3
TACCR1 and TACCR2
CCIFGs, TAIFG
(see Notes 1 & 2)
Maskable
0FFEAh
5
I/O port P1 (eight flags)
P1IFG.0 to P1IFG.7
(see Notes 1 & 2)
Maskable
0FFE8h
4
USART1 receive
URXIFG1
Maskable
0FFE6h
3
USART1 transmit
UTXIFG1
Maskable
0FFE4h
2
I/O port P2 (eight flags)
P2IFG.0 to P2IFG.7
(see Notes 1 & 2)
Maskable
0FFE2h
1
Maskable
0FFE0h
0, lowest
DAC12
DMA
NOTES: 1.
2.
3.
4.
5.
DAC12_0IFG,
DAC12_1IFG
DMA0IFG, DMA1IFG,
DMA2IFG (see Notes 1 & 2)
Multiple source flags
Interrupt flags are located in the module.
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
I2C interrupt flags located in the module
Timer_B7 in MSP430x16x/161x family has 7 CCRs; Timer_B3 in MSP430x15x family has 3 CCRs; in Timer_B3 there are only
interrupt flags TBCCR0, 1 and 2 CCIFGs and the interrupt-enable bits TBCCR0, 1 and 2 CCIEs.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
special function registers
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits
not allocated to a functional purpose are not physically present in the device. This arrangement provides simple
software access.
interrupt enable 1 and 2
7
Address
0h
6
UTXIE0
rw-0
URXIE0
rw-0
5
4
ACCVIE
NMIIE
rw-0
3
2
1
OFIE
rw-0
rw-0
Watchdog timer interrupt enable. Inactive if watchdog mode is selected.
Active if watchdog timer is configured as general-purpose timer.
OFIE:
Oscillator-fault-interrupt enable
NMIIE:
Nonmaskable-interrupt enable
ACCVIE:
Flash memory access violation interrupt enable
URXIE0:
USART0: UART and SPI receive-interrupt enable
UTXIE0:
USART0: UART and SPI transmit-interrupt enable
7
6
01h
5
4
UTXIE1
URXIE1
rw-0
3
2
1
0
2
1
0
rw-0
URXIE1†:
USART1: UART and SPI receive-interrupt enable
UTXIE1†:
USART1: UART and SPI transmit-interrupt enable
†
WDTIE
rw-0
WDTIE:
Address
0
URXIE1 and UTXIE1 are not present in MSP430x15x devices.
interrupt flag register 1 and 2
7
Address
02h
6
UTXIFG0
rw-1
5
URXIFG0
4
3
NMIIFG
rw-0
OFIFG
rw-0
rw-1
Set on watchdog-timer overflow (in watchdog mode) or security key violation
Reset on VCC power-on, or a reset condition at the RST/NMI pin in reset mode
OFIFG:
Flag set on oscillator fault
NMIIFG:
Set via RST/NMI pin
URXIFG0:
USART0: UART and SPI receive flag
UTXIFG0:
USART0: UART and SPI transmit flag
7
03h
6
5
4
UTXIFG1
URXIFG1
rw-1
URXIFG1‡:
3
rw-0
USART1: UART and SPI receive flag
UTXIFG1‡: USART1: UART and SPI transmit flag
URXIFG1 and UTXIFG1 are not present in MSP430x15x devices.
12
rw-(0)
WDTIFG:
Address
‡
WDTIFG
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2
1
0
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
module enable registers 1 and 2
7
UTXE0
Address
04h
rw-0
6
URXE0
USPIE0
5
4
3
USART0: UART mode receive enable
UTXE0:
USART0: UART mode transmit enable
USPIE0:
USART0: SPI mode transmit and receive enable
05h
7
6
5
UTXE1
rw-0
4
URXE1
USPIE1
3
0
2
1
0
rw-0
URXE1†:
USART1: UART mode receive enable
UTXE1†:
USART1: UART mode transmit enable
USPIE1†:
USART1: SPI mode transmit and receive enable
†
1
rw-0
URXE0:
Address
2
URXE1, UTXE1, and USPIE1 are not present in MSP430x15x devices.
Legend: rw:
rw-0:
Bit Can Be Read and Written
Bit Can Be Read and Written. It Is Reset by PUC.
SFR Bit Not Present in Device
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
memory organization (MSP430F15x)
MSP430F155
MSP430F156
MSP430F157
Memory
Main: interrupt vector
Main: code memory
Size
Flash
Flash
16KB
0FFFFh − 0FFE0h
0FFFFh − 0C000h
24KB
0FFFFh − 0FFE0h
0FFFFh − 0A000h
32KB
0FFFFh − 0FFE0h
0FFFFh − 08000h
Information memory
Size
Flash
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
Boot memory
Size
ROM
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
Size
512B
03FFh − 0200h
1KB
05FFh − 0200h
1KB
05FFh − 0200h
16-bit
8-bit
8-bit SFR
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
RAM
Peripherals
memory organization (MSP430F16x)
MSP430F167
MSP430F168
MSP430F169
Memory
Main: interrupt vector
Main: code memory
Size
Flash
Flash
32KB
0FFFFh − 0FFE0h
0FFFFh − 08000h
48KB
0FFFFh − 0FFE0h
0FFFFh − 04000h
60KB
0FFFFh − 0FFE0h
0FFFFh − 01100h
Information memory
Size
Flash
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
Boot memory
Size
ROM
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
Size
1KB
05FFh − 0200h
2KB
09FFh − 0200h
2KB
09FFh − 0200h
16-bit
8-bit
8-bit SFR
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
RAM
Peripherals
memory organization (MSP430F161x)
MSP430F1610
MSP430F1611
MSP430F1612
Size
Flash
Flash
32KB
0FFFFh − 0FFE0h
0FFFFh − 08000h
48KB
0FFFFh − 0FFE0h
0FFFFh − 04000h
55KB
0FFFFh − 0FFE0h
0FFFFh − 02500h
Size
5KB
024FFh − 01100h
10KB
038FFh − 01100h
5KB
024FFh − 01100h
Extended
Size
3KB
024FFh − 01900h
8KB
038FFh − 01900h
3KB
024FFh − 01900h
Mirrored
Size
2KB
018FFh − 01100h
2KB
018FFh − 01100h
2KB
018FFh − 01100h
Information memory
Size
Flash
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
Boot memory
Size
ROM
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
1KB
0FFFh − 0C00h
Size
2KB
09FFh − 0200h
2KB
09FFh − 0200h
2KB
09FFh − 0200h
16-bit
8-bit
8-bit SFR
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
Memory
Main: interrupt vector
Main: code memory
RAM (Total)
RAM
(mirrored at
018FFh - 01100h)
Peripherals
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
bootstrap loader (BSL)
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete
description of the features of the BSL and its implementation, see the Application report Features of the MSP430
Bootstrap Loader, Literature Number SLAA089.
BSL Function
PM, RTD Package Pins
Data Transmit
13 - P1.1
Data Receive
22 - P2.2
flash memory
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128
bytes each. Each segment in main memory is 512 bytes in size.
D Segments 0 to n may be erased in one step, or each segment may be individually erased.
D Segments A and B can be erased individually, or as a group with segments 0−n.
Segments A and B are also called information memory.
D New devices may have some bytes programmed in the information memory (needed for test during
manufacturing). The user should perform an erase of the information memory prior to the first use.
MSP430F161x
MSP430F15x and MSP430F16x
16KB
24KB
32KB
48KB
60KB
32KB
48KB
55KB
0FFFFh
0FFFFh
0FFFFh
0FFFFh
0FFFFh
0FFFFh
0FFFFh
0FFFFh
0FE00h
0FDFFh
0FE00h
0FDFFh
0FE00h
0FDFFh
0FE00h
0FDFFh
0FE00h
0FDFFh
0FE00h
0FDFFh
0FE00h
0FDFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FC00h
0FBFFh
0FC00h
0FBFFh
0FC00h
0FBFFh
0FC00h
0FBFFh
0FC00h
0FBFFh
0FC00h
0FBFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
0FA00h
0F9FFh
0FA00h
0F9FFh
0FA00h
0F9FFh
0FA00h
0F9FFh
0FA00h
0F9FFh
0FA00h
0F9FFh
0FA00h
0F9FFh
0C400h
0C3FFh
0A400h
0A3FFh
08400h
083FFh
04400h
043FFh
01400h
013FFh
08400h
083FFh
04400h
043FFh
02800h
027FFh
0C200h
0C1FFh
0A200h
0A1FFh
08200h
081FFh
04200h
041FFh
01200h
011FFh
08200h
081FFh
04200h
041FFh
02600h
025FFh
0C000h
0A000h
08000h
04000h
01100h
08000h
024FFh
04000h
038FFh
02500h
024FFh
Segment 0
w/ Interrupt Vectors
Segment 1
Segment 2
Main
Memory
Segment n-1
010FFh
010FFh
010FFh
010FFh
010FFh
01100h
010FFh
01100h
010FFh
01100h
010FFh
01080h
0107Fh
01080h
0107Fh
01080h
0107Fh
01080h
0107Fh
01080h
0107Fh
01080h
0107Fh
01080h
0107Fh
01080h
0107Fh
01000h
01000h
01000h
01000h
01000h
01000h
01000h
01000h
Segment n†
RAM
(’F161x
only)
Segment A
Info
Memory
Segment B
†
MSP430F169 and MSP430F1612 flash segment n = 256 bytes.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
peripherals
Peripherals are connected to the CPU through data, address, and control busses and can be handled using
all instructions. For complete module descriptions, see the MSP430x1xx Family User’s Guide, literature number
SLAU049.
DMA controller
The DMA controller allows movement of data from one memory address to another without CPU intervention.
For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system
power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to
or from a peripheral.
oscillator and system clock
The clock system in the MSP430x15x and MSP430x16x(x) family of devices is supported by the basic clock
module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator
(DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements
of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source
and stabilizes in less than 6 µs. The basic clock module provides the following clock signals:
D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.
D Main clock (MCLK), the system clock used by the CPU.
D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.
brownout, supply voltage supervisor
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on
and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user
selectable level and supports both supply voltage supervision (the device is automatically reset) and supply
voltage monitoring (SVM, the device is not automatically reset).
The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not
have ramped to VCC(min) at that time. The user must insure the default DCO settings are not changed until VCC
reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min).
digital I/O
There are six 8-bit I/O ports implemented—ports P1 through P6:
D
D
D
D
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
Read/write access to port-control registers is supported by all instructions.
watchdog timer
The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog
function is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.
hardware multiplier (MSP430x16x/161x Only)
The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16,
16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication
as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are
required.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
USART0
The MSP430x15x and the MSP430x16x(x) have one hardware universal synchronous/asynchronous receive
transmit (USART0) peripheral module that is used for serial data communication. The USART supports
synchronous SPI (3 or 4 pin), asynchronous UART and I2C communication protocols using double-buffered
transmit and receive channels.
The I2C support is compliant with the Philips I2C specification version 2.1 and supports standard mode (up to
100 kbps) and fast mode (up to 400 kbps). In addition, 7-bit and 10-bit device addressing modes are supported,
as well as master and slave modes. The USART0 also supports 16-bit-wide I2C data transfers and has two
dedicated DMA channels to maximize bus throughput. Extensive interrupt capability is also given in the I2C
mode.
USART1 (MSP430x16x/161x Only)
The MSP430x16x(x) devices have a second hardware universal synchronous/asynchronous receive transmit
(USART1) peripheral module that is used for serial data communication. The USART supports synchronous
SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive
channels. With the exception of I2C support, operation of USART1 is identical to USART0.
timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Timer_A3 Signal Connections
Input Pin Number
Device Input Signal
Module Input Name
12 - P1.0
TACLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
21 - P2.1
TAINCLK
INCLK
13 - P1.1
TA0
CCI0A
22 - P2.2
TA0
CCI0B
DVSS
GND
14 - P1.2
15 - P1.3
DVCC
VCC
TA1
CCI1A
CAOUT (internal)
CCI1B
Module Block
Module Output Signal
Timer
NA
Output Pin Number
13 - P1.1
17 - P1.5
CCR0
TA0
27 - P2.7
14 - P1.2
18 - P1.6
CCR1
TA1
23 - P2.3
DVSS
GND
DVCC
VCC
ADC12 (internal)
15 - P1.3
TA2
CCI2A
ACLK (internal)
CCI2B
DVSS
GND
DVCC
VCC
19 - P1.7
CCR2
TA2
24 - P2.4
timer_B3 (MSP430x15x Only)
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
timer_B7 (MSP430x16x/161x Only)
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Timer_B3/B7 Signal Connections†
Input Pin Number
Device Input Signal
Module Input Name
43 - P4.7
TBCLK
TBCLK
ACLK
ACLK
SMCLK
SMCLK
43 - P4.7
TBCLK
INCLK
36 - P4.0
TB0
CCI0A
36 - P4.0
Module Output Signal
Timer
NA
36 - P4.0
ADC12 (internal)
TB0
CCI0B
GND
DVCC
VCC
37 - P4.1
TB1
CCI1A
37 - P4.1
37 - P4.1
TB1
CCI1B
ADC12 (internal)
DVSS
GND
38 - P4.2
DVCC
VCC
TB2
CCI2A
TB2
CCI2B
DVSS
GND
DVCC
VCC
39 - P4.3
TB3
CCI3A
39 - P4.3
TB3
CCI3B
DVSS
GND
DVCC
VCC
40 - P4.4
TB4
CCI4A
40 - P4.4
TB4
CCI4B
DVSS
GND
DVCC
VCC
41 - P4.5
TB5
CCI5A
41 - P4.5
TB5
CCI5B
DVSS
GND
42 - P4.6
DVCC
VCC
TB6
CCI6A
ACLK (internal)
CCI6B
DVSS
GND
DVCC
VCC
CCR0
CCR1
POST OFFICE BOX 655303
TB0
TB1
38 - P4.2
CCR2
TB2
39 - P4.3
CCR3
TB3
40 - P4.4
CCR4
TB4
41 - P4.5
CCR5
TB5
42 - P4.6
CCR6
Timer_B3 implements three capture/compare blocks (CCR0, CCR1 and CCR2 only).
18
Output Pin Number
DVSS
38 - P4.2
†
Module Block
• DALLAS, TEXAS 75265
TB6
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
comparator_A
The primary function of the comparator_A module is to support precision slope analog−to−digital conversions,
battery−voltage supervision, and monitoring of external analog signals.
ADC12
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR
core, sample select control, reference generator and a 16 word conversion-and-control buffer. The
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without
any CPU intervention.
DAC12
The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8- or 12-bit mode,
and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may
be grouped together for synchronous operation.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
peripheral file map
PERIPHERAL FILE MAP
DMA
DAC12
ADC12
20
DMA channel 2 transfer size
DMA2SZ
01F6h
DMA channel 2 destination address
DMA2DA
01F4h
DMA channel 2 source address
DMA2SA
01F2h
DMA channel 2 control
DMA2CTL
01F0h
DMA channel 1 transfer size
DMA1SZ
01EEh
DMA channel 1 destination address
DMA1DA
01ECh
DMA channel 1 source address
DMA1SA
01EAh
DMA channel 1 control
DMA1CTL
01E8h
DMA channel 0 transfer size
DMA0SZ
01E6h
DMA channel 0 destination address
DMA0DA
01E4h
DMA channel 0 source address
DMA0SA
01E2h
DMA channel 0 control
DMA0CTL
01E0h
DMA module control 1
DMACTL1
0124h
DMA module control 0
DMACTL0
0122h
DAC12_1 data
DAC12_1DAT
01CAh
DAC12_1 control
DAC12_1CTL
01C2h
DAC12_0 data
DAC12_0DAT
01C8h
DAC12_0 control
DAC12_0CTL
01C0h
Interrupt-vector-word register
ADC12IV
01A8h
Inerrupt-enable register
ADC12IE
01A6h
Inerrupt-flag register
ADC12IFG
01A4h
Control register 1
ADC12CTL1
01A2h
Control register 0
ADC12CTL0
01A0h
Conversion memory 15
ADC12MEM15
015Eh
Conversion memory 14
ADC12MEM14
015Ch
Conversion memory 13
ADC12MEM13
015Ah
Conversion memory 12
ADC12MEM12
0158h
Conversion memory 11
ADC12MEM11
0156h
Conversion memory 10
ADC12MEM10
0154h
Conversion memory 9
ADC12MEM9
0152h
Conversion memory 8
ADC12MEM8
0150h
Conversion memory 7
ADC12MEM7
014Eh
Conversion memory 6
ADC12MEM6
014Ch
Conversion memory 5
ADC12MEM5
014Ah
Conversion memory 4
ADC12MEM4
0148h
Conversion memory 3
ADC12MEM3
0146h
Conversion memory 2
ADC12MEM2
0144h
Conversion memory 1
ADC12MEM1
0142h
Conversion memory 0
ADC12MEM0
0140h
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
peripheral file map (continued)
PERIPHERAL FILE MAP (CONTINUED)
ADC12
(continued)
Timer_B7/
Timer_B3
(see Note 1)
Timer_A3
ADC memory-control register15
ADC12MCTL15
08Fh
ADC memory-control register14
ADC12MCTL14
08Eh
ADC memory-control register13
ADC12MCTL13
08Dh
ADC memory-control register12
ADC12MCTL12
08Ch
ADC memory-control register11
ADC12MCTL11
08Bh
ADC memory-control register10
ADC12MCTL10
08Ah
ADC memory-control register9
ADC12MCTL9
089h
ADC memory-control register8
ADC12MCTL8
088h
ADC memory-control register7
ADC12MCTL7
087h
ADC memory-control register6
ADC12MCTL6
086h
ADC memory-control register5
ADC12MCTL5
085h
ADC memory-control register4
ADC12MCTL4
084h
ADC memory-control register3
ADC12MCTL3
083h
ADC memory-control register2
ADC12MCTL2
082h
ADC memory-control register1
ADC12MCTL1
081h
ADC memory-control register0
ADC12MCTL0
080h
Capture/compare register 6
TBCCR6
019Eh
Capture/compare register 5
TBCCR5
019Ch
Capture/compare register 4
TBCCR4
019Ah
Capture/compare register 3
TBCCR3
0198h
Capture/compare register 2
TBCCR2
0196h
Capture/compare register 1
TBCCR1
0194h
Capture/compare register 0
TBCCR0
0192h
Timer_B register
TBR
0190h
Capture/compare control 6
TBCCTL6
018Eh
Capture/compare control 5
TBCCTL5
018Ch
Capture/compare control 4
TBCCTL4
018Ah
Capture/compare control 3
TBCCTL3
0188h
Capture/compare control 2
TBCCTL2
0186h
Capture/compare control 1
TBCCTL1
0184h
Capture/compare control 0
TBCCTL0
0182h
Timer_B control
TBCTL
0180h
Timer_B interrupt vector
TBIV
011Eh
Reserved
017Eh
Reserved
017Ch
Reserved
017Ah
Reserved
0178h
Capture/compare register 2
TACCR2
0176h
Capture/compare register 1
TACCR1
0174h
Capture/compare register 0
TACCR0
0172h
Timer_A register
TAR
0170h
Reserved
016Eh
Reserved
016Ch
Reserved
016Ah
Reserved
0168h
NOTE 1: Timer_B7 in MSP430x16x/161x family has 7 CCRs, Timer_B3 in MSP430x15x family has 3 CCRs.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
peripheral file map (continued)
PERIPHERAL FILE MAP (CONTINUED)
Timer_A3
(continued)
Capture/compare control 2
TACCTL2
0166h
Capture/compare control 1
TACCTL1
0164h
Capture/compare control 0
TACCTL0
0162h
Timer_A control
TACTL
0160h
Timer_A interrupt vector
TAIV
012Eh
Sum extend
SUMEXT
013Eh
Result high word
RESHI
013Ch
Result low word
RESLO
013Ah
Second operand
OP2
0138h
Multiply signed +accumulate/operand1
MACS
0136h
Multiply+accumulate/operand1
MAC
0134h
Multiply signed/operand1
MPYS
0132h
Multiply unsigned/operand1
MPY
0130h
Flash control 3
FCTL3
012Ch
Flash control 2
FCTL2
012Ah
Flash control 1
FCTL1
0128h
Watchdog
Watchdog Timer control
WDTCTL
0120h
USART1
(MSP430x16x and
MSP430x161x
only)
Transmit buffer
U1TXBUF
07Fh
Receive buffer
U1RXBUF
07Eh
Baud rate
U1BR1
07Dh
Baud rate
U1BR0
07Ch
Modulation control
U1MCTL
07Bh
Receive control
U1RCTL
07Ah
Transmit control
U1TCTL
079h
USART control
U1CTL
078h
Transmit buffer
U0TXBUF
077h
Receive buffer
U0RXBUF
076h
Baud rate
U0BR1
075h
Baud rate
U0BR0
074h
Modulation control
U0MCTL
073h
Receive control
U0RCTL
072h
Transmit control
U0TCTL
071h
USART control
U0CTL
070h
I2C interrupt vector
I2CIV
011Ch
I2C slave address
I2CSA
011Ah
I2C own address
I2COA
0118h
I2C data
I2CDR
076h
I2C SCLL
I2CSCLL
075h
I2C SCLH
I2CSCLH
074h
I2C PSC
I2CPSC
073h
I2C data control
I2CDCTL
072h
I2C transfer control
I2CTCTL
071h
USART control
U0CTL
070h
I2C data count
I2CNDAT
052h
I2C interrupt flag
I2CIFG
051h
I2C interrupt enable
I2CIE
050h
Hardware
Multiplier
(MSP430x16x and
MSP430x161x
only)
Flash
USART0
(UART or
SPI mode)
USART0
(I2C mode)
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
peripheral file map (continued)
PERIPHERAL FILE MAP (CONTINUED)
Comparator_A
Comparator_A port disable
CAPD
05Bh
Comparator_A control2
CACTL2
05Ah
Comparator_A control1
CACTL1
059h
Basic clock system control2
BCSCTL2
058h
Basic clock system control1
BCSCTL1
057h
DCO clock frequency control
DCOCTL
056h
BrownOUT, SVS
SVS control register (reset by brownout signal)
SVSCTL
055h
Port P6
Port P6 selection
P6SEL
037h
Port P6 direction
P6DIR
036h
Port P6 output
P6OUT
035h
Port P6 input
P6IN
034h
Port P5 selection
P5SEL
033h
Port P5 direction
P5DIR
032h
Port P5 output
P5OUT
031h
Port P5 input
P5IN
030h
Port P4 selection
P4SEL
01Fh
Port P4 direction
P4DIR
01Eh
Port P4 output
P4OUT
01Dh
Port P4 input
P4IN
01Ch
Port P3 selection
P3SEL
01Bh
Port P3 direction
P3DIR
01Ah
Port P3 output
P3OUT
019h
Port P3 input
P3IN
018h
Port P2 selection
P2SEL
02Eh
Port P2 interrupt enable
P2IE
02Dh
Port P2 interrupt-edge select
P2IES
02Ch
Port P2 interrupt flag
P2IFG
02Bh
Port P2 direction
P2DIR
02Ah
Port P2 output
P2OUT
029h
Port P2 input
P2IN
028h
Port P1 selection
P1SEL
026h
Port P1 interrupt enable
P1IE
025h
Port P1 interrupt-edge select
P1IES
024h
Port P1 interrupt flag
P1IFG
023h
Port P1 direction
P1DIR
022h
Port P1 output
P1OUT
021h
Port P1 input
P1IN
020h
SFR module enable 2
ME2
005h
SFR module enable 1
ME1
004h
SFR interrupt flag2
IFG2
003h
SFR interrupt flag1
IFG1
002h
SFR interrupt enable2
IE2
001h
SFR interrupt enable1
IE1
000h
Basic Clock
Port P5
Port P4
Port P3
Port P2
Port P1
Special Functions
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†
Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V
Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA
Storage temperature, Tstg: (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C
(programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied
to the TDI/TCLK pin when blowing the JTAG fuse.
recommended operating conditions
MIN
NOM
MAX
UNITS
Supply voltage during program execution,
VCC (AVCC = DVCC = VCC)
MSP430F15x/16x/
161x
1.8
3.6
V
Supply voltage during flash memory programming, VCC
(AVCC = DVCC = VCC)
MSP430F15x/16x/
161x
2.7
3.6
V
Supply voltage during program execution, SVS enabled (see
Note 1), VCC (AVCC = DVCC = VCC)
MSP430F15x/16x/
161x
2
3.6
V
0
0
V
−40
85
°C
Supply voltage, VSS (AVSS = DVSS = VSS)
MSP430F15x/16x/
161x
Operating free-air temperature range, TA
LFXT1 crystal frequency, f(LFXT1)
(see Notes 2 and 3)
LF selected, XTS=0
Watch crystal
XT1 selected, XTS=1
Ceramic resonator
32.768
XT1 selected, XTS=1
Crystal
8000
kHz
1000
8000
kHz
450
8000
1000
8000
VCC = 1.8 V
DC
4.15
VCC = 3.6 V
DC
8
Ceramic resonator
XT2 crystal frequency, f(XT2)
Crystal
Processor frequency (signal MCLK), f(System)
kHz
450
kHz
MHz
NOTES: 1. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply
voltage. POR is going inactive when the VCC is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry.
2. In LF mode, the LFXT1 oscillator requires a watch crystal. A 5.1MΩ resistor from XOUT to VSS is recommended when VCC <
2.5 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 4.15MHz at VCC ≥ 2.2 V. In XT1 mode,
the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 8MHz at VCC ≥ 2.8 V.
3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.
f (MHz)
8.0 MHz
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
Supply voltage range,
’F15x/16x/161x, during
program execution
4.15 MHz
1.8 V
2.7 V 3 V
Supply Voltage − V
Supply voltage range,
’F15x/16x/161x,
during flash memory programming
3.6 V
Figure 1. Frequency vs Supply Voltage, MSP430F15x/16x/161x
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
MSP430F15x/16x supply current into AVCC + DVCC excluding external current (AVCC = DVCC = VCC)
PARAMETER
I(AM)
I(LPM0)
I(LPM2)
TEST CONDITIONS
Active mode, (see Note 1)
f(MCLK) = f(SMCLK) = 1 MHz,
f(ACLK) = 32,768 Hz
XTS=0, SELM=(0,1)
° to 85°C
°
TA = −40°C
Active mode, (see Note 1)
f(MCLK) = f(SMCLK) = 4,096 Hz,
f(ACLK) = 4,096 Hz
XTS=0, SELM=3
TA = −40°C
° to 85°C
°
Low-power mode, (LPM0)
f(MCLK) = 0 MHz, f(SMCLK) = 1 MHz,
f(ACLK) = 32,768 Hz
XTS=0, SELM=(0,1)
(see Note 1)
TA = −40°C
° to 85°C
°
Low-power mode, (LPM2),
f(MCLK) = f(SMCLK) = 0 MHz,
f(ACLK) = 32.768 Hz, SCG0 = 0
° to 85°C
°
TA = −40°C
NOM
MAX
VCC = 2.2 V
330
400
VCC = 3 V
500
600
VCC = 2.2 V
2.5
7
9
20
50
60
µA
VCC = 2.2 V
µA
VCC = 3 V
75
90
VCC = 2.2 V
11
14
VCC = 3 V
17
22
1.1
1.6
TA = −40°C
I(LPM3)
I(LPM4)
Low-power mode, (LPM3)
f(MCLK) = f(SMCLK) = 0 MHz,
f(ACLK) = 32,768 Hz, SCG0 = 1
(see Note 2)
1.1
1.6
TA = 85°C
2.2
3.0
TA = −40°C
2.2
2.8
TA = 25°C
Low-power mode, (LPM4)
f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz,
f(ACLK) = 0 Hz, SCG0 = 1
VCC = 2.2 V
2.0
2.6
TA = 85°C
3.0
4.3
TA = −40°C
0.1
0.5
0.2
0.5
1.3
2.5
TA = 25°C
UNIT
µA
VCC = 3 V
TA = 25°C
MIN
VCC = 3 V
VCC =
2.2V / 3 V
TA = 85°C
µA
µA
µA
NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
2. WDT is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current
consumption in LPM2 and LPM3 are measured with ACLK selected.
Current consumption of active mode versus system frequency, F-version
I(AM) = I(AM) [1 MHz] × f(System) [MHz]
Current consumption of active mode versus supply voltage, F-version
I(AM) = I(AM) [3 V] + 210 µA/V × (VCC – 3 V)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
MSP430F161x supply current into AVCC + DVCC excluding external current (AVCC = DVCC = VCC)
PARAMETER
I(AM)
I(LPM0)
I(LPM2)
TEST CONDITIONS
Active mode, (see Note 1)
f(MCLK) = f(SMCLK) = 1 MHz,
f(ACLK) = 32,768 Hz
XTS=0, SELM=(0,1)
° to 85°C
°
TA = −40°C
Active mode, (see Note 1)
f(MCLK) = f(SMCLK) = 4,096 Hz,
f(ACLK) = 4,096 Hz
XTS=0, SELM=3
TA = −40°C
° to 85°C
°
Low-power mode, (LPM0)
f(MCLK) = 0 MHz, f(SMCLK) = 1 MHz,
f(ACLK) = 32,768 Hz
XTS=0, SELM=(0,1)
(see Note 1)
TA = −40°C
° to 85°C
°
Low-power mode, (LPM2),
f(MCLK) = f(SMCLK) = 0 MHz,
f(ACLK) = 32.768 Hz, SCG0 = 0
° to 85°C
°
TA = −40°C
NOM
MAX
VCC = 2.2 V
330
400
VCC = 3 V
500
600
VCC = 2.2 V
2.5
7
9
20
50
60
µA
VCC = 2.2 V
µA
VCC = 3 V
75
95
VCC = 2.2 V
11
14
VCC = 3 V
17
22
1.3
1.6
TA = −40°C
I(LPM3)
I(LPM4)
Low-power mode, (LPM3)
f(MCLK) = f(SMCLK) = 0 MHz,
f(ACLK) = 32,768 Hz, SCG0 = 1
(see Note 2)
1.3
1.6
TA = 85°C
3.0
6.0
TA = −40°C
2.6
3.0
TA = 25°C
Low-power mode, (LPM4)
f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz,
f(ACLK) = 0 Hz, SCG0 = 1
VCC = 2.2 V
2.6
3.0
TA = 85°C
4.4
8.0
TA = −40°C
0.2
0.5
0.2
0.5
2.0
5.0
TA = 25°C
UNIT
µA
VCC = 3 V
TA = 25°C
MIN
VCC = 3 V
VCC =
2.2V / 3 V
TA = 85°C
µA
µA
µA
NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
2. WDT is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current
consumption in LPM2 and LPM3 are measured with ACLK selected.
Current consumption of active mode versus system frequency, F-version
I(AM) = I(AM) [1 MHz] × f(System) [MHz]
Current consumption of active mode versus supply voltage, F-version
I(AM) = I(AM) [3 V] + 210 µA/V × (VCC – 3 V)
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
SCHMITT-trigger inputs − Ports P1, P2, P3, P4, P5, P6; RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT−
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ − VIT−)
MIN
TYP
MAX
VCC = 2.2 V
1.1
1.5
VCC = 3 V
1.5
1.98
VCC = 2.2 V
0.4
0.9
VCC = 3 V
0.9
1.3
VCC = 2.2 V
0.3
1.1
VCC = 3 V
0.5
1
UNIT
V
V
V
inputs Px.x, TAx, TBx
PARAMETER
t(int)
External interrupt timing
t(cap)
Timer_A, Timer_B capture
timing
f(TAext)
f(TBext)
f(TAint)
f(TBint)
TEST CONDITIONS
VCC
MIN
Port P1, P2: P1.x to P2.x, external trigger signal
for the interrupt flag, (see Note 1)
2.2 V
62
3V
50
TA0, TA1, TA2
2.2 V
62
3V
50
TB0, TB1, TB2, TB3, TB4, TB5, TB6
(see Note 2)
Timer_A, Timer_B clock
frequency externally applied
to pin
TACLK, TBCLK, INCLK: t(H) = t(L)
Timer_A, Timer_B clock
frequency
SMCLK or ACLK signal selected
TYP
MAX
UNIT
ns
ns
2.2 V
8
3V
10
MHz
2.2 V
8
3V
10
MHz
NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals
shorter than t(int).
2. Seven capture/compare registers in ’x16x/161x and three capture/compare registers in ’x15x.
leakage current − Ports P1, P2, P3, P4, P5 and P6 (see Note 1)
PARAMETER
Ilkg(Px.y)
Leakage
current
TEST CONDITIONS
Port Px
V(Px.y) (see Note 2)
MIN
TYP
VCC = 2.2 V/3 V
MAX
UNIT
±50
nA
NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
2. The port pin must be selected as input.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
outputs − Ports P1, P2, P3, P4, P5, and P6
PARAMETER
VOH
VOL
High-level output voltage
Low-level output voltage
TEST CONDITIONS
MIN
TYP
MAX
IOH(max) = −1.5 mA,
VCC = 2.2 V,
See Note 1
VCC−0.25
VCC
IOH(max) = −6 mA,
VCC = 2.2 V,
See Note 2
VCC−0.6
VCC
IOH(max) = −1.5 mA,
VCC = 3 V,
See Note 1
VCC−0.25
VCC
IOH(max) = −6 mA,
VCC = 3 V,
See Note 2
VCC−0.6
VCC
IOL(max) = 1.5 mA,
VCC = 2.2 V,
See Note 1
VSS
VSS+0.25
IOL(max) = 6 mA,
VCC = 2.2 V,
See Note 2
VSS
VSS+0.6
IOL(max) = 1.5 mA,
VCC = 3 V,
See Note 1
VSS
VSS+0.25
IOL(max) = 6 mA,
VCC = 3 V,
See Note 2
VSS
VSS+0.6
UNIT
V
V
NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum
specified voltage drop.
2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum
specified voltage drop.
output frequency
PARAMETER
TEST CONDITIONS
MIN
f(Px.y)
(1 ≤ x ≤ 6, 0 ≤ y ≤ 7)
CL = 20 pF,
IL = ±1.5 mA
VCC = 2.2 V / 3 V
f(ACLK)
f(MCLK)
f(SMCLK)
P2.0/ACLK, P5.6/ACLK
P5.4/MCLK,
P1.4/SMCLK, P5.5/SMCLK
CL = 20 pF
VCC = 2.2 V / 3 V
P1.0/TACLK
CL = 20 pF
VCC = 2.2 V / 3 V
f(ACLK) = f(LFXT1) = f(XT1)
40%
f(ACLK) = f(LFXT1) = f(LF)
30%
P1.1/TA0/MCLK,
CL = 20 pF,
VCC = 2.2 V / 3 V
f(MCLK) = f(XT1)
P1.4/TBCLK/SMCLK,
CL = 20 pF,
VCC = 2.2 V / 3 V
f(SMCLK) = f(XT2)
t(Xdc)
28
Duty cycle of output frequency
POST OFFICE BOX 655303
DC
f(SMCLK) = f(DCOCLK)
• DALLAS, TEXAS 75265
MAX
UNIT
fSystem
MHz
fSystem
f(ACLK) = f(LFXT1)
f(MCLK) = f(DCOCLK)
TYP
60%
70%
50%
40%
50%−
15 ns
60%
50%
50%+
15 ns
40%
60%
50%−
15 ns
50%
50%+
15 ns
MHz
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
outputs − Ports P1, P2, P3, P4, P5, and P6 (continued)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
40
TA = 25°C
VCC = 2.2 V
P3.5
I OL − Low-Level Output Current − mA
I OL − Low-Level Output Current − mA
25
20
TA = 85°C
15
10
5
0
0.0
0.5
1.0
1.5
2.0
VCC = 3 V
P3.5
TA = 85°C
30
20
10
0
0.0
2.5
TA = 25°C
VOL − Low-Level Output Voltage − V
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOL − Low-Level Output Voltage − V
Figure 3
Figure 2
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
VCC = 2.2 V
P3.5
I OH − High-Level Output Current − mA
I OH − High-Level Output Current − mA
0
−5
−10
−15
TA = 85°C
−20
−5
VCC = 3 V
P3.5
−15
−25
−35
TA = 85°C
TA = 25°C
−25
0.0
0.5
TA = 25°C
1.0
1.5
2.0
2.5
VOH − High-Level Output Voltage − V
−45
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH − High-Level Output Voltage − V
Figure 5
Figure 4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
wake-up LPM3
PARAMETER
t(LPM3)
TEST CONDITIONS
MIN
TYP
VCC = 2.2 V/3 V,
fDCO ≥ fDCO43
Delay time
MAX
6
UNIT
µs
RAM
PARAMETER
TEST CONDITIONS
VRAMh
CPU HALTED (see Note 1)
MIN
TYP
MAX
1.6
UNIT
V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution
should take place during this supply voltage condition.
Comparator_A (see Note 1)
PARAMETER
TEST CONDITIONS
TYP
MAX
VCC = 2.2 V
MIN
25
40
VCC = 3 V
45
60
I(DD)
CAON=1, CARSEL=0, CAREF=0
CAON=1, CARSEL=0,
CAREF=1/2/3, no load at
P2.3/CA0/TA1 and P2.4/CA1/TA2
VCC = 2.2 V
30
50
I(Refladder/Refdiode)
VCC = 3 V
45
71
CAON =1
VCC = 2.2 V/3 V
0
PCA0=1, CARSEL=1, CAREF=1,
no load at P2.3/CA0/TA1 and
P2.4/CA1/TA2
VCC = 2.2 V/3 V
0.23
0.24
0.25
PCA0=1, CARSEL=1, CAREF=2,
no load at P2.3/CA0/TA1 and
P2.4/CA1/TA2
VCC = 2.2 V/3 V
0.47
0.48
0.5
PCA0=1, CARSEL=1, CAREF=3,
no load at P2.3/CA0/TA1 and
P2.4/CA1/TA2 TA = 85°C
VCC = 2.2 V
390
480
540
VCC = 3 V
400
490
550
V(IC)
V(Ref025)
Common-mode input
voltage
Voltage @ 0.25 V
V
V(Ref050)
CC
node
CC
Voltage @ 0.5V
V
CC
node
CC
VCC−1
UNIT
µ
µA
µ
µA
V
V(RefVT)
(see Figure 6 and Figure 7)
V(offset)
Offset voltage
See Note 2
VCC = 2.2 V/3 V
−30
30
mV
Vhys
Input hysteresis
CAON=1
VCC = 2.2 V/3 V
0
0.7
1.4
mV
TA = 25
25°C,
C, Overdrive 10 mV,
Without filter: CAF=0
VCC = 2.2 V
130
210
300
VCC = 3 V
80
150
240
TA = 25
25°C,
C, Overdrive 10 mV,
With filter: CAF=1
VCC = 2.2 V
1.4
1.9
3.4
VCC = 3 V
0.9
1.5
2.6
TA = 25
25°C,
C, Overdrive 10 mV,
Without filter: CAF=0
VCC = 2.2 V
130
210
300
VCC = 3 V
80
150
240
25°C,
TA = 25
C, Overdrive 10 mV,
With filter: CAF=1
VCC = 2.2 V
1.4
1.9
3.4
VCC = 3 V
0.9
1.5
2.6
t(response LH)
t(response HL)
mV
ns
µ
µs
ns
µ
µs
NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification.
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.
The two successive measurements are then summed together.
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
650
650
VCC = 2.2 V
V(REFVT) − Reference Volts −mV
V(REFVT) − Reference Volts −mV
VCC = 3 V
600
Typical
550
500
450
400
−45
−25
−5
15
35
55
75
600
Typical
550
500
450
400
−45
95
−25
TA − Free-Air Temperature − °C
0
15
35
55
75
95
Figure 7. V(RefVT) vs Temperature, VCC = 2.2 V
Figure 6. V(RefVT) vs Temperature, VCC = 3 V
0V
−5
TA − Free-Air Temperature − °C
VCC
1
CAF
CAON
Low Pass Filter
V+
V−
+
_
0
0
1
1
To Internal
Modules
CAOUT
Set CAIFG
Flag
τ ≈ 2.0 µs
Figure 8. Block Diagram of Comparator_A Module
VCAOUT
Overdrive
V−
400 mV
V+
t(response)
Figure 9. Overdrive Definition
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
POR/brownout reset (BOR) (see Notes 1 and 2)
PARAMETER
TEST CONDITIONS
MIN
TYP
td(BOR)
VCC(Start)
dVCC/dt ≤ 3 V/s (see Figure 10)
V(B_IT−)
dVCC/dt ≤ 3 V/s (see Figure 10 through Figure 12)
Vhys(B_IT−)
Brownout
t(reset)
MAX
UNIT
2000
µs
0.7 × V(B_IT−)
dVCC/dt ≤ 3 V/s (see Figure 10)
70
Pulse length needed at RST/NMI pin to accepted reset internally,
VCC = 2.2 V/3 V
2
130
V
1.71
V
180
mV
µs
NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT−)
+ Vhys(B_IT−) is ≤ 1.8 V.
2. During power up, the CPU begins code execution following a period of tBOR(delay) after VCC = V(B_IT−) + Vhys(B_IT−). The
default DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired
operating frequency. See the MSP430x1xx Family User’s Guide (SLAU049) for more information on the brownout/SVS circuit.
typical characteristics
VCC
Vhys(B_IT−)
V(B_IT−)
VCC(Start)
BOR
1
0
t d(BOR)
Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage
32
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
typical characteristics (continued)
VCC
3V
2
VCC(min)− V
Vcc = 3 V
typical conditions
t pw
1.5
1
VCC(min)
0.5
0
0.001
1
1000
1 ns
tpw − Pulse Width − µs
1 ns
tpw − Pulse Width − µs
Figure 11. VCC(min) Level With a Square Voltage Drop to Generate a POR/Brownout Signal
VCC
VCC(min)− V
2
1.5
t pw
3V
Vcc = 3 V
typical conditions
1
VCC(min)
0.5
0
0.001
tf = tr
1
1000
tf
tr
tpw − Pulse Width − µs
tpw − Pulse Width − µs
Figure 12. VCC(min) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
SVS (supply voltage supervisor/monitor)
PARAMETER
t(SVSR)
TEST CONDITIONS
MIN
dVCC/dt > 30 V/ms (see Figure 13)
dVCC/dt ≤ 30 V/ms
td(SVSon)
SVSON, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V
tsettle
VLD ≠ 0‡
V(SVSstart)
VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 13)
20
1.55
VLD = 1
VCC/dt ≤ 3 V/s (see Figure 13)
VLD = 2 .. 14
Vhys(SVS_IT−)
VCC/dt ≤ 3 V/s (see Figure 13), External voltage applied
on A7
VCC/dt ≤ 3 V/s (see Figure 13 and Figure 14)
V(SVS_IT−)
VCC/dt ≤ 3 V/s (see Figure 13 and Figure 14), External
voltage applied on A7
ICC(SVS)
(see Note 1)
NOM
5
VLD = 15
70
120
MAX
UNIT
150
µs
2000
µs
150
µs
12
µs
1.7
V
155
mV
V(SVS_IT−)
x 0.004
V(SVS_IT−)
x 0.008
4.4
10.4
VLD = 1
1.8
1.9
2.05
VLD = 2
1.94
2.1
2.25
VLD = 3
2.05
2.2
2.37
VLD = 4
2.14
2.3
2.48
VLD = 5
2.24
2.4
2.6
VLD = 6
2.33
2.5
2.71
VLD = 7
2.46
2.65
2.86
VLD = 8
2.58
2.8
3
VLD = 9
2.69
2.9
3.13
VLD = 10
2.83
3.05
3.29
VLD = 11
2.94
3.2
3.42
VLD = 12
3.11
3.35
3.61†
VLD = 13
3.24
3.5
3.76†
VLD = 14
3.43
3.7†
3.99†
VLD = 15
1.1
1.2
1.3
10
15
VLD ≠ 0, VCC = 2.2 V/3 V
†
mV
V
µA
The recommended operating voltage range is limited to 3.6 V.
tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere
between 2 and 15. The overdrive is assumed to be > 50 mV.
NOTE 1: The current consumption of the SVS module is not included in the ICC current consumption data.
‡
34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
typical characteristics
Software sets VLD >0:
SVS is active
AVCC
V(SVS_IT−)
V(SVSstart)
Vhys(SVS_IT−)
Vhys(B_IT−)
V(B_IT−)
VCC(start)
Brownout
Brownout
Region
Brownout
Region
1
0
SVS out
td(BOR)
t d(BOR)
SVS Circuit is Active From VLD > to VCC < V(B_IT−)
1
0
td(SVSon)
Set POR
1
td(SVSR)
undefined
0
Figure 13. SVS Reset (SVSR) vs Supply Voltage
VCC
3V
t pw
2
Rectangular Drop
VCC(min)
VCC(min)− V
1.5
Triangular Drop
1
1 ns
1 ns
VCC
0.5
t pw
3V
0
1
10
100
tpw − Pulse Width − µs
1000
VCC(min)
tf = tr
tf
tr
t − Pulse Width − µs
Figure 14. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
DCO (see Note 1)
PARAMETER
TEST CONDITIONS
f(DCO03)
Rsel = 0, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C
°
f(DCO13)
Rsel = 1, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C
°
f(DCO23)
°
Rsel = 2, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C
f(DCO33)
Rsel = 3, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C
°
f(DCO43)
°
Rsel = 4, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C
f(DCO53)
Rsel = 5, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C
°
f(DCO63)
Rsel = 6, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C
°
f(DCO73)
Rsel = 7, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C
°
f(DCO47)
Rsel = 4, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C
f(DCO77)
°
Rsel = 7, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C
SRsel
SR = fRsel+1 / fRsel
SDCO
SDCO = f(DCO+1) / f(DCO)
Dt
Temperature drift, Rsel = 4, DCO = 3, MOD = 0
(see Note 2)
DV
Drift with VCC variation, Rsel = 4, DCO = 3, MOD = 0
(see Note 2)
MIN
NOM
MAX
UNIT
VCC = 2.2 V
0.08
0.12
0.15
VCC = 3 V
0.08
0.13
0.16
VCC = 2.2 V
0.14
0.19
0.23
VCC = 3 V
0.14
0.18
0.22
VCC = 2.2 V
0.22
0.30
0.36
VCC = 3 V
0.22
0.28
0.34
VCC = 2.2 V
0.37
0.49
0.59
VCC = 3 V
0.37
0.47
0.56
VCC = 2.2 V
0.61
0.77
0.93
VCC = 3 V
0.61
0.75
0.90
VCC = 2.2 V
1
1.2
1.5
VCC = 3 V
1
1.3
1.5
VCC = 2.2 V
1.6
1.9
2.2
1.69
2.0
2.29
VCC = 2.2 V
2.4
2.9
3.4
VCC = 3 V
2.7
3.2
3.65
fDCO40
× 1.7
fDCO40
× 2.1
fDCO40
× 2.5
VCC = 3 V
VCC = 2.2 V/3 V
VCC = 2.2 V
VCC = 3 V
VCC = 2.2 V/3 V
VCC = 2.2 V/3 V
4
4.5
4.9
4.4
4.9
5.4
1.35
1.65
2
1.07
1.12
1.16
VCC = 2.2 V
−0.31
−0.36
−0.40
VCC = 3 V
−0.33
−0.38
−0.43
0
5
10
VCC = 2.2 V/3 V
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
%/°C
°
%/V
Frequency Variance
NOTES: 1. The DCO frequency may not exceed the maximum system frequency defined by parameter processor frequency, f(System).
2. This parameter is not production tested.
Max
f DCO_7
Min
Max
f DCO_0
Min
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
1
f DCOCLK
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
2.2
3
VCC − V
0
1
Figure 15. DCO Characteristics
36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2
3
4
5
6
7
DCO
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
main DCO characteristics
D Individual devices have a minimum and maximum operation frequency. The specified parameters for
f(DCOx0) to f(DCOx7) are valid for all devices.
D All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps Rsel1, ... Rsel6 overlaps Rsel7.
D DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter SDCO.
D Modulation control bits MOD0 to MOD4 select how often f(DCO+1) is used within the period of 32 DCOCLK
cycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average equal to:
f average +
MOD
32 f (DCO) f (DCO)1)
f (DCO))(32*MOD) f (DCO)1)
DCO when using ROSC (see Note 1)
PARAMETER
TEST CONDITIONS
VCC
fDCO, DCO output frequency
Rsel = 4, DCO = 3, MOD = 0, DCOR = 1,
TA = 25°C
2.2 V
Dt, Temperature drift
Rsel = 4, DCO = 3, MOD = 0, DCOR = 1
Dv, Drift with VCC variation
Rsel = 4, DCO = 3, MOD = 0, DCOR = 1
MIN
NOM
MAX
UNIT
1.8±15%
MHz
1.95±15%
MHz
2.2 V/3 V
±0.1
%/°C
2.2 V/3 V
10
%/V
3V
NOTES: 1. ROSC = 100kΩ. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = ±50ppm/°C.
crystal oscillator, LFXT1 oscillator (see Note 1)
PARAMETER
CXIN
Integrated input capacitance
CXOUT
Integrated output capacitance
VIL
Input levels at XIN
TEST CONDITIONS
MIN
XTS=0; LF oscillator selected, VCC = 2.2 V/3 V
UNIT
pF
2
XTS=0; LF oscillator selected, VCC = 2.2 V/3 V
12
XTS=1; XT1 oscillator selected, VCC = 2.2 V/3 V
VIH
MAX
12
XTS=1; XT1 oscillator selected, VCC = 2.2 V/3 V
VCC = 2.2 V/3 V
(see Note 2)
NOM
pF
2
XTS = 0 or 1
XT1 or LF modes
VSS
0.2 × VCC
XTS = 0, LF mode
0.9 × VCC
VCC
XTS = 1, XT1 mode
0.8 × VCC
VCC
V
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.
crystal oscillator, XT2 oscillator (see Note 1)
PARAMETER
TEST CONDITIONS
MIN
NOM
CXIN
Integrated input capacitance
VCC = 2.2 V/3 V
2
CXOUT
Integrated output capacitance
VCC = 2.2 V/3 V
2
VIL
VIH
Input levels at XIN
VCC = 2.2 V/3 V (see Note 2)
MAX
UNIT
pF
pF
VSS
0.2 × VCC
V
0.8 × VCC
VCC
V
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.
USART0, USART1 (see Note 1)
PARAMETER
t(τ)
USART0/USART1: deglitch time
TEST CONDITIONS
MIN
NOM
MAX
VCC = 2.2 V
200
430
800
VCC = 3 V
150
280
500
UNIT
ns
NOTE 1: The signal applied to the USART0/USART1 receive signal/terminal (URXD0/1) should meet the timing requirements of t(τ) to ensure
that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(τ). The operating
conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative
transitions on the URXD0/1 line.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, power supply and input range conditions (see Note 1)
PARAMETER
TEST CONDITIONS
MIN
AVCC
Analog supply voltage
AVCC and DVCC are connected together
AVSS and DVSS are connected together
V(AVSS) = V(DVSS) = 0 V
V(P6.x/Ax)
Analog input voltage
range (see Note 2)
All P6.0/A0 to P6.7/A7 terminals. Analog inputs
selected in ADC12MCTLx register and P6Sel.x=1
0 ≤ x ≤ 7; V(AVSS) ≤ VP6.x/Ax ≤ V(AVCC)
IADC12
Operating supply current
into AVCC terminal
(see Note 3)
fADC12CLK = 5.0 MHz
ADC12ON = 1, REFON = 0
SHT0=0, SHT1=0, ADC12DIV=0
IREF+
Operating supply current
into AVCC terminal
(see Note 4)
fADC12CLK = 5.0 MHz
ADC12ON = 0,
REFON = 1, REF2_5V = 1
fADC12CLK = 5.0 MHz
ADC12ON = 0,
REFON = 1, REF2_5V = 0
NOM
MAX
UNIT
2.2
3.6
V
0
VAVCC
V
2.2 V
0.65
1.3
3V
0.8
1.6
3V
0.5
0.8
2.2 V
0.5
0.8
3V
0.5
0.8
mA
mA
mA
CI †
Input capacitance
Only one terminal can be selected
at one time, P6.x/Ax
2.2 V
RI†
Input MUX ON resistance
0V ≤ VAx ≤ VAVCC
3V
40
pF
2000
Ω
†
Not production tested, limits verified by design
NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter.
2. The analog input voltage range must be within the selected reference voltage range VR+ to VR− for valid conversion results.
3. The internal reference supply current is not included in current consumption parameter IADC12.
4. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
12-bit ADC, external reference (see Note 1)
PARAMETER
TEST CONDITIONS
MAX
UNIT
1.4
VAVCC
V
VeREF+ > VREF−/VeREF− (see Note 3)
0
1.2
V
Differential external
reference voltage input
VeREF+ > VREF−/VeREF− (see Note 4)
1.4
VAVCC
V
IVeREF+
Static input current
0V ≤VeREF+ ≤ VAVCC
2.2 V/3 V
±1
µA
IVREF−/VeREF−
Static input current
0V ≤ VeREF− ≤ VAVCC
2.2 V/3 V
±1
µA
VeREF+
Positive external
reference voltage input
VeREF+ > VREF−/VeREF− (see Note 2)
VREF− /VeREF−
Negative external
reference voltage input
(VeREF+ −
VREF−/VeREF−)
MIN
NOM
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, built-in reference
PARAMETER
Positive built-in reference
voltage output
VREF+
AVCC minimum voltage,
Positive built-in reference
active
AVCC(min)
TEST CONDITIONS
REF2_5V = 1 for 2.5 V
IVREF+max ≤ IVREF+≤ IVREF+min
3V
REF2_5V = 0 for 1.5 V
IVREF+max ≤ IVREF+≤ IVREF+min
2.2 V/3 V
Load-current regulation
VREF+ terminal
IL(VREF)+ †
NOM
MAX
2.4
2.5
2.6
1.44
1.5
1.56
REF2_5V = 0, IVREF+max ≤ IVREF+≤ IVREF+min
2.2
2.8
REF2_5V = 1, −1mA ≤ IVREF+≤ IVREF+min
2.9
IVREF+ = 500 µA +/− 100 µA
Analog input voltage ~0.75 V;
REF2_5V = 0
UNIT
V
REF2_5V = 1, −0.5mA ≤ IVREF+≤ IVREF+min
Load current out of VREF+
terminal
IVREF+
MIN
V
2.2 V
0.01
−0.5
3V
0.01
−1
mA
2.2 V
±2
3V
±2
IVREF+ = 500 µA ± 100 µA
Analog input voltage ~1.25 V;
REF2_5V = 1
3V
±2
LSB
20
ns
IDL(VREF) +‡
Load current regulation
VREF+ terminal
IVREF+ =100 µA → 900 µA,
CVREF+=5 µF,
µ ax ~0.5 x VREF+
Error of conversion result ≤ 1 LSB
3V
CVREF+
Capacitance at pin VREF+
(see Note 1)
REFON =1,
0 mA ≤ IVREF+ ≤ IVREF+max
2.2 V/3 V
TREF+†
Temperature coefficient of
built-in reference
IVREF+ is a constant in the range of
0 mA ≤ IVREF+ ≤ 1 mA
2.2 V/3 V
tREFON†
Settle time of internal
reference voltage (see
Figure 16 and Note 2)
IVREF+ = 0.5 mA, CVREF+ = 10 µF,
VREF+ = 1.5 V, VAVCC = 2.2 V
5
LSB
µF
10
±100
17
ppm/°C
ms
†
Not production tested, limits characterized
Not production tested, limits verified by design
NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses
two capacitors between pins VREF+ and AVSS and VREF−/VeREF− and AVSS: 10 µF tantalum and 100 nF ceramic.
2. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external
capacitive load.
‡
CVREF+
100 µF
tREFON ≈ .66 x CVREF+ [ms] with CVREF+ in µF
10 µF
1 µF
0
1 ms
10 ms
100 ms
tREFON
Figure 16. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
DVCC
From
Power
Supply
+
−
10 µ F
DVSS
100 nF
AVCC
+
−
10 µ F
Apply External Reference [VeREF+]
or Use Internal Reference [VREF+]
AVSS
100 nF
VREF+ or VeREF+
+
−
Apply
External
Reference
10 µ F
100 nF
VREF−/VeREF−
+
−
10 µ F
MSP430F15x
MSP430F16x
MSP430F161x
100 nF
Figure 17. Supply Voltage and Reference Voltage Design VREF−/VeREF− External Supply
DVCC
From
Power
Supply
+
−
10 µ F
DVSS
100 nF
AVCC
+
−
10 µ F
Apply External Reference [VeREF+]
or Use Internal Reference [VREF+]
AVSS
100 nF
MSP430F161x
VREF+ or VeREF+
+
−
10 µ F
MSP430F15x
MSP430F16x
100 nF
Reference Is Internally
Switched to AVSS
VREF−/VeREF−
Figure 18. Supply Voltage and Reference Voltage Design VREF−/VeREF− = AVSS, Internally Connected
40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, timing parameters
PARAMETER
TEST CONDITIONS
fADC12CLK
fADC12OSC
Internal ADC12
oscillator
MIN
NOM
MAX
UNIT
For specified performance of ADC12
linearity parameters
2.2V/
3V
0.45
5
6.3
MHz
ADC12DIV=0,
fADC12CLK=fADC12OSC
2.2 V/
3V
3.7
5
6.3
MHz
CVREF+ ≥ 5 µF, Internal oscillator,
fADC12OSC = 3.7 MHz to 6.3 MHz
2.2 V/
3V
2.06
3.51
µs
tCONVERT
Conversion time
tADC12ON‡
Turn on settling time of
the ADC
(see Note 1)
tSample‡
Sampling time
RS = 400 Ω, RI = 1000 Ω,
CI = 30 pF
τ = [RS + RI] x CI;(see Note 2)
External fADC12CLK from ACLK, MCLK or SMCLK:
ADC12SSEL ≠ 0
13×ADC12DIV×
1/fADC12CLK
µs
100
3V
1220
2.2 V
1400
ns
ns
†
Not production tested, limits characterized
Not production tested, limits verified by design
NOTES: 1. The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already
settled.
2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:
tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance.
‡
12-bit ADC, linearity parameters
PARAMETER
TEST CONDITIONS
1.4 V ≤ (VeREF+ − VREF−/VeREF−) min ≤ 1.6 V
EI
Integral linearity error
1.6 V < (VeREF+ − VREF−/VeREF−) min ≤ [VAVCC]
ED
Differential linearity
error
EO
MIN
NOM
MAX
±2
UNIT
2.2 V/3 V
±1.7
LSB
(VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic)
2.2 V/3 V
±1
LSB
Offset error
(VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−),
Internal impedance of source RS < 100 Ω,
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic)
2.2 V/3 V
±2
±4
LSB
EG
Gain error
(VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic)
2.2 V/3 V
±1.1
±2
LSB
ET
Total unadjusted
error
(VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic)
2.2 V/3 V
±2
±5
LSB
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, temperature sensor and built-in VMID
TEST CONDITIONS
PARAMETER
MIN
NOM
MAX
Operating supply current into
AVCC terminal (see Note 1)
REFON = 0, INCH = 0Ah,
ADC12ON=NA, TA = 25_C
2.2 V
40
120
ISENSOR
3V
60
160
VSENSOR†
ADC12ON = 1, INCH = 0Ah,
TA = 0°C
2.2 V
986
(see Note 2)
3V
986
2.2 V
3.55
3.55±3%
3V
3.55
3.55±3%
TCSENSOR†
ADC12ON = 1, INCH = 0Ah
Sample time required if channel
10 is selected (see Note 3)
ADC12ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1
LSB
IVMID
Current into divider at channel 11
(see Note 4)
ADC12ON = 1, INCH = 0Bh,
1.1
1.1±0.04
AVCC divider at channel 11
ADC12ON = 1, INCH = 0Bh,
VMID is ~0.5 x VAVCC
2.2 V
VMID
3V
1.5
1.50±0.04
Sample time required if channel
11 is selected (see Note 5)
ADC12ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1
LSB
2.2 V
1400
tVMID(sample)
3V
1220
30
3V
30
µA
mV
tSENSOR(sample)†
2.2 V
UNIT
°
mV/°C
µs
2.2 V
NA
3V
NA
µA
V
ns
† Not production tested, limits characterized
NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal
is high). When REFON = 1, ISENSOR is already included in IREF+.
2. The temperature sensor offset can be as much as ±20_C. A single-point calibration is recommended in order to minimize the offset
error of the built-in temperature sensor.
3. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on)
4. No additional current is needed. The VMID is used during sampling.
5. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
12-bit DAC, supply specifications
PARAMETER
AVCC
IDD
PSRR
Analog supply voltage
Supply Current:
Single DAC Channel
(see Notes 1 and 2)
Power supply
rejection ratio
(see Notes 3 and 4)
TEST CONDITIONS
VCC
AVCC = DVCC,
AVSS = DVSS =0 V
MIN
TYP
2.20
MAX
UNIT
3.60
V
DAC12AMPx=2, DAC12IR=0,
DAC12_xDAT=0800h
2.2V/3V
50
110
DAC12AMPx=2, DAC12IR=1,
DAC12_xDAT=0800h , VeREF+=VREF+= AVCC
2.2V/3V
50
110
DAC12AMPx=5, DAC12IR=1,
DAC12_xDAT=0800h, VeREF+=VREF+= AVCC
2.2V/3V
200
440
DAC12AMPx=7, DAC12IR=1,
DAC12_xDAT=0800h, VeREF+=VREF+= AVCC
2.2V/3V
700
1500
DAC12_xDAT = 800h, VREF = 1.5 V
∆AVCC = 100mV
DAC12_xDAT = 800h, VREF = 1.5 V or 2.5 V
∆AVCC = 100mV
µA
2.2V
70
dB
3V
NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.
2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input
specifications.
3. PSRR = 20*log{∆AVCC/∆VDAC12_xOUT}.
4. VREF is applied externally. The internal reference is not used.
42
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit DAC, linearity specifications (see Figure 19)
PARAMETER
TEST CONDITIONS
Resolution
INL
DNL
EO
MIN
(12-bit Monotonic)
Integral nonlinearity
(see Note 1)
Differential nonlinearity
(see Note 1)
Offset voltage w/o
calibration
(see Notes 1, 2)
Offset voltage with
calibration
(see Notes 1, 2)
dE(O)/dT
VCC
Gain error (see Note 1)
dE(G)/dT
Gain temperature
coefficient (see Note 1)
tOffset_Cal
Time for offset calibration
(see Note 3)
MAX
12
Vref = 1.5 V
DAC12AMPx = 7, DAC12IR = 1
2.2V
Vref = 2.5 V
DAC12AMPx = 7, DAC12IR = 1
3V
Vref = 1.5 V
DAC12AMPx = 7, DAC12IR = 1
2.2V
Vref = 2.5 V
DAC12AMPx = 7, DAC12IR = 1
3V
Vref = 1.5 V
DAC12AMPx = 7, DAC12IR = 1
2.2V
Vref = 2.5 V
DAC12AMPx = 7, DAC12IR = 1
3V
Vref = 1.5 V
DAC12AMPx = 7, DAC12IR = 1
2.2V
Vref = 2.5 V
DAC12AMPx = 7, DAC12IR = 1
3V
UNIT
bits
±
±2.0
±8.0
±
LSB
±
±0.4
±1.0
±
LSB
±
±21
mV
±
±2.5
Offset error
temperature coefficient
(see Note 1)
EG
TYP
2.2V/3V
VREF = 1.5 V
2.2V
VREF = 2.5 V
3V
30
uV/C
±
±3.50
2.2V/3V
% FSR
ppm of
FSR/°C
10
DAC12AMPx=2
2.2V/3V
100
DAC12AMPx=3,5
2.2V/3V
32
DAC12AMPx=4,6,7
2.2V/3V
6
ms
NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and
“b” of the first order equation: y = a + b*x. VDAC12_xOUT = EO + (1 + EG) * (VeREF+/4095) * DAC12_xDAT, DAC12IR = 1.
2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON
3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx
={0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may
effect accuracy and is not recommended.
DAC V OUT
DAC Output
VR+
RLoad =
Ideal transfer
function
AV CC
2
Offset Error
Positive
CLoad = 100pF
Negative
Gain Error
DAC Code
Figure 19. Linearity Test Load Conditions and Gain/Offset Definition
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit DAC, linearity specifications (continued)
TYPICAL INL ERROR
vs
DIGITAL INPUT DATA
INL − Integral Nonlinearity Error − LSB
4
VCC = 2.2 V, VREF = 1.5V
DAC12AMPx = 7
DAC12IR = 1
3
2
1
0
−1
−2
−3
−4
0
512
1024
1536
2048
2560
3072
3584
4095
DAC12_xDAT − Digital Code
TYPICAL DNL ERROR
vs
DIGITAL INPUT DATA
DNL − Differential Nonlinearity Error − LSB
2.0
VCC = 2.2 V, VREF = 1.5V
DAC12AMPx = 7
DAC12IR = 1
1.5
1.0
0.5
0.0
−0.5
−1.0
−1.5
−2.0
0
512
1024
1536
2048
2560
DAC12_xDAT − Digital Code
44
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3072
3584
4095
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit DAC, output specifications
PARAMETER
TEST CONDITIONS
VCC
No Load, VeREF+ = AVCC,
DAC12_xDAT = 0h, DAC12IR = 1,
DAC12AMPx = 7
VO
Output voltage
range
(see Note 1,
Figure 22)
CL(DAC12)
Max DAC12
load capacitance
IL(DAC12)
Max DAC12
load current
RO/P(DAC12)
Output
Resistance
(see Figure 22)
MIN
2.2V/3V
TYP
0
MAX
UNIT
0.005
V
No Load, VeREF+ = AVCC,
DAC12_xDAT = 0FFFh, DAC12IR = 1,
DAC12AMPx = 7
2.2V/3V
AVCC−0.05
AVCC
RLoad= 3 kΩ, VeREF+ = AVCC,
DAC12_xDAT = 0h, DAC12IR = 1,
DAC12AMPx = 7
2.2V/3V
0
0.1
V
RLoad= 3 kΩ, VeREF+ = AVCC,
DAC12_xDAT = 0FFFh, DAC12IR = 1,
DAC12AMPx = 7
2.2V/3V
AVCC−0.13
AVCC
V
100
pF
2.2V/3V
2.2V
−0.5
+0.5
mA
3V
−1.0
+1.0
mA
RLoad= 3 kΩ
VO/P(DAC12) = 0 V
DAC12AMPx = 7
DAC12_xDAT = 0h
2.2V/3V
150
250
RLoad= 3 kΩ
VO/P(DAC12) = AVCC
DAC12AMPx = 7
DAC12_xDAT = 0FFFh
2.2V/3V
150
250
RLoad= 3 kΩ
0.3 V < VO/P(DAC12) < AVCC − 0.3 V
DAC12AMPx = 7
2.2V/3V
1
4
Ω
NOTES: 1. Data is valid after the offset calibration of the output amplifier.
ILoad
RO/P(DAC12_x)
Max
RLoad
AV CC
DAC12
2
O/P(DAC12_x)
CLoad= 100pF
Min
0.3
AV CC−0.3V
VOUT
AV CC
Figure 22. DAC12_x Output Resistance Tests
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
12-bit DAC, reference input specifications
PARAMETER
TEST CONDITIONS
Reference input
voltage range
VeREF+
VCC
TYP
MAX
DAC12IR=0, (see Notes 1 and 2)
2.2V/3V
AVCC/3
AVCC+0.2
DAC12IR=1, (see Notes 3 and 4)
2.2V/3V
AVcc
AVcc+0.2
DAC12_0 IR=DAC12_1 IR =0
2.2V/3V
DAC12_0 IR=1, DAC12_1 IR = 0
2.2V/3V
Ri(VREF+),
Reference input
DAC12_0 IR=0, DAC12_1 IR = 1
2.2V/3V
Ri(VeREF+)
resistance
DAC12_0 IR=DAC12_1 IR =1
DAC12_0 SREFx = DAC12_1 SREFx
(see Note 5)
2.2V/3V
NOTES: 1.
2.
3.
4.
5.
MIN
20
UNIT
V
MΩ
40
48
56
kΩ
Ω
20
24
28
kΩ
For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC − VE(O)] / [3*(1 + EG)].
For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).
The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC − VE(O)] / (1 + EG).
When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel
reducing the reference input resistance.
12-bit DAC, dynamic specifications; Vref = VCC, DAC12IR = 1 (see Figure 23 and Figure 24)
PARAMETER
tON
tS(FS)
tS(C-C)
SR
TEST CONDITIONS
DAC12 ontime
DAC12_xDAT = 800h,
ErrorV(O) < ±0.5 LSB
(see Note 1,Figure 23)
Settling
time,full-scale
DAC12_xDAT =
80h→
→ F7Fh→
→ 80h
Settling time,
code to code
DAC12_xDAT =
3F8h→ 408h→ 3F8h
BF8h→ C08h→ BF8h
Slew Rate
DAC12_xDAT =
80h→
→ F7Fh→
→ 80h
Glitch energy: full-scale
DAC12_xDAT =
80h→
→ F7Fh→
→ 80h
VCC
MIN
TYP
MAX
DAC12AMPx=0 → {2, 3, 4}
2.2V/3V
60
120
DAC12AMPx=0 → {5, 6}
2.2V/3V
15
30
DAC12AMPx=0 → 7
2.2V/3V
6
12
DAC12AMPx=2
2.2V/3V
100
200
DAC12AMPx=3,5
2.2V/3V
40
80
DAC12AMPx=4,6,7
2.2V/3V
15
30
DAC12AMPx=2
2.2V/3V
5
DAC12AMPx=3,5
2.2V/3V
2
DAC12AMPx=4,6,7
2.2V/3V
1
DAC12AMPx=2
2.2V/3V
0.05
0.12
DAC12AMPx=3,5
2.2V/3V
0.35
0.7
DAC12AMPx=4,6,7
2.2V/3V
1.5
2.7
DAC12AMPx=2
2.2V/3V
10
DAC12AMPx=3,5
2.2V/3V
10
DAC12AMPx=4,6,7
2.2V/3V
10
NOTES: 1. RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 23.
2. Slew rate applies to output voltage steps >= 200mV.
Conversion 1
VOUT
DAC Output
ILoad
RLoad = 3 kΩ
Glitch
Energy
Conversion 2
Conversion 3
+/− 1/2 LSB
AV CC
2
RO/P(DAC12.x)
+/− 1/2 LSB
CLoad = 100pF
tsettleLH
Figure 23. Settling Time and Glitch Energy Testing
46
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
tsettleHL
UNIT
µs
µs
µs
V/µs
nV-s
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
Conversion 1
Conversion 2
Conversion 3
VOUT
90%
90%
10%
10%
tSRLH
tSRHL
Figure 24. Slew Rate Testing
12-bit DAC, dynamic specifications continued (TA = 25°C unless otherwise noted)
PARAMETER
BW−3dB
TEST CONDITIONS
3-dB bandwidth,
VDC=1.5V, VAC=0.1VPP
(see Figure 25)
Channel to channel crosstalk
(see Note 1 and Figure 26)
VCC
MIN
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,
DAC12IR = 1, DAC12_xDAT = 800h
2.2V/3V
40
DAC12AMPx = {5, 6}, DAC12SREFx = 2,
DAC12IR = 1, DAC12_xDAT = 800h
2.2V/3V
180
DAC12AMPx = 7, DAC12SREFx = 2,
DAC12IR = 1, DAC12_xDAT = 800h
2.2V/3V
550
DAC12_0DAT = 800h, No Load,
DAC12_1DAT = 80h<−>F7Fh, RLoad = 3kΩ
fDAC12_1OUT = 10kHz @ 50/50 duty cycle
2.2V/3V
DAC12_0DAT = 80h<−>F7Fh, RLoad = 3kΩ,
DAC12_1DAT = 800h, No Load
fDAC12_0OUT = 10kHz @ 50/50 duty cycle
2.2V/3V
TYP
MAX
UNIT
kHz
−80
dB
−80
NOTES: 1. RLOAD = 3 kΩ, CLOAD = 100 pF
ILoad
Ve REF+
RLoad = 3 kΩ
AV CC
DAC12_x
2
DACx
AC
CLoad = 100pF
DC
Figure 25. Test Conditions for 3-dB Bandwidth Specification
ILoad
RLoad
AV CC
DAC12_0
DAC12_xDAT 080h
2
DAC0
7F7h
080h
7F7h
080h
V OUT
CLoad= 100pF
VREF+
ILoad
V DAC12_yOUT
RLoad
AV CC
DAC12_1
V DAC12_xOUT
2
DAC1
fToggle
CLoad= 100pF
Figure 26. Crosstalk Test Conditions
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
Flash Memory
TEST
CONDITIONS
PARAMETER
VCC
MIN
NOM
MAX
UNIT
VCC(PGM/
ERASE)
Program and Erase supply voltage
2.7
3.6
V
fFTG
Flash Timing Generator frequency
257
476
kHz
IPGM
Supply current from DVCC during program
2.7 V/ 3.6 V
3
5
mA
IERASE
Supply current from DVCC during erase
2.7 V/ 3.6 V
3
7
mA
tCPT
Cumulative program time
see Note 1
2.7 V/ 3.6 V
4
ms
tCMErase
Cumulative mass erase time
see Note 2
2.7 V/ 3.6 V
200
104
Program/Erase endurance
TJ = 25°C
ms
105
tRetention
Data retention duration
tWord
Word or byte program time
35
tBlock, 0
Block program time for 1st byte or word
30
tBlock, 1-63
Block program time for each additional byte or word
tBlock, End
Block program end-sequence wait time
tMass Erase
Mass erase time
5297
tSeg Erase
Segment erase time
4819
cycles
100
years
21
see Note 3
tFTG
6
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/fFTG,max = 5297x1/476kHz). To
achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met.
(A worst case minimum of 19 cycles are required).
3. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG).
JTAG Interface
TEST
CONDITIONS
PARAMETER
fTCK
TCK input frequency
see Note 1
RInternal
Internal pull-up resistance on TMS, TCK, TDI/TCLK
see Note 2
VCC
MIN
2.2 V
0
NOM
MAX
UNIT
5
MHz
3V
0
10
MHz
2.2 V/ 3 V
25
60
90
kΩ
MIN
NOM
MAX
NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected.
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.
JTAG Fuse (see Note 1)
TEST
CONDITIONS
PARAMETER
VCC(FB)
Supply voltage during fuse-blow condition
VFB
Voltage level on TDI/TCLK for fuse-blow: F versions
IFB
Supply current into TDI/TCLK during fuse blow
tFB
Time to blow fuse
TA = 25°C
VCC
2.5
6
UNIT
V
7
V
100
mA
1
ms
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched
to bypass mode.
48
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic
port P1, P1.0 to P1.7, input/output with Schmitt-trigger
P1SEL.x
0
P1DIR.x
Direction Control
From Module
1
Pad Logic
P1.0/TACLK ...
0
P1OUT.x
Module X OUT
1
P1.7/TA2
P1IN.x
EN
Module X IN
D
P1IRQ.x
P1IE.x
Q
P1IFG.x
EN
Set
Interrupt
Flag
Interrupt
Edge
Select
P1IES.x
P1SEL.x
PnSel.x
PnDIR.x
Dir. CONTROL
FROM MODULE
PnOUT.x
MODULE X OUT
PnIN.x
MODULE X IN
PnIE.x
PnIFG.x
PnIES.x
P1Sel.0
P1DIR.0
P1DIR.0
P1OUT.0
DVSS
P1IN.0
TACLK†
P1IE.0
P1IFG.0
P1IES.0
P1Sel.1
P1DIR.1
P1DIR.1
P1OUT.1
Out0 signal†
P1IN.1
CCI0A†
P1IE.1
P1IFG.1
P1IES.1
signal†
P1Sel.2
P1DIR.2
P1DIR.2
P1OUT.2
Out1
P1IN.2
CCI1A†
P1IE.2
P1IFG.2
P1IES.2
P1Sel.3
P1DIR.3
P1DIR.3
P1OUT.3
Out2 signal†
P1IN.3
CCI2A†
P1IE.3
P1IFG.3
P1IES.3
P1Sel.4
P1DIR.4
P1DIR.4
P1OUT.4
SMCLK
P1IN.4
unused
P1IE.4
P1IFG.4
P1IES.4
signal†
P1Sel.5
P1DIR.5
P1DIR.5
P1OUT.5
Out0
P1IN.5
unused
P1IE.5
P1IFG.5
P1IES.5
P1Sel.6
P1DIR.6
P1DIR.6
P1OUT.6
Out1 signal†
P1IN.6
unused
P1IE.6
P1IFG.6
P1IES.6
P1OUT.7
signal†
P1IN.7
unused
P1IE.7
P1IFG.7
P1IES.7
P1Sel.7
†
P1DIR.7
P1DIR.7
Out2
Signal from or to Timer_A
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
49
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P2, P2.0 to P2.2, P2.6, and P2.7 input/output with Schmitt-trigger
P2SEL.x
0
P2DIR.x
Direction Control
From Module
0: Input
1: Output
1
0
P2OUT.x
Module X OUT
1
P2.0/ACLK
P2.1/TAINCLK
P2.2/CAOUT/TA0
Pad Logic
P2.6/ADC12CLK/DMAE0
P2.7/TA0
P2IN.x
EN
Module X IN
P2IRQ.x
Bus Keeper
D
P2IE.x
P2IFG.x
EN
Q
CAPD.X
Interrupt
Edge
Select
Set
Interrupt
Flag
P2IES.x
P2SEL.x
x: Bit Identifier 0 to 2, 6, and 7 for Port P2
PnSel.x
PnDIR.x
Dir. CONTROL
FROM MODULE
PnOUT.x
MODULE X OUT
PnIN.x
MODULE X IN
PnIE.x
PnIFG.x
PnIES.x
P2Sel.0
P2DIR.0
P2DIR.0
P2OUT.0
ACLK
P2IN.0
unused
P2IE.0
P2IFG.0
P2IES.0
P2Sel.1
P2DIR.1
P2DIR.1
P2OUT.1
DVSS
P2IN.1
INCLK‡
P2IE.1
P2IFG.1
P2IES.1
P2Sel.2
P2DIR.2
P2DIR.2
P2OUT.2
CAOUT†
P2IN.2
CCI0B‡
P2IE.2
P2IFG.2
P2IES.2
P2Sel.6
P2DIR.6
P2DIR.6
P2OUT.6
ADC12CLK¶
P2IN.6
DMAE0#
P2IE.6
P2IFG.6
P2IES.6
P2OUT.7
signal§
P2IN.7
unused
P2IE.7
P2IFG.7
P2IES.7
P2Sel.7
P2DIR.7
P2DIR.7
Out0
†
Signal from Comparator_A
‡ Signal to Timer_A
§ Signal from Timer_A
¶ ADC12CLK signal is output of the 12-bit ADC module
# Signal to DMA, channel 0, 1 and 2
50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P2, P2.3 to P2.4, input/output with Schmitt-trigger
P2SEL.3
0: Input
1: Output
0
P2DIR.3
Direction Control
From Module
1
Pad Logic
P2.3/CA0/TA1
0
P2OUT.3
Module X OUT
1
P2IN.3
EN
Module X IN
Bus Keeper
D
P2IRQ.3
P2IE.3
P2IFG.3
EN
Set
Q
Interrupt
Flag
Interrupt
Edge
Select
CAPD.3
Comparator_A
CAEX
P2CA
P2IES.3
P2SEL.3
CAREF
CAF
+
CCI1B
To Timer_A3
−
P2SEL.4
P2IES.4
Interrupt
Flag
P2IFG.4
P2IRQ.4
Set
EN
Q
P2IE.4
CAREF
Reference Block
Edge
Select
Interrupt
CAPD.4
D
Module X IN
Bus Keeper
EN
P2IN.4
Module X OUT
P2OUT.4
From Module
Direction Control
P2DIR.4
1
0
1
P2.4/CA1/TA2
Pad Logic
1: Output
0: Input
0
P2SEL.4
†
PnSel.x
PnDIR.x
DIRECTION
CONTROL
FROM MODULE
PnOUT.x
MODULE X OUT
PnIN.x
MODULE X IN
PnIE.x
PnIFG.x
PnIES.x
P2Sel.3
P2DIR.3
P2DIR.3
P2OUT.3
Out1 signal†
P2IN.3
unused
P2IE.3
P2IFG.3
P2IES.3
P2Sel.4
P2DIR.4
P2DIR.4
P2OUT.4
Out2 signal†
P2IN.4
unused
P2IE.4
P2IFG.4
P2IES.4
Signal from Timer_A
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P2, P2.5, input/output with Schmitt-trigger and Rosc function for the basic clock module
0: Input
1: Output
P2SEL.5
0
P2DIR.5
Direction Control
From Module
Pad Logic
1
P2.5/Rosc
0
P2OUT.5
Module X OUT
1
Bus Keeper
P2IN.5
EN
Module X IN
P2IRQ.5
D
P2IE.5
Q
P2IFG.5
EN
Set
Interrupt
Flag
VCC
Edge
Select
Interrupt
Internal to
Basic Clock
Module
0
1
to
P2IES.5
P2SEL.5
DCOR
DC Generator
CAPD.5
DCOR: Control Bit From Basic Clock Module
If it Is Set, P2.5 Is Disconnected From P2.5 Pad
PnSel.x
PnDIR.x
DIRECTION
CONTROL
FROM MODULE
PnOUT.x
MODULE X OUT
PnIN.x
MODULE X IN
PnIE.x
PnIFG.x
PnIES.x
P2Sel.5
P2DIR.5
P2DIR.5
P2OUT.5
DVSS
P2IN.5
unused
P2IE.5
P2IFG.5
P2IES.5
52
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt-trigger
P3SEL.x
0: Input
1: Output
0
P3DIR.x
Direction Control
From Module
1
Pad Logic
P3OUT.x
Module X OUT
0
P3.0/STE0
1
P3.4/UTXD0
P3.5/URXD0
P3.6/UTXD1‡
P3.7/URXD1¶
P3IN.x
EN
D
Module X IN
x: Bit Identifier, 0 and 4 to 7 for Port P3
PnSel.x
PnDIR.x
DIRECTION
CONTROL
FROM MODULE
PnOUT.x
MODULE X OUT
PnIN.x
MODULE X IN
P3Sel.0
P3DIR.0
DVSS
P3OUT.0
DVSS
P3IN.0
STE0
P3Sel.4
P3DIR.4
DVCC
P3OUT.4
UTXD0†
P3IN.4
Unused
P3Sel.5
P3DIR.5
DVSS
P3OUT.5
DVSS
P3IN.5
URXD0§
P3Sel.6
P3DIR.6
DVCC
P3OUT.6
UTXD1‡
P3IN.6
Unused
P3Sel.7
P3DIR.7
DVSS
P3OUT.7
DVSS
P3IN.7
URXD1¶
†
Output from USART0 module
Output from USART1 module
‡ Input to USART0 module
¶ Input to USART1 module
‡
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P3, P3.1, input/output with Schmitt-trigger
P3SEL.1
SYNC
MM
STC
STE
0
P3DIR.1
0: Input
1: Output
1
DCM_SIMO
Pad Logic
P3.1/SIMO0/SDA
0
P3OUT1
(SI)MO0 or SDAo/p
From USART0
1
P3IN.1
EN
SI(MO)0 or SDAi/p
To USAET0
54
D
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P3, P3.2, input/output with Schmitt-trigger
P3SEL.2
SYNC
MM
STC
STE
0
P3DIR.2
0: Input
1: Output
1
DCM_SOMI
Pad Logic
P3.2/SOMI0
0
P3OUT.2
SO(MI)0
From USART0
1
P3IN.2
EN
(SO)MI0
To USART0
D
port P3, P3.3, input/output with Schmitt-trigger
P3SEL.3
SYNC
MM
STC
STE
0
P3DIR.3
0: Input
1: Output
1
DCM_UCLK
Pad Logic
P3.3/UCLK0/SCL
0
P3OUT.3
UCLK.0
From USART0
1
P3IN.3
EN
UCLK0
D
To USART0
NOTE: UART mode:
The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always
an input.
SPI, slave mode:
The clock applied to UCLK0 is used to shift data in and out.
SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode).
I2C, slave mode:
The clock applied to SCL is used to shift data in and out. The frequency of the clock source of the module must be
w 10 times the frequency of the SCL clock.
I2C, master mode:
To shift data in and out, the clock is supplied via the SCL terminal to all I2C slaves. The frequency of the clock source
of the module must be w 10 times the frequency of the SCL clock.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
55
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P4, P4.0 to P4.6, input/output with Schmitt-trigger
Module IN of pin
P5.7/TBOUTH/SVSOUT
P4DIR.7
P4SEL.7
P4SEL.x
0: Input
1: Output
0
P4DIR.x
Direction Control
From Module
P4OUT.x
1
P4.0/TB0 ...
0
1
Module X OUT
Bus
Keeper
P4.6/TB6
P4IN.x
EN
Module X IN
D
x: Bit Identifier, 0 to 6 for Port P4
PnSel.x
PnDIR.x
DIRECTION
CONTROL
FROM MODULE
PnOUT.x
MODULE X OUT
PnIN.x
MODULE X IN
P4Sel.0
P4DIR.0
P4DIR.0
P4OUT.0
Out0 signal†
P4IN.0
CCI0A / CCI0B‡
P4OUT.1
Out1
signal†
P4IN.1
CCI1A / CCI1B‡
signal†
P4IN.2
CCI2A / CCI2B‡
P4Sel.1
P4DIR.1
P4DIR.1
P4Sel.2
P4DIR.2
P4DIR.2
P4OUT.2
Out2
P4Sel.3
P4DIR.3
P4DIR.3
P4OUT.3
Out3 signal†
P4IN.3
CCI3A / CCI3B‡
P4OUT.4
Out4
signal†
P4IN.4
CCI4A / CCI4B‡
signal†
P4IN.5
CCI5A / CCI5B‡
P4IN.6
CCI6A
P4Sel.4
P4DIR.4
P4DIR.4
P4Sel.5
P4DIR.5
P4DIR.5
P4OUT.5
Out5
P4Sel.6
P4DIR.6
P4DIR.6
P4OUT.6
Out6 signal†
†
Signal from Timer_B
‡ Signal to Timer_B
56
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P4, P4.7, input/output with Schmitt-trigger
P4SEL.7
0: Input
1: Output
0
P4DIR.7
1
Pad Logic
P4.7/TBCLK
0
P4OUT.7
DVSS
1
P4IN.7
EN
Timer_B,
D
TBCLK
port P5, P5.0 and P5.4 to P5.7, input/output with Schmitt-trigger
P5SEL.x
0: Input
1: Output
0
P5DIR.x
Direction Control
From Module
1
Pad Logic
P5OUT.x
Module X OUT
0
P5.0/STE1
1
P5.4/MCLK
P5.5/SMCLK
P5.6/ACLK
P5.7/TBOUTH/SVSOUT
P5IN.x
EN
Module X IN
D
x: Bit Identifier, 0 and 4 to 7 for Port P5
PnSel.x
PnDIR.x
Dir. CONTROL FROM MODULE
PnOUT.x
P5Sel.0
P5Sel.4
MODULE X OUT
PnIN.x
P5DIR.0
DVSS
P5DIR.4
DVCC
P5Sel.5
P5DIR.5
P5Sel.6
P5DIR.6
P5Sel.7
P5DIR.7
MODULE X IN
P5OUT.0
DVSS
P5IN.0
STE.1
P5OUT.4
MCLK
P5IN.4
unused
DVCC
P5OUT.5
SMCLK
P5IN.5
unused
DVCC
P5OUT.6
ACLK
P5IN.6
unused
DVSS
P5OUT.7
SVSOUT
P5IN.7
TBOUTHiZ
NOTE: TBOUTHiZ signal is used by port module P4, pins P4.0 to P4.6. The function of TBOUTHiZ is mainly useful when used with Timer_B7.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
57
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P5, P5.1, input/output with Schmitt-trigger
P5SEL.1
SYNC
MM
0
P5DIR.1
1
DCM_SIMO
STC
STE
0: Input
1: Output
Pad Logic
P5.1/SIMO1
0
P5OUT.1
(SI)MO1
From USART1
1
P5IN.1
EN
SI(MO)1
To USART1
D
port P5, P5.2, input/output with Schmitt-trigger
P5SEL.2
SYNC
MM
STC
STE
0
P5DIR.2
0: Input
1: Output
1
DCM_SOMI
Pad Logic
P5.2/SOMI1
0
P5OUT.2
SO(MI)1
From USART1
1
P5IN.2
EN
(SO)MI1
To USART1
58
D
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P5, P5.3, input/output with Schmitt-trigger
P5SEL.3
SYNC
MM
STC
STE
0
P5DIR.3
0: Input
1: Output
1
DCM_SIMO
Pad Logic
P5.3/UCLK1
0
P5OUT.3
UCLK1
From USART1
1
P5IN.3
EN
D
UCLK1
To USART1
NOTE: UART mode:
The UART clock can only be an input. If UART mode and UART function are selected, the P5.3/UCLK1 direction
is always input.
SPI, slave mode:
The clock applied to UCLK1 is used to shift data in and out.
SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P5.3/UCLK1 (in slave mode).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
59
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P6, P6.0 to P6.5, input/output with Schmitt-trigger
P6SEL.x
0
P6DIR.x
Direction Control
From Module
0: Input
1: Output
1
Pad Logic
0
P6OUT.x
Module X OUT
1
P6.0/A0
P6.1/A1
P6.2/A2
P6.3/A3
P6.4/A4
P6.5/A5
Bus Keeper
P6IN.x
EN
Module X IN
D
From ADC
To ADC
x: Bit Identifier, 0 to 5 for Port P6
NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if
the analog signal is in the range of transitions 0→1 or 1←0. The value of the throughput current depends on the driving capability of the
gate. For MSP430, it is approximately 100 µA.
Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12.
PnSel.x
PnDIR.x
DIR. CONTROL
FROM MODULE
PnOUT.x
MODULE X OUT
PnIN.x
MODULE X IN
P6Sel.0
P6DIR.0
P6DIR.0
P6OUT.0
DVSS
P6IN.0
unused
P6Sel.1
P6DIR.1
P6DIR.1
P6OUT.1
DVSS
P6IN.1
unused
P6Sel.2
P6DIR.2
P6DIR.2
P6OUT.2
DVSS
P6IN.2
unused
P6Sel.3
P6DIR.3
P6DIR.3
P6OUT.3
DVSS
P6IN.3
unused
P6Sel.4
P6DIR.4
P6DIR.4
P6OUT.4
DVSS
P6IN.4
unused
P6Sel.5
P6DIR.5
P6DIR.5
P6OUT.5
DVSS
P6IN.5
unused
NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module.
60
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P6, P6.6, input/output with Schmitt-trigger
0: Port Active, T-Switch Off
1: T-Switch On, Port Disabled
INCH = 6†
a6†
’1’, if DAC12.0AMP > 0
P6SEL.6
0: Input
1: Output
0
P6DIR.6
Pad Logic
1
P6DIR.6
0
P6OUT.6
1
DVSS
Bus
Keeper
P6.6/A6/DAC0
P6IN.6
EN
D
0, if DAC12.0CALON = 0 and DAC12.0AMP > 1
+
−
1
0
1, if DAC12.0AMP >1
1, if DAC12.0AMP = 1
†Signal
from or to ADC12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
61
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
input/output schematic (continued)
port P6, P6.7, input/output with Schmitt-trigger
To SVS Mux (15)†
0: Port Active, T-Switch Off
1: T-Switch On, Port Disabled
INCH = 7‡
a7‡
’1’, if VLD = 15§
’1’, if DAC12.0AMP > 0
P6SEL.6
0: Input
1: Output
0
P6DIR.7
1
P6DIR.7
0
P6OUT.7
1
DVSS
Bus
Keeper
P6IN.7
EN
D
0, if DAC12.0CALON = 0 and DAC12.0AMP > 1
+
−
1
0
1, if DAC12.0AMP > 1
1, if DAC12.0AMP = 1
†Signal
to SVS Block, Selected if VLD = 15
From or To ADC12
§VLD Control Bits are Located in SVS
‡Signal
62
Pad Logic
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
P6.7/A7/
DAC1/SVSIN
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger
TDO
Controlled by JTAG
Controlled by JTAG
JTAG
TDO/TDI
Controlled
by JTAG
DVCC
DVCC
TDI
Fuse
Burn & Test
Fuse
Test
TDI/TCLK
and
DVCC
Emulation
Module
TMS
TMS
DVCC
During Programming Activity and
During Blowing of the Fuse, Pin
TDO/TDI Is Used to Apply the Test
Input Data for JTAG Circuitry
TCK
TCK
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
63
SLAS368D− OCTOBER 2002− REVISED MARCH 2005
APPLICATION INFORMATION
JTAG fuse check mode
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check
current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned.
Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power
consumption.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the
fuse check mode has the potential to be activated.
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see
Figure 27). Therefore, the additional current flow can be prevented by holding the TMS pin high (default
condition).
Time TMS Goes Low After POR
TMS
ITDI/TCLK
ITF
Figure 27. Fuse Check Mode Current, MSP430x15x/16x/161x
64
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
5-Jul-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
MSP430F155IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F155IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F156IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F156IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F157IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F157IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F1610IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F1610IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
TBD
Lead/Ball Finish
MSP430F1610IRTD
ACTIVE
QFN
RTD
64
MSP430F1610IRTDR
ACTIVE
QFN
RTD
64
2500 Green (RoHS &
no Sb/Br)
Level-2-260C-1 YEAR
MSP430F1610IRTDT
ACTIVE
QFN
RTD
64
250
Green (RoHS &
no Sb/Br)
Level-2-260C-1 YEAR
MSP430F1611IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F1611IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F1611IRTD
ACTIVE
QFN
RTD
64
MSP430F1611IRTDR
ACTIVE
QFN
RTD
64
2500 Green (RoHS &
no Sb/Br)
Level-2-260C-1 YEAR
MSP430F1611IRTDT
ACTIVE
QFN
RTD
64
250
Green (RoHS &
no Sb/Br)
Level-2-260C-1 YEAR
MSP430F1612IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F1612IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
TBD
TBD
Call TI
MSL Peak Temp (3)
Call TI
Call TI
MSP430F1612IRTD
ACTIVE
QFN
RTD
64
MSP430F1612IRTDR
ACTIVE
QFN
RTD
64
2500 Green (RoHS &
no Sb/Br)
Level-2-260C-1 YEAR
MSP430F1612IRTDT
ACTIVE
QFN
RTD
64
250
Green (RoHS &
no Sb/Br)
Level-2-260C-1 YEAR
MSP430F167IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F167IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F168IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F168IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F169IPM
ACTIVE
LQFP
PM
64
160
CU NIPDAU
Level-3-260C-168 HR
Addendum-Page 1
Green (RoHS &
no Sb/Br)
Call TI
Call TI
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
5-Jul-2005
Orderable Device
Status (1)
Package
Type
Package
Drawing
MSP430F169IPMR
ACTIVE
LQFP
PM
Pins Package Eco Plan (2)
Qty
64
1000 Green (RoHS &
no Sb/Br)
Lead/Ball Finish
CU NIPDAU
MSL Peak Temp (3)
Level-3-260C-168 HR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996
PM (S-PQFP-G64)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
0,08 M
33
48
49
32
64
17
0,13 NOM
1
16
7,50 TYP
Gage Plane
10,20
SQ
9,80
12,20
SQ
11,80
0,25
0,05 MIN
0°– 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040152 / C 11/96
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Falls within JEDEC MS-026
May also be thermally enhanced plastic with leads connected to the die pads.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated