WINBOND N79E352

Preliminary N79E352 Data Sheet
8-BIT MICROCONTROLLER
Table of Contents1.
GENERAL DESCRIPTION ......................................................................................................... 4
2.
FEATURES ................................................................................................................................. 5
3.
PARTS INFORMATION LIST ..................................................................................................... 6
3.1
Lead Free (RoHS) Parts information list......................................................................... 6
4.
PIN CONFIGURATIONS............................................................................................................. 7
5.
PIN DESCRIPTIONS .................................................................................................................. 9
6.
FUNCTIONAL DESCRIPTION ................................................................................................. 11
7.
8.
6.1
On-Chip Flash EPROM ................................................................................................ 11
6.2
I/O Ports........................................................................................................................ 11
6.3
Serial I/O ....................................................................................................................... 11
6.4
Timers ........................................................................................................................... 11
6.5
Interrupts....................................................................................................................... 11
6.6
Data Pointers ................................................................................................................ 11
6.7
Architecture................................................................................................................... 11
6.8
Power Management...................................................................................................... 12
MEMORY ORGANIZATION...................................................................................................... 13
7.1
Program Memory (on-chip Flash) ................................................................................. 13
7.2
Data Memory ................................................................................................................ 14
7.3
Scratch-pad RAM and Register Map............................................................................ 14
SPECIAL FUNCTION REGISTERS ......................................................................................... 17
8.1
SFR Location Table ...................................................................................................... 17
8.2
SFR Detail Bit Descriptions .......................................................................................... 21
9.
INSTRUCTION.......................................................................................................................... 50
10.
POWER MANAGEMENT.......................................................................................................... 58
11.
12.
10.1
Idle Mode ...................................................................................................................... 58
10.2
Economy Mode ............................................................................................................. 58
10.3
Power Down Mode ....................................................................................................... 59
RESET CONDITIONS............................................................................................................... 60
11.1
Sources of reset............................................................................................................ 60
11.2
Reset State ................................................................................................................... 60
PROGRAMMABLE TIMERS/COUNTERS ............................................................................... 62
12.1
Timer/Counters 0 & 1.................................................................................................... 62
-1-
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
13.
12.2
Time-base Selection ..................................................................................................... 62
12.3
Timer/Counter 2 ............................................................................................................ 65
NVM MEMORY ......................................................................................................................... 69
13.1
Operation ...................................................................................................................... 69
14.
WATCHDOG TIMER................................................................................................................. 71
15.
UART SERIAL PORT................................................................................................................ 73
16.
15.1
Mode 0 .......................................................................................................................... 73
15.2
Mode 1 .......................................................................................................................... 74
15.3
Mode 2 .......................................................................................................................... 75
15.4
Mode 3 .......................................................................................................................... 78
15.5
Framing Error Detection ............................................................................................... 79
15.6
Multiprocessor Communications .................................................................................. 79
I2C SERIAL PORT.................................................................................................................... 81
16.1
SIO Port ........................................................................................................................ 81
16.2
The I2C Control Registers: ........................................................................................... 82
16.3
Modes of Operation ...................................................................................................... 84
16.4
Data Transfer Flow in Five Operating Modes............................................................... 85
17.
TIMED ACCESS PROTECTION .............................................................................................. 92
18.
INTERRUPTS ........................................................................................................................... 94
18.1
Interrupt Sources .......................................................................................................... 94
18.2
Priority Level Structure ................................................................................................. 95
18.3
Interrupt Response Time .............................................................................................. 97
18.4
Interrupt Inputs.............................................................................................................. 97
19.
KEYBOARD FUNCTION........................................................................................................... 99
20.
I/O PORT................................................................................................................................. 100
21.
22.
23.
20.1
Quasi-Bidirectional Output Configuration ................................................................... 100
20.2
Open Drain Output Configuration ............................................................................... 101
20.3
Push-Pull Output Configuration .................................................................................. 102
20.4
Input Only Mode.......................................................................................................... 102
OSCILLATOR ......................................................................................................................... 104
21.1
On-Chip RC Oscillator Option..................................................................................... 104
21.2
External Clock Input Option ........................................................................................ 104
21.3
CPU Clock Rate select ............................................................................................... 104
POWER MONITORING .......................................................................................................... 106
22.1
Power On Detect......................................................................................................... 106
22.2
Brownout Detect and Reset........................................................................................ 106
PULSE WIDTH MODULATED OUTPUTS (PWM) ................................................................. 108
-2-
Preliminary N79E352 Data Sheet
24.
25.
26.
27.
CONFIG BITS ......................................................................................................................... 109
24.1
CONFIG0 .................................................................................................................... 109
24.2
CONFIG1 .................................................................................................................... 110
ELECTRICAL CHARACTERISTICS....................................................................................... 112
25.1
Absolute Maximum Ratings ........................................................................................ 112
25.2
D.C. Characteristics.................................................................................................... 113
25.3
A.C. Characteristics .................................................................................................... 114
25.4
Typical Application Circuit........................................................................................... 119
PACKAGE DIMENSIONS ....................................................................................................... 120
26.1
40-pin DIP ................................................................................................................... 120
26.2
44-pin PLCC ............................................................................................................... 121
26.3
44-pin PQFP ............................................................................................................... 122
26.4
48-pin LQFP................................................................................................................ 123
REVISION HISTORY .............................................................................................................. 124
-3-
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
1. GENERAL DESCRIPTION
The N78E352 series are an 8-bit Turbo 51 microcontroller which has Flash EPROM programmable
hardware writer. The instruction set of the N78E352 series are fully compatible with the standard
8052. The N78E352 series contain a 8Kbytes of main Flash EPROM; a 256 bytes of RAM; 128 bytes
NVM Data Flash EPROM; three 16-bit timer/counters; 2-channel 8-bit PWM; 1-channel UART. These
peripherals are supported by 10 interrupt sources four-level interrupt capability. To facilitate
programming and verification, the Flash EPROM inside the N78E352 series allow the program
memory to be programmed and read electronically. Once the code is confirmed, the user can protect
the code for security. N78E352 is designed for cost effective applications which can serve industrial
devices, and other low power applications.
-4-
Preliminary N79E352 Data Sheet
2. FEATURES
•
Fully static design 8-bit Turbo 51 CMOS microcontroller up to 24MHz when VDD=4.5V to 5.5V,
12MHz when VDD=2.7V to 5.5V, and 4MHz when VDD=2.4V to 5.5V.
•
8K bytes of AP Flash EPROM, with external writer programmable mode.
•
256 bytes of on-chip RAM.
•
128 bytes NVM Data Flash EPROM for customer data storage used and 10K writer cycles.
•
Instruction-set compatible with MSC-51.
•
On-chip configurable RC oscillator: 22.1184MHz/11.0592MHz with ±2% accuracy (selectable by
config bit), at 3.3 voltage and 25°C condition.
•
Three 16-bit timer/counters.
•
10 interrupt source with four levels of priority.
•
One enhanced full duplex serial port with framing error detection and automatic address
recognition.
•
4 outputs mode and TTL/Schmitt trigger selectable Port.
•
Programmable Watchdog Timer with 20KHz internal RC clock can wake-up the power down
mode, and have very low power under 10uA at 5V.
•
Two-channel 8-bit PWM.
•
One I2C communication port.
•
Dual 16-bit Data Pointers.
•
Software programmable access cycle to external RAM/peripherals.
•
Eight keypads interrupt inputs with sharing the same interrupt source.
•
LED drive capability (20mA) on all port pins, total 100mA.
•
Low Voltage (3 levels) Detect interrupt and reset.
•
o
o
Industrial temperature grade -40 C~85 C.
•
Packages:
- Lead Free (RoHS) DIP40: N79E352AEG
- Lead Free (RoHS) PLCC44: N79E352APG
- Lead Free (RoHS) PQFP44: N79E352AFG
- Lead Free (RoHS) LQFP48: N79E352ALG
-
-5-
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
3. PARTS INFORMATION LIST
3.1 Lead Free (RoHS) Parts information list
PART NO.
EPROM
FLASH SIZE
RAM
NVM FLASH
EPROM
N79E352AEG
8KB
256B
128B
DIP-40 Pin
N79E352APG
8KB
256B
128B
PLCC-44 Pin
N79E352AFG
8KB
256B
128B
PQFP-44 Pin
N79E352ALG
8KB
256B
128B
LQFP-48 Pin
PACKAGE
Table 3-1: Lead Free (RoHS) Parts information list
-6-
REMARK
Preliminary N79E352 Data Sheet
4. PIN CONFIGURATIONS
1
40
VDD
2
39
P 0 .0 , A D 0 , K B 0
S D A , P 1 .2
3
38
P 0 .1 , A D 1 , K B 1
S C L , P 1 .3
4
37
P 0 .2 , A D 2 , K B 2
P W M 0 , P 1 .4
5
36
P 0 .3 , A D 3 , K B 3
P W M 1 , P 1 .5
6
35
P 0 .4 , A D 4 , K B 4
P 1 .6
7
34
P 0 .5 , A D 5 , K B 5
P 1 .7
8
33
P 0 .6 , A D 6 , K B 6
RST
9
32
P 0 .7 , A D 7 , K B 7
31
EA
30
ALE
DIP 40-pin
T 2 , P 1 .0
T 2 E X , P 1 .1
R X D , P 3 .0
10
T X D , P 3 .1
11
IN T 0 , P 3 .2
12
29
PSEN
IN T 1 , P 3 .3
13
28
P 2 .7 , A 1 5
T 0 , P 3 .4
14
27
P 2 .6 , A 1 4
T 1 , P 3 .5
15
26
P 2 .5 , A 1 3
W R , P 3 .6
16
25
P 2 .4 , A 1 2
R D , P 3 .7
17
24
P 2 .3 , A 1 1
P 5 .0 ,X T A L 2
18
23
P 2 .2 , A 1 0
P 5 .1 ,X T A L 1
19
22
P 2 .1 , A 9
VSS
20
21
P 2 .0 , A 8
SCL, P1.3
T2EX, P1.1
T2, P1.0
P4.2
VDD
KB0, AD0, P0.0
KB1, AD1, P0.1
KB2, AD2, P0.2
KB3, AD3, P0.3
5
4
3
2
1
44
43
42
41
40
6
SDA, P1.2
PWM0, P1.4
P W M 1 , P 1 .5
7
39
P 0 .4 , A D 4 , K B 4
P 1 .6
8
38
P 0 .5 , A D 5 , K B 5
P 1 .7
9
37
P 0 .6 , A D 6 , K B 6
RST
10
36
P 0 .7 , A D 7 , K B 7
R X D , P 3 .0
11
35
EA
P 4 .3
12
34
P 4 .1
T X D , P 3 .1
13
33
ALE
IN T 0 , P 3 .2
14
32
PSEN
IN T 1 , P 3 .3
15
31
P 2 .7 , A 1 5
T 0 , P 3 .4
16
30
P 2 .6 , A 1 4
T 1 , P 3 .5
17
29
P 2 .5 , A 1 3
P L C C 4 4 -p in
27
28
P2.1, A9
P2.2, A10
P2.3, A11
P2.4, A12
VSS
26
XTAL1, P5.1
25
22
XTAL2, P5.2
P2.0, A8
21
P3.7, RD
P4.0
20
24
19
P3.6, WR
23
18
-7-
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
T2, P1.0
P4.2
VDD
KB0, AD0, P0.0
KB1, AD1, P0.1
KB2, AD2, P0.2
KB3, AD3, P0.3
42
41
40
39
38
37
36
35
34
43
SDA, P1.2
SCL, P1.3
44
T2EX, P1.1
PWM0, P1.4
PWM1, P1.5
1
33
P0.4, AD4, KB4
P1.6
2
32
P0.5, AD5, KB5
P1.7
3
31
P0.6, AD6, KB6
RST
4
30
P0.7, AD7, KB7
RXD, P3.0
5
29
EA
P4.3
6
28
P4.1
LQFP 44-pin
TXD, P3.1
7
27
ALE
INT0, P3.2
8
26
PSEN
INT1, P3.3
9
25
P2.7, A15
T0, P3.4
10
24
P2.6, A14
T1, P3.5
11
23
P2.5, A13
22
21
P2.4, A12
P2.3, A11
17
18
19
XTAL1, P5.1
VSS
P4.0
P2.0, A8
P2.1, A9
P2.2, A10
16
XTAL2, P5.2
KB3, AD3, P0.3
KB2, AD2, P0.2
KB1, AD1, P0.1
37
38
39
P4.2
VDD
44
43
42
41
40
T2, P1.0
45
KB0, AD0, P0.0
SDA, P1.2
T2EX, P1.1
46
48
47
SCL, P1.3
NC
PWM0, P1.4
21
22
23
24
P2.0, A8
P2.1, A9
P2.2, A10
P2.3, A11
P2.4, A12
NC
VSS
20
XTAL1, P5.1
P4.0
17
19
16
P3.7, /RD
XTAL2, P5.2
18
15
P3.6, /WR
14
13
-8-
20
15
P3.6, WR
P3.7, RD
14
13
12
PWM1, P1.5
1
36
NC
P1.6
2
35
P0.4, AD4, KB4
P1.7
3
34
RST
4
33
P3.0
5
32
P4.3
6
31
EA
P3.1
7
30
P4.1
INT0, P3.2
8
29
ALE
INT1, P3.3
9
28
PSEN
T0, P3.4
10
27
P2.7, A15
T1, P3.5
11
26
P2.6, A14
NC
12
25
P2.5, A13
LQFP 48-pin
P0.5, AD5, KB5
P0.6, AD6, KB6
P0.7, AD7, KB7
Preliminary N79E352 Data Sheet
5. PIN DESCRIPTIONS
SYMBOL
Alternate
Function 1
Alternate
function 2
Type
XTAL1
P5.1
I/O
CRYSTAL1: This is the crystal
oscillator input. This pin may be
driven by an external clock or
configurable i/o pin, P5.1.
XTAL2
P5.0
I/O
CRYSTAL2: This is the crystal
oscillator output. It is the
inversion of XTAL1. Also a
configurable i/o pin, P5.0.
DESCRIPTIONS
VDD
P
POWER SUPPLY: Supply
voltage for operation.
VSS
P
GROUND: Ground potential.
RST
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P3.0
P3.1
RESET: A high on this pin for
two machine cycles while the
oscillator is running resets the
device.
KB0
KB1
KB2
KB3
KB4
KB5
KB6
KB7
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
PORT0:
T2
T2EX
SDA
SCL
PWM0
PWM1
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
PORT1:
A8
A9
A10
A11
A12
A13
A14
A15
RXD
TXD
-9-
Support 4 mode output and 2
mode input.
Multifunction pins for AD0-7and
KB0-7.
Support 4 mode output and 2
mode input.
Multifunction pins for SDA & SCL
(I2C), T2, T2EX and PWM0-1.
PORT2:
Support 4 mode output and 2
mode input.
Multifunction pins for A8-A15,.
PORT3:
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P4.0
/INT0
/INT1
T0
T1
/WR
/RD
I/O
I/O
I/O
I/O
I/O
I/O
I/O
Support 4 mode output and 2
mode input.
P4.1
I/O
Quasi output with internal pull up.
P4.2
I/O
P4.3
I/O
- 10 -
Multifunction pins for RXD & TXD
(uart), /INT0, /INT1, T0, T1, /WR
and /RD.
PORT4:
Preliminary N79E352 Data Sheet
6. FUNCTIONAL DESCRIPTION
N78E352 series architecture consist of a 4T 8051 core controller surrounded by various registers, 8K
bytes Flash EPROM, 256 bytes of RAM, 128 bytes NVM Data Flash EPROM; three timer/counters,
one UART serial port, one i2c serial port, eight keypad interrupt input, 2-channel PWM with 8-bit
counter, 24-channel analog switches and Flash EPROM program by Writer.
6.1 On-Chip Flash EPROM
N78E352 series include one 8K bytes of main Flash EPROM for application program which need
Writer to program the Flash EPROM.
6.2 I/O Ports
N78E352 series have four 8-bit, one 4-bit port and one 2-bit port, with at least 36 I/O pins. All ports
(except port 4) can be used as four outputs mode when it may set by PxM1.y and PxM2.y (x=0-3,5;
y=0-7) registers, it has strong pull-ups and pull-downs, and does not need any external pull-ups.
Otherwise it can be used as general I/O port as open drain circuit. All ports can be used bi-directional
and these are as I/O ports. These ports are not true I/O, but rather are pseudo-I/O ports. This is
because these ports have strong pull-downs and weak pull-ups.
6.3 Serial I/O
N78E352 series have one uart serial port that is functionally similar to the serial port of the original
8032 family. However the serial port on N78E352 series can operate in different modes in order to
obtain timing similarity as well. The Serial port has the enhanced features of Automatic Address
recognition and Frame Error detection.
6.4 Timers
The device has total three 16-bit timers; two 16-bit timers that have functions similar to the timers of
the 8032 family, and third timer is capable to function as timer and also provide capture support.
When used as timers, user has a choice to set 12 or 4 clocks per count that emulates the timing of the
original 8032. Each timer’s count value is stored in two SFR locations that can be written or read by
software. There are also some other SFRs associated with the timers that control their mode and
operation.
6.5 Interrupts
The Interrupt structure in N78E352 series is slightly different from that of the standard 8052. Due to
the presence of additional features and peripherals, the number of interrupt sources and vectors has
been increased.
6.6 Data Pointers
The original 8052 had only one 16-bit Data Pointer (DPL, DPH). In the N78E352, there is an additional
16-bit Data Pointer (DPL1, DPH1). This new Data Pointer uses two SFR locations which were unused
in the original 8052. In addition there is an added instruction, DEC DPTR (op-code A5H), which helps
in improving programming flexibility for the user.
6.7 Architecture
N78E352 series are based on the standard 8052 device. It is built around an 8-bit ALU that uses
internal registers for temporary storage and control of the peripheral devices. It can execute the
standard 8052 instruction set.
- 11 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
6.7.1
ALU
The ALU is the heart of the N78E352. It is responsible for the arithmetic and logical functions. It is also
used in decision making, in case of jump instructions, and is also used in calculating jump addresses.
The user cannot directly use the ALU, but the Instruction Decoder reads the op-code, decodes it, and
sequences the data through the ALU and its associated registers to generate the required result. The
ALU mainly uses the ACC which is a special function register (SFR) on the chip. Another SFR, namely
B register is also used in Multiply and Divide instructions. The ALU generates several status signals
which are stored in the Program Status Word register (PSW).
6.7.2
Accumulator
The Accumulator (ACC) is the primary register used in arithmetic, logical and data transfer operations
in N78E352. Since the Accumulator is directly accessible by the CPU, most of the high speed
instructions make use of the ACC as one argument.
6.7.3
B Register
This is an 8-bit register that is used as the second argument in the MUL and DIV instructions. For all
other instructions it can be used simply as a general purpose register.
6.7.4
Program Status Word:
This is an 8-bit SFR that is used to store the status bits of the ALU. It holds the Carry flag, the Auxiliary
Carry flag, General purpose flags, the Register Bank Select, the Overflow flag, and the Parity flag.
6.7.5
Scratch-pad RAM
N78E352 series have a 256 bytes on-chip scratch-pad RAM. These can be used by the user for
temporary storage during program execution. A certain section of this RAM is bit addressable, and
can be directly addressed for this purpose.
6.7.6
Stack Pointer
N78E352 series have an 8-bit Stack Pointer which points to the top of the Stack. This stack resides in
the Scratch Pad RAM. Hence the size of the stack is limited by the size of this RAM.
6.8 Power Management
Like the standard 80C52, the N78E352 also has IDLE and POWER DOWN modes of operation. The
N78E352 provides a new Economy mode which allow user to switch the internal clock rate divided by
either 4, 64 or 1024. In the IDLE mode, the clock to the CPU core is stopped while the timers, serial
ports and interrupts clock continue to operate. In the POWER DOWN mode, all the clock are stopped
and the chip operation is completely stopped, and C2F is disabled. This is the lowest power
consumption state.
- 12 -
Preliminary N79E352 Data Sheet
7. MEMORY ORGANIZATION
N78E352 series separate the memory into two separate sections, the Program Memory and the Data
Memory. The Program Memory is used to store the instruction op-codes, while the Data Memory is
used to store data or for memory mapped devices.
(For 512B NVM,
64bytes/page)
Page 7
Page 6
FDFFH/FCFFH/FC7F/FC3FH
(64/32/16/8 bytes/page)
FC00H
Page 5
128B
NVM
Data Memory
(MOVX)
Page 4
Page 3
Page 2
Page 1
Page 0
FFFFH
FDFFh
FDC0h
FDBFh
FD80h
FD7Fh
FD40h
FD3Fh
External
Program
Memory
FD00h
FCFFh
FCC0h
FCBFh
FC80h
FC7Fh
FC40h
FC3Fh
FC00h
2000H/1000H
1FFFH/0FFFH
NVM Data Memory Area
8/4K Bytes
On-Chip
Code Memory
CONFIG 1
CONFIG 0
0000H
Program
Memory Space
Figure 7-1: N78E352 series Memory Map
7.1 Program Memory (on-chip Flash)
The Program Memory on N78E352 series can be up to 8K bytes long. All instructions are fetched for
execution from this memory area. The MOVC instruction can also access this memory region.
- 13 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
7.2 Data Memory
The N78E352 series have NVM data memory of 128 bytes for customer’s data store used. The NVM
data memory has 8 pages area and each page has 64/32/16/8 bytes. The N78E352 series can access
up to 64Kbytes of external Data Memory. This memory region is accessed by the MOVX instructions.
For NVM s/w read access, user require to set EnNVM bit, otherwise, the access will goes to external
data memory. N78E352 has the standard 256 bytes of on-chip Scratchpad RAM. This can be
accessed either by direct addressing or by indirect addressing. There are also some Special Function
Registers (SFRs), which can only be accessed by direct addressing. Since the Scratchpad RAM is
only 256 bytes, it can be used only when data contents are small.
7.3 Scratch-pad RAM and Register Map
As mentioned before, N78E352 series have separate Program and Data Memory areas. The on-chip
256 bytes scratch pad RAM is in addition to the external memory. There are also several Special
Function Registers (SFRs) which can be accessed by software. The SFRs can be accessed only by
direct addressing, while the on-chip RAM can be accessed by either direct or indirect addressing.
FFH
Indirect
RAM
Addressing
80H
7FH
00H
SFR
Direct
Addressing
Only
Direct
&
Indirect
RAM
Addressing
Figure 7-2: N78E352 series RAM and SFR Memory Map
Since the scratch-pad RAM is only 256 bytes it can be used only when data contents are small. There
are several other special purpose areas within the scratch-pad RAM. These are illustrated in next
figure.
- 14 -
Preliminary N79E352 Data Sheet
FFH
Indirect RAM
80H
7FH
Direct RAM
30H
2FH
7F
7E
7D
7C
7B
7A
79
78
2EH
77
76
75
74
73
72
71
70
2DH
6F
6E
6D
6C
6B
6A
69
68
2CH
67
66
65
64
63
62
61
60
2BH
5F
5E
5D
5C
5B
5A
59
58
2AH
57
56
55
54
53
52
51
50
29H
4F
4E
4D
4C
4B
4A
49
48
28H
47
46
45
44
43
42
41
40
27H
3F
3E
3D
3C
3B
3A
39
38
26H
37
36
35
34
33
32
31
30
25H
2F
2E
2D
2C
2B
2A
29
28
24H
27
26
25
24
23
22
21
20
23H
1F
1E
1D
1C
1B
1A
19
18
22H
17
16
15
14
13
12
11
10
21H
0F
0E
0D
0C
0B
0A
09
08
20H
1FH
07
06
05
04
03
02
01
00
Bank 3
18H
17H
Bank 2
10H
0FH
Bank 1
08H
07H
Bank 0
00H
Figure 7-3: Scratch-pad RAM
- 15 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
7.3.1
Working Registers
There are four sets of working registers, each consisting of eight 8-bit registers. These are termed as
Banks 0, 1, 2, and 3. Individual registers within these banks can be directly accessed by separate
instructions. These individual registers are named as R0, R1, R2, R3, R4, R5, R6 and R7. However,
at any one time N78E352 series can work with only one particular bank. The bank selection is done by
setting RS1-RS0 bits in the PSW. The R0 and R1 registers are used to store the address for indirect
accessing.
7.3.2
Bit addressable Locations
The Scratch-pad RAM area from location 20h to 2Fh is byte as well as bit addressable. This means
that a bit in this area can be individually addressed. In addition some of the SFRs are also bit
addressable. The instruction decoder is able to distinguish a bit access from a byte access by the type
of the instruction itself. In the SFR area, any existing SFR whose address ends in a 0 or 8 is bit
addressable.
7.3.3
Stack
The scratch-pad RAM can be used for the stack. This area is selected by the Stack Pointer (SP),
which stores the address of the top of the stack. Whenever a jump, call or interrupt is invoked the
return address is placed on the stack. There is no restriction as to where the stack can begin in the
RAM. By default however, the Stack Pointer contains 07h at reset. The user can then change this to
any value desired. The SP will point to the last used value. Therefore, the SP will be incremented and
then address saved onto the stack. Conversely, while popping from the stack the contents will be read
first, and then the SP is decreased.
- 16 -
Preliminary N79E352 Data Sheet
8. SPECIAL FUNCTION REGISTERS
The N78E352 uses Special Function Registers (SFRs) to control and monitor peripherals and their
Modes.
The SFRs reside in the register locations 80-FFh and are accessed by direct addressing only. Some
of the SFRs are bit addressable. This is very useful in cases where one wishes to modify a particular
bit without changing the others. The SFRs that are bit addressable are those whose addresses end in
0 or 8. The N78E352 contains all the SFRs present in the standard 8052. However, some additional
SFRs have been added. In some cases unused bits in the original 8052 have been given new
functions. The list of SFRs is as follows. The table is condensed with eight locations per row. Empty
locations indicate that there are no registers at these addresses. When a bit or register is not
implemented, it will read high.
8.1 SFR Location Table
F8
IP1
F0
B
E8
EIE
E0
ACC
D8
WDCON
D0
PSW
C8
T2CON
C0
IP1H
KBL
PORTS
P5M1
P5M2
PWM0L
PWM1L
PWMCON1
T2MOD
RCAP2L
RCAP2H
TL2
TH2
NVMCON
I2CON
I2ADDR
ROMMAP
PMR
B8
IP0
SADEN
I2DATA
STATUS
I2STATUS
NVMADDRL
I2CLK
B0
P3
P0M1
P1M2
P2M1
P2M2
IP0H
A8
IE
SADDR
A0
P2
KBI
98
SCON
SBUF
P3M1
P3M2
PWMCON3
P0M2
P1M1
AUXR1
NVMDAT
TA
I2TIMER
P4
90
P1
NVMADDRH
P5
88
TCON
TMOD
TL0
TL1
TH0
TH1
CKCON
80
P0
SP
DPL
DPH
DPL1
DPH1
DPS
PCON
Note: The SFRs in the column with dark borders are bit-addressable.
Table 8- 1: Special Function Register Location Table
- 17 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
SYMBOL
DEFINITION
ADDRESS
IP1
INTERRUPT PRIORITY 1
F8H
PCAP
MSB
PBO
BIT ADDRESS, SYMBOL
IP1H
INTERRUPT HIGH PRIORITY 1
F7H
PCAPH
B
B REGISTER
F0H
B.7
P5M2
PORT 5 OUTPUT MODE 2
EEH
-
-
LSB
-
PWDI
-
PBOH
-
PWDIH
-
B.6
B.5
B.4
B.3
-
-
-
-
-
RESET
PKB
PI2
00x0 xx00B
-
PKBH
PI2H
00x0 xx00B
B.2
B.1
B.0
0000 0000B
P5M2.1
P5M2.0
CONFIG0.PMOD
E=1;
Xxxx xx00B
CONFIG0.PMOD
E=0;
Xxxx xx11B
P5M1
PORT 5 OUTPUT MODE 1
EDH
-
-
-
-
-
ENCLK
P5M1.1
P5M1.0
CONFIG0.PMOD
E=1;
Xxxx x000B
CONFIG0.PMOD
E=0;
Xxxx x011B
PORTS
PORT SHMITT REGISTER
ECH
-
-
P5S
-
P3S
P2S
P1S
P0S
xx0x 0000B
KBL
KEYBOARD LEVEL REGISTER
E9H
KBL.7
KBL.6
KBL.5
KBL.4
KBL.3
KBL.2
KBL.1
KBL.0
0000 0000B
EIE
INTERRUPT ENABLE 1
E8H
ECPTF
EBO
-
EWDI
-
-
EKB
EI2
00x0 xx00B
ACC
ACCUMULATOR
E0H
ACC.7
ACC.6
ACC.5
ACC.4
ACC.3
ACC.2
ACC.1
ACC.0
0000 0000B
PWMCON1
PWM CONTROL REGISTER 1
DCH
PWMRUN
-
-
CLRPWM
-
-
-
-
0xx0 xxxxB
PWM1L
PWM 1 LOW BITS REGISTER
DBH
PWM1.7
PWM1.6
PWM1.5
PWM1.4
PWM1.3
PWM1.2
PWM1.1
PWM1.0
0000 0000B
PWM0L
PWM 0 LOW BITS REGISTER
DAH
PWM0.7
PWM0.6
PWM0.5
PWM0.4
PWM0.3
PWM0.2
PWM0.1
PWM0.0
0000 0000B
WDCON
WATCH-DOG CONTROL
D8H
WDRUN
POR
-
-
WDIF
WTRF
EWRST
WDCLR
POR:
X1xx 0000B
External reset:
Xxxx 0xx0B
Watchdog reset:
Xxxx 01x0B
PWMCON3
PWM CONTROL REGISTER 3
D7H
-
-
PWM1OE
PWM0OE
PCLK.1
PCLK.0
FP1
FP0
Xx00 0000B
PSW
PROGRAM STATUS WORD
D0H
CY
AC
F0
RS1
RS0
OV
F1
P
0000 0000B
NVMDATA
NVM DATA
CFH
NVMDATA.7 NVMDATA.6
NVMDATA.5 NVMDATA.4 NVMDATA. NVMDATA. NVMDATA. NVMDATA. 0000 0000B
3
2
1
0
NVMCON
NVM CONTROL
CEH
EER
EWR
EnNVM
-
-
-
-
-
TH2
TIMER 2 MSB
CDH
TH2.7
TH2.6
TH2.5
TH2.4
TH2.3
TH2.2
TH2.1
TH2.0
0000 0000B
TL2
TIMER 2 LSB
CCH
TL2.7
TL2.6
TL2.5
TL2.4
TL2.3
TL2.2
TL2.1
TL2.0
0000 0000B
000x xxxxB
RCAP2H
TIMER 2 RELOAD MSB
CBH
RCAP2H.7
RCAP2H.6
RCAP2H.5
RCAP2H.4
RCAP2H.3
RCAP2H.2
RCAP2H.1
RCAP2H.0
0000 0000B
RCAP2L
TIMER 2 RELOAD LSB
CAH
RCAP2L.7
RCAP2L.6
RCAP2L.5
RCAP2L.4
RCAP2L.3
RCAP2L.2
RCAP2L.1
RCAP2L.0
0000 0000B
T2MOD
TIMER 2 MODE
C9H
-
-
-
-
T2CR
1
T2OE
DCEN
Xxx0 0100B
T2CON
TIMER 2 CONTROL
C8H
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C/T2
CP/RL
0000 0000B
TA
TIMED ACCESS PROTECTION
C7H
TA.7
TA.6
TA.5
TA.4
TA.3
TA.2
TA.1
TA.0
0000 0000B
NVMADDRL
NVM LOW BYTE ADDRESS
C6H
NVMADDR.7 NVMADDR.6 NVMADDR.5 NVMADDR.4 NVMADDR. NVMADDR. NVMADDR. NVMADDR. 0000 0000B
3
2
1
0
STATUS
STATUS REGISTER
C5H
-
-
-
-
-
-
SPTA0
SPRA0
Xxxx xx00B
PMR
POWER MANAGEMENT
REGISTER
C4H
CD1
CD0
SWB
-
-
ALE-OFF
-
-
010x xxxxB
ROMMAP
ROMMAP REGISTER
C2H
WS
1
-
-
-
1
1
0
01xxx110B
I2ADDR
I2C ADDRESS1
C1H
ADDR.7
ADDR.6
ADDR.5
ADDR.4
ADDR.3
ADDR.2
ADDR.1
GC
xxxxxxx0B
I2CON
I2C CONTROL REGISTER
C0H
-
ENS1
STA
STO
SI
AA
-
-
x00000xxB
I2TIMER
I2C TIMER COUNTER REGISTER BFH
-
-
-
-
-
ENTI
DIV4
TIF
Xxxx x000B
I2CLK
I2C CLOCK RATE
I2CLK.7
I2CLK.6
I2CLK.5
I2CLK.4
I2CLK.3
I2CLK.2
I2CLK.1
I2CLK.0
0000 0000B
BEH
- 18 -
Preliminary N79E352 Data Sheet
I2STATUS
I2C STATUS
BDH
I2STATUS.7 I2STATUS.6
I2STATUS.5 I2STATUS.4 I2STATUS. I2STATUS. I2STATUS. I2STATUS. 1111 1000B
3
2
1
0
I2DAT
I2C DATA
BCH
I2DAT.7
I2DAT.6
I2DAT.5
I2DAT.4
I2DAT.3
I2DAT.2
I2DAT.1
I2DAT.0
SADEN
SLAVE ADDRESS MASK
B9H
SADEN.7
SADEN.6
SADEN.5
SADEN.4
SADEN.3
SADEN.2
SADEN.1
SADEN.0
00000000B
IP0
INTERRUPT PRIORITY
B8H
-
-
PT2
PS
PT1
PX1
PT0
PX0
Xx00 0000B
IP0H
INTERRUPT HIGH PRIORITY
B7H
-
-
PT2H
PSH
PT1H
PX1H
PT0H
PX0H
Xx00 0000B
P2M2
PORT 2 OUTPUT MODE 2
B6H
P2M2.7
P2M2.6
P2M2.5
P2M2.4
P2M2.3
P2M2.2
P2M2.1
P2M2.0
CONFIG0.PMOD
E=1;
xxxxxxxxB
0000 0000B
CONFIG0.PMOD
E=0;
1111 1111B
P2M1
PORT 2 OUTPUT MODE 1
B5H
P2M1.7
P2M1.6
P2M1.5
P2M1.4
P2M1.3
P2M1.2
P2M1.1
P2M1.0
CONFIG0.PMOD
E=1;
0000 0000B
CONFIG0.PMOD
E=0;
1111 1111B
P1M2
PORT 1 OUTPUT MODE 2
B4H
P1M2.7
P1M2.6
P1M2.5
P1M2.4
P1M2.3
P1M2.2
P1M2.1
P1M2.0
CONFIG0.PMOD
E=1;
0000 0000B
CONFIG0.PMOD
E=0;
1111 1111B
P1M1
PORT 1 OUTPUT MODE 1
B3H
P1M1.7
P1M1.6
P1M1.5
P1M1.4
P1M1.3
P1M1.2
P1M1.1
P1M1.0
CONFIG0.PMOD
E=1;
0000 0000B
CONFIG0.PMOD
E=0;
1111 1111B
P0M2
PORT 0 OUTPUT MODE 2
B2H
P0M2.7
P0M2.6
P0M2.5
P0M2.4
P0M2.3
P0M2.2
P0M2.1
P0M2.0
1111 1111B
P0M1
PORT 0 OUTPUT MODE 1
B1H
P0M1.7
P0M1.6
P0M1.5
P0M1.4
P0M1.3
P0M1.2
P0M1.1
P0M1.0
1111 1111B
P3
PORT3
B0H
P3.7
P3.6
P3.5
P3.4
P3.3
P3.2
P3.1
P3.0
1111 1111B
/RD
/WR
T1
T0
/INT1
/INT0
TXD
RXD
SADDR
SLAVE ADDRESS
A9H
SADDR.7
SADDR.6
SADDR.5
SADDR.4
SADDR.3
SADDR.2
SADDR.1
SADDR.0
0000 0000B
IE
INTERRUPT ENABLE
A8H
EA
-
ET2
ES
ET1
EX1
ET0
EX0
0x00 0000B
P4
PORT4
A5H
-
-
-
-
P4.3
P4.2
P4.1
P4.0
Xxxx 1111B
AUXR1
AUX FUNCTION REGISTER 1
A2H
KBF
BOD
BOI
LPBOV
SRST
BOV1
BOV0
BOS
0000 0000B
KBI
KEYBOARD INTERRUPT
A1H
KBI.7
KBI.6
KBI.5
KBI.4
KBI.3
KBI.2
KBI.1
KBI.0
0000 0000B
P2
PORT 2
A0H
1111 1111B
P3M2
PORT 3 OUTPUT MODE 2
9FH
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0
A15
A14
A13
A12
A11
A10
A9
A8
P3M2.7
P3M2.6
P3M2.5
P3M2.4
P3M2.3
P3M2.2
P3M2.1
P3M2.0
CONFIG0.PMOD
E=1;
0000 0000B
CONFIG0.PMOD
E=0;
1111 1111B
P3M1
PORT 3 OUTPUT MODE 1
9EH
P3M1.7
P3M1.6
P3M1.5
P3M1.4
P3M1.3
P3M1.2
P3M1.1
P3M1.0
CONFIG0.PMOD
E=1;
0000 0000B
CONFIG0.PMOD
E=0;
1111 1111B
SBUF
SERIAL BUFFER
99H
SBUF.7
SBUF.6
SBUF.5
- 19 -
SBUF.4
SBUF.3
SBUF.2
SBUF.1
SBUF.0
Xxxx xxxxB
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
SCON
SERIAL CONTROL
98H
SM0/FE
SM1
SM2
REN
TB8
RB8
TI
RI
0000 0000B
P5
PORT5
94H
-
-
-
-
-
-
P5.1
P5.0
Xxxx xx11B
-
-
-
-
-
-
XTAL1
XTAL2
-
-
-
-
-
-
-
CLKOUT
-
-
-
-
NVMADDR. Xxxx xxx0B
8
NVMADDRH
NVM HIGH BYTE ADDRESS
93H
-
-
-
P1
PORT 1
90H
P1.7
P1.6
P1.5
P1.4
P1.3
P1.2
P1.1
P1.0
-
-
PWM1
PWM0
SCL
SDA
T2EX
T2
1111 1111B
CKCON
CLOCK CONTROL
8EH
WD1
WD0
T2M
T1M
T0M
MD2
MD1
MD0
0000 0001B
TH1
TIMER HIGH 1
8DH
TH1.7
TH1.6
TH1.5
TH1.4
TH1.3
TH1.2
TH1.1
TH1.0
0000 0000B
TH0
TIMER HIGH 0
8CH
TH0.7
TH0.6
TH0.5
TH0.4
TH0.3
TH0.2
TH0.1
TH0.0
0000 0000B
TL1
TIMER LOW 1
8BH
TL1.7
TL1.6
TL1.5
TL1.4
TL1.3
TL1.2
TL1.1
TL1.0
0000 0000B
TL0
TIMER LOW 0
8AH
TL0.7
TL0.6
TL0.5
TL0.4
TL0.3
TL0.2
TL0.1
TL0.0
0000 0000B
TMOD
TIMER MODE
89H
GATE
C/T
M1
M0
GATE
C/T
M1
M0
0000 0000B
TCON
TIMER CONTROL
88H
TF1
TR1
TF0
TR0
IE1
IT1
IE0
IT0
0000 0000B
PCON
POWER CONTROL
87H
SM0D
SMOD0
BOF
-
GF1
GF0
PD
IDL
001x 0000B
DPS
DATA POINTER SELECT
86H
-
-
-
-
-
-
-
DPS.0
Xxxx xxx0B
DPH1
DATA POINTER HIGH 1
85H
DPH1.7
DPH1.6
DPH1.5
DPH1.4
DPH1.3
DPH1.2
DPH1.1
DPH1.0
0000 0000B
DPL1
DATA POINTER LOW 1
84H
DPL1.7
DPL1.6
DPL1.5
DPL1.4
DPL1.3
DPL1.2
DPL1.1
DPL1.0
0000 0000B
DPH
DATA POINTER HIGH
83H
DPH.7
DPH.6
DPH.5
DPH.4
DPH.3
DPH.2
DPH.1
DPH.0
0000 0000B
DPL
DATA POINTER LOW
82H
DPL.7
DPL.6
DPL.5
DPL.4
DPL.3
DPL.2
DPL.1
DPL.0
0000 0000B
SP
STACK POINTER
81H
SP.7
SP.6
SP.5
SP.4
SP.3
SP.2
SP.1
SP.0
0000 0111B
P0
PORT 0
80H
P0.7
P0.6
P0.5
P0.4
P0.3
P0.2
P0.1
P0.0
1111 1111B
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
KB7
KB6
KB5
KB4
KB3
KB2
KB1
KB0
- 20 -
Preliminary N79E352 Data Sheet
8.2 SFR Detail Bit Descriptions
PORT 0
Bit:
7
6
5
4
3
2
1
0
P0.7
P0.6
P0.5
P0.4
P0.3
P0.2
P0.1
P0.0
Mnemonic: P0
Address: 80h
Port 0 is an open-drain bi-directional I/O port. This port provides a multiplexed low order address/data
bus during accesses to external memory. The ports also support alternate input function for Keyboard
pins (KB0-7).
BIT
NAME
FUNCTION
7
P0.7
AD7 or KB7 or I/O pin by alternative.
6
P0.6
AD6 or KB6 or I/O pin by alternative.
5
P0.5
AD5 or KB5 or I/O pin by alternative.
4
P0.4
AD4 or KB4 or I/O pin by alternative.
3
P0.3
AD3 or KB3 or I/O pin by alternative.
2
P0.2
AD2 or KB2 or I/O pin by alternative.
1
P0.1
AD1 or KB1 or I/O pin by alternative.
0
P0.0
AD0 or KB0 or I/O pin by alternative.
Note: The initial value of the port is set by CONFIG0.PRHI bit. The default setting for CONFIG0.PRHI =1 which the alternative
function output is turned on upon reset. If CONFIG0.PRHI is set to 0, the user has to write a 1 to port SFR to turn on the
alternative function output.
STACK POINTER
Bit:
7
6
5
4
3
2
1
0
SP.7
SP.6
SP.5
SP.4
SP.3
SP.2
SP.1
SP.0
Mnemonic: SP
BIT
NAME
7-0
SP.[7:0]
Address: 81h
FUNCTION
The Stack Pointer stores the Scratch-pad RAM address where the stack begins.
In other words it always points to the top of the stack.
DATA POINTER LOW
Bit:
7
6
5
4
3
2
1
0
DPL.7
DPL.6
DPL.5
DPL.4
DPL.3
DPL.2
DPL.1
DPL.0
Mnemonic: DPL
Address: 82h
BIT
NAME
FUNCTION
7-0
DPL.[7:0]
This is the low byte of the standard 8052 16-bit data pointer.
DATA POINTER HIGH
Bit:
7
6
5
4
3
- 21 -
2
1
0
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
DPH.7
DPH.6
DPH.5
DPH.4
DPH.3
DPH.2
DPH.1
Mnemonic: DPH
DPH.0
Address: 83h
BIT
NAME
FUNCTION
7-0
DPH.[7:0]
This is the high byte of the standard 8052 16-bit data pointer.
This is the high byte of the DPTR 16-bit data pointer.
DATA POINTER LOW 1
Bit:
7
6
5
4
3
2
1
0
DPL1.7
DPL1.6
DPL1.5
DPL1.4
DPL1.3
DPL1.2
DPL1.1
DPL1.0
Mnemonic: DPL1
Address: 84h
BIT
NAME
FUNCTION
7-0
DPL1.[7:0]
This is the low byte of the new additional 16-bit data pointer that has been
added to the N78E352. The user can switch between DPL, DPH and DPL1,
DPH1 simply by setting register DPS = 1. The instructions that use DPTR will
now access DPL1 and DPH1 in place of DPL and DPH. If they are not required
they can be used as conventional register locations by the user.
DATA POINTER HIGH 1
Bit:
7
6
5
4
3
2
1
0
DPH1.7
DPH1.6
DPH1.5
DPH1.4
DPH1.3
DPH1.2
DPH1.1
DPH1.0
Mnemonic: DPH1
Address: 85h
BIT
NAME
FUNCTION
7-0
DPH1.[7:0]
This is the high byte of the new additional 16-bit data pointer that has been
added to the N78E352. The user can switch between DPL, DPH and DPL1,
DPH1 simply by setting register DPS = 1. The instructions that use DPTR will
now access DPL1 and DPH1 in place of DPL and DPH. If they are not required
they can be used as conventional register locations by the user.
DATA POINTER SELECT
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
DPS.0
Mnemonic: DPS
Address: 86h
BIT
NAME
FUNCTION
7-1
-
Reserved.
0
DPS
This bit is used to select either the DPL,DPH pair or the DPL1,DPH1 pair as the
active Data Pointer. When set to 1, DPL1, DPH1 will be selected, otherwise
DPL, DPH will be selected.
POWER CONTROL
Bit:
7
6
5
4
3
2
1
0
SMOD
SMOD0
BOF
-
GF1
GF0
PD
IDL
- 22 -
Preliminary N79E352 Data Sheet
Mnemonic: PCON
Address: 87h
BIT
NAME
FUNCTION
7
SMOD
1: This bit doubles the serial port baud rate in mode 1, 2, and 3.
6
SMOD0
0: Framing Error Detection Disable. SCON.7 (SM0/FE) bit is used as SM0
(standard 8052 function).
1: Framing Error Detection Enable. SCON.7 (SM0/FE) bit is used to reflect as
Frame Error (FE) status flag.
0: Cleared by software.
5
BOF
1: Set automatically when a brownout reset or interrupt has occurred. Also set at
power on.
4
-
Reserved.
3
GF1
General purpose user flags.
2
GF0
General purpose user flags.
1
PD
1: The CPU goes into the POWER DOWN mode. In this mode, all the clocks are
stopped and program execution is frozen.
0
IDL
1: The CPU goes into the IDLE mode. In this mode, the clocks CPU clock
stopped, so program execution is frozen. But the clock to the serial, timer and
interrupt blocks is not stopped, and these blocks continue operating.
TIMER CONTROL
Bit:
7
6
5
4
3
2
1
0
TF1
TR1
TF0
TR0
IE1
IT1
IE0
IT0
Mnemonic: TCON
Address: 88h
BIT
NAME
FUNCTION
7
TF1
Timer 1 Overflow Flag. This bit is set when Timer 1 overflows. It is cleared
automatically when the program does a timer 1 interrupt service routine.
Software can also set or clear this bit.
6
TR1
Timer 1 Run Control. This bit is set or cleared by software to turn timer/counter
on or off.
5
TF0
Timer 0 Overflow Flag. This bit is set when Timer 0 overflows. It is cleared
automatically when the program does a timer 0 interrupt service routine.
Software can also set or clear this bit.
4
TR0
Timer 0 Run Control. This bit is set or cleared by software to turn timer/counter
on or off.
3
IE1
Interrupt 1 Edge Detect Flag: Set by hardware when an edge/level is detected
on INT1 . This bit is cleared by hardware when the service routine is vectored to
only if the interrupt was edge triggered. Otherwise it follows the inverse of the
pin.
2
IT1
Interrupt 1 Type Control. Set/cleared by software to specify falling edge/ low
level triggered external inputs.
1
IE0
Interrupt 0 Edge Detect Flag. Set by hardware when an edge/level is detected
- 23 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
on INT0 . This bit is cleared by hardware when the service routine is vectored to
only if the interrupt was edge triggered. Otherwise it follows the inverse of the
pin.
0
Interrupt 0 Type Control: Set/cleared by software to specify falling edge/ low
level triggered external inputs.
IT0
TIMER MODE CONTROL
Bit:
7
GATE
6
5
4
3
C/ T
M1
M0
GATE
TIMER1
2
1
0
C/ T
M1
M0
TIMER0
Mnemonic: TMOD
BIT
Address: 89h
NAME
FUNCTION
7
GATE
Gating control: When this bit is set, Timer/counter 1 is enabled only while the
INT1 pin is high and the TR1 control bit is set. When cleared, the INT1 pin has
no effect, and Timer 1 is enabled whenever TR1 control bit is set.
6
C/ T
Timer or Counter Select: When clear, Timer 1 is incremented by the internal
clock. When set, the timer counts falling edges on the T1 pin.
5
M1
Timer 1 mode select bit 1. See table below.
4
M0
Timer 1 mode select bit 0. See table below.
3
GATE
Gating control: When this bit is set, Timer/counter 0 is enabled only while the
INT0 pin is high and the TR0 control bit is set. When cleared, the INT0 pin has
no effect, and Timer 0 is enabled whenever TR0 control bit is set.
2
C/ T
Timer or Counter Select: When clear, Timer 0 is incremented by the internal
clock. When set, the timer counts falling edges on the T0 pin.
1
M1
Timer 0 mode select bit 1. See table below.
0
M0
Timer 0 mode select bit 0. See table below.
M1, M0: Mode Select bits:
M1
M0
MODE
0
0
Mode 0: 8-bit timer/counter TLx serves as 5-bit pre-scale.
0
1
Mode 1: 16-bit timer/counter, no pre-scale.
1
0
Mode 2: 8-bit timer/counter with auto-reload from THx.
1
1
Mode 3: (Timer 0) TL0 is an 8-bit timer/counter controlled by the standard Timer0
control bits. TH0 is an 8-bit timer only controlled by Timer1 control bits. (Timer 1)
Timer/Counter 1 is stopped.
TIMER 0 LSB
Bit:
7
6
5
4
3
2
1
0
TL0.7
TL0.6
TL0.5
TL0.4
TL0.3
TL0.2
TL0.1
TL0.0
Mnemonic: TL0
Address: 8Ah
- 24 -
Preliminary N79E352 Data Sheet
BIT
NAME
FUNCTION
7-0
TL0.[7:0]
Timer 0 LSB.
TIMER 1 LSB
Bit:
7
6
5
4
3
2
1
0
TL1.7
TL1.6
TL1.5
TL1.4
TL1.3
TL1.2
TL1.1
TL1.0
Mnemonic: TL1
Address: 8Bh
BIT
NAME
FUNCTION
7-0
TL1.[7:0]
Timer 1 LSB.
TIMER 0 MSB
Bit:
7
6
5
4
3
2
1
0
TH0.7
TH0.6
TH0.5
TH0.4
TH0.3
TH0.2
TH0.1
TH0.0
Mnemonic: TH0
Address: 8Ch
BIT
NAME
FUNCTION
7-0
TH0.[7:0]
Timer 0 MSB.
TIMER 1 MSB
Bit:
7
6
5
4
3
2
1
0
TH1.7
TH1.6
TH1.5
TH1.4
TH1.3
TH1.2
TH1.1
TH1.0
Mnemonic: TH1
Address: 8Dh
BIT
NAME
FUNCTION
7-0
TH1.[7:0]
Timer 1 MSB.
CLOCK CONTROL
Bit:
7
6
5
4
3
2
1
0
WD1
WD0
T2M
T1M
T0M
MD2
MD1
MD0
Mnemonic: CKCON
BIT
NAME
Address: 8Eh
FUNCTION
Watchdog timer mode select bits: These bits determine the time-out period for
the watchdog timer. In all four time-out options the reset time-out is 512 clocks
more than the interrupt time-out period.
7-5
WD1~0
WD1
WD0
Interrupt time-out
0
0
2
0
1
2
1
0
2
1
1
2
- 25 -
6
9
13
15
Reset time-out
6
2 + 512
9
2 + 512
2
2
13
15
+ 512
+ 512
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Timer 2 clock select:
5
T2M
0: Timer 2 uses a divide by 12 clocks.
1: Timer 2 uses a divide by 4 clocks.
Timer 1 clock select:
4
T1M
0: Timer 1 uses a divide by 12 clocks.
1: Timer 1 uses a divide by 4 clocks.
Timer 0 clock select:
3
T0M
0: Timer 0 uses a divide by 12 clocks.
1: Timer 0 uses a divide by 4 clocks.
2~0 MD2~0
Stretch MOVX select bits: These three bits are used to select the stretch value
for the MOVX instruction. Using a variable MOVX length enables the user to
access slower external memory devices or peripherals without the need for
external circuits. The RD or WR strobe will be stretched by the selected
interval. When accessing the on-chip SRAM, the MOVX instruction is always in
2 machine cycles regardless of the stretch setting. By default, the stretch has
value of 1. If the user needs faster accessing, then a stretch value of 0 should
be selected.
MD2 MD1 MD0 Stretch value MOVX duration
0
0
0
0
2 machine cycles
0
0
1
1
3 machine cycles (Default)
0
1
0
2
4 machine cycles
0
1
1
3
5 machine cycles
1
0
0
4
6 machine cycles
1
0
1
5
7 machine cycles
1
1
0
6
8 machine cycles
1
1
1
7
9 machine cycles
PORT 1
Bit:
7
6
5
4
3
2
1
0
P1.7
P1.6
P1.5
P1.4
P1.3
P1.2
P1.1
P1.0
Mnemonic: P1
Address: 90h
P1.7-0: General purpose Input/Output port. Most instructions will read the port pins in case of a port
read access, however in case of read-modify-write instructions, the port latch is read. These alternate
functions are described below:
BIT
NAME
FUNCTION
7
P1.7
Dedicated I/O pin.
6
P1.6
Dedicated I/O pin.
5
P1.5
PWM1 or I/O pin by alternative.
4
P1.4
PWM0 or I/O pin by alternative.
3
P1.3
SCL or I/O pin by alternative.
2
P1.2
SDA or I/O pin by alternative.
- 26 -
Preliminary N79E352 Data Sheet
1
P1.1
T2EX or I/O pin by alternative.
0
P1.0
T2 or I/O pin by alternative.
NVM HIGH BYTE ADDRESS
Bit:
7
6
5
-
-
4
-
3
-
2
-
1
0
-
-
Mnemonic: NVMADDRH
BIT
NAME
7~1
Address: 93h
FUNCTION
-
0
NVMADD
R.8
Reserved.
NVMADDR.
8
The NVM high address, The register indicates NVM data memory of high
byte address on On Chip code memory space.
PORT 5
Bit:
7
6
-
5
-
4
-
3
-
2
-
1
0
P5.1/
XTAL1
-
Mnemonic: P5
P5.0/
XTAL2/
CLKOUT
Address: 94h
BIT
NAME
FUNCTION
7~2
-
Reserved.
1
P5.1
XTAL1 clock input or I/O pin by alternative.
0
P5.0
XTAL2 or CLKOUT pin or I/O pin by alternative.
SERIAL PORT CONTROL
Bit:
7
6
5
4
3
2
1
0
SM0/FE
SM1
SM2
REN
TB8
RB8
TI
RI
Mnemonic: SCON
BIT
Address: 98h
NAME
FUNCTION
7
SM0/FE
Serial port mode select bit 0 or Framing Error Flag: The SMOD0 bit in PCON
SFR determines whether this bit acts as SM0 or as FE. The operation of SM0 is
described below. When used as FE, this bit will be set to indicate an invalid stop
bit. This bit must be manually cleared in software to clear the FE condition.
6
SM1
Serial Port mode select bit 1. See table below.
SM2
Multiple processors communication. Setting this bit to 1 enables the
multiprocessor communication feature in mode 2 and 3. In mode 2 or 3, if SM2 is
set to 1, then RI will not be activated if the received 9th data bit (RB8) is 0. In
mode 1, if SM2 = 1, then RI will not be activated if a valid stop bit was not
received. In mode 0, the SM2 bit controls the serial port clock. If set to 0, then
the serial port runs at a divide by 12 clock of the oscillator. This gives
compatibility with the standard 8052. When set to 1, the serial clock become
5
- 27 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
divide by 4 of the oscillator clock. This results in faster synchronous serial
communication.
Receive enable:
REN
4
0: Disable serial reception.
1: Enable serial reception.
3
TB8
This is the 9th bit to be transmitted in modes 2 and 3. This bit is set and cleared
by software as desired.
2
RB8
In modes 2 and 3 this is the received 9th data bit. In mode 1, if SM2 = 0, RB8 is
the stop bit that was received. In mode 0 it has no function.
1
TI
Transmit interrupt flag: This flag is set by hardware at the end of the 8th bit time
in mode 0, or at the beginning of the stop bit in all other modes during serial
transmission. This bit must be cleared by software.
RI
Receive interrupt flag: This flag is set by hardware at the end of the 8th bit time
in mode 0, or halfway through the stop bits time in the other modes during serial
reception. However the restrictions of SM2 apply to this bit. This bit can be
cleared only by software.
0
SM1, SM0: Mode Select bits:
MODE
SM1
SM0
0
0
0
1
0
1
2
1
0
3
1
1
DESCRIPTION
LENGTH
BAUD RATE
Synchronous
8
Tclk divided by 4 or 12
Asynchronous
10
Variable
Asynchronous
11
Tclk divided by 32 or 64
Asynchronous
11
Variable
SERIAL DATA BUFFER
Bit:
7
6
5
4
3
2
1
0
SBUF.7
SBUF.6
SBUF.5
SBUF.4
SBUF.3
SBUF.2
SBUF.1
SBUF.0
Mnemonic: SBUF
BIT
7-0
Address: 99h
NAME
FUNCTION
SBUF.[7:0]
Serial data on the serial port is read from or written to this location. It actually
consists of two separate internal 8-bit registers. One is the receive resister, and
the other is the transmit buffer. Any read access gets data from the receive data
buffer, while write access is to the transmit data buffer.
PORT 3 OUTPUT MODE 1
Bit:
7
6
5
4
3
2
1
0
P3M1.7
P3M1.6
P3M1.5
P3M1.4
P3M1.3
P3M1.2
P3M1.1
P3M1.0
Mnemonic: P3M1
Address: 9Eh
BIT
NAME
FUNCTION
7-0
P3M1.7-0
To control the output configuration of P3 [7:0].
- 28 -
Preliminary N79E352 Data Sheet
PORT 3 OUTPUT MODE 2
Bit:
7
6
5
4
3
2
1
0
P3M2.7
P3M2.6
P3M2.5
P3M2.4
P3M2.3
P3M2.2
P3M2.1
P3M2.0
Mnemonic: P3M2
Address: 9Fh
BIT
NAME
FUNCTION
7-0
P3M2.7-0
See as below table.
Port Output Configuration Settings:
PXM1.Y
PXM2.Y
PORT INPUT/OUTPUT MODE
0
0
Quasi-bidirectional
0
1
Push-Pull
Input Only (High Impedance)
1
0
PORTS.PxS=0, TTL input
PORTS.PxS=1, Schmitt input
1
1
Open Drain
Note:
1.
X = 0-3, 5. Y = 0-7.
2.
CONFIG0.PMODE bit will determine the port1~3 and port 5 are Quasi or Open drain upon reset. See detail PMODE
descriptions.
PORT 2
Bit:
7
6
5
4
3
2
1
0
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0
Mnemonic: P2
Address: A0h
P2.7-0: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides the upper
address bits for accesses to external memory.
BIT
NAME
FUNCTION
7
P2.7
A15 or I/O pin by alternative.
6
P2.6
A14 or I/O pin by alternative.
5
P2.5
A13 or I/O pin by alternative.
4
P2.4
A12 or I/O pin by alternative.
3
P2.3
A11 or I/O pin by alternative.
2
P2.2
A10 or I/O pin by alternative.
1
P2.1
A9 or I/O pin by alternative.
0
P2.0
A8 or I/O pin by alternative.
KEYBOARD INTERRUPT
Bit:
7
6
5
4
3
2
1
0
KBI.7
KBI.6
KBI.5
KBI.4
KBI.3
KBI.2
KBI.1
KBI.0
- 29 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Mnemonic: KBI
Address: A1h
BIT
NAME
FUNCTION
7
KBI.7
1: Enable P0.7 as a cause of a Keyboard interrupt.
6
KBI.6
1: Enable P0.6 as a cause of a Keyboard interrupt.
5
KBI.5
1: Enable P0.5 as a cause of a Keyboard interrupt.
4
KBI.4
1: Enable P0.4 as a cause of a Keyboard interrupt.
3
KBI.3
1: Enable P0.3 as a cause of a Keyboard interrupt.
2
KBI.2
1: Enable P0.2 as a cause of a Keyboard interrupt.
1
KBI.1
1: Enable P0.1 as a cause of a Keyboard interrupt.
0
KBI.0
1: Enable P0.0 as a cause of a Keyboard interrupt.
AUX FUNCTION REGISTER 1
Bit:
7
6
5
4
3
2
1
0
KBF
BOD
BOI
LPBOV
SRST
BOV1
BOV0
BOS
Mnemonic: AUXR1
BIT
NAME
Address: A2h
FUNCTION
Keyboard Interrupt Flag:
7
KBF
1: When any pin of port 0 that is enabled for the Keyboard Interrupt function
triggers (trigger level is depending on SFR KBL configuration). Must be cleared
by software.
Brown Out Disable:
0: Enable Brownout Detect function.
6
BOD
1: Disable Brownout Detect function and save power.
BOD is initialized at all resets with the inverse value of bit CBOD in config0.3 bit.
User is able to re-configure this bit after reset.
Brown Out Interrupt:
5
BOI
0: Disable Brownout Detect Interrupt function.
1: This prevents brownout detection from causing a chip reset and allows the
Brownout Detect function to be used as an interrupt.
Low Power Brown Out Detect control:
4
LPBOV
0: When BOD is enable, the Brown Out detect is always turned on by normal run
or Power Down mode.
1: When BOD is enable, the 1/16 time will be turned on Brown Out detect circuit
by Power Down mode. When uC is entry Power Down mode, the BOD will
enable internal RC OSC (20KHz).
- 30 -
Preliminary N79E352 Data Sheet
Software reset:
3
1: Reset the chip as if a hardware reset occurred.
SRST
SRST require Timed Access procedure to write. The remaining bits have
unrestricted write accesses. Please refer TA register description.
Brownout voltage selection bits,see below table.
2~1
BOV.1~0
BOV.1
BOV.0
Brownout Voltage
0
0
Brownout voltage is 2.6V
0
1
Brownout voltage is 2.6V
1
0
Brownout voltage is 3.8V
1
1
Brownout voltage is 4.5V
These bits are initialized at all resets with the inverse values of bits CBOV.1-0 in
config1.3-2 bits. User is able to re-configure these bits after reset.
Brownout Status bit(Read only)
0
BOS
0: VDD is above VBOR+
1: VDD is below VBOR-
PORT 4
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
P4.3
P4.2
P4.1
P4.0
Mnemonic: P4
Address: A5h
BIT
NAME
FUNCTION
7~4
-
Reserved.
3~0
P4.3~0
Port 4 is a bi-directional I/O port with internal pull-ups. Port 4 can not use bitaddressable instruction (SETB or CLR).
INTERRUPT ENABLE
Bit:
7
6
5
4
3
2
1
0
EA
-
ET2
ES
ET1
EX1
ET0
EX0
Mnemonic: IE
Address: A8h
BIT
NAME
FUNCTION
7
EA
Global enable. Enable/Disable all interrupts.
6
-
Reserved.
5
ET2
Enable Timer 2 interrupt.
4
ES
Enable Serial Port 0 interrupt.
3
ET1
Enable Timer 1 interrupt.
2
EX1
Enable external interrupt 1.
- 31 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
1
ET0
Enable Timer 0 interrupt.
0
EX0
Enable external interrupt 0.
SLAVE ADDRESS
Bit:
7
6
5
4
3
2
1
0
SADDR.7
SADDR.6
SADDR.5
SADDR.4
SADDR.3
SADDR.2
SADDR.1
SADDR.0
Mnemonic: SADDR
Address: A9h
BIT
NAME
FUNCTION
7~0
SADDR
The SADDR should be programmed to the given or broadcast address for serial
port 0 to which the slave processor is designated.
PORT 3
Bit:
7
6
5
4
3
2
1
0
P3.7
P3.6
P3.5
P3.4
P3.3
P3.2
P3.1
P3.0
Mnemonic: P3
Address: B0h
P3.7-0: General purpose Input/Output port. Most instructions will read the port pins in case of a port
read access, however in case of read-modify-write instructions, the port latch is read. These alternate
functions are described below:
BIT
NAME
FUNCTION
7
P3.7
/RD or I/O pin by alternative.
6
P3.6
/WR or I/O pin by alternative.
5
P3.5
T1 or I/O pin by alternative.
4
P3.4
T0 or I/O pin by alternative.
3
P3.3
/INT1 or I/O pin by alternative.
2
P3.2
/INT0 or I/O pin by alternative.
1
P3.1
TxD or I/O pin by alternative.
0
P3.0
RxD or I/O pin by alternative.
PORT 0 OUTPUT MODE 1
Bit:
7
6
5
4
3
2
1
0
P0M1.7
P0M1.6
P0M1.5
P0M1.4
P0M1.3
P0M1.2
P0M1.1
P0M1.0
Mnemonic: P0M1
Address: B1h
BIT
NAME
FUNCTION
7-0
P0M1
To control the output configuration of P0 bits [7:0]
PORT 0 OUTPUT MODE 2
Bit:
7
6
5
4
3
2
1
0
P0M2.7
P0M2.6
P0M2.5
P0M2.4
P0M2.3
P0M2.2
P0M2.1
P0M2.0
Mnemonic: P0M2
Address: B2h
- 32 -
Preliminary N79E352 Data Sheet
BIT
NAME
FUNCTION
7-0
P0M2
To control the output configuration of P0 bits [7:0]
PORT 1 OUTPUT MODE 1
Bit:
7
6
5
4
3
2
1
0
P1M1.7
P1M1.6
P1M1.5
P1M1.4
P1M1.3
P1M1.2
P1M1.1
P1M1.0
Mnemonic: P1M1
Address: B3h
BIT
NAME
FUNCTION
7-0
P1M1
To control the output configuration of P1 bits [7:0].
PORT 1 OUTPUT MODE 2
Bit:
7
6
5
4
3
2
1
0
P1M2.7
P1M2.6
P1M2.5
P1M2.4
P1M2.3
P1M2.2
P1M2.1
P1M2.0
Mnemonic: P1M2
Address: B4h
BIT
NAME
FUNCTION
7-0
P1M2
To control the output configuration of P1 bits [7:0].
PORT 2 OUTPUT MODE 1
Bit:
7
6
5
4
3
2
1
0
P2M1.7
P2M1.6
P2M1.5
P2M1.4
P2M1.3
P2M1.2
P2M1.1
P2M1.0
Mnemonic: P2M1
Address: B5h
BIT
NAME
FUNCTION
7-0
P2M1
To control the output configuration of P2 bits [7:0]
PORT 2 OUTPUT MODE 2
Bit:
7
6
5
4
3
2
1
0
P2M2.7
P2M2.6
P2M2.5
P2M2.4
P2M2.3
P2M2.2
P2M2.1
P2M2.0
Mnemonic: P2M2
Address: B6h
BIT
NAME
FUNCTION
7-0
P2M2
To control the output configuration of P2 bits [7:0]
INTERRUPT HIGH PRIORITY
Bit:
7
6
5
4
3
2
1
0
-
-
PT2H
PSH
PT1H
PX1H
PT0H
PX0H
Mnemonic: IP0H
BIT
NAME
Address: B7h
FUNCTION
7~6 -
Reserved.
5
1: To set interrupt high priority of Timer 2 is highest priority level.
PT2H
- 33 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
4
PSH
1: To set interrupt high priority of Serial port 0 is highest priority level.
3
PT1H
1: Ro set interrupt high priority of Timer 1 is highest priority level.
2
PX1H
1: To set interrupt high priority of External interrupt 1 is highest priority level.
1
PT0H
1: To set interrupt high priority of Timer 0 is highest priority level.
0
PX0H
1: To set interrupt high priority of External interrupt 0 is highest priority level.
INTERRUPT PRIORITY 0
Bit:
7
6
5
4
3
2
1
0
-
-
PT2
PS
PT1
PX1
PT0
PX0
Mnemonic: IP0
BIT
NAME
Address: B8h
FUNCTION
7~6 -
Reserved.
5
PT2
1: To set interrupt priority of Timer 2 is higher priority level.
4
PS
1: To set interrupt priority of Serial port 0 is higher priority level.
3
PT1
1: To set interrupt priority of Timer 1 is higher priority level.
2
PX1
1: To set interrupt priority of External interrupt 1 is higher priority level.
1
PT0
1: To set interrupt priority of Timer 0 is higher priority level.
0
PX0
1: To set interrupt priority of External interrupt 0 is higher priority level.
SLAVE ADDRESS MASK ENABLE
Bit:
7
6
5
4
3
2
1
0
SADEN.7
SADEN.6
SADEN.5
SADEN.4
SADEN.3
SADEN.2
SADEN.1
SADEN.0
Mnemonic: SADEN
BIT
NAME
7~0 SADEN
Address: B9h
FUNCTION
This register enables the Automatic Address Recognition feature of the Serial
port 0. When a bit in the SADEN is set to 1, the same bit location in SADDR will
be compared with the incoming serial data. When SADEN is 0, then the bit
becomes a "don't care" in the comparison. This register enables the Automatic
Address Recognition feature of the Serial port 0. When all the bits of SADEN are
0, interrupt will occur for any incoming address.
I2C DATA REGISTER
Bit:
7
6
5
4
3
2
1
0
I2DAT.7
I2DAT.6
I2DAT.5
I2DAT.4
I2DAT.3
I2DAT.2
I2DAT.1
I2DAT.0
Mnemonic: I2DAT
Address: BCh
BIT
NAME
FUNCTION
7-0
I2DAT.[7:0]
The data register of I2C.
I2C STATUS REGISTER
Bit:
7
6
5
4
3
- 34 -
2
1
0
Preliminary N79E352 Data Sheet
I2STATUS.7 I2STATUS.6 I2STATUS.5 I2STATUS.4 I2STATUS.3
-
-
Mnemonic: I2STATUS
BIT
-
Address: BDh
NAME
FUNCTION
The status register of I2C:
7-0
I2STATUS.[7:0]
The three least significant bits are always 0. The five most significant bits
contain the status code. There are 23 possible status codes. When
I2STATUS contains F8H, no serial interrupt is requested. All other
I2STATUS values correspond to defined I2C states. When each of these
states is entered, a status interrupt is requested (SI = 1). A valid status
code is present in I2STATUS one machine cycle after SI is set by
hardware and is still present one machine cycle after SI has been reset by
software. In addition, states 00H stands for a Bus Error. A Bus Error occurs
when a START or STOP condition is present at an illegal position in the
formation frame. Example of illegal position are during the serial transfer of
an address byte, a data byte or an acknowledge bit.
I2C BAUD RATE CONTROL REGISTER
Bit:
7
6
5
4
3
2
1
0
I2CLK.7
I2CLK.6
I2CLK.5
I2CLK.4
I2CLK.3
I2CLK.2
I2CLK.1
I2CLK.0
Mnemonic: I2CLK
Address: BEh
BIT
NAME
FUNCTION
7-0
I2CLK.[7:0]
The I2C clock rate bits.
I2C TIMER COUNTER REGISTER
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
-
ENTI
DIV4
TIF
Mnemonic: I2TIMER
Address: BFh
BIT
NAME
FUNCTION
7~
3
-
Reserved.
Enable I2C 14-bits Timer Counter:
0: Disable 14-bits Timer Counter count.
2
ENTI
1: Enable 14-bits Timer Counter count. After enable ENTI and ENSI, the 14-bit
counter will be counted. When SI flag of I2C is set, the counter will stop to
count and 14-bits Timer Counter will be cleared.
I2C Timer Counter clock source divide function:
1
DIV4
0: The 14-bits Timer Counter source clock is Fosc clock.
1: The 14-bits Timer Counter source clock is divided by 4.
The I2C Timer Counter count flag:
0
TIF
0: The 14-bits Timer Counter is not overflow.
1: The 14-bits Timer Counter is overflow. Before enable I2C Timer (both ENTI,
ENSI = [1,1]) the SI must be cleared. If I2C interrupt is enabled. The I2C
- 35 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
interrupt service routine will be executed. This bit is cleared by software.
I2C CONTROL REGISTER
Bit:
7
6
5
4
3
2
1
-
ENSI
STA
STO
SI
AA
-
Mnemonic: I2CON
BIT
7
6
-
Address: C0h
NAME
FUNCTION
-
Reserved.
ENS1
0
0: Disable I2C Serial Function. The SDA and SCL output are in a high
impedance state. SDA and SCL input signals are ignored, I2C is not in the
addressed slave mode or it is not addressable, and STO bit in I2CON is
forced to “0”. No other bits are affected. P1.3 (SCL) and P1.2 (SDA) may be
used as open drain I/O ports.
1: Enable I2C Serial Function. The P1.2 and P1.3 port latches must be to logic
1.
START flag:
0: The STA bit is reset, no START condition or repeated START condition will
be generated.
5
4
STA
STO
1: The STA bit is set to enter a master mode. The I2C hardware checks the
status of I2C bus and generates a START condition if the bus is free. If bus
is not free, then I2C waits for a STOP condition and generates a START
condition after a delay. If STA is set while I2C is already in a master mode
and one or more bytes are transmitted or received, I2C transmits a repeated
START condition. STA may be set any time. STA may also be set when I2C
interface is an addressed slave mode.
The bit STO bit is set while I2C is in a master mode. A STOP condition is
transmitted to the I2C bus. When the STOP condition is detected on the bus,
the I2C hardware clears the STO flag. In a slave mode, the STO flag may be
set to recover from a bus error condition. In this case, no STOP condition is
transmitted to the I2C bus. However, the I2C hardware behaves as if a STOP
condition has been received and it switches to the not addressable slave
receiver mode. The STO flag is automatically cleared by hardware. If the STA
and STO bits are both set, then a STOP condition is transmitted to the I2C bus
if I2C is in a master mode (in a slave mode, I2C generates an internal STOP
condition which is not transmitted). I2C then transmits a START condition.
0: When the SI flag is reset, no serial interrupt is requested, and there is no
stretching on the serial clock on the SCL line.
3
SI
2
AA
1: When a new SIO state is present in the I2STATUS register, the SI flag is set
by hardware, and, if the EA and ES bits (in IE register) are both set, a serial
interrupt is requested when SI is set. The only state that does not cause SI to
be set is state F8H, which indicates that no relevant state information is
available. When SI is set, the low period of the serial clock on the SCL line is
stretched, and the serial transfer is suspended. A high level on the SCL line
is unaffected by the serial interrupt flag. SI must be cleared by software.
Assert Acknowledge Flag:
0: A not acknowledge (high level to SDA) will be returned during the
- 36 -
Preliminary N79E352 Data Sheet
acknowledge clock pulse on SCL when: 1) A data has been received while
SIO is in the master receiver mode. 2) A data byte has been received while
SIO is in the addressed slave receiver mode.
1: An acknowledge (low level to SDA) will be returned during the acknowledge
clock pulse on the SCL line when: 1) The own slave address has been
received. 2) A data byte has been received while SIO is in the master
receiver mode. 3) A data byte has been received while SIO is in the
addressed slave receiver mode. 4) The General Call address has been
received while the general call bit (GC) in I2ADDR is set.
1~0
-
Reserved.
I2C ADDRESS REGISTER
Bit:
7
6
5
4
3
2
1
0
I2ADDR.7
I2ADDR.6
I2ADDR.5
I2ADDR.4
I2ADDR.3
I2ADDR.2
I2ADDR.1
GC
Mnemonic: I2ADDR
BIT
NAME
Address: C1h
FUNCTION
I2C Address register:
The 8051 uC can read from and write to this 8-bit, directly addressable
I2ADDR.[7:1] SFR. The content of this register is irrelevant when I2C is in master mode.
In the slave mode, the seven most significant bits must be loaded with the
MCU’s own address. The I2C hardware will react if either of the address is
matched.
7~1
General Call Function.
0
GC
0: Disable General Call Function.
1: Enable General Call Function.
ROMMAP
Bit:
7
6
5
4
3
2
1
0
WS
1
-
-
-
1
1
0
Mnemonic: ROMMAP
Address: C2h
BIT
NAME
FUNCTION
7
WS
Wait State Signal Enable. Setting this bit enables the WAIT signal on P4.0. The
device will sample the wait state control signal WAIT via P4.0 during MOVX
instruction. This bit is time access protected.
6~0
-
Reserved.
TA
REG
ROMMAP
C7H
REG
C2H
- 37 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
CKCON
REG
8EH
MOV
TA,#AAH
MOV
TA,#55H
ORL
ROMMAP,#10000000B ; Set WS bit to enable wait signal.
POWER MANAGEMENT REGISTER
Bit:
7
6
5
4
3
2
1
0
CD1
CD0
SWB
-
-
ALE-OFF
-
-
Mnemonic: PMR
BIT
7~6
Address: C4h
NAME
FUNCTION
Clock Divide Control. These bit selects the number of clocks required to
generate one machine cycle. There are three modes including divide by 4, 64 or
1024. Switching between modes must first go back devide by 4 mode. For
instance, to go from 64 to 1024 clocks/machine cycle the device must first go
from 64 to 4 clocks/machine cycle, and then from 4 to 1024 clocks/machine
cycle.
CD1~0
CD1,
CD0
Clocks/machine Cycle
0
X
4
1
0
64
1
1
1024
5
SWB
Switchback Enable. Setting this bit allows an enabled external interrupt or serial
port/i2c activity to force the CD1, CD0 to divide by 4 state (0,X). The device will
switch modes at the start of the jump to interrupt service routine while a external
interrupt is enabled and actually recongnized by microcontroller. While a serial
port/i2c reception, the switchback occurs at the start of the instruction following
the falling edge of the start bit. Note: Changing SWB bit is ignored during serial
port/i2c activities.
4~3
-
Reserved.
ALE-0FF
This bit disables the expression of the ALE signal on the device pin during all
on-board program and data memory accesses. External memory accesses will
automatically enable ALE independent of ALE-OFF.
2
0 = ALE expression is enable.
1 = ALE expression is disable.
1~0
-
Reserved.
STATUS
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
-
-
SPTA0
SPRA0
Mnemonic: STATUS
BIT
NAME
FUNCTION
7-2
-
Reserved.
Address: C5h
- 38 -
Preliminary N79E352 Data Sheet
1
SPTA0
Serial Port 0 Transmit Activity. This bit is set during serial port 0 is currently
transmitting data. It is cleared when TI bit is set by hardware. Changing the
Clock Divide Control bits CD0, CD1 will be ignored when this bit is set to 1 and
SWB = 1.
0
SPRA0
Serial Port 0 Receive Activity. This bit is set during serial port 0 is currently
receiving a data. It is cleared when RI bit is set by hardware. Changing the Clock
Divide Control bits CD0,CD1 will be ignored when this bit is set to 1 and SWB =
1.
NVM LOW BYTE ADDRESS
Bit:
7
6
5
4
3
2
1
0
NVMADD
R.7
NVMADD
R.6
NVMADD
R.5
NVMADD
R.4
NVMADD
R.3
NVMADD
R.2
NVMADD
R.1
NVMADD
R.0
Mnemonic: NVMADDRL
Address: C6h
BIT
NAME
FUNCTION
7~0
NVMADDR.[7:0
]
The NVM low byte address:
The register indicates NVM data memory of low byte address on On-Chip
code memory space.
TIMED ACCESS
Bit:
7
6
5
4
3
2
1
0
TA.7
TA.6
TA.5
TA.4
TA.3
TA.2
TA.1
TA.0
Mnemonic: TA
BIT
NAME
Address: C7h
FUNCTION
The Timed Access register:
7-0
TA.[7:0]
The Timed Access register controls the access to protected bits. To access
protected bits, the user must first write AAH to the TA. This must be immediately
followed by a write of 55H to TA. Now a window is opened in the protected bits
for three machine cycles, during which the user can write to these bits.
TIMER 2 CONTROL
Bit:
7
6
5
4
3
2
1
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C / T2
Mnemonic: T2CON
BIT
NAME
0
CP / RL 2
Address: C8h
FUNCTION
Timer 2 overflow flag:
7
TF2
Timer 2 overflow flag: This bit is set when Timer 2 overflows. It is also set when
the count isequal to the capture register in down count mode. It can be set only
if RCLK and TCLK are both 0. It is cleared only by software. Software can also
set or clear this bit.
- 39 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
6
5
4
3
EXF2
Timer 2 External Flag: A negative transition on the T2EX pin (P1.1) or timer 2
overflow will cause this flag to set based on the CP / RL2 , EXEN2 and DCEN
bits. If set by a negative transition, this flag must be cleared by software.
Setting this bit in software or detection of a negative transition on T2EX pin will
force a timer interrupt if enabled.
RCLK
Receive Clock Flag: This bit determines the serial port time-base when
receiving data in serial modes 1 or 3. If it is 0, then timer 1 overflow is used for
baud rate generation, otherwise timer 2 overflow is used. Setting this bit forces
timer 2 in baud rate generator mode.
TCLK
Transmit Clock Flag: This bit determines the serial port time-base when
transmitting data in modes 1 and 3. If it is set to 0, the timer 1 overflow is used
to generate the baud rate clock otherwise timer 2 overflow is used. Setting this
bit forces timer 2 in baud rate generator mode.
EXEN2
Timer 2 External Enable. This bit enables the capture/reload function on the
T2EX pin if Timer 2 is not generating baud clocks for the serial port. If this bit is
0, then the T2EX pin will be ignored, otherwise a negative transition detected
on the T2EX pin will result in capture or reload.
Timer 2 Run Control:
2
1
TR2
This bit enables/disables the operation of timer 2. Halting this will preserve the
current count in TH2, TL2.
Counter/Timer Select. This bit determines whether timer 2 will function as a timer
or a counter. Independent of this bit, the timer will run at 2 clocks per tick when
used in baud rate generator mode. If it is set to 0, then timer 2 operates as a
timer at a speed depending on T2M bit (CKCON.5), otherwise it will count
negative edges on T2 pin.
C / T2
Compare/Reload Select:
0
This bit determines whether the capture or reload function will be used for timer
2. If either RCLK or TCLK is set, this bit will be ignored and the timer will
function in an auto-reload mode following each overflow. If the bit is 0 then autoreload will occur when timer 2 overflows or a falling edge is detected on T2EX
pin if EXEN2 = 1. If this bit is 1, then timer 2 captures will occur when a falling
edge is detected on T2EX pin if EXEN2 = 1.
‧‧‧
CP/RL2
TIMER 2 MODE CONTROL
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
T2CR
1
T2OE
DCEN
Mnemonic: T2MOD
BIT
NAME
7~4 -
Address: C9h
FUNCTION
Reserved.
Timer 2 Capture Reset:
3
T2CR
In the Timer 2 Capture Mode this bit enables/disables hardware automatically
reset timer 2 while the value in TL2 and TH2 have been transferred into the
capture register.
2
-
Reserved.
- 40 -
Preliminary N79E352 Data Sheet
1
T2OE
Timer 2 Output Enable. This bit enables/disables the Timer 2 clock out function.
0
DCEN
Down Count Enable: This bit, in conjunction with the T2EX pin, controls the
direction that timer 2 counts in 16-bit auto-reload mode.
TIMER 2 CAPTURE LSB
Bit:
7
6
5
4
3
2
1
0
RCAP2L.
7
RCAP2L.
6
RCAP2L.
5
RCAP2L.
4
RCAP2L.
3
RCAP2L.
2
RCAP2L.
1
RCAP2L.
0
Mnemonic: RCAP2L
BIT
NAME
Address: CAh
FUNCTION
Timer 2 Capture LSB:
7-0
RCAP2L
This register is used to capture the TL2 value when a timer 2 is configured in
capture mode.RCAP2L is also used as the LSB of a 16-bit reload value when
timer 2 is configured in auto-reload mode.
- 41 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
TIMER 2 CAPTURE MSB
Bit:
7
6
5
4
3
2
1
0
RCAP2H.
7
RCAP2H.
6
RCAP2H.
5
RCAP2H.
4
RCAP2H.
3
RCAP2H.
2
RCAP2H.
1
RCAP2H.
0
Mnemonic: RCAP2H
BIT
NAME
Address: CBh
FUNCTION
Timer 2 Capture MSB:
7-0
RCAP2H
This register is used to capture the TH2 value when a timer 2 is configured in
capture mode. RCAP2H is also used as the MSB of a 16-bit reload value when
timer 2 is configured in auto-reload mode.
TIMER 2 LSB
Bit:
7
6
5
4
3
2
1
0
TL2.7
TL2.6
TL2.5
TL2.4
TL2.3
TL2.2
TL2.1
TL2.0
Mnemonic: TL2
Address: CCh
BIT
NAME
FUNCTION
7-0
TL2
Timer 2 LSB.
TIMER 2 MSB
Bit:
7
6
5
4
3
2
1
0
TH2.7
TH2.6
TH2.5
TH2.4
TH2.3
TH2.2
TH2.1
TH2.0
Mnemonic: TH2
Address: CDh
BIT
NAME
FUNCTION
7-0
TL2
Timer 2 LSB.
NVM CONTROL
Bit:
7
6
5
4
3
2
1
0
EER
EWR
EnNVM
-
-
-
-
-
Mnemonic: NVMCON
BIT
7
NAME
FUNCTION
EER
NVM page(n) erase bit:
Address: CEh
0: Without erase NVM page(n).
1: Set this bit to erase page(n) of NVM. The NVM has 8 pages and each page
have 64/32/16/8 bytes data memory. Initiate page select by programming
NVMADDRH and NVMADDL registers, which will automaticly enable page
area. When user set this bit, the page erase process will begin and program
counter will halt at this instruction. After the erase process is completed,
program counter will continue executing next instruction.
6
EWR
NVM data write bit:
0: Without write NVM data.
- 42 -
Preliminary N79E352 Data Sheet
1: Set this bit to write NVM bytes and program counter will halt at this instruction.
After write is finished, program counter will kept next instruction then
executed.
5
EnNVM
To enable read NVM data memory area.
0: To disable the MOVX instruction to read NVM data memory.
1: To enable the MOVX instruction to read NVM data memory, the External RAM
or AUX-RAM will be disabled.
4-0
-
Reserved
NVM DATA
Bit:
7
6
5
4
3
2
1
0
NVMDAT.
7
NVMDAT.
6
NVMDAT.
5
NVMDAT.
4
NVMDAT
3
NVMDAT.
2
NVMDAT.
1
NVMDAT.
0
Mnemonic: NVMDATA
Address: CFh
BIT
NAME
FUNCTION
7~0
NVMDAT.[7:0]
The NVM data write register. The read NVM data is by MOVC instruction.
PROGRAM STATUS WORD
Bit:
7
6
5
4
3
2
1
0
CY
AC
F0
RS1
RS0
OV
F1
P
Mnemonic: PSW
BIT
NAME
Address: D0h
FUNCTION
Carry flag:
7
6
CY
AC
5
F0
4~3
RS1~RS0
2
OV
1
F1
0
P
Set for an arithmetic operation which results in a carry being generated from
the ALU. It is also used as the accumulator for the bit operations.
Auxiliary carry:
Set when the previous operation resulted in a carry from the high order nibble.
User flag 0:
The General purpose flag that can be set or cleared by the user.
Register bank select bits.
Overflow flag:
Set when a carry was generated from the seventh bit but not from the 8th bit as
a result of the previous operation, or vice-versa.
User Flag 1:
The General purpose flag that can be set or cleared by the user software.
Parity flag:
Set/cleared by hardware to indicate odd/even number of 1's in the accumulator.
RS.1-0: Register Bank Selection Bits:
- 43 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
RS1
RS0
REGISTER BANK
ADDRESS
0
0
1
1
0
1
0
1
0
1
2
3
00-07h
08-0Fh
10-17h
18-1Fh
PWM CONTROL REGISTER 3
Bit:
7
6
5
4
3
2
1
0
-
-
PWM1OE
PWM0OE
PCLK.1
PCLK.0
FP1
FP0
Mnemonic: PWMCON3
BIT
NAME
7~6 -
Address: D7h
FUNCTION
Reserved.
PWM1 output enable bit.
5
PWM1OE
0: PWM1 output disabled.
1: PWM1 output enabled.
PWM0 output enable bit.
4
PWM0OE
0: PWM0 output disabled.
1: PWM0 output enabled.
PWM clock source selection bits, see below table.
PCLK[1:0]
PWM clock source
00
Fosc
01
Timer 0 overflow
10
Timer 1 overflow
11
Reserved
3~2 PCLK.1~0
Select PWM frequency pre-scale select bits, see belowtable.
1~0
FP1~0
FP[1:0]
Fpwm
00
FPCLK/1 (default)
01
FPCLK/2
10
FPCLK/4
11
FPCLK/8
WATCHDOG CONTROL
Bit:
7
WDRUN
6
POR
5
4
3
2
1
0
-
-
WDIF
WTRF
EWRST
WDCLR
Mnemonic: WDCON
BIT
NAME
Address: D8h
FUNCTION
- 44 -
Preliminary N79E352 Data Sheet
7
WDRUN
6
POR
5~4 -
0: The Watchdog is stopped.
1: The Watchdog is running.
Power-on reset flag. Hardware will set this flag on a power up condition. This
flag can be read or written by software. A write by software is the only way to
clear this bit once it is set.
Reserved.
Watchdog Timer Interrupt flag:
3
WDIF
0: If the interrupt is not enabled, then this bit indicates that the time-out period
has elapsed. This bit must be cleared by software.
1: If the watchdog interrupt is enabled, hardware will set this bit to indicate that
the watchdog interrupt has occurred.
Watchdog Timer Reset flag:
2
WTRF
1
EWRST
1: Hardware will set this bit when the watchdog timer causes a reset. Software
can read it but must clear it manually. A power-fail reset will also clear the
bit. This bit helps software in determining the cause of a reset. If EWRST =
0, the watchdog timer will have no affect on this bit.
0: Disable Watchdog Timer Reset.
1: Enable Watchdog Timer Reset.
Reset Watchdog Timer:
0
WDCLR
This bit helps in putting the watchdog timer into a know state. It also helps in
resetting the watchdog timer before a time-out occurs. Failing to set the
EWRST before time-out will cause an interrupt (if EWDI (EIE.4) is set), and 512
clocks after that a watchdog timer reset will be generated (if EWRST is set).
This bit is self-clearing by hardware.
The WDCON SFR is set to a 01xx0000B on a power-on-reset. WTRF (WDCON.2) is set to a 1 on a
Watchdog timer reset, but to a 0 on power on/down resets. WTRF (WDCON.2) is not altered by an
external reset. EWRST (WDCON.1) is set to 0 on all resets.
All the bits in this SFR have unrestricted read access. WDRUN, POR, EWRST, WDIF and WDCLR
require Timed Access procedure to write. The remaining bits have unrestricted write accesses. Please
refer TA register description.
TA
REG
C7H
WDCON
REG
D8H
MOV
TA, #AAH
MOV
TA, #55H
SETB
WDCON.0
; Reset watchdog timer
ORL
WDCON, #00110000B
; Select 26 bits watchdog timer
MOV
TA, #AAH
MOV
TA, #55H
ORL
WDCON, #10000010B
; To access protected bits
; Enable watchdog
- 45 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
PWM 0 LOW BITS REGISTER
Bit:
7
6
5
4
3
2
1
0
PWM0.7
PWM0.6
PWM0.5
PWM0.4
PWM0.3
PWM0.2
PWM0.1
PWM0.0
Mnemonic: PWM0L
BIT
Address: DAh
NAME
7~0
FUNCTION
PWM0
PWM 0 Low Bits Register.
PWM 0 LOW BITS REGISTER
Bit:
7
6
5
4
3
2
1
0
PWM1.7
PWM1.6
PWM1.5
PWM1.4
PWM1.3
PWM1.2
PWM1.1
PWM1.0
Mnemonic: PWM1L
Address: DBh
BIT
NAME
FUNCTION
7~0
PWM1
PWM 1 Low Bits Register.
PWM CONTROL REGISTER 1
Bit:
7
6
5
4
3
2
1
0
PWMRUN
-
-
CLRPWM
-
-
-
-
Mnemonic: PWMCON1
BIT
NAME
7
PWMRUN
6~5
-
4
CLRPWM
3~0
-
Address: DCh
FUNCTION
0: The PWM is not running.
1: The PWM counter is running.
Reserved.
1: Clear 8-bit PWM counter to 000H.
It is automatically cleared by hardware.
Reserved.
ACCUMULATOR
Bit:
7
6
5
4
3
2
1
0
ACC.7
ACC.6
ACC.5
ACC.4
ACC.3
ACC.2
ACC.1
ACC.0
Mnemonic: ACC
Address: E0h
BIT
NAME
FUNCTION
7-0
ACC
The A or ACC register is the standard 8052 accumulator.
IINTERRUPT ENABLE REGISTER 1
Bit:
7
6
5
4
3
2
1
0
ECPTF
EBO
-
EWDI
-
-
EKB
EI2
Mnemonic: EIE
BIT
NAME
Address: E8h
FUNCTION
- 46 -
Preliminary N79E352 Data Sheet
7
0: Disable capture interrupt.
ECPTF
1: Enable capture interrupt.
Enable brownout interrupt.
6
EBO
0: Disable brownout interrupt.
1: Enable brownout interrupt.
5
-
Reserved.
4
EWDI
3~2 -
0: Disable Watchdog Timer Interrupt.
1: Enable Watchdog Timer Interrupt.
Reserved.
1
EKB
0
EI2
0: Disable Keypad Interrupt.
1: Enable Keypad Interrupt.
0: Disable I2C Interrupt.
1: Enable I2C Interrupt.
KEYBOARD LEVEL
Bit:
7
6
KBL.7
5
KBL.6
4
KBL.5
3
KBL.4
2
KBL.3
1
KBL.2
0
KBL.1
Mnemonic: KBL
BIT
NAME
KBL.0
Address: E9h
FUNCTION
Keyboard trigger level.
7~0
KBL.7~0
0: Low level trigger.x pin.
1: High level trigger on KBI.x pin.
[x = 0-7]
PORTS SHMITT REGISTER
Bit:
7
6
5
4
3
2
1
0
-
-
P5S
-
P3S
P2S
P1S
P0S
Mnemonic: PORTS
Address: ECh
BIT
NAME
FUNCTION
7~6
-
Reserved.
5
P5S
1: Enables Schmitt trigger inputs on Port 5.
4
-
Reserved.
3
P3S
1: Enables Schmitt trigger inputs on Port 3.
2
P2S
1: Enables Schmitt trigger inputs on Port 2.
1
P1S
1: Enables Schmitt trigger inputs on Port 1.
0
P0S
1: Enables Schmitt trigger inputs on Port 0.
- 47 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
PORT 5 OUTPUT MODE 1
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
-
ENCLK
P5M1.1
P5M1.0
Mnemonic: P5M1
BIT
NAME
7~3
-
2
1~0
Address: EDh
ENCLK
FUNCTION
Reserved.
1: Enabled clock output to XTAL2 pin (P5.0).
P5M1.1~0 To control the output configuration of P5 bits [1:0].
PORT 5 OUTPUT MODE 2
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
-
-
P5M2.1
P5M2.0
Mnemonic: P5M2
BIT
NAME
7~2
1~0
-
Address: EEh
FUNCTION
Reserved.
P5M2.1~0 To control the output configuration of P5 bits [1:0].
B REGISTER
Bit:
7
6
5
4
3
2
1
0
B.7
B.6
B.5
B.4
B.3
B.2
B.1
B.0
Mnemonic: B
Address: F0h
BIT
NAME
FUNCTION
7-0
B
The B register is the standard 8052 register that serves as a second
accumulator.
INTERRUPT HIGH PRIORITY 1
Bit:
7
6
5
4
3
2
1
0
PCAPH
PBOH
-
PWDIH
-
-
PKBH
PI2H
Mnemonic: IP1H
Address: F7h
BIT
NAME
FUNCTION
7
PCAPH
1: To set interrupt high priority of Capture 0 as highest priority level.
6
PBOH
1: To set interrupt high priority of Brownout is highest priority level.
5
-
Reserved.
4
PWDIH
1: To set interrupt high priority of Watchdog is highest priority level.
3~2
-
Reserved.
1
PKBH
1: To set interrupt high priority of Keypad is highest priority level.
0
PI2H
1: To set interrupt high priority of I2C is highest priority level.
- 48 -
Preliminary N79E352 Data Sheet
INTERRUPT PRIORITY 1
Bit:
7
6
5
4
3
2
1
0
PCAP
PBO
-
PWDI
-
-
PKB
PI2
Mnemonic: IP1
Address: F8h
BIT
NAME
FUNCTION
7
PCAP
1: To set interrupt priority of Capture 0 as higher priority level.
6
PBO
1: To set interrupt priority of Brownout is higher priority level.
5
-
Reserved.
4
PWDI
1: To set interrupt priority of Watchdog is higher priority level.
3~2
-
Reserved.
1
PKB
1: To set interrupt priority of Keypad is higher priority level.
0
PI2
1: To set interrupt priority of I2C is higher priority level.
- 49 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
9. INSTRUCTION
The N78E352 executes all the instructions of the standard 8032 family. The operation of these
instructions, their effect on the flag bits and the status bits is exactly the same. However, timing of
these instructions is different. The reason for this is two fold. Firstly, in the N78E352, each machine
cycle consists of 4 clock periods, while in the standard 8032 it consists of 12 clock periods. Also, in the
N78E352 there is only one fetch per machine cycle i.e. 4 clocks per fetch, while in the standard 8032
there can be two fetches per machine cycle, which works out to 6 clocks per fetch.
The advantage the N78E352 has is that since there is only one fetch per machine cycle, the number
of machine cycles in most cases is equal to the number of operands that the instruction has. In case of
jumps and calls there will be an additional cycle that will be needed to calculate the new address. But
overall the N78E352 reduces the number of dummy fetches and wasted cycles, thereby improving
efficiency as compared to the standard 8032.
Table 9-1: Instructions that affect Flag settings
Instruction
ADD
Carry
Overflow
Auxiliary
Carry
Instruction
Carry
X
X
X
CLR C
0
ADDC
X
X
X
CPL C
X
SUBB
X
X
X
ANL C, bit
X
MUL
0
X
ANL C, bit
X
DIV
0
X
ORL C, bit
X
DA A
X
ORL C, bit
X
RRC A
X
MOV C, bit
X
RLC A
X
CJNE
X
SETB C
1
A "X" indicates that the modification is as per the result of instruction.
- 50 -
Overflow
Auxiliary
Carry
Preliminary N79E352 Data Sheet
Table 9-2: Instruction Timing for N78E352
HEX
Op-Code
Bytes
N78E352
Machine
Cycles
N78E352
Clock
Cycles
8032
Clock
Cycles
N78E352 vs.
8032 Speed
Ratio
NOP
00
1
1
4
12
3
ADD A, R0
28
1
1
4
12
3
Instruction
ADD A, R1
29
1
1
4
12
3
ADD A, R2
2A
1
1
4
12
3
ADD A, R3
2B
1
1
4
12
3
ADD A, R4
2C
1
1
4
12
3
ADD A, R5
2D
1
1
4
12
3
ADD A, R6
2E
1
1
4
12
3
ADD A, R7
2F
1
1
4
12
3
ADD A, @R0
26
1
1
4
12
3
ADD A, @R1
27
1
1
4
12
3
ADD A, direct
25
2
2
8
12
1.5
ADD A, #data
24
2
2
8
12
1.5
- 51 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Instruction Timing for N78E352, continued
HEX
Op-Code
Bytes
N78E352
Machine
Cycles
N78E352
Clock
Cycles
8032
Clock
Cycles
N78E352 vs.
8032 Speed
Ratio
ADDC A, R0
38
1
1
4
12
3
ADDC A, R1
39
1
1
4
12
3
ADDC A, R2
3A
1
1
4
12
3
ADDC A, R3
3B
1
1
4
12
3
ADDC A, R4
3C
1
1
4
12
3
ADDC A, R5
3D
1
1
4
12
3
ADDC A, R6
3E
1
1
4
12
3
ADDC A, R7
3F
1
1
4
12
3
ADDC A, @R0
36
1
1
4
12
3
ADDC A, @R1
37
1
1
4
12
3
ADDC A, direct
35
2
2
8
12
1.5
ADDC A, #data
34
2
2
8
12
1.5
ACALL addr11
71, 91, B1, 11,
31, 51, D1, F1
2
3
12
24
2
AJMP ADDR11
01, 21, 41, 61,
81, A1, C1, E1
2
3
12
24
2
ANL A, R0
58
1
1
4
12
3
ANL A, R1
59
1
1
4
12
3
ANL A, R2
5A
1
1
4
12
3
ANL A, R3
5B
1
1
4
12
3
ANL A, R4
5C
1
1
4
12
3
ANL A, R5
5D
1
1
4
12
3
ANL A, R6
5E
1
1
4
12
3
ANL A, R7
5F
1
1
4
12
3
ANL A, @R0
56
1
1
4
12
3
Instruction
ANL A, @R1
57
1
1
4
12
3
ANL A, direct
55
2
2
8
12
1.5
ANL A, #data
54
2
2
8
12
1.5
ANL direct, A
52
2
2
8
12
1.5
ANL direct, #data
53
3
3
12
24
2
ANL C, bit
82
2
2
8
24
3
ANL C, /bit
B0
2
2
8
24
3
CJNE A, direct, rel
B5
3
4
16
24
1.5
CJNE A, #data, rel
B4
3
4
16
24
1.5
CJNE @R0, #data, rel
B6
3
4
16
24
1.5
CJNE @R1, #data, rel
B7
3
4
16
24
1.5
CJNE R0, #data, rel
B8
3
4
16
24
1.5
CJNE R1, #data, rel
B9
3
4
16
24
1.5
CJNE R2, #data, rel
BA
3
4
16
24
1.5
CJNE R3, #data, rel
BB
3
4
16
24
1.5
CJNE R4, #data, rel
BC
3
4
16
24
1.5
CJNE R5, #data, rel
BD
3
4
16
24
1.5
CJNE R6, #data, rel
BE
3
4
16
24
1.5
- 52 -
Preliminary N79E352 Data Sheet
Instruction Timing for N78E352, continued
HEX
Op-Code
Bytes
N78E352
Machine
Cycles
N78E352
Clock
Cycles
8032
Clock
Cycles
N78E352 vs.
8032 Speed
Ratio
E4
1
1
4
12
3
CPL A
F4
1
1
4
12
3
CLR C
C3
1
1
4
12
3
CLR bit
C2
2
2
8
12
1.5
Instruction
CLR A
CPL C
B3
1
1
4
12
3
CPL bit
B2
2
2
8
12
1.5
DEC A
14
1
1
4
12
3
DEC R0
18
1
1
4
12
3
DEC R1
19
1
1
4
12
3
DEC R2
1A
1
1
4
12
3
DEC R3
1B
1
1
4
12
3
DEC R4
1C
1
1
4
12
3
DEC R5
1D
1
1
4
12
3
DEC R6
1E
1
1
4
12
3
DEC R7
1F
1
1
4
12
3
DEC @R0
16
1
1
4
12
3
DEC @R1
17
1
1
4
12
3
DEC direct
15
2
2
8
12
1.5
DEC DPTR
A5
1
2
8
-
-
DIV AB
84
1
5
20
48
2.4
DA A
D4
1
1
4
12
3
DJNZ R0, rel
D8
2
3
12
24
2
DJNZ R1, rel
D9
2
3
12
24
2
DJNZ R5, rel
DD
2
3
12
24
2
DJNZ R2, rel
DA
2
3
12
24
2
DJNZ R3, rel
DB
2
3
12
24
2
DJNZ R4, rel
DC
2
3
12
24
2
DJNZ R6, rel
DE
2
3
12
24
2
DJNZ R7, rel
DF
2
3
12
24
2
DJNZ direct, rel
D5
3
4
16
24
1.5
INC A
04
1
1
4
12
3
INC R0
08
1
1
4
12
3
INC R1
09
1
1
4
12
3
INC R2
0A
1
1
4
12
3
INC R3
0B
1
1
4
12
3
INC R4
0C
1
1
4
12
3
- 53 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Instruction Timing for N78E352, continued
HEX
Op-Code
Bytes
N78E352
Machine
Cycles
N78E352
Clock
Cycles
8032
Clock
Cycles
N78E352 vs.
8032 Speed
Ratio
INC R6
0E
1
1
4
12
3
INC R7
0F
1
1
4
12
3
INC @R0
06
1
1
4
12
3
INC @R1
07
1
1
4
12
3
INC direct
05
2
2
8
12
1.5
INC DPTR
A3
1
2
8
24
3
3
Instruction
JMP @A+DPTR
73
1
2
8
24
JZ rel
60
2
3
12
24
2
JNZ rel
70
2
3
12
24
2
JC rel
40
2
3
12
24
2
JNC rel
50
2
3
12
24
2
JB bit, rel
20
3
4
16
24
1.5
JNB bit, rel
30
3
4
16
24
1.5
JBC bit, rel
10
3
4
16
24
1.5
LCALL addr16
12
3
4
16
24
1.5
LJMP addr16
02
3
4
16
24
1.5
MUL AB
A4
1
5
20
48
2.4
MOV A, R0
E8
1
1
4
12
3
MOV A, R1
E9
1
1
4
12
3
MOV A, R2
EA
1
1
4
12
3
MOV A, R3
EB
1
1
4
12
3
MOV A, R4
EC
1
1
4
12
3
MOV A, R5
ED
1
1
4
12
3
MOV A, R6
EE
1
1
4
12
3
MOV A, R7
EF
1
1
4
12
3
MOV A, @R0
E6
1
1
4
12
3
MOV A, @R1
E7
1
1
4
12
3
MOV A, direct
E5
2
2
8
12
1.5
MOV A, #data
74
2
2
8
12
1.5
MOV R0, A
F8
1
1
4
12
3
MOV R1, A
F9
1
1
4
12
3
MOV R2, A
FA
1
1
4
12
3
MOV R3, A
FB
1
1
4
12
3
MOV R4, A
FC
1
1
4
12
3
MOV R5, A
FD
1
1
4
12
3
MOV R6, A
FE
1
1
4
12
3
MOV R7, A
FF
1
1
4
12
3
- 54 -
Preliminary N79E352 Data Sheet
Instruction Timing for N78E352, continued
HEX
Op-Code
Bytes
N78E352
Machine
Cycles
N78E352
Clock
Cycles
8032
Clock
Cycles
N78E352 vs.
8032 Speed
Ratio
MOV R1, direct
A9
2
2
8
12
1.5
MOV R2, direct
AA
2
2
8
12
1.5
MOV R3, direct
AB
2
2
8
12
1.5
MOV R4, direct
AC
2
2
8
12
1.5
MOV R5, direct
AD
2
2
8
12
1.5
MOV R6, direct
AE
2
2
8
12
1.5
MOV R7, direct
AF
2
2
8
12
1.5
MOV R0, #data
78
2
2
8
12
1.5
MOV R1, #data
79
2
2
8
12
1.5
MOV R2, #data
7A
2
2
8
12
1.5
MOV R3, #data
7B
2
2
8
12
1.5
MOV R4, #data
7C
2
2
8
12
1.5
MOV R5, #data
7D
2
2
8
12
1.5
MOV R6, #data
7E
2
2
8
12
1.5
MOV R7, #data
7F
2
2
8
12
1.5
MOV @R0, A
F6
1
1
4
12
3
MOV @R1, A
F7
1
1
4
12
3
MOV @R0, direct
A6
2
2
8
12
1.5
MOV @R1, direct
A7
2
2
8
12
1.5
MOV @R0, #data
76
2
2
8
12
1.5
Instruction
MOV @R1, #data
77
2
2
8
12
1.5
MOV direct, A
F5
2
2
8
12
1.5
MOV direct, R0
88
2
2
8
12
1.5
MOV direct, R1
89
2
2
8
12
1.5
MOV direct, R2
8A
2
2
8
12
1.5
MOV direct, R3
8B
2
2
8
12
1.5
MOV direct, R4
8C
2
2
8
12
1.5
MOV direct, R5
8D
2
2
8
12
1.5
MOV direct, R6
8E
2
2
8
12
1.5
MOV direct, R7
8F
2
2
8
12
1.5
MOV direct, @R0
86
2
2
8
12
1.5
MOV direct, @R1
87
2
2
8
12
1.5
MOV direct, direct
85
3
3
12
24
2
MOV direct, #data
75
3
3
12
24
2
MOV DPTR, #data 16
90
3
3
12
24
2
MOVC A, @A+DPTR
93
1
2
8
24
3
- 55 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Instruction Timing for N78E352, continued
HEX
Op-Code
Bytes
N78E352
Machine
Cycles
N78E352
Clock
Cycles
8032
Clock
Cycles
N78E352 vs.
8032 Speed
Ratio
MOVX A, @R0
E2
1
2-9
8 - 36
24
3 - 0.66
MOVX A, @R1
E3
1
2-9
8 - 36
24
3 - 0.66
MOVX A, @DPTR
E0
1
2-9
8 - 36
24
3 - 0.66
MOVX @R0, A
F2
1
2-9
8 - 36
24
3 - 0.66
MOVX @R1, A
F3
1
2-9
8 - 36
24
3 - 0.66
MOVX @DPTR, A
F0
1
2-9
8 - 36
24
3 - 0.66
MOV C, bit
A2
2
2
8
12
1.5
MOV bit, C
92
2
2
8
24
3
ORL A, R0
48
1
1
4
12
3
ORL A, R1
49
1
1
4
12
3
ORL A, R2
4A
1
1
4
12
3
ORL A, R3
4B
1
1
4
12
3
ORL A, R4
4C
1
1
4
12
3
ORL A, R5
4D
1
1
4
12
3
ORL A, R6
4E
1
1
4
12
3
ORL A, R7
4F
1
1
4
12
3
ORL A, @R0
46
1
1
4
12
3
Instruction
ORL A, @R1
47
1
1
4
12
3
ORL A, direct
45
2
2
8
12
1.5
ORL A, #data
44
2
2
8
12
1.5
ORL direct, A
42
2
2
8
12
1.5
ORL direct, #data
43
3
3
12
24
2
ORL C, bit
72
2
2
8
24
3
ORL C, /bit
A0
2
2
6
24
3
PUSH direct
C0
2
2
8
24
3
POP direct
D0
2
2
8
24
3
RET
22
1
2
8
24
3
RETI
32
1
2
8
24
3
RL A
23
1
1
4
12
3
RLC A
33
1
1
4
12
3
RR A
03
1
1
4
12
3
RRC A
13
1
1
4
12
3
SETB C
D3
1
1
4
12
3
SETB bit
D2
2
2
8
12
1.5
SWAP A
C4
1
1
4
12
3
SJMP rel
80
2
3
12
24
2
SUBB A, R0
98
1
1
4
12
3
- 56 -
Preliminary N79E352 Data Sheet
Instruction Timing for N78E352, continued
HEX
Op-Code
Bytes
N78E352
Machine
Cycles
N78E352
Clock
Cycles
8032
Clock
Cycles
N78E352 vs.
8032 Speed
Ratio
9A
1
1
4
12
3
SUBB A, R3
9B
1
1
4
12
3
SUBB A, R4
9C
1
1
4
12
3
SUBB A, R5
9D
1
1
4
12
3
SUBB A, R6
9E
1
1
4
12
3
SUBB A, R7
9F
1
1
4
12
3
SUBB A, @R0
96
1
1
4
12
3
SUBB A, @R1
97
1
1
4
12
3
SUBB A, direct
95
2
2
8
12
1.5
SUBB A, #data
94
2
2
8
12
1.5
XCH A, R0
C8
1
1
4
12
3
XCH A, R1
C9
1
1
4
12
3
XCH A, R2
CA
1
1
4
12
3
XCH A, R3
CB
1
1
4
12
3
XCH A, R4
CC
1
1
4
12
3
XCH A, R5
CD
1
1
4
12
3
XCH A, R6
CE
1
1
4
12
3
XCH A, R7
CF
1
1
4
12
3
XCH A, @R0
C6
1
1
4
12
3
XCH A, @R1
C7
1
1
4
12
3
XCHD A, @R0
D6
1
1
4
12
3
XCHD A, @R1
D7
1
1
4
12
3
XCH A, direct
C5
2
2
8
12
1.5
XRL A, R0
68
1
1
4
12
3
XRL A, R1
69
1
1
4
12
3
XRL A, R2
6A
1
1
4
12
3
XRL A, R3
6B
1
1
4
12
3
XRL A, R4
6C
1
1
4
12
3
XRL A, R5
6D
1
1
4
12
3
XRL A, R6
6E
1
1
4
12
3
XRL A, R7
6F
1
1
4
12
3
XRL A, @R0
66
1
1
4
12
3
XRL A, @R1
67
1
1
4
12
3
XRL A, direct
65
2
2
8
12
1.5
XRL A, #data
64
2
2
8
12
1.5
XRL direct, A
62
2
2
8
12
1.5
XRL direct, #data
63
3
3
12
24
2
Instruction
SUBB A, R2
- 57 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
10. POWER MANAGEMENT
The N78E352 has several features that help the user to control the power consumption of the device.
The power saving features are basically the POWER DOWN mode, ECONOMY mode and the IDLE
mode of operation.
10.1 Idle Mode
The user can put the device into idle mode by writing 1 to the bit PCON.0. The instruction that sets the
idle bit is the last instruction that will be executed before the device goes into Idle Mode. In the Idle
mode, the clock to the CPU is halted, but not to the Interrupt, Timer, Watchdog timer and Serial port
blocks. This forces the CPU state to be frozen; the Program counter, the Stack Pointer, the Program
Status Word, the Accumulator and the other registers hold their contents. The port pins hold the
logical states they had at the time Idle was activated. The Idle mode can be terminated in two ways.
Since the interrupt controller is still active, the activation of any enabled interrupt can wake up the
processor. This will automatically clear the Idle bit, terminate the Idle mode, and the Interrupt Service
Routine(ISR) will be executed. After the ISR, execution of the program will continue from the
instruction which put the device into Idle mode.
The Idle mode can also be exited by activating the reset. The device can be put into reset either by
applying a high on the external RST pin, a Power on reset condition or a Watchdog timer reset. The
external reset pin has to be held high for at least two machine cycles i.e. 8 clock periods to be
recognized as a valid reset. In the reset condition the program counter is reset to 0000h and all the
SFRs are set to the reset condition. Since the clock is already running there is no delay and execution
starts immediately. In the Idle mode, the Watchdog timer continues to run, and if enabled, a time-out
will cause a watchdog timer interrupt which will wake up the device. The software must reset the
Watchdog timer in order to preempt the reset which will occur after 512 clock periods of the time-out.
When the N78E352 is exiting from an Idle mode with a reset, the instruction following the one which
put the device into Idle mode is not executed. So there is no danger of unexpected writes.
10.2 Economy Mode
The power consumption of microcontroller relates to operating frequency. The N78E352 offers a
Economy mode to reduce the internal clock rate dynamically without external components. By default,
one machine cycle needs 4 clocks. In Economy mode, software can select 4, 64 or 1024 clocks per
machine cycle. It keeps the CPU operating at a acceptable speed but eliminates the power
consumption. In the Idle mode, the clock of the core logic is stopped, but all clocked peripherals such
as watchdog timer are still running at a rate of clock/4. In the Economy mode, all clocked peripherals
run at the same reduced clocks rate as in core logic. So the Economy mode may provide a lower
power consumption than idle mode.
Software invokes the Economy mode by setting the appropriate bits in the SFRs. Setting the bits
CD0(PMR.6), CD1(PMR.7) decides the instruction cycle rate as below:
CD1
0
1
1
CD0
X
0
1
Clocks/Machine Cycle
4 (default)
64
1024
The selection of instruction rate is going to take effect after a delay of one instruction cycle. Switching
to divide by 64 or 1024 mode must first go from divide by 4 mode. This means software can not switch
directly between clock/64 and clock/1024 mode. The CPU has to return clock/4 mode first, then go to
clock/64 or clock/1024 mode.
- 58 -
Preliminary N79E352 Data Sheet
In Economy mode, the serial port can not receive/transmit data correctly because the baud rate is
changed. In some systems, the external interrupts may require the fastest process such that the
reducing of operating speed is restricted. In order to solve these dilemmas, the N78E352 offers a
switchback feature which allows the CPU back to clock/4 mode immediately when triggered by serial
operation (uart and i2c) or external interrupts. The switchback feature is enabled by setting the SWB
bit (PMR.5). A serial port/i2c reception/transmission or qualified external interrupt which is enabled
and acknowledged without block conditions will cause CPU to return to divide by 4 mode. For the
serial port reception, a switchback is generated by a falling edge associated with start bit if the serial
port reception is enabled. When a serial port transmission, an instruction which writes a byte of data to
serial port buffer will cause a switchback to ensure the correct transmission. The switchback feature is
unaffected by serial port interrupt flags. Similarly for i2c reception/transmission, a switchback is
generated when a start condition is determined. After a switchback is generated, the software can
manually return the CPU to Economy mode. Note that the modification of clock control bits CD0 and
CD1 will be ignored during i2c or serial port transmit/receive when switchback is enabled. The
Watchdog timer reset, power-on/fail reset, software reset, brownout reset or external reset will force
the CPU to return to divide by 4 mode.
10.3 Power Down Mode
The device can be put into Power Down mode by writing 1 to bit PCON.1. The instruction that does
this will be the last instruction to be executed before the device goes into Power Down mode. In the
Power Down mode, all the clocks are stopped and the device comes to a halt. All activity is completely
stopped and the power consumption is reduced to the lowest possible value. C2F will be disabled. In
this state the ALE and PSEN pins are pulled low. The port pins output the values held by their
respective SFRs.
The N78E352 will exit the Power Down mode with a reset or by an external interrupt pin. An external
reset can be used to exit the Power down state. The high on RST pin terminates the Power Down
mode, and restarts the clock. The program execution will restart from 0000h. In the Power down
mode, the clock is stopped, so the Watchdog timer cannot be used to provide the reset to exit Power
down mode when its clock source is external OSC or crystal.
The sources that can wake up from the power down mode are external interrupts, keyboard interrupt
(KBI), brownout reset (BOR), and watchdog timer interrupt (if WDTCK = 0).
The N78E352 can be woken from the Power Down mode by forcing an external interrupt pin activated,
provided the corresponding interrupt is enabled, while the global enable(EA) bit is set and the external
input has been set to a level detect mode. If these conditions are met, then the low level on the
external pin re-starts the oscillator. Then device executes the interrupt service routine for the
corresponding external interrupt. After the interrupt service routine is completed, the program
execution returns to the instruction after the one which put the device into Power Down mode and
continues from there.
- 59 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
11. RESET CONDITIONS
The user has several hardware related options for placing the N78E352 series into reset condition. In
general, most register bits go to their reset value irrespective of the reset condition, but there are a few
flags whose state depends on the source of reset. The user can use these flags to determine the
cause of reset using software.
11.1 Sources of reset
11.1.1 External Reset
The device samples the RST pin every machine cycle during state C4. The RST pin must be held high
for at least two machine cycles before the reset circuitry applies an internal reset signal. Thus, this
reset is a synchronous operation and requires the clock to be running.
The device remains in the reset state as long as RST pin is high and remains high up to two machine
cycles after RST is deactivated. Then, the device begins program execution at 0000h. There are no
flags associated with the external reset, but, since the other two reset sources do have flags, the
external reset is the cause if those flags are clear.
11.1.2 Power-On Reset (POR)
When the power supply rises to the configured level, VRST, the device will perform a power on reset
and set the POR flag. The software should clear the POR flag, or it will be difficult to determine the
source of future resets.
11.1.3 Brown-Out Reset (BOR)
If the power supply falls below brownout voltage of VBOV, the device goes into the reset state. When
the power supply returns to proper levels, the device performs a brownout reset.
11.1.4 Watchdog Timer Reset
The Watchdog Timer is a free-running timer with programmable time-out intervals. The program must
clear the Watchdog Timer before the time-out interval is reached to restart the count. If the time-out
interval is reached, an interrupt flag is set. 512 clocks later, if the Watchdog Reset is enabled and the
Watchdog Timer has not been cleared, the Watchdog Timer generates a reset. The reset condition is
maintained by the hardware for two machine cycles, and the WTRF bit in WDCON is set. Afterwards,
the device begins program execution at 0000h.
11.2 Reset State
When the device is reset, most registers return to their initial state. The Watchdog Timer is disabled if
the reset source was a power-on reset. The Program Counter is set to 0000h, and the stack pointer is
reset to 07h. After this, the device remains in the reset state as long as the reset conditions are
satisfied.
Reset does not affect the on-chip RAM, however, so RAM is preserved as long as VDD remains
above approximately 2V, the minimum operating voltage for the RAM. If VDD falls below 2V, the RAM
contents are also lost. In either case, the stack pointer is always reset, so the stack contents are lost.
The WDCON SFR bits are set/cleared in reset condition depending on the source of the reset.
External reset
Watchdog reset
- 60 -
Power on reset
Preliminary N79E352 Data Sheet
WDCON
0xxx0x00b
0xxx0100b
01xx0000b
The POR bit WDCON.6 is set only by the power on reset. WTRF bit WDCON.2 is set when the
Watchdog timer causes a reset. A power on reset will also clear this bit. The EWRST bit WDCON.1 is
cleared by all reset. This disables the Watchdog timer resets.
All the bits in this SFR have unrestricted read access. WDRUN, POR, EWRST, WDIF and WDCLR
require Timed Access procedure to write. The remaining bits have unrestricted write accesses.
- 61 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
12. PROGRAMMABLE TIMERS/COUNTERS
The N78E352 has three 16-bit programmable timer/counters and one programmable Watchdog timer.
The Watchdog timer is operationally quite different from the other two timers.
12.1 Timer/Counters 0 & 1
Each of these Timer/Counters has two 8 bit registers which form the 16 bit counting register. For
Timer/Counter 0 they are TH0, the upper 8 bits register, and TL0, the lower 8 bit register. Similarly
Timer/Counter 1 has two 8 bit registers, TH1 and TL1. The two can be configured to operate either as
timers, counting machine cycles or as counters counting external inputs.
When configured as a "Timer", the timer counts clock cycles. The timer clock can be programmed to
be thought of as 1/12 of the system clock or 1/4 of the system clock. In the "Counter" mode, the
register is incremented on the falling edge of the external input pin, T0 in case of Timer 0, and T1 for
Timer 1. The T0 and T1 inputs are sampled in every machine cycle at C4. If the sampled value is high
in one machine cycle and low in the next, then a valid high to low transition on the pin is recognized
and the count register is incremented. Since it takes two machine cycles to recognize a negative
transition on the pin, the maximum rate at which counting will take place is 1/24 of the master clock
frequency. In either the "Timer" or "Counter" mode, the count register will be updated at C3. Therefore,
in the "Timer" mode, the recognized negative transition on pin T0 and T1 can cause the count register
value to be updated only in the machine cycle following the one in which the negative edge was
detected.
The "Timer" or "Counter" function is selected by the " C / T " bit in the TMOD Special Function
Register. Each Timer/Counter has one selection bit for its own; bit 2 of TMOD selects the function for
Timer/Counter 0 and bit 6 of TMOD selects the function for Timer/Counter 1. In addition each
Timer/Counter can be set to operate in any one of four possible modes. The mode selection is done
by bits M0 and M1 in the TMOD SFR.
12.2 Time-base Selection
The N78E352 gives the user two modes of operation for the timer. The timers can be programmed to
operate like the standard 8051 family, counting at the rate of 1/12 of the clock speed. This will ensure
that timing loops on the N78E352 and the standard 8051 can be matched. This is the default mode of
operation of the N78E352 timers. The user also has the option to count in the turbo mode, where the
timers will increment at the rate of 1/4 clock speed. This will straight-away increase the counting speed
three times. This selection is done by the T0M and T1M bits in CKCON SFR. A reset sets these bits to
0, and the timers then operate in the standard 8051 mode. The user should set these bits to 1 if the
timers are to operate in turbo mode.
12.2.1 Mode 0
In Mode 0, the timer/counters act as a 8 bit counter with a 5 bit, divide by 32 pre-scale. In this mode
we have a 13 bit timer/counter. The 13 bit counter consists of 8 bits of THx and 5 lower bits of TLx.
The upper 3 bits of TLx are ignored.
The negative edge of the clock increments the count in the TLx register. When the fifth bit in TLx
moves from 1 to 0, then the count in the THx register is incremented. When the count in THx moves
from FFh to 00h, then the overflow flag TFx in TCON SFR is set. The counted input is enabled only if
TRx is set and either GATE = 0 or INTx = 1. When C / T is set to 0, then it will count clock cycles,
and if C / T is set to 1, then it will count 1 to 0 transitions on T0 (P3.4) for timer 0 and T1 (P3.5) for
timer 1. When the 13 bit count reaches 1FFFh the next count will cause it to roll-over to 0000h. The
timer overflow flag TFx of the relevant timer is set and if enabled an interrupts will occur. Note that
when used as a timer, the time-base may be either clock cycles/12 or clock cycles/4 as selected by
the bits TxM of the CKCON SFR.
- 62 -
Preliminary N79E352 Data Sheet
Timer 1 functions are shown in brackets
T0M = CKCON.3
(T1M = CKCON.4)
1/4
1
M1,M0 = TMOD.1,TMOD.0
(M1,M0 = TMOD.5,TMOD.4)
C/T = TMOD.2
(C/T = TMOD.6)
Fcpu
1/12
T0 = P3.4
(T1 = P3.5)
0
00
0
0
1
4
7
0
01
TL0
(TL1)
TR0 = TCON.4
(TR1 = TCON.6)
GATE = TMOD.3
(GATE = TMOD.7)
INT0 = P3.2
(INT1 = P3.3)
TFx
7
TH0
(TH1)
Interrupt
TF0
(TF1)
Figure 12-1: Timer/Counter Mode 0 & Mode 1
- 63 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
12.2.2 Mode 1
Mode 1 is similar to Mode 0 except that the counting register forms a 16 bit counter, rather than a 13
bit counter. This means that all the bits of THx and TLx are used. Roll-over occurs when the timer
moves from a count of FFFFh to 0000h. The timer overflow flag TFx of the relevant timer is set and if
enabled an interrupt will occur. The selection of the time-base in the timer mode is similar to that in
Mode 0. The gate function operates similarly to that in Mode 0.
12.2.3 Mode 2
In Mode 2, the timer/counter is in the Auto Reload Mode. In this mode, TLx acts as a 8 bit count
register, while THx holds the reload value. When the TLx register overflows from FFh to 00h, the TFx
bit in TCON is set and TLx is reloaded with the contents of THx, and the counting process continues
from here. The reload operation leaves the contents of the THx register unchanged. Counting is
enabled by the TRx bit and proper setting of GATE and INTx pins. As in the other two modes 0 and 1
mode 2 allows counting of either clock cycles (clock/12 or clock/4) or pulses on pin Tn.
T0M = CKCON.3
(T1M = CKCON.4)
1/4
1
Timer 1 functions are shown in brackets
C/T = TMOD.2
(C/T = TMOD.6)
TL0
(TL1)
Fcpu
1/12
T0 = P3.4
(T1 = P3.5)
0
0
0
1
4
7
TFx
Interrupt
TF0
(TF1)
TR0 = TCON.4
(TR1 = TCON.6)
GATE = TMOD.3
(GATE = TMOD.7)
INT0 = P3.2
(INT1 = P3.3)
0
7
TH0
(TH1)
Figure 12-2: Timer/Counter Mode 2
12.2.4 Mode 3
Mode 3 has different operating methods for the two timer/counters. For timer/counter 1, mode 3 simply
freezes the counter. Timer/Counter 0, however, configures TL0 and TH0 as two separate 8 bit count
registers in this mode. The logic for this mode is shown in the figure. TL0 uses the Timer/Counter 0
control bits C / T , GATE, TR0, INT0 and TF0. The TL0 can be used to count clock cycles (clock/12 or
clock/4) or 1-to-0 transitions on pin T0 as determined by C/T (TMOD.2). TH0 is forced as a clock cycle
counter (clock/12 or clock/4) and takes over the use of TR1 and TF1 from Timer/Counter 1. Mode 3 is
used in cases where an extra 8 bit timer is needed. With Timer 0 in Mode 3, Timer 1 can still be used
in Modes 0, 1 and 2., but its flexibility is somewhat limited. While its basic functionality is maintained, it
no longer has control over its overflow flag TF1 and the enable bit TR1. Timer 1 can still be used as a
timer/counter and retains the use of GATE and INT1 pin. In this condition it can be turned on and off
by switching it out of and into its own Mode 3. It can also be used as a baud rate generator for the
serial port.
- 64 -
Preliminary N79E352 Data Sheet
T0M = CKCON.3
1/4
C/T = TMOD.2
1
TL0
Fcpu
1/12
T0 = P3.4
0
0
0
1
4
TF0
Interrupt
TF1
Interrupt
7
TR0 = TCON.4
GATE = TMOD.3
INT0 = P3.2
TR1 = TCON.6
0
7
TH0
Figure 12-3: Timer/Counter 0 Mode 3
12.3 Timer/Counter 2
Timer/Counter 2 is a 16 bit up/down counter which is configured by the T2MOD register and controlled
by the T2CON register. Timer/Counter 2 is equipped with a capture/reload capability. As with the
Timer 0 and Timer 1 counters, there exists considerable flexibility in selecting and controlling the
clock, and in defining the operating mode. The clock source for Timer/Counter 2 may be selected for
either the external T2 pin (C/T2 = 1) or the crystal oscillator, which is divided by 12 or 4 (C/T2 = 0).
The clock is then enabled when TR2 is a 1, and disabled when TR2 is a 0.
12.3.1 Capture Mode
The capture mode is enabled by setting the CP / RL2 bit in the T2CON register to a 1. In the capture
mode, Timer/Counter 2 serves as a 16 bit up counter. When the counter rolls over from FFFFh to
0000h, the TF2 bit is set, which will generate an interrupt request. If the EXEN2 bit is set, then a
negative transition of T2EX pin will cause the value in the TL2 and TH2 register to be captured by the
RCAP2L and RCAP2H registers. This action also causes the EXF2 bit in T2CON to be set, which will
also generate an interrupt. Setting the T2CR bit (T2MOD.3), the N78E352 allows hardware to reset
timer 2 automatically after the value of TL2 and TH2 have been captured.
- 65 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
1/4
T2M=CKCON.5
1
Fcpu
1/12
0
C/T2=T2CON.1
0
T2CON.7
TL2
TH2
TF2
1
T2=P1.0
Timer2
Interrupt
TR2=T2CON.2
RCAP2L
RCAP2H
T2EX=P1.1
EXF2
T2CON.6
EXEN2=T2CON.3
Figure 12-4: Timer 2 16-Bit Capture Mode
12.3.2 Auto-Reload Mode, Counting up
The auto-reload mode as an up counter is enabled by clearing the CP / RL2 bit in the T2CON register
and clearing the DCEN bit in T2MOD register. In this mode, Timer/Counter 2 is a 16 bit up counter.
When the counter rolls over from FFFFh, a reload is generated that causes the contents of the
RCAP2L and RCAP2H registers to be reloaded into the TL2 and TH2 registers. The reload action also
sets the TF2 bit. If the EXEN2 bit is set, then a negative transition of T2EX pin will also cause a
reload. This action also sets the EXF2 bit in T2CON.
1/4
T2M=CKCON.5
1
Fcpu
1/12
T2=P1.0
0
C/T2=T2CON.1
0
T2CON.7
TL2
TH2
TF2
1
Timer2
Interrupt
TR2=T2CON.2
RCAP2L
T2EX=P1.1
RCAP2H
EXF2
T2CON.6
EXEN2=T2CON.3
Figure 12-5: Timer 2 16-Bit Auto-reload Mode, Counting Up
12.3.3 Auto-Reload Mode, Counting Up/Down
Timer/Counter 2 will be in auto-reload mode as an up/down counter if CP / RL2 bit in T2CON is
cleared and the DCEN bit in T2MOD is set. In this mode, Timer/Counter 2 is an up/down counter
whose direction is controlled by the T2EX pin. A 1 on this pin cause the counter to count up. An
overflow while counting up will cause the counter to be reloaded with the contents of the capture
registers. The next down count following the case where the contents of Timer/Counter equal the
capture registers will load an FFFFh into Timer/Counter 2. In either event a reload will set the TF2 bit.
- 66 -
Preliminary N79E352 Data Sheet
A reload will also toggle the EXF2 bit. However, the EXF2 bit can not generate an interrupt while in
this mode.
Down Counting Reload Value
0FFh
1/4
1
Fcpu
1/12
0FFh
T2M=CKCON.5
C/T2=T2CON.1
0
0
1
T2=P1.0
T2CON.7
TL2
Timer2
Interrupt
TF2
TH2
TR2=T2CON.2
RCAP2L
RCAP2H
Up Counting Reload Value
T2EX=P1.1
EXF2
T2CON.6
Figure 12-6: Timer 2 16-Bit Auto-reload Up/Down Counter
12.3.4 Baud Rate0 Generator Mode
The baud rate generator mode is enabled by setting either the RCLK or TCLK bits in T2CON register.
While in the baud rate generator mode, Timer/Counter 2 is a 16 bit counter with auto reload when the
count rolls over from FFFFh. However, rolling over does not set the TF2 bit. If EXEN2 bit is set, then a
negative transition of the T2EX pin will set EXF2 bit in the T2CON register and cause an interrupt
request.
Fcpu
/2
C/T2=T2CON.1
0
TL2
T2=P1.0
Timer2
Overflow
TH2
1
TR2=T2CON.2
RCAP2L
RCAP2H
T2EX=P1.1
EXF2
Timer2
Interrupt
T2CON.6
EXEN2=T2CON.3
Figure 12-7: Baud Rate Generator Mode
- 67 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
12.3.5 Programmable Clock-out
Timer 2 is equipped with a new clock-out feature which outputs a 50% duty cycle clock on P1.0. It can
be invoked as a programmable clock generator. To configure Timer 2 with clock-out mode, software
must initiate it by setting bit T2OE = 1, C/T2 = 0 and CP/RL = 0. Setting bit TR2 will start the timer.
This mode is similar to the baud rate generator mode, it will not generate an interrupt while Timer 2
overflow. So it is possible to use Timer 2 as a baud rate generator and a clock generator at the same
time. The clock-out frequency is determined by the following equation:
The Clock-Out Frequency = Oscillator Frequency / [4 X 65536-(RCAP2H, RCAP2L) ]
Fcpu
/2
TL2
TH2
Timer2
Overflow
1/2
T2=P1.0
TR2=T2CON.2
RCAP2L
T2EX=P1.1
RCAP2H
EXF2
T2CON.6
EXEN2=T2CON.3
Figure 12-8: Programmable Clock-Out Mode
- 68 -
Timer2
Interrupt
Preliminary N79E352 Data Sheet
13. NVM MEMORY
The N78E352 series have NVM data memory of 128 bytes for customer’s data store used. The NVM
data memory has 8 pages area and each page has 64/32/16/8 bytes.
13.1 Operation
User is required to enable EnNVM (NVMCON.5) bit for all NVM access (read/write/erase). This is due
to overlapping of NVM data memory and external data memory physical address, the following table is
defined. EnNVM bit (NVMCON.5) will enable read access to NVM data memory area.
EnNVM
0
Data Memory Area
Enable External RAM read/write access by
MOVX
1
Enable NVM data Memory read access by
MOVX only. If EER or EWR is set and NVM
flash erase or write control is busy, to set this
bit read NVM data is invalid.
Table 13-1: MOVX instruction to Enable Read Data Memory Area Definition Table
The NVM memory can be read/write by customer program to access. Read NVM data is by MOVX
A,@DPTR/R0/R1 instructions, and write data is by SFR of NVMADDRH, NVMADDRL, NVMDAT and
NVMCON. Before write data to NVM memory, the page must be erased by providing page address on
NVMADDRH and NVMADDRL, which high and low byte address of On-Chip Code Memory space will
decode, then set EER of NVMCON.7. This will automatically hold fetch program code and PC
Counter, and execute page erase. After finished, this bit will be cleared by hardware. The erase time
is ~ 5ms.
For writing data to NVM memory, user must set address and data to NVMADDRH, NVMADDRL and
NVMDAT, then set EWR of NVMCON.6 to initiate nvm data write. The uC will hold program code and
PC Counter, and then write data to mapping address. Upon write completion, the EWR bit will be
cleared by hardware, the uC will continue execute next instruction. The program time is ~50us.
NVM data Flash Memory is permanently operating from 11.0594MHz+/- 2% internal clock source. In
order to reduce power consumption, the on chip oscillator will only be enabled when during program
or erase, through EWR or EER in NVMCON SFR. EWR or EER bits are cleared by hardware after
program or erase completed. The program/erase time is automatically controlled by hardware.
- 69 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Internal Signal
EER
ERC
EWR
Clock
Source
11.0594MHz
RC OSC
NVM Data
Memory
Block
EnNVM
Figure 13-1: NVM control
Instructions
MOVX A, @DPTR
EnNVM = 0
EnNVM = 1
Addr within
NVM
address
range
Addr out of
NVM address
range
Ext memory
NVM
Ext memory
Ext memory
NVM
Ext memory[1]
Ext memory
NVM
Ext memory[1]
Ext memory
Ext memory
Ext memory
Ext memory
Ext
memory[1]
Ext memory
Ext memory
Ext
memory[1]
Ext memory
(Read)
MOVX A, @R0
(Read)
MOVX A, @R1
(Read)
MOVX @DPTR, A
(Write)
MOVX @R0, A
(Write)
MOVX @R1, A
(Write)
[1]
[1]
Table 13-2: MOVX read/write access destination
Note: 1. Higher address bytes will come from SFR port 2 values.
For security purposes this NVM data flash provide an independent “Lock bit” located in Security bits, it
is used to protect the customer’s data code in NVM. It may be enabled in CONFIG1.6 after the
programmer finishes the programming and verifies sequence. Once this bit is set to logic 0, NVM
Flash EPROM data can not be accessed again by hardware writer mode.
- 70 -
Preliminary N79E352 Data Sheet
14. WATCHDOG TIMER
The Watchdog Timer is a free-running Timer which can be programmed by the user to serve as a
system monitor, a time-base generator or an event timer. It is basically a set of dividers that divide the
system clock. The divider output is selectable and determines the time-out interval. When the time-out
occurs a flag is set, which can cause an interrupt if enabled, and a system reset can also be caused if
it is enabled. The interrupt will occur if the individual interrupt enable and the global enable are set.
The interrupt and reset functions are independent of each other and may be used separately or
together depending on the user’s software.
20KHz+/100% RC
Oscillator
(Security Bit)
WDTCK
Fcpu
Time-Out
Selector
15-bits Counter
0
/Enable
5
WDRUN
(WDCON.7)
6
8
9
12
13
14
WDCLR
(Reset Watchdog)
(WDCON.0)
00
01
10
MUX
(WDCON.3)
WDIF
EWDI
(EIE.4)
(WDCON.2)
WTRF
11
WD1,WD0
(CKCON.7~6)
Interrupt
512 clock
delay
Reset
EWRST
(WDCON.1)
Figure 14-1: Watchdog Timer
The Watchdog Timer should first be restarted by using WDCLR. This ensures that the timer starts
from a known state. The WDCLR bit is used to restart the Watchdog Timer. This bit is self clearing, i.e.
after writing a 1 to this bit the software will automatically clear it. The Watchdog Timer will now count
clock cycles. The time-out interval is selected by the two bits WD1 and WD0 (CKCON.7 and
CKCON.6). When the selected time-out occurs, the Watchdog interrupt flag WDIF (WDCON.3) is set.
After the time-out has occurred, the Watchdog Timer waits for an additional 512 clock cycles. If the
Watchdog Reset EWRST (WDCON.1) is enabled, then 512 clocks after the time-out, if there is no
WDCLR, a system reset due to Watchdog Timer will occur. This will last for two machine cycles, and
the Watchdog Timer reset flag WTRF (WDCON.2) will be set. This indicates to the software that the
Watchdog was the cause of the reset.
When used as a simple timer, the reset and interrupt functions are disabled. The timer will set the
WDIF flag each time the timer completes the selected time interval. The WDIF flag is polled to detect a
time-out and the WDCLR allows software to restart the timer. The Watchdog Timer can also be used
as a very long timer. The interrupt feature is enabled in this case. Every time the time-out occurs an
interrupt will occur if the global interrupt enable EA is set.
The main use of the Watchdog Timer is as a system monitor. This is important in real-time control
applications. In case of some power glitches or electro-magnetic interference, the processor may
begin to execute errant code. If this is left unchecked the entire system may crash. Using the
watchdog timer interrupt during software development will allow the user to select ideal watchdog
reset locations. The code is first written without the watchdog interrupt or reset. Then the Watchdog
interrupt is enabled to identify code locations where interrupt occurs. The user can now insert
instructions to reset the Watchdog Timer, which will allow the code to run without any Watchdog Timer
interrupts. Now the Watchdog Timer reset is enabled and the Watchdog interrupt may be disabled. If
- 71 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
any errant code is executed now, then the reset Watchdog Timer instructions will not be executed at
the required instants and Watchdog reset will occur.
The Watchdog Timer time-out selection will result in different time-out values depending on the clock
speed. The reset will occur, when enabled, 512 clocks after the time-out has occurred.
WD1
WD0
WATCHDOG
INTERVAL
NUMBER OF
CLOCKS
TIME
@ 20 KHZ
0
0
1
1
0
1
0
1
26
29
213
215
64
512
8192
32768
3.2 mS
25.6 mS
409.6 mS
1638.4 mS
Table 14-1: Time-out values for the Watchdog timer.
The default Watchdog time-out is 26 clocks, which is the shortest time-out period. The EWRST, WDIF
and WDCLR bits are protected by the Timed Access procedure. This prevents software from
accidentally enabling or disabling the watchdog timer. More importantly, it makes it highly improbable
that errant code can enable or disable the Watchdog Timer.
The security bit WDTCK is located at bit 7 of CONFIG0 register. This bit is for user to configure the
clock source of watchdog timer either from the internal RC or from the uC clock.
- 72 -
Preliminary N79E352 Data Sheet
15. UART SERIAL PORT
Serial port in the N78E352 is a full duplex port. The N78E352 provides the user with additional
features such as the Frame Error Detection and the Automatic Address Recognition. The serial ports
are capable of synchronous as well as asynchronous communication. In Synchronous mode the
N78E352 generates the clock and operates in a half duplex mode. In the asynchronous mode, full
duplex operation is available. This means that it can simultaneously transmit and receive data. The
transmit register and the receive buffer are both addressed as SBUF Special Function Register.
However any write to SBUF will be to the transmit register, while a read from SBUF will be from the
receive buffer register. The serial port can operate in four different modes as described below.
15.1 Mode 0
This mode provides synchronous communication with external devices. In this mode serial data is
transmitted and received on the RXD line. TXD is used to transmit the shift clock. The TxD clock is
provided by the N78E352 whether the device is transmitting or receiving. This mode is therefore a half
duplex mode of serial communication. In this mode, 8 bits are transmitted or received per frame. The
LSB is transmitted/received first. The baud rate is fixed at 1/12 or 1/4 of the oscillator frequency. This
baud rate is determined by the SM2 bit (SCON.5). When this bit is set to 0, then the serial port runs at
1/12 of the clock. When set to 1, the serial port runs at 1/4 of the clock. This additional facility of
programmable baud rate in mode 0 is the only difference between the standard 8051 and the
N78E352.
The functional block diagram is shown below. Data enters and leaves the Serial port on the RxD line.
The TxD line is used to output the shift clock. The shift clock is used to shift data into and out of the
N78E352 and the device at the other end of the line. Any instruction that causes a write to SBUF will
start the transmission. The shift clock will be activated and data will be shifted out on the RxD pin till all
8 bits are transmitted. If SM2 = 1, then the data on RxD will appear 1 clock period before the falling
edge of shift clock on TxD. The clock on TxD then remains low for 2 clock periods, and then goes high
again. If SM2 = 0, the data on RxD will appear 3 clock periods before the falling edge of shift clock on
TxD. The clock on TxD then remains low for 6 clock periods, and then goes high again. This ensures
that at the receiving end the data on RxD line can either be clocked on the rising edge of the shift
clock on TxD or latched when the TxD clock is low.
- 73 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Write
to
SBUF
Fcpu
1/12
S
2 0
M
1/4
1
TX START
R
REI
N
Internal
Data Bus
RX START
SOUT
TI
SHIFT
CLOCK
RX
Alternat
D
P3.0
e
Output Function
Serial Interrupt
R
I
TX
Alternat
D
P3.1
e
Output Function
LOAD SBUF
RX SHIFT
Serial Controllor
RX
Alternat
P3.0 D
e
Input Function
PARIN
LOAD
CLOC
K
TX
SHIFT
TX
CLOCK
RX CLOCK
Transmit Shift
Register
CLOC
K
SIN
Read
SBUF
PAROU
T
SBU
F
Internal
Data Bus
Figure 15-1: Uart Serial Port Mode 0
The TI flag is set high in C1 following the end of transmission of the last bit. The serial port will receive
data when REN is 1 and RI is zero. The shift clock (TxD) will be activated and the serial port will latch
data on the rising edge of shift clock. The external device should therefore present data on the falling
edge on the shift clock. This process continues till all the 8 bits have been received. The RI flag is set
in C1 following the last rising edge of the shift clock on TxD. This will stop reception, till the RI is
cleared by software.
15.2 Mode 1
In Mode 1, the full duplex asynchronous mode is used. Serial communication frames are made up of
10 bits transmitted on TXD and received on RXD. The 10 bits consist of a start bit (0), 8 data bits (LSB
first), and a stop bit (1). On receive, the stop bit goes into RB8 in the SFR SCON. The baud rate in this
mode is variable. The serial baud can be programmed to be 1/16 or 1/32 of the Timer 1 overflow or
1/16 of Timer 2 overflow. Since the Timer 1 and 2 can be set to different reload values, a wide
variation in baud rates is possible.
Transmission begins with a write to SBUF. The serial data is brought out on to TxD pin at C1 following
the first roll-over of divide by 16 counter. The next bit is placed on TxD pin at C1 following the next
rollover of the divide by 16 counter. Thus the transmission is synchronized to the divide by 16 counter
and not directly to the write to SBUF signal. After all 8 bits of data are transmitted, the stop bit is
transmitted. The TI flag is set in the C1 state after the stop bit has been put out on TxD pin. This will
be at the 10th rollover of the divide by 16 counter after a write to SBUF.
Reception is enabled only if REN is high. The serial port actually starts the receiving of serial data,
with the detection of a falling edge on the RxD pin. The 1-to-0 detector continuously monitors the RxD
line, sampling it at the rate of 16 times the selected baud rate. When a falling edge is detected, the
divide by 16 counter is immediately reset. This helps to align the bit boundaries with the rollovers of
the divide by 16 counter.
- 74 -
Preliminary N79E352 Data Sheet
The 16 states of the counter effectively divide the bit time into 16 slices. The bit detection is done on a
best of three basis. The bit detector samples the RxD pin, at the 8th, 9th and 10th counter states. By
using a majority 2 of 3 voting system, the bit value is selected. This is done to improve the noise
rejection feature of the serial port. If the first bit detected after the falling edge of RxD pin is not 0, then
this indicates an invalid start bit, and the reception is immediately aborted. The serial port again looks
for a falling edge in the RxD line. If a valid start bit is detected, then the rest of the bits are also
detected and shifted into the SBUF.
After shifting in 8 data bits, there is one more shift to do, after which the SBUF and RB8 are loaded
and RI is set. However certain conditions must be met before the loading and setting of RI can be
done.
1. RI must be 0 and
2. Either SM2 = 0, or the received stop bit = 1.
If these conditions are met, then the stop bit goes to RB8, the 8 data bits go into SBUF and RI is set.
Otherwise the received frame may be lost. After the middle of the stop bit, the receiver goes back to
looking for a 1-to-0 transition on the RxD pin.
Time
2
Overflo
r
w
Time
1
Overflo
r
w
1/2
SMOD
0
1
TCL
K
0
1
0
1
RCLK
TX START
1/16
1/16
SOU
T
TXD
TX SHIFT
Serial
Controllor
RX CLOCK
RX
D
0
TX CLOCK
SAMPL
E
1-To-0
DETECTOR
STO
P
PARI
N
START
LOAD
CLOC
K
1
Internal
Data
Bus
Write
to
SBUF
Transmit Shift
Register
RX START
TI
Serial
Interrupt
RI
LOAD SBUF
RX
SHIFT
Read SBUF
CLOC
K
BIT
DETECTOR
PAROUT
SIN
D8
Receive Shift Register
SBUF
R
8
B
Internal
Data
Bus
Figure 15-2: Uart Serial Port Mode 1
15.3 Mode 2
This mode uses a total of 11 bits in asynchronous full-duplex communication. The functional
description is shown in the figure below. The frame consists of one start bit (0), 8 data bits (LSB first),
a programmable 9th bit (TB8) and a stop bit (0). The 9th bit received is put into RB8. The baud rate is
- 75 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
programmable to 1/32 or 1/64 of the oscillator frequency, which is determined by the SMOD bit in
PCON SFR. Transmission begins with a write to SBUF. The serial data is brought out on to TxD pin at
C1 following the first roll-over of the divide by 16 counter. The next bit is placed on TxD pin at C1
following the next rollover of the divide by 16 counter. Thus the transmission is synchronized to the
divide by 16 counter, and not directly to the write to SBUF signal. After all 9 bits of data are
transmitted, the stop bit is transmitted. The TI flag is set in the C1 state after the stop bit has been put
out on TxD pin. This will be at the 11th rollover of the divide by 16 counter after a write to SBUF.
Reception is enabled only if REN is high. The serial port actually starts the receiving of serial data,
with the detection of a falling edge on the RxD pin. The 1-to-0 detector continuously monitors the RxD
line, sampling it at the rate of 16 times the selected baud rate. When a falling edge is detected, the
divide by 16 counter is immediately reset. This helps to align the bit boundaries with the rollovers of
the divide by 16 counter. The 16 states of the counter effectively divide the bit time into 16 slices. The
bit detection is done on a best of three basis. The bit detector samples the RxD pin, at the 8th, 9th and
10th counter states. By using a majority 2 of 3 voting system, the bit value is selected. This is done to
improve the noise rejection feature of the serial port.
Transmit Shift Register
Fcpu
Write to
SBUF
1/ 2
SMOD
0
STOP
D8
TB 8
Internal
Data Bus
PARIN
START
LOAD
1
SOUT
TXD
CLOCK
TX
SHIFT
TX START
1 / 16
TX CLOCK
Serial
1 / 16
Controllor
RX
CLOCK
SAMPLE
1 - To - 0
DETECTOR
RXD
RX START
TI
Serial
Interrupt
RI
LOAD
SBUF
Read
SBUF
RX SHIFT
BIT
DETECTOR
CLOCK PAROUT
SBUF
SIN
RB 8
D8
Internal
Data Bus
Receive Shift Register
Figure 15-3: Uart Serial Port Mode 2
If the first bit detected after the falling edge of RxD pin, is not 0, then this indicates an invalid start bit,
and the reception is immediately aborted. The serial port again looks for a falling edge in the RxD line.
If a valid start bit is detected, then the rest of the bits are also detected and shifted into the SBUF.
After shifting in 9 data bits, there is one more shift to do, after which the SBUF and RB8 are loaded
and RI is set. However certain conditions must be met before the loading and setting of RI can be
done.
1. RI must be 0 and
2. Either SM2 = 0, or the received stop bit = 1.
- 76 -
Preliminary N79E352 Data Sheet
If these conditions are met, then the stop bit goes to RB8, the 8 data bits go into SBUF and RI is set.
Otherwise the received frame may be lost. After the middle of the stop bit, the receiver goes back to
looking for a 1-to-0 transition on the RxD pin.
- 77 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
15.4 Mode 3
This mode is similar to Mode 2 in all respects, except that the baud rate is programmable. The user
must first initialize the Serial related SFR SCON before any communication can take place. This
involves selection of the Mode and baud rate. The Timer 1 should also be initialized if modes 1 and 3
are used. In all four modes, transmission is started by any instruction that uses SBUF as a destination
register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. This will generate a
clock on the TxD pin and shift in 8 bits on the RxD pin. Reception is initiated in the other modes by the
incoming start bit if REN = 1. The external device will start the communication by transmitting the start
bit.
Time
1
r
Overflow
Transmit Shift Register
Time
2
r
Overflow
Write to
SBUF
1/2
SMOD
0
1
TCL
K
0
1
0
1
RCLK
SOU
T
TXD
K
TX
START
1/16
STO
P
D8
PARI
N
START
LOA
D
CLOC
1
T
8
InternalB
Data
Bus
0
TX SHIFT
TX CLOCK
Serial
Controllor
1/16
RX CLOCK
SAMPL
E
T
1- -0
o
DETECTOR
RX START
Serial
Interrupt
RI
LOAD SBUF
RX
SHIFT
BIT
DETECTOR
RX
D
TI
Read SBUF
CLOC
K
SBU
F
R
8
B
PAROUT
SIN
D8
Receive Shift
Register
Internal
Data
Bus
Figure 15-4: Uart Serial Port Mode 3
Baud Clock
Frame
Size
Start
Bit
Stop
Bit
9th bit
Function
Synch.
4 or 12 TCLKS
8 bits
No
No
None
1
Asynch.
Timer 1 or 2
10 bits
1
1
None
0
2
Asynch.
32 or 64 TCLKS
11 bits
1
1
0, 1
1
3
Asynch.
Timer 1 or 2
11 bits
1
1
0, 1
SM1
SM0
Mode
Type
0
0
0
0
1
1
1
Table 15-1: Uart Serial Port Modes
- 78 -
Preliminary N79E352 Data Sheet
15.5 Framing Error Detection
A Frame Error occurs when a valid stop bit is not detected. This could indicate incorrect serial data
communication. Typically the frame error is due to noise and contention on the serial communication
line. The N78E352 has the facility to detect such framing errors and set a flag which can be checked
by software.
The Frame Error FE bit is located in SCON.7. This bit is normally used as SM0 in the standard 8051
family. However, in the N78E352 it serves a dual function and is called SM0/FE. There are actually
two separate flags, one for SM0 and the other for FE. The flag that is actually accessed as SCON.7 is
determined by SMOD0 (PCON.6) bit. When SMOD0 is set to 1, then the FE flag is indicated in
SM0/FE. When SMOD0 is set to 0, then the SM0 flag is indicated in SM0/FE.
The FE bit is set to 1 by hardware but must be cleared by software. Note that SMOD0 must be 1 while
reading or writing to FE. If FE is set, then any following frames received without any error will not clear
the FE flag. The clearing has to be done by software.
15.6 Multiprocessor Communications
Multiprocessor communications makes use of the 9th data bit in modes 2 and 3. In the N78E352, the
RI flag is set only if the received byte corresponds to the Given or Broadcast address. This hardware
feature eliminates the software overhead required in checking every received address, and greatly
simplifies the software programmer task.
In the multiprocessor communication mode, the address bytes are distinguished from the data bytes
by transmitting the address with the 9th bit set high. When the master processor wants to transmit a
block of data to one of the slaves, it first sends out the address of the targeted slave (or slaves). All the
slave processors should have their SM2 bit set high when waiting for an address byte. This ensures
that they will be interrupted only by the reception of a address byte. The Automatic address
recognition feature ensures that only the addressed slave will be interrupted. The address comparison
is done in hardware not software.
The addressed slave clears the SM2 bit, thereby clearing the way to receive data bytes. With SM2 = 0,
the slave will be interrupted on the reception of every single complete frame of data. The unaddressed
slaves will be unaffected, as they will be still waiting for their address. In Mode 1, the 9th bit is the stop
bit, which is 1 in case of a valid frame. If SM2 is 1, then RI is set only if a valid frame is received and
the received byte matches the Given or Broadcast address.
The Master processor can selectively communicate with groups of slaves by using the Given Address.
All the slaves can be addressed together using the Broadcast Address. The addresses for each slave
are defined by the SADDR and SADEN SFRs. The slave address is an 8-bit value specified in the
SADDR SFR. The SADEN SFR is actually a mask for the byte value in SADDR. If a bit position in
SADEN is 0, then the corresponding bit position in SADDR is don't care. Only those bit positions in
SADDR whose corresponding bits in SADEN are 1 are used to obtain the Given Address. This gives
the user flexibility to address multiple slaves without changing the slave address in SADDR.
- 79 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
The following example shows how the user can define the Given Address to address different slaves.
Slave 1:
SADDR 1010 0100
SADEN 1111 1010
Given 1010 0x0x
Slave 2:
SADDR 1010 0111
SADEN 1111 1001
Given 1010 0xx1
The Given address for slave 1 and 2 differ in the LSB. For slave 1, it is a don't care, while for slave 2 it
is 1. Thus to communicate only with slave 1, the master must send an address with LSB = 0 (1010
0000). Similarly the bit 1 position is 0 for slave 1 and don't care for slave 2. Hence to communicate
only with slave 2 the master has to transmit an address with bit 1 = 1 (1010 0011). If the master
wishes to communicate with both slaves simultaneously, then the address must have bit 0 = 1 and bit
1 = 0. The bit 3 position is don't care for both the slaves. This allows two different addresses to select
both slaves (1010 0001 and 1010 0101).
The master can communicate with all the slaves simultaneously with the Broadcast Address. This
address is formed from the logical ORing of the SADDR and SADEN SFRs. The zeros in the result are
defined as don't cares In most cases the Broadcast Address is FFh. In the previous case, the
Broadcast Address is (1111111X) for slave 1 and (11111111) for slave 2.
The SADDR and SADEN SFRs are located at address A9h and B9h respectively. On reset, these two
SFRs are initialized to 00h. This results in Given Address and Broadcast Address being set as XXXX
XXXX(i.e. all bits don't care). This effectively removes the multiprocessor communications feature,
since any selectivity is disabled.
- 80 -
Preliminary N79E352 Data Sheet
16. I2C SERIAL PORT
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to the
bus. The main features of the bus are:
– Bidirectional data transfer between masters and slaves
– Multimaster bus (no central master)
– Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
– Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
– Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial
transfer
– The I2C bus may be used for test and diagnostic purposes
Repeated
START
START
STOP
STOP
SDA
tBUF
tLOW
tr
SCL
tHD;STA
tf
tHIGH
tHD;DAT
tSU;DAT
tSU;STA
tSU;STO
Figure 16-1: I2C Bus Timing
The device’s on-chip I2C logic provides the serial interface that meets the I2C bus standard mode
specification. The I2C logic handles bytes transfer autonomously. It also keeps track of serial
transfers, and a status register (I2STATUS) reflects the status of the I2C bus.
The I2C port, SCL and SDA are at P1.2 and P1.3. When the I/O pins are used as I2C port, user must
set the pins to logic high in advance. When I2C port is enabled by setting ENS to high, the internal
states will be controlled by I2CON and I2C logic hardware. Once a new status code is generated and
stored in I2STATUS, the I2C interrupt flag (SI) will be set automatically. If both EA and EI2C are also
in logic high, the I2C interrupt is requested. The 5 most significant bits of I2STATUS stores the internal
state code, the lowest 3 bits are always zero and the content keeps stable until SI is cleared by
software.
16.1 SIO Port
The SIO port is a serial I/O port, which supports all transfer modes from and to the I2C bus. The SIO
port handles byte transfers autonomously. To enable this port, the bit ENS1 in I2CON should be set to
'1'. The CPU interfaces to the SIO port through the following six special function registers: I2CON
(control register, C0H), I2STATUS (status register, BDH), I2DAT (data register, BCH), I2ADDR
(address registers, C1H), I2CLK (clock rate register BEH) and I2TIMER (Timer counter register, BFH).
The SIO H/W interfaces to the I2C bus via two pins: SDA (P1.2, serial data line) and SCL (P1.3, serial
clock line). Pull up resistor is needed for Pin P1.2 and P1.3 for I2C operation as these are 2 open
drain pins (on I2C mode).
- 81 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
16.2 The I2C Control Registers:
The I2C has 1 control register (I2CON) to control the transmit/receive flow, 1 data register (I2DAT) to
buffer the Tx/Rx data, 1 status register (I2STATUS) to catch the state of Tx/Rx, recognizable slave
address register for slave mode use and 1 clock rate control block for master mode to generate the
variable baud rate.
16.2.1 The Address Registers, I2ADDR
I2C port is equipped with one slave address register. The contents of the register are irrelevant when
I2C is in master mode. In the slave mode, the seven most significant bits must be loaded with the
MCU’s own slave address. The I2C hardware will react if the contents of I2ADDR are matched with
the received slave address.
The I2C ports support the “General Call” function. If the GC bit is set the I2C port1 hardware will
respond to General Call address (00H). Clear GC bit to disable general call function.
When GC bit is set, the I2C is in Slave mode, it can be received the general call address by 00H after
Master send general call address to I2C bus, then it will follow status of GC mode. If it is in Master
mode, the AA bit must be cleared when it will send general call address of 00H to I2C bus.
16.2.2 The Data Register, I2DAT
This register contains a byte of serial data to be transmitted or a byte which has just been received.
The CPU can read from or write to this 8-bit directly addressable SFR while it is not in the process of
shifting a byte. This occurs when SIO is in a defined state and the serial interrupt flag (SI) is set. Data
in I2DAT remains stable as long as SI bit is set. While data is being shifted out, data on the bus is
simultaneously being shifted in; I2DAT always contains the last data byte present on the bus. Thus, in
the event of arbitration lost, the transition from master transmitter to slave receiver is made with the
correct data in I2DAT.
I2DAT and the acknowledge bit form a 9-bit shift register, the acknowledge bit is controlled by the SIO
hardware and cannot be accessed by the CPU. Serial data is shifted through the acknowledge bit into
I2DAT on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into
I2DAT, the serial data is available in I2DAT, and the acknowledge bit (ACK or NACK) is returned by
the control logic during the ninth clock pulse. Serial data is shifted out from I2DAT on the falling edges
of SCL clock pulses, and is shifted into I2DAT on the rising edges of SCL clock pulses.
I2C Data Register:
I2DAT.7 I2DAT.6 I2DAT.5 I2DAT.4 I2DAT.3 I2DAT.2 I2DAT.1 I2DAT.0
shifting direction
- 82 -
Preliminary N79E352 Data Sheet
16.2.3 The Control Register, I2CON
The CPU can read from and write to this 8-bit, directly addressable SFR. Two bits are affected by
hardware: the SI bit is set when the I2C hardware requests a serial interrupt, and the STO bit is
cleared when a STOP condition is present on the bus. The STO bit is also cleared when ENS = "0".
ENSI
Set to enable I2C serial function block. When ENS=1 the I2C serial function enables. The
port latches of SDA1 and SCL1 must be set to logic high.
STA
I2C START Flag. Setting STA to logic 1 to enter master mode, the I2C hardware sends a
START or repeat START condition to bus when the bus is free.
STO
I2C STOP Flag. In master mode, setting STO to transmit a STOP condition to bus then
I2C hardware will check the bus condition if a STOP condition is detected this flag will be
cleared by hardware automatically. In a slave mode, setting STO resets I2C hardware to
the defined “not addressed” slave mode. This means it is NO LONGER in the slave
receiver mode to receive data from the master transmit device.
SI
I2C Port 1 Interrupt Flag. When a new SIO state is present in the S1STA register, the SI
flag is set by hardware, and if the EA and EI2C1 bits are both set, the I2C1 interrupt is
requested. SI must be cleared by software.
AA
Assert Acknowledge control bit. When AA=1 prior to address or data received, an
acknowledged (low level to SDA) will be returned during the acknowledge clock pulse on
the SCL line when 1.) A slave is acknowledging the address sent from master, 2.) The
receiver devices are acknowledging the data sent by transmitter. When AA=0 prior to
address or data received, a Not acknowledged (high level to SDA) will be returned during
the acknowledge clock pulse on the SCL line.
16.2.4 The Status Register, I2STATUS
I2STATUS is an 8-bit read-only register. The three least significant bits are always 0. The five most
significant bits contain the status code. There are 23 possible status codes. When I2STATUS contains
F8H, no serial interrupt is requested. All other I2STATUS values correspond to defined SIO states.
When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is
present in I2STATUS one machine cycle after SI is set by hardware and is still present one machine
cycle after SI has been reset by software.
16.2.5 The I2C Clock Baud Rate Bits, I2CLK
The data baud rate of I2C is determines by I2CLK register when SIO is in a master mode. It is not
important when SIO is in a slave mode. In the slave modes, SIO will automatically synchronize with
any clock frequency up to 400 KHz from master I2C device.
The data baud rate of I2C setting is Data Baud Rate of I2C = Fcpu / (I2CLK+1). The Fcpu=Fosc/4. If
Fosc = 16MHz, the I2CLK = 40(28H), so data baud rate of I2C = 16MHz/(4X (40 +1)) =
97.56Kbits/sec. The block diagram is as below figure.
- 83 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
0
Fcpu
1/4
1
14-bits Counter
Enable
TIF
To I2C Interrupt
Clear Counter
DIV4
SI
ENS1
ENTI
SI
Figure 16-2: I2C Timer Count Block Diagram
16.2.6 I2C Time-out Counter, I2Timerx
In SA8178, the I2C logic block provides a 14-bit timer-out counter that helps user to deal with bus
pending problem. When SI is cleared user can set ENTI=1 to start the time-out counter. If I2C bus is
pended too long to get any valid signal from devices on bus, the time-out counter overflows cause
TIF=1 to request an I2C interrupt. The I2C interrupt is requested in the condition of either SI=1 or
TIF=1. Flags SI and TIF must be cleared by software.
DIV4
0
Fosc
14-bit Up Counter
1/4
overflow
TIF
1
Reset Then Start
Counter
Set ENTI=1
(when SI=0)
Figure 16-3: I2C Timer Count Block Diagram
16.3 Modes of Operation
The on-chip I2C ports support five operation modes, Master transmitter, Master receiver, Slave
transmitter, Slave receiver, and GC call.
In a given application, I2C port may operate as a master or as a slave. In the slave mode, the I2C port
hardware looks for its own slave address and the general call address. If one of these addresses is
detected, and if the slave is willing to receive or transmit data from/to master(by setting the AA bit),
acknowledge pulse will be transmitted out on the 9th clock, hence an interrupt is requested on both
master and slave devices if interrupt is enabled. When the microcontroller wishes to become the bus
master, the hardware waits until the bus is free before the master mode is entered so that a possible
slave action is not interrupted. If bus arbitration is lost in the master mode, I2C port switches to the
slave mode immediately and can detect its own slave address in the same serial transfer.
- 84 -
Preliminary N79E352 Data Sheet
16.3.1 Master Transmitter Mode
Serial data output through SDA while SCL outputs the serial clock. The first byte transmitted contains
the slave address of the receiving device (7 bits) and the data direction bit. In this case the data
direction bit (R/W) will be logic 0, and it is represented by “W” in the flow diagrams. Thus the first byte
transmitted is SLA+W. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an
acknowledge bit is received. START and STOP conditions are output to indicate the beginning and
the end of a serial transfer.
16.3.2 Master Receiver Mode
In this case the data direction bit (R/W) will be logic 1, and it is represented by “R” in the flow
diagrams. Thus the first byte transmitted is SLA+R. Serial data is received via SDA while SCL outputs
the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit
is transmitted. START and STOP conditions are output to indicate the beginning and end of a serial
transfer.
16.3.3 Slave Receiver Mode
Serial data and the serial clock are received through SDA and SCL. After each byte is received, an
acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and
end of a serial transfer. Address recognition is performed by hardware after reception of the slave
address and direction bit.
16.3.4 Slave Transmitter Mode
The first byte is received and handled as in the slave receiver mode. However, in this mode, the
direction bit will indicate that the transfer direction is reversed. Serial data is transmitted via SDA while
the serial clock is input through SCL. START and STOP conditions are recognized as the beginning
and end of a serial transfer.
16.4 Data Transfer Flow in Five Operating Modes
The five operating modes are: Master/Transmitter, Master/Receiver, Slave/Transmitter,
Slave/Receiver and GC Call. Bits STA, STO and AA in I2CON register will determine the next state of
the SIO hardware after SI flag is cleared. Upon complexion of the new action, a new status code will
be updated and the SI flag will be set. If the I2C interrupt control bits (EA and EI2) are enable,
appropriate action or software branch of the new status code can be performed in the Interrupt service
routine.
Data transfers in each mode are shown in the following figures.
*** Legend for the following five figures:
- 85 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Last state
Last action is done
Next setting in S1CON
Expected next action
New state
next action is done
Software's access to S1DAT with respect to "Expected next action":
(1) Data byte will be transmitted:
Software should load the data byte (to be transmitted)
into S1DAT before new S1CON setting is done.
(2) SLA+W (R) will be transmitted:
Software should load the SLA+W/R (to be transmitted)
into S1DAT before new S1CON setting is done.
(STA,STO,SI,AA)=(0,0,0,X) (3) Data byte will be received:
Software can read the received data byte from S1DAT
SLA+W will be transmitted;
while a new state is entered.
ACK bit will be received.
08H
A START has been
transmitted.
18H
SLA+W has been transmitted;
ACK has been received.
Figure 16-4: Legen for the following four figures
- 86 -
Preliminary N79E352 Data Sheet
Set STA to generate
a START.
From Slave Mode (C)
08H
A START has been
transmitted.
(STA,STO,SI,AA)=(0,0,0,X)
SLA+W will be transmitted;
ACK bit will be received.
From Master/Receiver (B)
18H
SLA+W will be transmitted;
ACK bit will be received.
or
20H
SLA+W will be transmitted;
NOT ACK bit will be received.
(STA,STO,SI,AA)=(0,0,0,X)
Data byte will be transmitted ;
ACK will be received.
28H
Data byte in S1DAT has been transmitted ;
ACK has been received .
(STA,STO,SI,AA)=(1,0,0,X)
A repeated START will be transmitted ;
(STA,STO,SI,AA)=(0,1,0,X)
A STOP will be transmitted;
STO flag will be reset.
10H
A repeated START has
been transmitted.
(STA,STO,SI,AA)=(1,1,0,X)
A STOP followed by a START will
be transmitted;
STO flag will be reset.
Send a STOP
Send a STOP
followed by a START
or
30H
Data byte in S1DAT has been transmitted ;
NOT ACK has been received .
(STA,STO,SI,AA)=(0,0,0,X)
SLA+R will be transmitted;
ACK bit will be transmitted;
SIO1 will be switched to MST/REC mode.
38H
Arbitration lost in SLA +R/W or
Data byte.
To Master/Receiver (A)
(STA,STO,SI,AA)=(0,0,0,X)
I2C bus will be release;
Not address SLV mode will be entered .
Enter NAslave
(STA,STO,SI,AA)=(1,0,0,X)
A START will be transmitted when the
bus becomes free.
Send a START
when bus becomes free
Figure 16-5: Master Transmitter Mode
- 87 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Set STA to generate
a START.
From Slave Mode (C)
08H
A START has been
transmitted.
(STA,STO,SI,AA)=(0,0,0,X)
SLA+R will be transmitted;
ACK bit will be received.
From Master/Transmitter (A)
48H
SLA+R has been transmitted ;
NOT ACK has been received .
40H
SLA+R has been transmitted ;
ACK has been received .
(STA,STO,SI,AA)=(0,0,0,0)
Data byte will be received ;
NOT ACK will be returned.
58H
Data byte has been received ;
NOT ACK has been returned .
(STA,STO,SI,AA)=(1,1,0,X)
A STOP followed by a START will
be transmitted;
STO flag will be reset.
(STA,STO,SI,AA)=(0,1,0,X)
A STOP will be transmitted;
STO flag will be reset.
(STA,STO,SI,AA)=(1,0,0,X)
A repeated START will be transmitted ;
10H
A repeated START has
been transmitted.
Send a STOP
Send a STOP
followed by a START
38H
Arbitration lost in NOT ACK
bit.
(STA,STO,SI,AA)=(0,0,0,X)
SLA+R will be transmitted;
ACK bit will be transmitted;
SIO1 will be switched to MST/REC mode.
To Master/Transmitter (B)
(STA,STO,SI,AA)=(1,0,0,X)
A START will be transmitted;
when the bus becomes free
Send a START
when bus becomes free
(STA,STO,SI,AA)=(0,0,0,X)
I2C bus will be release;
Not address SLV mode will be entered .
Enter NAslave
Figure 16-6: Master Receiver Mode
- 88 -
(STA,STO,SI,AA)=(0,0,0,1)
Data byte will be received ;
ACK will be returned.
50H
Data byte has been received ;
ACK has been returned .
Preliminary N79E352 Data Sheet
Set A A
A 8H
Own SL A +R has been received;
A C K has been return.
or
B 0H
A rbitration lost SL A +R /W as master;
Own SL A +R has been received;
A C K has been return.
(STA ,STO,SI,A A )=(0,0,0,0)
L ast data byte will be transmitted;
A C K will be received.
C 8H
L ast data byte in S1D A T has been transmitted;
A C K has been received.
(STA ,STO,SI,A A )=(0,0,0,1)
D ata byte will be transmitted;
A C K will be received.
C 0H
D ata byte or L ast data byte in S1D A T has been
transmitted;
N O T A C K has been received.
B 8H
D ata byte in S1D A T has been transmitted;
A C K has been received.
(STA ,STO,SI,A A )=(0,0,0,0)
L ast data will be transmitted;
A C K will be received.
(STA ,STO,SI,A A )=(0,0,0,1)
D ata byte will be transmitted;
A C K will be received.
A 0H
A STOP or repeated STA R T has been
received while still addressed as SL V /TR X .
(STA ,STO,SI,A A )=(1,0,0,1)
Switch to not address SL V mode;
O wn SL A will be recognized;
A STA R T will be transmitted when the
bus becomes free.
(STA ,STO,SI,A A )=(1,0,0,0)
Switch to not addressed SL V mode;
N o recognition of own SL A ;
A STA R T will be transmitted when the
becomes free.
(STA ,STO,SI,A A )=(0,0,0,1)
Switch to not addressed SL V mode;
Own SL A will be recognized.
(STA ,STO,SI,A A )=(0,0,0,0)
Switch to not addressed SL V mode;
N o recognition of own SL A .
E nter N A slave
Send a STA R T
when bus becomes free
To M aster M ode (C )
Figure 16-7: Slave Transmitter Mode
- 89 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Set AA
60H
Own SLA+W has been received;
ACK has been return .
or
68H
Arbitration lost SLA+R/W as master;
Own SLA+W has been received;
ACK has been return .
(STA,STO,SI,AA)=(0,0,0,0)
Data byte will be received;
NOT ACK will be returned.
(STA,STO,SI,AA)=(0,0,0,1)
Data byte will be received ;
ACK will be returned.
80H
Previously addressed with own SLA address ;
Data has been received ;
ACK has been returned .
88H
Previously addressed with own SLA address ;
NOT ACK has been returned .
(STA,STO,SI,AA)=(0,0,0,0)
Data will be received;
NOT ACK will be returned.
(STA,STO,SI,AA)=(0,0,0,1)
Data will be received;
ACK will be returned.
A0H
A STOP or repeated START has been
received while still addressed as SLV /REC.
(STA,STO,SI,AA)=(1,0,0,1)
Switch to not address SLV mode ;
Own SLA will be recognized ;
A START will be transmitted when
the bus becomes free .
(STA,STO,SI,AA)=(1,0,0,0)
Switch to not addressed SLV mode ;
No recognition of own SLA ;
A START will be transmitted when the
becomes free.
(STA,STO,SI,AA)=(0,0,0,1)
Switch to not addressed SLV mode ;
Own SLA will be recognized .
(STA,STO,SI,AA)=(0,0,0,0)
Switch to not addressed SLV mode ;
No recognition of own SLA .
Enter NAslave
Send a START
when bus becomes free
To Master Mode (C)
Figure 16-8: Slave Receiver Mode
- 90 -
Preliminary N79E352 Data Sheet
Set AA
70H
Reception of the general call address
and one or more data bytes ;
ACK has been return .
or
78H
Arbitration lost SLA +R/W as master;
and address as SLA by general call ;
ACK has been return .
(STA,STO,SI,AA)=(X,0,0,0)
Data byte will be received;
NOT ACK will be returned.
(STA,STO,SI,AA)=(X,0,0,1)
Data byte will be received ;
ACK will be returned.
90H
Previously addressed with General Call ;
Data has been received ;
ACK has been returned .
98H
Previously addressed with General Call ;
Data byte has been received ;
NOT ACK has been returned .
(STA,STO,SI,AA)=(X,0,0,0)
Data will be received;
NOT ACK will be returned.
(STA,STO,SI,AA)=(X,0,0,1)
Data will be received;
ACK will be returned.
A0H
A STOP or repeated START has been
received while still addressed as
SLV/REC.
(STA,STO,SI,AA)=(1,0,0,1)
Switch to not address SLV mode ;
Own SLA will be recognized ;
A START will be transmitted when
the bus becomes free .
(STA,STO,SI,AA)=(1,0,0,0)
Switch to not addressed SLV mode ;
No recognition of own SLA ;
A START will be transmitted when the
becomes free.
(STA,STO,SI,AA)=(0,0,0,1)
Switch to not addressed SLV mode ;
Own SLA will be recognized .
(STA,STO,SI,AA)=(0,0,0,0)
Switch to not addressed SLV mode ;
No recognition of own SLA .
Enter NAslave
Send a START
when bus becomes free
To Master Mode (C)
Figure 16-9: GC Mode
- 91 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
17. TIMED ACCESS PROTECTION
The N78E352 has several new features, like the Watchdog timer, on-chip ROM size adjustment, wait
state control signal and Power on/fail reset flag, which are crucial to proper operation of the system. If
left unprotected, errant code may write to the Watchdog control bits resulting in incorrect operation
and loss of control. In order to prevent this, the N78E352 has a protection scheme which controls the
write access to critical bits. This protection scheme is done using a timed access.
In this method, the bits which are to be protected have a timed write enable window. A write is
successful only if this window is active, otherwise the write will be discarded. This write enable window
is open for 3 machine cycles if certain conditions are met. After 3 machine cycles, this window
automatically closes. The window is opened by writing AAh and immediately 55h to the Timed
Access(TA) SFR. This SFR is located at address C7h. The suggested code for opening the timed
access window is
TA
REG
0C7h
MOV
TA, #0AAh
MOV
TA, #055h
; define new register TA, located at 0C7h
When the software writes AAh to the TA SFR, a counter is started. This counter waits for 3 machine
cycles looking for a write of 55h to TA. If the second write (55h) occurs within 3 machine cycles of the
first write (AAh), then the timed access window is opened. It remains open for 3 machine cycles,
during which the user may write to the protected bits. Once the window closes the procedure must be
repeated to access the other protected bits.
Examples of Timed Assessing are shown below
Example 1: Valid access
MOV TA, #0AAh
3 M/C
MOV TA, #055h
3 M/C
MOV WDCON, #00h 3 M/C
Note: M/C = Machine Cycles
Example 2: Valid access
MOV TA, #0AAh
3 M/C
MOV TA, #055h
3 M/C
NOP
1 M/C
SETB EWRST
2 M/C
Example 3: Valid access
MOV TA, #0Aah
3 M/C
MOV TA, #055h
3 M/C
ORL
WDCON, #00000010B 3M/C
Example 4: Invalid access
MOV TA, #0AAh
MOV TA, #055h
NOP
NOP
CLR
POR
3 M/C
3 M/C
1 M/C
1 M/C
2 M/C
Example 5: Invalid Access
MOV TA, #0AAh
3 M/C
- 92 -
Preliminary N79E352 Data Sheet
NOP
MOV TA, #055h
SETB EWRST
1 M/C
3 M/C
2 M/C
In the first two examples, the writing to the protected bits is done before the 3 machine cycle window
closes. In Example 3, however, the writing to the protected bit occurs after the window has closed,
and so there is effectively no change in the status of the protected bit. In Example 4, the second write
to TA occurs 4 machine cycles after the first write, therefore the timed access window in not opened at
all, and the write to the protected bit fails.
- 93 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
18. INTERRUPTS
N78E352 series have four priority level interrupts structure with 10 interrupt sources. Each of the
interrupt sources has an individual priority bit, flag, interrupt vector and enable bit. In addition, the
interrupts can be globally enabled or disabled.
18.1 Interrupt Sources
The External Interrupts INT0 and INT1 can be either edge triggered or level triggered, programmable
through bits IT0 and IT1 (SFR TCON). The bits IE0 and IE1 in TCON register are the flags which are
checked to generate the interrupt. In the edge triggered mode, the INTx inputs are sampled in every
machine cycle. If the sample is high in one cycle and low in the next, then a high to low transition is
detected and the interrupts request flag IEx in TCON is set. The flag bit requests the interrupt. Since
the external interrupts are sampled every machine cycle, they have to be held high or low for at least
one complete machine cycle. The IEx flag is automatically cleared when the service routine is called. If
the level triggered mode is selected, then the requesting source has to hold the pin low till the interrupt
is serviced. The IEx flag will not be cleared by the hardware on entering the service routine. If the
interrupt continues to be held low even after the service routine is completed, then the processor may
acknowledge another interrupt request from the same source.
The Timer 0 and 1 Interrupts are generated by the TF0 and TF1 flags. These flags are set by the
overflow in the Timer 0 and Timer 1. The TF0 and TF1 flags are automatically cleared by the hardware
when the timer interrupt is serviced. The Watchdog timer can be used as a system monitor or a simple
timer. In either case, when the time-out count is reached, the Watchdog Timer interrupt flag WDIF
(WDCON.3) is set. If the interrupt is enabled by the enable bit EIE.4, then an interrupt will occur.
The timer 2 interrupt is generated through TF2 (timer 2 overflow/compare match). The hardware does
not clear these flags when a timer 2 interrupt is executed.
The uart serial block can generate interrupt on reception or transmission. There are two interrupt
sources from the uart block, which are obtained by the RI and TI bits in the SCON SFR. These bits
are not automatically cleared by the hardware, and the user will have to clear these bits using
software.
This device also provide an independent i2c serial port. When new SIO1 state is present in
I2STATUS, the SI flag is set by hardware, and if EA and EI2 bits are both set, the I2C interrupt is
requested. SI must be cleared by software.
Keyboard interrupt is generated when any of the keypad connected to P0 pins is pressed. Each
keypad interrupt can be individually enabled or disabled. User will have to software clear the flag bit.
Brownout detect can cause brownout flag, BOF, to be asserted if power voltage drop below brownout
voltage level. Interrupt will occur if BOI (AUXR1.5), EBO (EIE.6) and global interrupt enable are set.
Source
Vector Address
Source
Vector Address
External Interrupt 0
0003h
Timer 0 Overflow
000Bh
External Interrupt 1
0013h
Timer 1 Overflow
001Bh
Serial Port
0023h
Brownout Interrupt
002Bh
I2C Interrupt
0033h
KBI Interrupt
003Bh
Timer 2 Overflow
0043h
-
004Bh
Watchdog Timer
0053h
-
005Bh
-
0063h
-
006Bh
-
0073h
-
007Bh
- 94 -
Preliminary N79E352 Data Sheet
Table 18- 1: N78E352 series interrupt vector table
18.2 Priority Level Structure
There are four priority levels for the interrupts, highest, high, low and lowest. The interrupt sources can
be individually set to either high or low levels. Naturally, a higher priority interrupt cannot be
interrupted by a lower priority interrupt. However there exists a pre-defined hierarchy amongst the
interrupts themselves. This hierarchy comes into play when the interrupt controller has to resolve
simultaneous requests having the same priority level. This hierarchy is defined as shown on Table 182: Four-level interrupts priority.
The interrupt flags are sampled every machine cycle. In the same machine cycle, the sampled
interrupts are polled and their priority is resolved. If certain conditions are met then the hardware will
execute an internally generated LCALL instruction which will vector the process to the appropriate
interrupt vector address. The conditions for generating the LCALL are;
1. An interrupt of equal or higher priority is not currently being serviced.
2. The current polling cycle is the last machine cycle of the instruction currently being execute.
3. The current instruction does not involve a write to IE, EIE, IP0, IP0H, IP1 or IPH1 registers and is
not a RETI.
If any of these conditions are not met, then the LCALL will not be generated. The polling cycle is
repeated every machine cycle, with the interrupts sampled in the same machine cycle. If an interrupt
flag is active in one cycle but not responded to, and is not active when the above conditions are met,
the denied interrupt will not be serviced. This means that active interrupts are not remembered; every
polling cycle is new.
The processor responds to a valid interrupt by executing an LCALL instruction to the appropriate
service routine. This may or may not clear the flag which caused the interrupt. In case of Timer
interrupts, the TF0 or TF1 flags are cleared by hardware whenever the processor vectors to the
appropriate timer service routine. In case of external interrupt, /INT0 and /INT1, the flags are cleared
only if they are edge triggered. In case of Serial interrupts, the flags are not cleared by hardware. In
the case of Timer 2 interrupt, the flags are not cleared by hardware. The Watchdog timer interrupt flag
WDIF has to be cleared by software. The hardware LCALL behaves exactly like the software LCALL
instruction. This instruction saves the Program Counter contents onto the Stack, but does not save the
Program Status Word PSW. The PC is reloaded with the vector address of that interrupt which caused
the LCALL. These address of vector for the different sources are as shown on Table 18- 3: Summary
of interrupt sources. The vector table is not evenly spaced; this is to accommodate future expansions
to the device family.
Execution continues from the vectored address till an RETI instruction is executed. On execution of
the RETI instruction the processor pops the Stack and loads the PC with the contents at the top of the
stack. The user must take care that the status of the stack is restored to what it was after the
hardware LCALL, if the execution is to return to the interrupted program. The processor does not
notice anything if the stack contents are modified and will proceed with execution from the address put
back into PC. Note that a RET instruction would perform exactly the same process as a RETI
instruction, but it would not inform the Interrupt Controller that the interrupt service routine is
completed, and would leave the controller still thinking that the service routine is underway.
N78E352 series use a four priority level interrupt structure. This allows great flexibility in controlling the
handling of the interrupt sources.
- 95 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
PRIORITY BITS
INTERRUPT PRIORITY LEVEL
IPXH
IPX
0
0
Level 0 (lowest priority)
0
1
Level 1
1
0
Level 2
1
1
Level 3 (highest priority)
Table 18- 2: Four-level interrupts priority
Each interrupt source can be individually enabled or disabled by setting or clearing a bit in registers IE
or EIE. The IE register also contains a global disable bit, EA, which disables all interrupts at once.
Each interrupt source can be individually programmed to one of four priority levels by setting or
clearing bits in the IP0, IP0H, IP1, and IP1H registers. An interrupt service routine in progress can be
interrupted by a higher priority interrupt, but not by another interrupt of the same or lower priority. The
highest priority interrupt service cannot be interrupted by any other interrupt source. So, if two
requests of different priority levels are received simultaneously, the request of higher priority level is
serviced.
If requests of the same priority level are received simultaneously, an internal polling sequence
determines which request is serviced. This is called the arbitration ranking. Note that the arbitration
ranking is only used to resolve simultaneous requests of the same priority level.
Table below summarizes the interrupt sources, flag bits, vector address, enable bits, priority bits,
arbitration ranking, and whether each interrupt may wake up the CPU from Power Down mode.
Source
Flag
Vector
address
Enable bit
Flag
cleared by
Priority
bit
Arbitration
ranking
Powerdown
wakeup
External
Interrupt 0
IE0
0003H
EX0
(IE.0)
Hardware,
Software
IP0H.0,
IP0.0
1(highest)
Yes
Brownout
Detect
BOF
002BH
EBO
(EIE.6)
Hardware
IP1H.6,
IP1.6
2
Yes
Watchdog
Timer
WDIF
0053H
EWDI
(EIE.4)
Software
IP1H.4,
IP1.4
3
Yes
Timer 0
Overflow
TF0
000BH
ET0
(IE.1)
Hardware,
Software
IP0H.1,
IP0.1
4
No
I2C
Interrupt
SI
0033h
EI2
(EIE.0)
Software
IP1H.0,
IP1.0
5
No
External
Interrupt 1
IE1
0013H
EX1
(IE.2)
Hardware,
Software
IP0H.2,
IP0.2
6
Yes
KBI
KBF
003BH
Software
Yes
TF1
001BH
IP1H.1,
IP1.1
IP0H.3,
IP0.3
7
Timer 1
Overflow
EKB
(EIE.1)
ET1
(IE.3)
8
No
RI + TI
0023H
IP0H.4,
IP0.4
9
No
Uart
ES
(IE.4)
Hardware,
Software
Software
- 96 -
Preliminary N79E352 Data Sheet
Timer 2
Overflow/
TF2
0043H
ET2 (IE.5)
Software
IP0H.5,
IP0.5
10
No
Match
Table 18- 3: Summary of interrupt sources
Note: 1. The Watchdog Timer can wake up Power Down Mode when its clock source is used internal RC.
18.3 Interrupt Response Time
The response time for each interrupt source depends on several factors, such as the nature of the
interrupt and the instruction underway. In the case of external interrupts INT0 to INT1 , they are
sampled at C3 of every machine cycle and then their corresponding interrupt flags IEx will be set or
reset. The Timer 0 and 1 overflow flags are set at C3 of the machine cycle in which overflow has
occurred. These flag values are polled only in the next machine cycle. If a request is active and all
three conditions are met, then the hardware generated LCALL is executed. This LCALL itself takes
four machine cycles to be completed. Thus there is a minimum time of five machine cycles between
the interrupt flag being set and the interrupt service routine being executed.
A longer response time should be anticipated if any of the three conditions are not met. If a higher or
equal priority is being serviced, then the interrupt latency time obviously depends on the nature of the
service routine currently being executed. If the polling cycle is not the last machine cycle of the
instruction being executed, then an additional delay is introduced. The maximum response time (if no
other interrupt is in service) occurs if the device is performing a write to IE, EIE, IP0, IP0H, IP1 or IP1H
and then executes a MUL or DIV instruction. From the time an interrupt source is activated, the
longest reaction time is 12 machine cycles. This includes 1 machine cycle to detect the interrupt, 2
machine cycles to complete the IE, EIE, IP0, IP0H, IP1 or IP1H access, 5 machine cycles to complete
the MUL or DIV instruction and 4 machine cycles to complete the hardware LCALL to the interrupt
vector location.
Thus in a single-interrupt system the interrupt response time will always be more than 5 machine
cycles and not more than 12 machine cycles. The maximum latency of 12 machine cycle is 48 clock
cycles. Note that in the standard 8051 the maximum latency is 8 machine cycles which equals 96
machine cycles. This is a 50% reduction in terms of clock periods.
18.4 Interrupt Inputs
N78E352 series have two individual interrupt inputs as well as the Keyboard Interrupt function. The
latter is described separately elsewhere in this section. Two interrupt inputs are identical to those
present on the standard 80C51 microcontroller.
The external sources can be programmed to be level-activated or transition-activated by setting or
clearing bit IT1 or IT0 in Register TCON. If ITn = 0, external interrupt n is triggered by a detected low
at the INTn pin. If ITn = 1, external interrupt n is edge triggered. In this mode if successive samples of
the /INTn pin show a high in one cycle and a low in the next cycle, interrupt request flag IEn in TCON
is set, causing an interrupt request.
Since the external interrupt pins are sampled once each machine cycle, an input high or low should
hold for at least 6 CPU Clocks to ensure proper sampling. If the external interrupt is high for at least
one machine cycle, and then hold it low for at least one machine cycle. This is to ensure that the
transition is seen and that interrupt request flag IEn is set. IEn is automatically cleared by the CPU
when the service routine is called.
- 97 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
If the external interrupt is level-activated, the external source must hold the request active until the
requested interrupt is actually generated. If the external interrupt is still asserted when the interrupt
service routine is completed another interrupt will be generated. It is not necessary to clear the
interrupt flag IEn when the interrupt is level sensitive, it simply tracks the input pin level.
If an external interrupt is enabled when the device is put into Power Down or Idle mode, the interrupt
will cause the processor to wake up and resume operation. Refer to the section on Power
Management for details.
IE0
EX
0
IE1
EX
1
BOF
EBO
KBF
EKB
Wakeup
(If in Power Down)
WDIF
EWDI
TF0
ET0
EA
TF1
ET1
RI + TI
ES
SI
EI2
CPTF0
ECPTF
TF2
ET2
Figure 18- 1: Interrupt inputs
- 98 -
Interrupt
to CPU
Preliminary N79E352 Data Sheet
19. KEYBOARD FUNCTION
The N78E352 series are provided 8 keyboard interrupt function to detect keypad status which key is
acted, and allow a single interrupt to be generated when any key is pressed on a keyboard or keypad
connected to specific pins of the N78E352 series, as shown below figure. This interrupt may be used
to wake up the CPU from Idle or Power Down modes, after chip is in Power Down or Idle Mode.
Keyboard function is supported through by Port 0. It can allow any or all pins of Port 0 to be enabled to
cause this interrupt. Port pins are enabled by the setting of bits of KBI0 ~ KBI7 in the KBI register, as
shown below figure. The Keyboard Interrupt Flag (KBF) in the AUXR1 register is set when any
enabled pin is triggered while the KBI interrupt function is active, and the low pulse must be more than
1 machine cycle, an interrupt will be generated if it has been enabled. The KBF bit set by hardware
and must be cleared by software. In order to determine which key was pressed, the KBI will allow the
interrupt service routine to poll port 0.
The N78E352 has addition SFR KBL level configuration register to control either a low or high level
trigger.
KBL.7
P0.7
High/low
level
KBI.7
KBL.6
P0.6
High/low
level
KBL.5
P0.5
High/low
level
KBL.4
P0.4
High/low
level
High/low
level
KBL.1
P0.1
High/low
level
KBL.0
P0.0
KBF (KBI
Interrupt)
KBI.4
KBL.2
P0.2
KBI.5
High/low
level
KBL.3
P0.3
KBI.6
High/low
level
EKB
(From EIE Register)
KBI.3
KBI.2
KBI.1
KBI.0
Figure 19-1: KBI inputs
- 99 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
20. I/O PORT
N78E352 series have four 8 bits I/O ports; port 0, port 1, port 2, port 3, one partial port 4; P4.0 to P4.3
and one partial port 5; P5.0 to P5.1. All pins of I/O ports (except port4) can be configured to one of
four types by software. User may configure the mode type for the above port pin by programming
PxMy SFRs.
Port 4 support only quasi mode.
PXM1.Y
PXM2.Y[Note]
0
0
Quasi-bidirectional.
0
1
Push-Pull
PORT INPUT/OUTPUT MODE
Input Only (High Impedance)
1
0
PORTS.PxS=0, TTL input
PORTS.PxS=1, Schmitt input
1
1
Open Drain
Table 20-1: I/O port configuration table
Note: X = 0-3 and 5. Y = 0-7.
In addition, port default mode is also configurable through CONFIG0.PMODE bit. When PMODE = 1,
ports 1~3 and 5 will default to quasi mode upon all reset. If PMODE = 0, ports 1~3 and 5 will default
to open drain mode upon all reset. See table below.
PORTS
CONFIG0.PMODE
UPON RESET
PXM1,2 RESET VALUE
P0
X
Open Drain
P0M1,2 = 1111 1111b
1
Quasi
P(1~3)M1,2 = 0000 0000b
0
Open Drain
P(1~3)M1,2 = 1111 1111b
X
Quasi
Not available.
Quasi
P5M1 = xxxx x000b
P5M2 = xxxx xx00b
Open Drain
P5M1 = xxxx x011b
P5M2 = xxxx xx11b
P1~3
P4
1
P5[1]
0
Table 20-2: Default port mode configuration by CONFIG0.PMODE bit.
Note: 1. Product configured to run internal rc.
All port pins can be determined to high or low after reset by configure PRHI bit in the CONFIG0
register.
Each I/O port of N78E352 series may be selected to use TTL level inputs or Schmitt inputs by P(n)S
bit on PORTS SFR register; where n is 0, 1, 2, 3 or 5. When P(n)S is set to 1, Ports are selected
Schmitt trigger inputs on Port(n).
20.1 Quasi-Bidirectional Output Configuration
- 100 -
Preliminary N79E352 Data Sheet
The default port output configuration for standard N78E352 series I/O ports is the quasi-bidirectional
output that is common on the 80C51 and most of its derivatives. This output type can be used as both
an input and output without the need to reconfigure the port. This is possible because when the port
outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin is
pulled low, it is driven strongly and able to sink a fairly large current. These features are somewhat
similar to an open drain output except that there are three pull-up transistors in the quasi-bidirectional
output that serve different purposes. One of these pull-ups, called the “very weak” pull-up, is turned on
whenever the port latch for the pin contains a logic 1. The very weak pull-up sources a very small
current that will pull the pin high if it is left floating.
A second pull-up, called the “weak” pull-up, is turned on when the port latch for the pin contains a logic
1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a
quasi-bidirectional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external
device, the weak pull-up turns off, and only the very weak pull-up remains on. In order to pull the pin
low under these conditions, the external device has to sink enough current to overpower the weak
pull-up and take the voltage on the port pin below its input threshold.
The third pull-up is referred to as the “strong” pull-up. This pull-up is used to speed up low-to-high
transitions on a quasi-bidirectional port pin when the port latch changes from a logic 0 to a logic 1.
When this occurs, the strong pull-up turns on for a brief time, two CPU clocks, in order to pull the port
pin high quickly. Then it turns off again. The quasi-bidirectional port configuration is shown as below.
VDD
2 CPU
Clock Delay
P
Strong
P
Very
Weak
P
Weak
Port Pin
Port Latch
Data
N
Input Data
Figure 20-1: Quasi-Bidirectional Output
20.2 Open Drain Output Configuration
The open drain output configuration turns off all pull-ups and only drives the pull-down transistor of the
port driver when the port latch contains a logic 0. To be used as a logic output, a port configured in
this manner must have an external pull-up, typically a resistor tied to VDD. The pull-down for this
mode is the same as for the quasi-bidirectional mode. The open drain port configuration is shown as
below.
- 101 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Port Pin
Port Latch
Data
N
Input Data
Figure 20-2: Open Drain Output
20.3 Push-Pull Output Configuration
The push-pull output configuration has the same pull-down structure as both the open drain and the
quasi-bidirectional output modes, but provides a continuous strong pull-up when the port latch
contains a logic 1. The push-pull mode may be used when more source current is needed from a port
output. The push-pull port configuration is shown below.
The value of port pins at reset is determined by the PRHI bit in the CONFIG0 register. Ports may be
configured to reset high or low as needed for the application. When port pins are driven high at reset,
they are in quasi-bidirectional mode and therefore do not source large amounts of current. Every
output on the device may potentially be used as a 20mA sink LED drive output. However, there is a
maximum total output current for all ports which must not be exceeded.
All ports pins of the device have slew rate controlled outputs. This is to limit noise generated by quickly
switching output signals. The slew rate is factory set to approximately 10 ns rise and fall times.
VDD
P
Port Pin
Port Latch
Data
N
Input Data
Figure 20-3: Push-Pull Output
20.4 Input Only Mode
The input only port configuation is show in figure 21-4, it is a schmitt-triggered input or TTL input.
- 102 -
Preliminary N79E352 Data Sheet
Input Data
Port Pin
Schmitt-triggered or TTL
Figure 20-4: Push-Pull Output
- 103 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
21. OSCILLATOR
N78E352 series provide three oscillator input option. These are configured at CONFIG register
(CONFIG0) that include On-Chip RC Oscillator Option, External Clock Input Option and Crystal
Oscillator Input Option. The Crystal Oscillator Input frequency may be supported from 4MHz to
24MHz, and without capacitor or resister.
Crystal Oscillator
00b
Internal RC Oscillator
01b
External Clock input
11b
16 bits Ripple
Counter
Fosc1
Clock Divide
Control
Fosc0
Power Monitor Reset
Fcpu
CD1
CD0
(PMR SFR)
Power Down
Figure 21-1: Oscillator
21.1 On-Chip RC Oscillator Option
The On-Chip RC Oscillator is fixed at 11.0592MHz or 22.1184MHz +/- 2% (selectable by FS1 config
bit) frequency to support clock source. When FOSC1, FOSC0 = 01b, the On-Chip RC Oscillator is
enabled.
21.2 External Clock Input Option
The clock source pin (XTAL1) is from External Clock Input by FOSC1, FOSC0 = 11b, and frequency
range is ffrom 0Hz up to 24MHz.
The device supports a clock output function when either the on-chip RC oscillator or external clock
input options are selected. This allows external devices to synchronize to the device. When enabled,
via the ENCLK bit in the P5M1 register, the clock output appears on the XTAL2/CLKOUT pin
whenever the on-chip oscillator is running, including in Idle Mode. The frequency of the clock output is
1/4 of the CPU clock rate. If the clock output is not needed in Idle Mode, it may be turned off prior to
entering Idle, saving additional power. The clock output may also be enabled when the external clock
input option is selected.
21.3 CPU Clock Rate select
The CPU clock of N78E352 series may be selected by the PMR.CD0/1 bits. If (CD1,CD0) = 01b, the
CPU clock is running at 4 CPU clock per machine cycle, and without any division from source clock
- 104 -
Preliminary N79E352 Data Sheet
(Fosc). This frequency division function affect all peripheral timings as they are all sourcing from the
CPU clock(Fcpu). The following table shows the PMR.CD1/0 bits definition.
CD1,
CD0
Clocks/machine Cycle
0
x
4
1
0
64
1
1
1024
CD0/1 definitions
- 105 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
22. POWER MONITORING
In order to prevent incorrect operation during power up and power drop, the N78E352 is provided two
power monitor function that are Power-On Detect and Brownout Detect.
22.1 Power On Detect
The Power–On Detect function is a design to detect power up after power voltage reaches to a level
where Brownout Detect can work. After power on detect, the POR (WDCON.6) will be set to “1” to
indicate an initial power up condition. The POR flag will be cleared by software.
22.2 Brownout Detect and Reset
The N78E352 has an on-chip Brown-out Detection circuit for monitoring the VDD level during operation
by comparing it to a programmable brownout trigger level. There are 4 brownout trigger levels
available for wider voltage applications. The 4 nominal levels are 2.6V, 3.8V and 4.5V (programmable
through BOV.1-0 bits). When VDD drops to the selected brownout trigger level (VBOR), the brownout
detection logics will either reset the CPU until the VDD voltage raises above VBOR or requests a
brownout interrupt at the moment that VDD falls and raises through VBOR. The brownout detection
circuits also provides a low power brownout detection mode for power saving. When LPBOV=1, the
brownout detection repeatly senses the voltage for 64/fBRC then turn off detector for 960/fBRC (fBRC =
internal rc frequency), if VDD voltage still below brownout trigger level. fBRC, the frequency of built-in RC
oscillator is approximately 20KHz+/-100%.
The Brownout Detect block is shown in Figure 22-1.
BOV1
0
0
1
1
BOV0
0
1
0
1
Brownout Voltage
Brownout voltage is 2.6V
Brownout voltage is 2.6V
Brownout voltage is 3.8V
Brownout voltage is 4.5V
Brownout Voltage Selection
BOS
BOV[1:0]
BOD
LPBOV
BOI
Brownout
Detect
Circuit
0
To Reset
1
To Brownout interrupt
BOF
Figure 22-1: Brown-out Detect Block
- 106 -
Preliminary N79E352 Data Sheet
VDD
VBOR+
Nominal Brownout Voltage
VBOR -
Brown-out Status
BOS
TBOR
BOI=0 to select
Brown-out Reset Reset
8ms
Clear by Software
BOI=1 to select BOF
Brown-out Interrupt
Clear by Software
Set by Hardware
Hysterisis voltage is about 70mV~140mV for each BOD voltage level.
TBOR :Brown-out Reset Delay Time with about 8mS
TBOI :Brown-out Interrupt Delay Time
TBOI is about 30uS after system oscillator oscillates stable.
Figure 22-2: Brown-out Voltage Detection
- 107 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
23. PULSE WIDTH MODULATED OUTPUTS (PWM)
The N78E352 contains two Pulse Width Modulated (PWM) channels which generate pulses of
programmable length and interval. The output for PWM0 is on P1.4 and PWM1 on P1.5. After chip
reset the internal output of the each PWM channel is a “1” (if PRHI=1). The PWM block diagram is
shown as below figure. The interval between successive outputs is controlled by a 8–bit up-counter
which uses the selectable clock sources. The clock sources supported are cpu clock, timer 0 overflow
and timer 1 overflow, selectable by PWMCON3.PCLK.1~0 bits. The clock sources can be further
divided with programmable PWMCON3.FP1~0 bits. When the counter reaches overflow, it is reloaded
with zero.
The width of each PWM output pulse is determined by the value in the appropriate Compare registers,
PWMnL (n=0,1). When the counter described above matches compare register value the PWM output
is forced low. It remains low until the counter value overflow. The number of clock pulses that the
PWMn output is low is given by:
tLO = (8’FFh – PWMn+1)
Vdd
PWM0L
Register
Fcpu
Timer 0 overflow
Timer 1 overflow
Reserved
00
01
10
11
PCLK.1~0
PWM0L
Buffer
overflow
Divider
(/1, /2, /4, /8)
8-bit Up
Counter
PWMRUN
>
1
-
PWM0OE
Vdd
P1.5
overflow
FP.1~0
PWM1L
Register
PWM1L
Buffer
PWM0
(P1.4)
0
+
CLRPWM
P1.4
PWM1
(P1.5)
0
+
>
-
1
PWM1OE
A compare value of all zeroes, 00H, causes the output to remain permanently high. A compare value
of all ones, FFH, results in the PWM output remaining permanently low.
The overall functioning of the PWM module is controlled by the contents of the PWMCON1 and
PWMCON3 registers. The operation of most of the control bits are straightforward. The transfer
Compare registers to the buffer registers is controlled by 8-bit counter overflow, while PWMCON1.7
(PWMRUN) allows the PWM to be either in the run or idle state. It has a CLRPWM bit to clear 8-bt up
counter.
When the PWMRUN is cleared, the PWM outputs take on the state they had just prior to the bit being
cleared. In general this state is not known. In order to place the outputs in a known state when
PWMRUN is cleared the Compare registers can be written to either the “all 1” or “all 0” so the output
will have the output desired when the counter is halted.
Note:
During PWM initial run, user is recommended to configure proper PWMn and/or PWM output pin (default high) follow by setting
PWMRUN and CLRPWM bits, prior to enable PWMnOE. This is to avoid unexpected PWM output.
Smallest On-state (high state) is 1 clock count, whereas smallest off-state (low state) is 2 clock counts.
- 108 -
Preliminary N79E352 Data Sheet
24. CONFIG BITS
The N78E352 has two CONFIG bits (CONFIG0 located at FB00h, CONFIG1 located at FB01h) that
must be defined at power up and can not be set the program after start of execution. Those features
are configured through the use of two flash EPROM bytes, and the flash EPROM can be programmed
and verified repeatedly. Until the code inside the Flash EPROM is confirmed OK, the code can be
protected. The protection of flash EPROM (CONFIG1) and those operations on it are described below.
24.1 CONFIG0
7
WDTCK
6
5
4
3
2
PMODE
PRHI
-
CBOD
BPFR
WDTCK
PMODE
PRHI
CBOD
BPFR
Fosc1
Fosc0
1
Fosc 1
0
Fosc 0
: Watchdog Timer Clock Selection Bit.
: Port MODE Bit.
: Port Reset High Bit.
: Config Brownout Detect Enable Bit.
: Bypass Clock Filter Bit.
: CPU Oscillator Type Select Bit 1.
: CPU Oscillator Type Select Bit 0.
Figure 24-1: Config0 register bits
BIT
NAME
FUNCTION
Clock source of Watchdog Timer select bit:
7
WDTCK
0: The internal 20KHz RC oscillator clock is for Watchdog Timer clock used.
1: The uC clock is for Watchdog Timer clock used.
Port Mode Type select bit:
6
PMODE
0: Port 1~3 and 5 reset to open drain mode.
1: Port 1~3 and 5 reset to quasi mode.
Port Reset High or Low select bit:
5
PRHI
0: Port reset to low state.
1: Port reset to high state.
Note: For product to run external program (/EA=0), user need to ensure PRHI is set to 1.
4
-
Reserved.
Config Brownout Detect Enable bit
3
CBOD
0: Disable Brownout Detect.
1: Enable Brownout Detect.
Bypass Clock Filter.
2
BPFR
0: Disable Clock Filter.
1: Enable Clock Filter.
1
Fosc1
CPU Oscillator Type select bit 1.
- 109 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
0
Fosc0
CPU Oscillator Type select bit 0.
Oscillator Configuration bits:
Fosc1
Fosc0
OSC source
0
0
4MHz ~ 22.1184MHz crystal
0
1
Internal RC Oscillator (FS1 bit in CONFIG1.5 will determine
either 11.0592MHz or 22.1184MHZ)
1
0
Reserved
1
1
External Oscillator in XTAL1; XALT2 is in Tri-state
24.2 CONFIG1
7
6
5
4
3
C7
C6
FS1
-
CBOV.1-0
C7
C6
FS1
CBOV.1-0
C1
2
1
0
C1
-
: 8/4K Flash EPROM Code Lock Bit
: 512/256/128/64 byte Data Lock Bit
: Internal RC 11.0592MHz/22.1184MHz Selection Bit
: Brownout Level Selection Bits
: Movc Inhibit Enable Bit
Figure 24-2: Config1 register bits
C7: 8K Flash EPROM Lock bit
This bit is used to protect the customer’s program code. It may be set after the programmer finishes
the programming and verifies sequence. Once this bit is set to logic 0, both the Flash EPROM data
and CONFIG Registers can not be accessed again.
C6: 128 byte Data Flash EPROM Lock bit
This bit is used to protect the customer’s 128 bytes of data code. It may be set after the programmer
finishes the programming and verifies sequence. Once this bit is set to logic 0, both the 128 bytes of
Flash EPROM data and CONFIG Registers can not be accessed again.
Bit 7
Bit 6
Function Description
1
1
Both security of 8KB program code and 128 Bytes data area are not locked. They can
be erased, programmed or read by Writer or JTAG mode.
0
1
The 8KB program code area is locked. It can not be read and written by Writer or
JTAG mode. The 128 Bytes data area can be program or read. The bank erase is
invalid.
1
0
Not supported.
0
0
Both security of 8KB program code and 128 Bytes data area are locked. They can not
be read and written by Writer or JTAG mode.
FS1: Internal Oscillator selection bit
This bit is used to select internal oscillator.
- 110 -
Preliminary N79E352 Data Sheet
FS1
0
1
Internal Oscillator Output
11.0592MHz
22.1184MHz (default)
Internal Oscillator Selection Table
CBOV.1-0: Brownout level selection bits
These bits are used to select brownout voltage level.
CBOV.1
1
1
0
0
CBOV.0
1
0
1
0
Brownout Voltage
Brownout voltage is 2.6V
Brownout voltage is 2.6V
Brownout voltage is 3.8V
Brownout voltage is 4.5V
C1: MOVC inhibit enable bit
MOVC inhibit MOVC access
enable bit
0
The movc intruction in external
memory cannot access the code in
internal memory.
1
No restriction.
This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC
instruction in external program memory from reading the internal program code. When this bit is set to
logic 0, a MOVC instruction in external program memory space will be able to access code only in the
external memory, not in the internal memory. A MOVC instruction in internal program memory space
will always be able to access the ROM data in both internal and external memory. If this bit is logic 1,
there are no restrictions on the MOVC instruction.
- 111 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
25. ELECTRICAL CHARACTERISTICS
25.1 Absolute Maximum Ratings
SYMBOL
PARAMETER
CONDITION
RATING
UNIT
VDD−VSS
-0.3
+7.0
V
Input Voltage
VIN
VSS-0.3
VDD+0.3
V
Operating Temperature
TA
-40
+85
°C
Storage Temperature
Tst
-55
+150
°C
Sink current
ISK
??
90
mA
DC Power Supply
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability of
the device.
- 112 -
Preliminary N79E352 Data Sheet
25.2 D.C. Characteristics
(TA = -40~85°C, unless otherwise specified.)
PARAMETER
SPECIFICATION
SYM.
MIN.
Operating Voltage
VDD
TYP.
2.4
TEST CONDITIONS
MAX.
UNIT
5.5
V
VDD=4.5V ~ 5.5V @ TBD at Alpha
Test (22.1184MHz is the desired
spec)
VDD=4.5V ~ 5.5V @ 22.1184MHz
VDD=2.7V ~ 5.5V @ 12MHz
VDD=2.4V ~ 5.5V @ 4MHz
Operating Current
IDD1
6
IDD2
Idle Current
8
mA
25
IIDLE
5
No load, /RST = VSS, VDD= 3.0V
@ 22.1184MHz
Vdd=5.0V @22.1184MHz
6.5
mA
No load, VDD = 3.0V
@ 22.1184MHz
Power Down Current
IPWDN
1
10
μA
1
10
uA
No load, VDD = 5.5V
@ Disable BOV function
No load, VDD = 3.0V
@ Disable BOV function
Input / Output
Input Current P0, P1, P2, P3, P5
IIN1
-50
-
+10
μA
VDD = 5.5V, VIN = 0V or VIN=VDD
Input Current P1.5(RST pin)[1]
IIN2
-60
-45
-32
μA
VDD = 5.5V, VIN = 0.45V
Input Leakage Current P0, P1,
P2, P3, P5 (Open Drain)
ILK
-10
-
+10
μA
VDD = 5.5V, 0<VIN<VDD
-450
-
-246
μA
VDD = 5.5V, VIN<2.0V
-93
-
-56
0
-
1.0
0
-
0.6
1.0
2.0
-
VDD +0.2
1.5
-
VDD +0.2
0
-
0.8
0
-
0.4
3.5
-
VDD +0.2
2.4
-
VDD +0.2
VILS
-0.5
-
0.3VDD
V
VIHS
0.7VDD
-
VDD+0.5
V
1.6
V
Logic 1 to 0 Transition Current
P0, P1, P2, P3, P5
ITL
[*3]
Input Low Voltage P0, P1, P2,
P3, P5 (TTL input)
VIL1
Input High Voltage P0, P1, P2,
P3, P5 (TTL input)
VIH1
Input Low Voltage XTAL1[*2]
Input High Voltage XTAL1[*2]
Negative going threshold
(Schmitt input)
Positive going threshold
(Schmitt input)
VIL3
VIH3
Hysteresis voltage
VHY
Input Low Voltage RST [*1]
V IL21
0.2VDD
-
1.0
- 113 -
Vdd=2.4 Vin = 1.3v
VDD = 4.5V
V
V
V
V
VDD = 2.4V
VDD = 5.5V
VDD = 2.4V
VDD = 4.5V
VDD = 3.0V
VDD = 5.5V
VDD = 3.0V
V
VDD=4.5V
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
Input High Voltage RST
V IL22
-
0.7
0.8
V
VDD=2.7V
VIH21
3.5
2.3
VDD+0.2
V
VDD=5.5V
[*1]
VIH22
2
1.5
VDD+0.2
V
ISR1
-16
-26
-36
mA
VDD = 4.5V, VS = 2.4V
-5
-7.9
-11
mA
VDD = 2.4V, VS = 2.0V
-150
-210
-360
μA
VDD = 4.5V, VS = 2.4V
(Quasi-bidirectional Mode)
-39
-53
-69
μA
VDD = 2.4V, VS = 2.0V
Sink Current P0, P1, P2, P3, P4,
P5
13
18.5
24
mA
VDD = 4.5V, VS = 0.45V
9
15
21
Source Current P0, P1, P2, P3,
P5
(PUSH-PULL Mode)
Source Current P0, P1, P2, P3,
P4, P5
ISR2
VDD=2.7V
ISK2
(Quasi-bidirectional and PUSHPULL Mode)
VDD = 2.4V, VS = 0.45V
Brownout voltage with BOV[1:0]
=00b
VBO2.4
2.55
2.6
2.85
V
Brownout voltage with BOV[1:0]
=01b
VBO2.7
2.55
2.6
2.85
V
Brownout voltage with BOV[1:0]
=10b
VBO3.8
3.65
3.8
3.95
V
Brownout voltage with BOV[1:0]
=11b
VBO4.5
4.35
4.5
4.65
V
VBh
70
-
140
mV
Hysterisis range of BOD voltage
VDD = 2.4V~5.5V
Notes: *1. RST pin is a Schmitt trigger input. RST has internal pull-low resistor.
*2. XTAL1 is a CMOS input.
*3. Pins of P0, P1, P2, P3 and P5 can source a transition current when they are being externally driven from 1 to 0. The
transition current reaches its maximum value when Vin approximates to 2V.
25.3 A.C. Characteristics
tCLCL
tCLCH
tCLCX
tCHCL
tCHCX
Note: Duty cycle is 50%.
25.3.1 External Clock Characteristics
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNITS
Clock High Time
tCHCX
22.6
-
-
nS
Clock Low Time
tCLCX
22.6
-
-
nS
Clock Rise Time
tCLCH
-
-
10
nS
- 114 -
NOTES
Preliminary N79E352 Data Sheet
Clock Fall Time
tCHCL
-
-
10
nS
25.3.2 AC Specification
PARAMETER
SYMBOL
VARIABLE CLOCK MIN.
VARIABLE CLOCK MAX.
UNITS
1/tCLCL
0
24
MHz
Oscillator Frequency
25.3.3 External clock Characteristics
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
Clock High Time
tCHCX
12.5
ns
Clock Low Time
tCLCX
12.5
ns
Clock Rise Time
tCLCH
10
ns
Clock Fall Time
tCLCL
10
ns
NOTES
tCLCL
tCLCH
tCLCX
tCHCX
tCHCL
Note: Duty cycle is 50%
Figure 25-1 External clock characteristics
25.3.4 Serial Port Mode 0 Timing Characteristics
PARAMETER
SYMBOL
Serial Port Clock Cycle Time
tXLXL
MIN
TYP
12 tCLCL
SM2=1 4 clocks per cycle
4 tCLCL
10 tCLCL
SM2=1 4 clocks per cycle
3 tCLCL
ns
tXHQX
SM2=0 12 clocks per cycle
2 tCLCL
SM2=1 4 clocks per cycle
tCLCL
Input Data Hold after Clock Rising
NOTES
ns
tQVXH
SM2=0 12 clocks per cycle
Output Data Hold to Clock Rising Edge
UNITS
ns
SM2=0 12 clocks per cycle
Output Data Setup to Clock Rising Edge
MAX
ns
tXHDX
SM2=0 12 clocks per cycle
tCLCL
SM2=1 4 clocks per cycle
tCLCL
- 115 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
ns
tXHDV
Clock Rising Edge to Input Data Valid
SM2=0 12 clocks per cycle
11 tCLCL
SM2=1 4 clocks per cycle
3 tCLCL
25.3.5 Program Memory Read Cycle
t LHLL
t LLIV
ALE
t AVLL
t PLPH
tPLIV
PSEN
t PXIZ
tLLPL
t PLAZ
t LLAX1
ADDRESS
A0-A7
PORT0
t PXIX
ADDRESS
A0-A7
INSTRUCTION
IN
t AVIV1
t AVIV2
PORT2
ADDRESS A8-15
ADDRESS A8-15
Figure 25-2 Program Memory Read Cycle
25.3.6 Data Memory Read Cycle
t LLDV
ALE
t WHLH
t LLWL
PSEN
tRLRH
t LLAX1
tRLDV
RD
t AVLL
PORT0
INSTRUCTION
IN
t RHDZ
t RLAZ
t AVWL1
t RHDX
DATA
IN
ADDRESS
A0-A7
t AVDV1
tAVDV2
PORT2
ADDRESS A8-15
Figure 25-3 Data Memory Read Cycle
- 116 -
ADDRESS
A0-A7
Preliminary N79E352 Data Sheet
25.3.7 Data Memory Write Cycle
ALE
tWHLH
t LLWL
PSEN
t WLWH
t LLAX2
t AVLL
WR
t AVWL1
tWHQX
t QVWX
PORT0
INSTRUCTION
IN
ADDRESS
A0-A7
ADDRESS
A0-A7
DATA OUT
t AVDV2
ADDRESS A8-15
PORT2
Figure 25-4 Data Memory Write Cycle
25.3.8 I2C Bus Timing Characteristics
PARAMETER
SYMBOL
Standard Mode I2C Bus
Min.
Max.
UNIT
SCL clock frequency
fSCL
0
100
kHz
bus free time between a STOP and START
condition
tBUF
4.7
-
uS
Hold time (repeated) START condition. After
this period, the first clock pulse is generated
tHd;STA
4.0
-
uS
Low period of the SCL clock
tLOW
4.7
-
uS
HIGH period of the SCL clock
tHIGH
4.0
-
uS
Set-up time for a repeated START condition
tSU;STA
4.7
-
uS
Data hold time
tHD;DAT
5.0
-
uS
Data set-up time
tSU;DAT
250
-
nS
Rise time of both SDA and SCL signals
tr
-
1000
nS
Fall time of both SDA and SCL signals
tf
-
300
nS
Set-up time for STOP condition
tSU;STO
4.0
-
uS
Capacitive load for each bus line
Cb
-
400
pF
- 117 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
STOP
Repeated
START
START
STOP
SDA
tBUF
tLOW
tr
SCL
tf
tHIGH
tHD;STA
tHD;DAT
tSU;DAT
tSU;STA
tSU;STO
Figure 25-5: I2C Bus Timing
EXPLANATION OF LOGIC SYMBOLS
In order to maintain compatibility with the original 8051 family, this device specifies the same
parameter as such device, using the same symbols. The explanation of the symbols is as follows.
t
Time
A
Address
C
Clock
D
Input Data
H
Logic level high
L
Logic level low
I
Instruction
P
PSEN
Q
Output Data
R
RD signal
V
Valid
W
WR signal
X
No longer a valid state
Z
Tri-state
- 118 -
Preliminary N79E352 Data Sheet
25.4 Typical Application Circuit
CRYSTAL
C1
C2
R
4MHz ~ 22.1184 MHz
without
without
without
The above table shows the reference values for crystal applications.
C1
XTAL1
R
XTAL2
C2
N79E352
- 119 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
26. PACKAGE DIMENSIONS
26.1 40-pin DIP
D
40
21
1
20
1
E
E
S
c
2
1
AA
A
Base Plane
Seating Plane
L
B
e1
α
B1
Symbol
A
A1
A2
B
B1
c
D
E
E1
e1
L
α
eA
S
Dimension in inch Dimension in mm
Min Nom Max Min Nom Max
5.33
0.210
0.010
0.25
0.150 0.155 0.160 3.81
3.94
4.06
0.016 0.018 0.022 0.41
0.46
0.56
0.048 0.050 0.054 1.22
1.27
1.37
0.008 0.010 0.014 0.20
0.25
0.36
2.055 2.070
52.20 52.58
0.590 0.600 0.610 14.99 15.24 15.49
0.540 0.545 0.550 13.72 13.84 13.97
0.090 0.100 0.110 2.29 2.54
2.79
0.120 0.130 0.140 3.05
3.56
0
0
15
3.30
15
0.630 0.650 0.670 16.00 16.51 17.02
0.090
- 120 -
2.29
eA
Preliminary N79E352 Data Sheet
26.2 44-pin PLCC
H
D
D
6
1
44
40
7
39
E
17
E
E
H
G
29
18
28
c
L
2
A
e
b
b
Seating Plane
G
Symbol
A
A1
A2
b 1
b
c
D
E
e
GD
GE
HD
HE
L
y
A
1
A
y
1
D
Dimension in inch
Min
Dimension in mm
Nom
Max
Nom
Min
Max
0.185
4.70
0.020
0.51
0.145
0.150
0.155
3.68
3.81
3.94
0.026
0.028
0.032
0.66
0.71
0.81
0.016
0.018
0.022
0.41
0.46
0.56
0.008
0.010
0.014
0.20
0.25
0.36
0.648
0.653
0.658
16.46
16.59
16.71
0.658
16.46
0.648
0.653
0.050
16.59
1.27
BSC
16.71
BSC
16.00
0.590
0.610
0.630
14.99
15.49
0.590
0.610
0.630
14.99
15.49
16.00
0.680
0.690
0.700
17.27
17.53
17.78
0.680
0.690
0.700
17.27
17.53
17.78
0.090
0.100
0.110
2.29
2.54
2.79
0.004
- 121 -
0.10
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
26.3 44-pin PQFP
H
D
D
34
44
33
1
E
E
H
11
12
e
b
22
c
2
A
Seating Plane
A
1
See Detail F
L
A
y
L
Symbol
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
y
0
Dimension in inch
Min
Nom
Dimension in mm
Max
Min
Nom
Max
0.25
0.5
-
0.002
0.01
0.02
0.05
0.075
0.081
0.087
1.90
2.05
2.20
0.01
0.014
0.018
0.25
0.35
0.45
0.004
0.006
0.010
0.10
0.15
0.390
0.394
0.398
9.9
10.00
10.1
0.390
0.394
0.398
9.9
10.00
10.1
.0315
0.25
0.80
0.510
0.520
0.530
12.95
13.20
13.45
0.510
0.520
0.530
12.95
13.20
13.45
0.025
0.031
0.037
0.65
0.8
0.10
0.004
0
0.95
1.60
0.063
10
0
- 122 -
10
1
Detail F
Preliminary N79E352 Data Sheet
26.4 48-pin LQFP
- 123 -
Publication Release Date: August 21, 2008
Revision A02
Preliminary N79E352 Data Sheet
27. REVISION HISTORY
VERSION
DATE
PAGE
A01
August 14,
2008
-
A02
August 21,
2008
7,8
DESCRIPTION
Initial Issued
Update pin configurations.
Important Notice
Nuvoton products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, or for other applications intended to support or
sustain life. Further more, Nuvoton products are not intended for applications wherein failure
of Nuvoton products could result or lead to a situation wherein personal injury, death or severe
property or environmental damage could occur.
Nuvoton customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper
use or sales.
- 124 -