PCA9671 Remote 16-bit I/O expander for Fm+ I2C-bus with reset Rev. 2 — 29 July 2010 Product data sheet 1. General description The PCA9671 provides general purpose remote I/O expansion for most microcontroller families via the two-line bidirectional bus (I2C-bus) and is a part of the Fast-mode Plus (Fm+) family. The PCA9671 is a drop in upgrade for the PCF8575 providing higher I2C-bus speeds (1 MHz versus 400 kHz) so that the output can support PWM dimming of LEDs, higher I2C-bus drive (30 mA versus 3 mA) so that many more devices can be on the bus without the need for bus buffers, higher total package sink capacity (400 mA versus 100 mA) that supports having all 25 mA LEDs on at the same time and more device addresses (64 versus 8) to allow many more devices on the bus without address conflicts. The difference between the PCA9671 and the PCF8575 is that the interrupt output on the PCF8575 is replaced by a RESET input on the PCA9671. The device consists of a 16-bit quasi-bidirectional port and an I2C-bus interface. The PCA9671 has a low current consumption and includes latched outputs with 25 mA high current drive capability for directly driving LEDs. The internal Power-On Reset (POR), hardware reset pin (RESET) or software reset sequence initializes the I/Os as inputs. 2. Features and benefits 1 MHz I2C-bus interface Compliant with the I2C-bus Fast-mode and Standard-mode SDA with 30 mA sink capability for 4000 pF buses 2.3 V to 5.5 V operation with 5.5 V tolerant I/Os 16-bit remote I/O pins that default to inputs at power-up Latched outputs with 25 mA sink capability for directly driving LEDs Total package sink capability of 400 mA Active LOW reset input 64 programmable slave addresses using 3 address pins Readable device ID (manufacturer, device type, and revision) Low standby current −40 °C to +85 °C operation ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115, and 1000 V CDM per JESD22-C101 Latch-up testing is done to JEDEC standard JESD78 which exceeds 100 mA Packages offered: SO24, SSOP24, QSOP24, TSSOP24, HVQFN24, DHVQFN24 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 3. Applications LED signs and displays Servers Industrial control Medical equipment PLCs Cellular telephones Gaming machines Instrumentation and test measurement 4. Ordering information Table 1. Ordering information Type number Topside mark Package Name Description Version PCA9671D PCA9671D SO24 plastic small outline package; 24 leads; body width 7.5 mm SOT137-1 PCA9671DB PCA9671DB SSOP24 plastic shrink small outline package; 24 leads; body width 5.3 mm SOT340-1 PCA9671 SSOP24[1] plastic shrink small outline package; 24 leads; body width 3.9 mm; SOT556-1 lead pitch 0.635 mm PCA9671DK PCA9671PW PCA9671PW TSSOP24 plastic thin shrink small outline package; 24 leads; body width 4.4 mm SOT355-1 PCA9671BQ 9671 DHVQFN24 plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body 3.5 × 5.5 × 0.85 mm SOT815-1 PCA9671BS 9671 HVQFN24 SOT616-1 [1] plastic thermal enhanced very thin quad flat package; no leads; 24 terminals; body 4 × 4 × 0.85 mm Also known as QSOP24. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 2 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 5. Block diagram PCA9671 AD0 AD1 AD2 SCL SDA I2C-BUS CONTROL INPUT FILTER SHIFT REGISTER P00 to P07 I/O PORT 16 BITS P10 to P17 RESET VDD VSS write pulse read pulse POWER-ON RESET 002aac244 Fig 1. Block diagram of PCA9671 write pulse 100 μA VDD IOH Itrt(pu) data from Shift Register D Q P00 to P07 P10 to P17 FF IOL CI S power-on reset VSS D Q FF read pulse CI S to interrupt logic data to Shift Register 002aab631 Fig 2. PCA9671 Product data sheet Simplified schematic diagram of P00 to P17 All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 3 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 6. Pinning information 6.1 Pinning RESET 1 24 VDD RESET 1 24 VDD AD1 2 23 SDA AD1 2 23 SDA AD2 3 22 SCL AD2 3 22 SCL P00 4 21 AD0 P00 4 21 AD0 P01 5 20 P17 P01 5 20 P17 P02 6 19 P16 P02 6 P03 7 18 P15 P03 7 P04 8 17 P14 P04 8 17 P14 P05 9 16 P13 P05 9 16 P13 P06 10 15 P12 P06 10 15 P12 P07 11 14 P11 P07 11 14 P11 VSS 12 13 P10 VSS 12 13 P10 PCA9671D 002aac245 Fig 3. Pin configuration for SO24 PCA9671 Product data sheet 19 P16 18 P15 002aac246 Fig 4. Pin configuration for TSSOP24 RESET 1 24 VDD RESET 1 24 VDD AD1 2 23 SDA AD1 2 23 SDA AD2 3 22 SCL AD2 3 22 SCL P00 4 21 AD0 P00 4 21 AD0 P01 5 20 P17 P01 5 20 P17 P02 6 19 P16 P02 6 P03 7 18 P15 P03 7 P04 8 17 P14 P04 8 17 P14 P05 9 16 P13 P05 9 16 P13 P06 10 15 P12 P06 10 15 P12 P07 11 14 P11 P07 11 14 P11 VSS 12 13 P10 VSS 12 13 P10 PCA9671DK 002aac270 Fig 5. PCA9671PW Pin configuration for SSOP24 (QSOP24) 19 P16 18 P15 002aac247 Fig 6. All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 PCA9671DB Pin configuration for SSOP24 © NXP B.V. 2010. All rights reserved. 4 of 35 PCA9671 NXP Semiconductors 19 SCL 20 SDA 21 VDD 22 RESET terminal 1 index area 23 AD1 24 AD2 1 terminal 1 index area AD1 2 23 SDA AD2 3 22 SCL P00 4 21 AD0 P01 5 20 P17 P00 1 18 AD0 P02 6 P01 2 17 P17 P03 7 P02 3 16 P16 P04 8 17 P14 P03 4 15 P15 P05 9 16 P13 P04 5 14 P14 P06 10 15 P12 P05 6 13 P13 P07 11 14 P11 002aac248 P10 13 PCA9671BQ VSS 12 P12 12 9 VSS P11 11 8 P07 P10 10 7 P06 PCA9671BS 19 P16 18 P15 002aac271 Transparent top view Transparent top view Fig 7. 24 VDD RESET Remote 16-bit I/O expander for Fm+ I2C-bus with reset Pin configuration for HVQFN24 Fig 8. Pin configuration for DHVQFN24 6.2 Pin description Table 2. Symbol Pin description Pin Description SO24, SSOP24, QSOP24, HVQFN24 TSSOP24, DHVQFN24 PCA9671 Product data sheet RESET 1 22 reset input (active LOW) AD1 2 23 address input 1 AD2 3 24 address input 2 P00 4 1 quasi-bidirectional I/O 00 P01 5 2 quasi-bidirectional I/O 01 P02 6 3 quasi-bidirectional I/O 02 P03 7 4 quasi-bidirectional I/O 03 P04 8 5 quasi-bidirectional I/O 04 P05 9 6 quasi-bidirectional I/O 05 P06 10 7 quasi-bidirectional I/O 06 P07 11 8 quasi-bidirectional I/O 07 VSS 12[1] 9[1] supply ground P10 13 10 quasi-bidirectional I/O 10 P11 14 11 quasi-bidirectional I/O 11 P12 15 12 quasi-bidirectional I/O 12 P13 16 13 quasi-bidirectional I/O 13 P14 17 14 quasi-bidirectional I/O 14 P15 18 15 quasi-bidirectional I/O 15 P16 19 16 quasi-bidirectional I/O 16 P17 20 17 quasi-bidirectional I/O 17 All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 5 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset Table 2. Symbol Pin description …continued Pin Description SO24, SSOP24, QSOP24, HVQFN24 TSSOP24, DHVQFN24 AD0 21 18 address input 0 SCL 22 19 serial clock line input SDA 23 20 serial data line input/output VDD 24 21 supply voltage [1] HVQFN and DHVQFN package die supply ground is connected to both the VSS pin and the exposed center pad. The VSS pin must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board-level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board, and for proper heat conduction through the board thermal vias need to be incorporated in the PCB in the thermal pad region. 7. Functional description Refer to Figure 1 “Block diagram of PCA9671”. 7.1 Device address Following a START condition, the bus master must send the address of the slave it is accessing and the operation it wants to perform (read or write). The address of the PCA9671 is shown in Figure 9. Slave address pins AD2, AD1, and AD0 choose 1 of 64 slave addresses. To conserve power, no internal pull-up resistors are incorporated on AD2, AD1, and AD0. Address values depending on AD2, AD1, and AD0 can be found in Table 3 “PCA9671 address map”. Remark: The General Call address (0000 0000) and the Device ID address (1111 100X) are reserved and cannot be used as device address. Failure to follow this requirement will cause the PCA9671 not to acknowledge. Remark: Reserved I2C-bus addresses must be used with caution since they can interfere with: • “reserved for future use” I2C-bus addresses (0000 011, 1111 101, 1111 110, 1111 111) • slave devices that use the 10-bit addressing scheme (1111 0xx) • High speed mode (Hs-mode) master code (0000 1xx) slave address A6 A5 A4 A3 A2 A1 programmable Fig 9. A0 R/W 002aab636 PCA9671 address The last bit of the first byte defines the operation to be performed. When set to logic 1 a read is selected, while a logic 0 selects a write operation. When AD2, AD1 and AD0 are held to VDD or VSS, the same address as the PCF8575 is applied. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 6 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 7.1.1 Address maps Table 3. PCA9671 Product data sheet PCA9671 address map AD2 AD1 AD0 A6 A5 A4 A3 A2 A1 A0 Address (hex) VSS SCL VSS 0 0 1 0 0 0 0 20h VSS SCL VDD 0 0 1 0 0 0 1 22h VSS SDA VSS 0 0 1 0 0 1 0 24h VSS SDA VDD 0 0 1 0 0 1 1 26h VDD SCL VSS 0 0 1 0 1 0 0 28h VDD SCL VDD 0 0 1 0 1 0 1 2Ah VDD SDA VSS 0 0 1 0 1 1 0 2Ch VDD SDA VDD 0 0 1 0 1 1 1 2Eh VSS SCL SCL 0 0 1 1 0 0 0 30h VSS SCL SDA 0 0 1 1 0 0 1 32h VSS SDA SCL 0 0 1 1 0 1 0 34h VSS SDA SDA 0 0 1 1 0 1 1 36h VDD SCL SCL 0 0 1 1 1 0 0 38h VDD SCL SDA 0 0 1 1 1 0 1 3Ah VDD SDA SCL 0 0 1 1 1 1 0 3Ch VDD SDA SDA 0 0 1 1 1 1 1 3Eh VSS VSS VSS 0 1 0 0 0 0 0 40h VSS VSS VDD 0 1 0 0 0 0 1 42h VSS VDD VSS 0 1 0 0 0 1 0 44h VSS VDD VDD 0 1 0 0 0 1 1 46h VDD VSS VSS 0 1 0 0 1 0 0 48h VDD VSS VDD 0 1 0 0 1 0 1 4Ah VDD VDD VSS 0 1 0 0 1 1 0 4Ch VDD VDD VDD 0 1 0 0 1 1 1 4Eh VSS VSS SCL 0 1 0 1 0 0 0 50h VSS VSS SDA 0 1 0 1 0 0 1 52h VSS VDD SCL 0 1 0 1 0 1 0 54h VSS VDD SDA 0 1 0 1 0 1 1 56h VDD VSS SCL 0 1 0 1 1 0 0 58h VDD VSS SDA 0 1 0 1 1 0 1 5Ah VDD VDD SCL 0 1 0 1 1 1 0 5Ch VDD VDD SDA 0 1 0 1 1 1 1 5Eh All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 7 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset Table 3. PCA9671 Product data sheet PCA9671 address map …continued AD2 AD1 AD0 A6 A5 A4 A3 A2 A1 A0 Address (hex) SCL SCL VSS 1 0 1 0 0 0 0 A0h SCL SCL VDD 1 0 1 0 0 0 1 A2h SCL SDA VSS 1 0 1 0 0 1 0 A4h SCL SDA VDD 1 0 1 0 0 1 1 A6h SDA SCL VSS 1 0 1 0 1 0 0 A8h SDA SCL VDD 1 0 1 0 1 0 1 AAh SDA SDA VSS 1 0 1 0 1 1 0 ACh SDA SDA VDD 1 0 1 0 1 1 1 AEh SCL SCL SCL 1 0 1 1 0 0 0 B0h SCL SCL SDA 1 0 1 1 0 0 1 B2h SCL SDA SCL 1 0 1 1 0 1 0 B4h SCL SDA SDA 1 0 1 1 0 1 1 B6h SDA SCL SCL 1 0 1 1 1 0 0 B8h SDA SCL SDA 1 0 1 1 1 0 1 BAh SDA SDA SCL 1 0 1 1 1 1 0 BCh SDA SDA SDA 1 0 1 1 1 1 1 BEh SCL VSS VSS 1 1 0 0 0 0 0 C0h SCL VSS VDD 1 1 0 0 0 0 1 C2h SCL VDD VSS 1 1 0 0 0 1 0 C4h SCL VDD VDD 1 1 0 0 0 1 1 C6h SDA VSS VSS 1 1 0 0 1 0 0 C8h SDA VSS VDD 1 1 0 0 1 0 1 CAh SDA VDD VSS 1 1 0 0 1 1 0 CCh SDA VDD VDD 1 1 0 0 1 1 1 CEh SCL VSS SCL 1 1 1 0 0 0 0 E0h SCL VSS SDA 1 1 1 0 0 0 1 E2h SCL VDD SCL 1 1 1 0 0 1 0 E4h SCL VDD SDA 1 1 1 0 0 1 1 E6h SDA VSS SCL 1 1 1 0 1 0 0 E8h SDA VSS SDA 1 1 1 0 1 0 1 EAh SDA VDD SCL 1 1 1 0 1 1 0 ECh SDA VDD SDA 1 1 1 0 1 1 1 EEh All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 8 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 7.2 Software Reset call, and device ID addresses Two other different addresses can be sent to the PCA9671. • General Call address: allows to reset the PCA9671 through the I2C-bus upon reception of the right I2C-bus sequence. See Section 7.2.1 “Software Reset” for more information. • Device ID address: allows to read ID information from the device (manufacturer, part identification, revision). See Section 7.2.2 “Device ID (PCA9671 ID field)” for more information. R/W 0 0 0 0 0 0 0 0 002aac155 Fig 10. General Call address 1 1 1 1 1 0 0 R/W 002aab638 Fig 11. Device ID address 7.2.1 Software Reset The Software Reset Call allows all the devices in the I2C-bus to be reset to the power-up state value through a specific formatted I2C-bus command. To be performed correctly, it implies that the I2C-bus is functional and that there is no device hanging the bus. The Software Reset sequence is defined as following: 1. A START command is sent by the I2C-bus master. 2. The reserved General Call I2C-bus address ‘0000 000’ with the R/W bit set to logic 0 (write) is sent by the I2C-bus master. 3. The PCA9671 device(s) acknowledge(s) after seeing the General Call address ‘0000 0000’ (00h) only. If the R/W bit is set to logic 1 (read), no acknowledge is returned to the I2C-bus master. 4. Once the General Call address has been sent and acknowledged, the master sends 1 byte. The value of the byte must be equal to 06h. a. The PCA9671 acknowledges this value only. If the byte is not equal to 06h, the PCA9671 does not acknowledge it. If more than 1 byte of data is sent, the PCA9671 does not acknowledge any more. 5. Once the right byte has been sent and correctly acknowledged, the master sends a STOP command to end the Software Reset sequence: the PCA9671 then resets to the default value (power-up value) and is ready to be addressed again within the specified bus free time. If the master sends a Repeated START instead, no reset is performed. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 9 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset The I2C-bus master must interpret a non-acknowledge from the PCA9671 (at any time) as a ‘Software Reset Abort’. The PCA9671 does not initiate a reset of its registers. The unique sequence that initiates a Software Reset is described in Figure 12. SWRST Call I2C-bus address S 0 0 0 0 0 START condition 0 0 SWRST data = 06h 0 A 0 0 R/W acknowledge from slave(s) 0 0 0 1 1 0 A P acknowledge from slave(s) PCA9671 is(are) reset. Registers are set to default power-up values. 002aac281 Fig 12. Software Reset sequence 7.2.2 Device ID (PCA9671 ID field) The Device ID field is a 3-byte read-only (24 bits) word giving the following information: • 8 bits with the manufacturer name, unique per manufacturer (for example, NXP Semiconductors). • 13 bits with the part identification, assigned by manufacturer, the 7 MSBs with the category ID and the 6 LSBs with the feature ID (for example, PCA9671 16-bit quasi-output I/O expander). • 3 bits with the die revision, assigned by manufacturer (for example, Rev X). The Device ID is read-only, hardwired in the device and can be accessed as follows: 1. START command. 2. The master sends the Reserved Device ID I2C-bus address ‘1111 100’ with the R/W bit set to logic 0 (write). 3. The master sends the I2C-bus slave address of the slave device it needs to identify. The LSB is a ‘Don’t care’ value. Only one device must acknowledge this byte (the one that has the I2C-bus slave address). 4. The master sends a Re-START command. Remark: A STOP command followed by a START command will reset the slave state machine and the Device ID read cannot be performed. Remark: A STOP command or a Re-START command followed by an access to another slave device will reset the slave state machine and the Device ID read cannot be performed. 5. The master sends the Reserved Device ID I2C-bus address ‘1111 100’ with the R/W bit set to logic 1 (read). 6. The device ID read can be done, starting with the 8 manufacturer bits (first byte + 4 MSB of the second byte), followed by the 13 part identification bits and then the 3 die revision bits (3 LSB of the third byte). 7. The master ends the reading sequence by NACKing the last byte, thus resetting the slave device state machine and allowing the master to send the STOP command. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 10 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset Remark: The reading of the Device ID can be stopped anytime by sending a NACK command. Remark: If the master continues to ACK the bytes after the third byte, the PCA9671 rolls back to the first byte and keeps sending the Device ID sequence until a NACK has been detected. For the PCA9671, the Device ID is as shown in Figure 13. part identification 0 0 manufacturer 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 category identification feature identification revision 0 0 0 002aac249 Fig 13. PCA9671 ID acknowledge from slave to be identified acknowledge from one or several slave(s) S 1 1 1 1 START condition 1 0 acknowledge from slave to be identified don't care device ID address 0 0 A A6 A5 A4 A3 A2 A1 A0 X R/W I2C-bus slave address of the device to be identified acknowledge from master A 1 1 1 1 1 0 device ID address acknowledge from master 0 1 A R/W no acknowledge from master M7 M6 M5 M4 M3 M2 M1 M0 A C6 C5 C4 C3 C2 C1 C0 F5 A F4 P3 P2 P1 P0 R2 R1 R0 A category identification = 0000001 manufacturer name = 00000000 P revision = 000 feature identification = 010100 STOP condition 002aac335 If more than 2 bytes are read, the slave device loops back to the first byte (manufacturer byte) and keeps sending data until the master generates a ‘no acknowledge’. Fig 14. Device ID field reading PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 11 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 8. I/O programming 8.1 Quasi-bidirectional I/O architecture The PCA9671’s 16 ports (see Figure 2) are entirely independent and can be used either as input or output ports. Input data is transferred from the ports to the microcontroller in the Read mode (see Figure 17). Output data is transmitted to the ports in the Write mode (see Figure 16). Every data transmission from the PCA9671 must consist of an even number of bytes, the first byte will be referred to as P07 to P00, and the second byte as P17 to P10. The third will be referred to as P07 to P00, and so on. This quasi-bidirectional I/O can be used as an input or output without the use of a control signal for data directions. At power-on the I/Os are HIGH. In this mode only a current source (IOH) to VDD is active. An additional strong pull-up to VDD (Itrt(pu)) allows fast rising edges into heavily loaded outputs. These devices turn on when an output is written HIGH, and are switched off by the negative edge of SCL. The I/Os should be HIGH before being used as inputs. After power-on, as all the I/Os are set HIGH, all of them can be used as inputs. Any change in setting of the I/Os as either inputs or outputs can be done with the write mode. Remark: If a HIGH is applied to an I/O which has been written earlier to LOW, a large current (IOL) will flow to VSS. 8.2 Writing to the port (Output mode) To write, the master (microcontroller) first addresses the slave device. By setting the last bit of the byte containing the slave address to logic 0 the Write mode is entered. The PCA9671 acknowledges and the master sends the first data byte for P07 to P00. After the first data byte is acknowledged by the PCA9671, the second data byte P17 to P10 is sent by the master. Once again, the PCA9671 acknowledges the receipt of the data. Each 8-bit data is presented on the port lines after it has been acknowledged by the PCA9671. The number of data bytes that can be sent successively is not limited. After every two bytes, the previous data is overwritten. The first data byte in every pair refers to Port 0 (P07 to P00), whereas the second data byte in every pair refers to Port 1 (P17 to P10). See Figure 15. first byte 07 06 05 04 03 second byte 02 01 00 A P07 P06 P05 P04 P03 P02 P01 P00 17 16 15 14 13 12 11 10 A P17 P16 P15 P14 P13 P12 P11 P10 002aab634 Fig 15. Correlation between bits and ports PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 12 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset SCL 1 2 3 4 5 6 7 8 slave address data to port 0 SDA S A6 A5 A4 A3 A2 A1 A0 0 START condition 9 R/W data to port 1 P P 1 P P P P P A P 1 P P P P P P A A 07 04 03 02 01 00 17 06 15 14 13 12 11 10 P16 acknowledge from slave P05 acknowledge from slave acknowledge from slave write to port tv(Q) data output from port tv(Q) DATA A0 AND B0 VALID data A0 and B0 valid P05 output voltage P05 pull-up ouput current Itrt(pu) IOH P16 output voltage Itrt(pu) P16 pull-up ouput current IOH 002aac250 Fig 16. Write mode (output) 8.3 Reading from a port (Input mode) All ports programmed as input should be set to logic 1. To read, the master (microcontroller) first addresses the slave device after it receives the interrupt. By setting the last bit of the byte containing the slave address to logic 1 the Read mode is entered. The data bytes that follow on the SDA are the values on the ports. If the data on the input port changes faster than the master can read, this data may be lost. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 13 of 35 xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx 2 3 4 5 6 7 8 9 P1x P0x SDA S 0 1 0 0 A2 A1 A0 1 START condition NXP Semiconductors PCA9671 Product data sheet 1 SCL A R/W acknowledge from slave DATA 00 A acknowledge from master DATA 11 P1x P0x A acknowledge from master DATA 00 A acknowledge from master 1 DATA 12 P no acknowledge from master read from port 0 data into port 0 DATA 00 data into port 1 DATA 10 DATA 11 DATA12 002aac251 Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). Fig 17. Read input port register, scenario 1 PCA9671 14 of 35 © NXP B.V. 2010. All rights reserved. Remote 16-bit I/O expander for Fm+ I2C-bus with reset Rev. 2 — 29 July 2010 All information provided in this document is subject to legal disclaimers. read from port 1 xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx 2 3 4 5 6 7 8 9 P1x P0x SDA S 0 1 0 0 A2 A1 A0 1 START condition NXP Semiconductors PCA9671 Product data sheet 1 SCL DATA 00 A R/W A DATA 10 A DATA 03 acknowledge from master acknowledge from master acknowledge from slave P1x P0x A acknowledge from master 1 DATA 12 P no acknowledge from master read from port 0 tsu(D) th(D) data into port 0 DATA 00 DATA 01 DATA 02 DATA 03 th(D) tsu(D) data into port 1 DATA 10 DATA 11 DATA12 002aac252 Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). Fig 18. Read input port register, scenario 2 PCA9671 15 of 35 © NXP B.V. 2010. All rights reserved. Remote 16-bit I/O expander for Fm+ I2C-bus with reset Rev. 2 — 29 July 2010 All information provided in this document is subject to legal disclaimers. read from port 1 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 8.4 Power-on reset When power is applied to VDD, an internal Power-On Reset (POR) holds the PCA9671 in a reset condition until VDD has reached VPOR. At that point, the reset condition is released and the PCA9671 registers and I2C-bus/SMBus state machine will initialize to their default states. Thereafter VDD must be lowered below 0.2 V to reset the device. 8.5 RESET input A reset can be accomplished by holding the RESET pin LOW for a minimum of tw(rst). The PCA9671 registers and I2C-bus state machine will be held in their default state until the RESET input is once again HIGH. 9. Characteristics of the I2C-bus The I2C-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy. 9.1 Bit transfer One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Figure 19). SDA SCL data line stable; data valid change of data allowed mba607 Fig 19. Bit transfer 9.1.1 START and STOP conditions Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P) (see Figure 20). PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 16 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset SDA SCL S P START condition STOP condition mba608 Fig 20. Definition of START and STOP conditions 9.2 System configuration A device generating a message is a ‘transmitter’; a device receiving is the ‘receiver’. The device that controls the message is the ‘master’ and the devices which are controlled by the master are the ‘slaves’ (see Figure 21). SDA SCL MASTER TRANSMITTER/ RECEIVER SLAVE RECEIVER SLAVE TRANSMITTER/ RECEIVER MASTER TRANSMITTER MASTER TRANSMITTER/ RECEIVER I2C-BUS MULTIPLEXER SLAVE 002aaa966 Fig 21. System configuration 9.3 Acknowledge The number of data bytes transferred between the START and the STOP conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse; set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event, the transmitter must leave the data line HIGH to enable the master to generate a STOP condition. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 17 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset data output by transmitter not acknowledge data output by receiver acknowledge SCL from master 1 2 S 8 9 clock pulse for acknowledgement START condition 002aaa987 Fig 22. Acknowledgement on the I2C-bus 10. Application design-in information 10.1 Bidirectional I/O expander applications In the 8-bit I/O expander application shown in Figure 23, P00 and P01 are inputs, and P02 to P07 are outputs. When used in this configuration, during a write, the input (P00 and P01) must be written as HIGH so the external devices fully control the input ports. The desired HIGH or LOW logic levels may be written to the I/Os used as outputs (P02 to P07). During a read, the logic levels of the external devices driving the input ports (P00 and P01) and the previous written logic level to the output ports (P02 to P07) will be read. The GPIO also has a reset line (RESET) that can be connected to an output pin of the microprocessor. Since the device does not have an interrupt output, changes of the I/Os can be monitored by reading the input registers. If both a RESET and INT are needed, use the PCA9673. VDD VDD CORE PROCESSOR VDD SDA SCL RESET A0 A1 A2 P00 P01 P02 P03 P04 P05 P06 P07 temperature sensor battery status control for latch control for switch control for audio control for camera control for MP3 002aac253 Fig 23. Bidirectional I/O expander application PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 18 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 10.2 High current-drive load applications The GPIO has a maximum sinking current of 25 mA per bit. In applications requiring additional drive, two port pins in the same octal may be connected together to sink up to 50 mA current. Both bits must then always be turned on or off together. Up to 8 pins (one octal) can be connected together to drive 200 mA. VDD VDD SDA SCL RESET CORE PROCESSOR A0 A1 A2 VDD P00 P01 P02 P03 P04 P05 P06 P07 LOAD 002aac254 Fig 24. High current-drive load application 11. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Min Max Unit VDD supply voltage −0.5 +6 V IDD supply current - ±100 mA ISS ground supply current - ±600 mA VI input voltage VSS − 0.5 5.5 V II input current - ±20 mA IO output current - ±50[1] mA Ptot total power dissipation - 600 mW P/out power dissipation per output - 200 mW Tstg storage temperature −65 +150 °C Tamb ambient temperature −40 +85 °C [1] PCA9671 Product data sheet Conditions operating Total package (maximum) output current is 600 mA. All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 19 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 12. Static characteristics Table 5. Static characteristics VDD = 2.3 V to 5.5 V; VSS = 0 V; Tamb = −40 °C to +85 °C; unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit Supplies VDD supply voltage 2.3 - 5.5 V IDD supply current operating mode; no load; VI = VDD or VSS; fSCL = 400 kHz - 200 500 μA Istb standby current standby mode; no load; VI = VDD or VSS - 2.5 10 μA VPOR power-on reset voltage - 1.8 2.0 V −0.5 - +0.3VDD V [1] Input SCL; input/output SDA VIL LOW-level input voltage VIH HIGH-level input voltage 0.7VDD - 5.5 V IOL LOW-level output current VOL = 0.4 V 20 - - mA IL leakage current VI = VDD or VSS −1 - +1 μA Ci input capacitance VI = VSS - 4 10 pF VOL = 0.5 V; VDD = 2.3 V 12 27 - mA VOL = 0.5 V; VDD = 3.0 V 17 35 - mA VOL = 0.5 V; VDD = 4.5 V 25 42 - mA VOL = 0.5 V; VDD = 4.5 V - - 400 mA VOH = VSS −30 −150 −300 μA I/Os; P00 to P07 and P10 to P17 LOW-level output current[2] IOL current[2] IOL(tot) total LOW-level output IOH HIGH-level output current Itrt(pu) transient boosted pull-up current VOH = VSS; see Figure 16 Ci Co −0.5 −1.0 - mA input capacitance [3] - 4 10 pF output capacitance [3] - 4 10 pF Input RESET VIL LOW-level input voltage −0.5 - +0.8 V VIH HIGH-level input voltage 2 - 5.5 V ILI input leakage current −1 - +1 μA Ci input capacitance - 3 5 pF - +0.3VDD V Inputs AD0, AD1, AD2 VIL LOW-level input voltage −0.5 VIH HIGH-level input voltage 0.7VDD - 5.5 V ILI input leakage current −1 - +1 μA Ci input capacitance - 3 5 pF [1] The power-on reset circuit resets the I2C-bus logic with VDD < VPOR and set all I/Os to logic 1 (with current source to VDD). [2] Each bit must be limited to a maximum of 25 mA and the total package limited to 400 mA due to internal busing limits. [3] The value is not tested, but verified on sampling basis. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 20 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 13. Dynamic characteristics Table 6. Dynamic characteristics VDD = 2.3 V to 5.5 V; VSS = 0 V; Tamb = −40 °C to +85 °C; unless otherwise specified. Symbol Parameter fSCL SCL clock frequency tBUF Conditions Standard-mode I2C-bus Fast-mode I2C-bus Fast-mode Plus I2C-bus Unit Min Max Min Max Min Max 0 100 0 400 0 1000 bus free time between a STOP and START condition 4.7 - 1.3 - 0.5 - μs tHD;STA hold time (repeated) START condition 4.0 - 0.6 - 0.26 - μs tSU;STA set-up time for a repeated START condition 4.7 - 0.6 - 0.26 - μs tSU;STO set-up time for STOP condition 4.0 - 0.6 - 0.26 - μs tHD;DAT data hold time 0 - 0 - 0 - ns tVD;ACK data valid acknowledge time [1] 0.3 3.45 0.1 0.9 0.05 0.45 μs tVD;DAT data valid time [2] 300 - 50 - 50 450 ns tSU;DAT data set-up time 250 - 100 - 50 - ns tLOW LOW period of the SCL clock 4.7 - 1.3 - 0.5 - μs tHIGH HIGH period of the SCL clock 4.0 - 0.6 - 0.26 - μs tf fall time of both SDA and SCL signals - 300 20 + 0.1Cb [3] 300 - 120 ns tr rise time of both SDA and SCL signals - 1000 20 + 0.1Cb [3] 300 - 120 ns tSP pulse width of spikes that must be suppressed by the input filter [6] - 50 - 50 - 50 ns [4][5] kHz Port timing; CL ≤ 100 pF (see Figure 17 and Figure 16) tv(Q) data output valid time - 4 - 4 - 4 μs tsu(D) data input set-up time 0 - 0 - 0 - μs th(D) data input hold time 4 - 4 - 4 - μs Reset timing (see Figure 26) tw(rst) reset pulse width 4 - 4 - 4 - ns trec(rst) reset recovery time 0 - 0 - 0 - ns trst reset time 100 - 100 - 100 - ns [1] tVD;ACK = time for Acknowledgement signal from SCL LOW to SDA (out) LOW. [2] tVD;DAT = minimum time for SDA data out to be valid following SCL LOW. [3] Cb = total capacitance of one bus line in pF. [4] A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIL of the SCL signal) in order to bridge the undefined region SCL’s falling edge. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 21 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset [5] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at 250 ns. This allows series protection resistors to be connected between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf. [6] Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns. protocol START condition (S) tSU;STA bit 7 MSB (A7) tLOW bit 6 (A6) tHIGH bit 0 (R/W) STOP condition (P) acknowledge (A) 1/f SCL SCL tBUF tf tr SDA tSU;DAT tHD;STA tHD;DAT tVD;DAT tVD;ACK tSU;STO 002aab175 Rise and fall times refer to VIL and VIH. Fig 25. I2C-bus timing diagram ACK or read cycle START SCL SDA 30 % trst RESET 50 % 50 % trec(rst) 50 % tw(rst) trst 50 % P0n, P1n output off 002aac282 Fig 26. Reset timing PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 22 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 14. Package outline SO24: plastic small outline package; 24 leads; body width 7.5 mm SOT137-1 D E A X c HE y v M A Z 24 13 Q A2 A (A 3) A1 pin 1 index θ Lp L 1 12 e detail X w M bp 0 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y mm 2.65 0.3 0.1 2.45 2.25 0.25 0.49 0.36 0.32 0.23 15.6 15.2 7.6 7.4 1.27 10.65 10.00 1.4 1.1 0.4 1.1 1.0 0.25 0.25 0.1 0.01 0.019 0.013 0.014 0.009 0.61 0.60 0.30 0.29 0.05 0.419 0.043 0.055 0.394 0.016 inches 0.1 0.012 0.096 0.004 0.089 0.043 0.039 0.01 0.01 Z (1) 0.9 0.4 0.035 0.004 0.016 θ o 8 o 0 Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT137-1 075E05 MS-013 JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-19 Fig 27. Package outline SOT137-1 (SO24) PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 23 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm D SOT340-1 E A X c HE y v M A Z 24 13 Q A2 A (A 3) A1 pin 1 index θ Lp L 1 12 w M bp e detail X 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y Z (1) θ mm 2 0.21 0.05 1.80 1.65 0.25 0.38 0.25 0.20 0.09 8.4 8.0 5.4 5.2 0.65 7.9 7.6 1.25 1.03 0.63 0.9 0.7 0.2 0.13 0.1 0.8 0.4 8 o 0 o Note 1. Plastic or metal protrusions of 0.2 mm maximum per side are not included. OUTLINE VERSION SOT340-1 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-19 MO-150 Fig 28. Package outline SOT340-1 (SSOP24) PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 24 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset SSOP24: plastic shrink small outline package; 24 leads; body width 3.9 mm; lead pitch 0.635 mm D E SOT556-1 A X c y HE v M A Z 13 24 A2 A (A 3) A1 θ Lp L 12 1 e detail X w M bp 0 2.5 5 mm scale DIMENSIONS (millimetre dimensions are derived from the original inch dimensions) UNIT A max. A1 A2 A3 bp c D(1) E(1) e HE L Lp v w y Z(1) θ mm 1.73 0.25 0.10 1.55 1.40 0.25 0.31 0.20 0.25 0.18 8.8 8.6 4.0 3.8 0.635 6.2 5.8 1 0.89 0.41 0.25 0.18 0.1 1.05 0.66 8o o 0 inches 0.068 0.0098 0.061 0.0040 0.055 0.01 0.012 0.0098 0.344 0.157 0.244 0.035 0.025 0.041 0.008 0.0075 0.337 0.150 0.228 0.016 0.01 0.007 0.004 0.040 0.026 8o o 0 Note 1. Plastic or metal protrusions of 0.2 mm (0.008 inch) maximum per side are not included. OUTLINE VERSION SOT556-1 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-18 MO-137 Fig 29. Package outline SOT556-1 (SSOP24) PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 25 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm D SOT355-1 E A X c HE y v M A Z 13 24 Q A2 (A 3) A1 pin 1 index A θ Lp L 1 12 detail X w M bp e 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (2) e HE L Lp Q v w y Z (1) θ mm 1.1 0.15 0.05 0.95 0.80 0.25 0.30 0.19 0.2 0.1 7.9 7.7 4.5 4.3 0.65 6.6 6.2 1 0.75 0.50 0.4 0.3 0.2 0.13 0.1 0.5 0.2 8o 0o Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT355-1 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-19 MO-153 Fig 30. Package outline SOT355-1 (TSSOP24) PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 26 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body 3.5 x 5.5 x 0.85 mm B D SOT815-1 A A E A1 c detail X terminal 1 index area C e1 terminal 1 index area e y1 C v M C A B w M C b 2 y 11 L 12 1 e2 Eh 24 13 23 14 X Dh 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A(1) max. A1 b c D (1) Dh E (1) Eh e e1 e2 L v w y y1 mm 1 0.05 0.00 0.30 0.18 0.2 5.6 5.4 4.25 3.95 3.6 3.4 2.25 1.95 0.5 4.5 1.5 0.5 0.3 0.1 0.05 0.05 0.1 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT815-1 --- --- --- EUROPEAN PROJECTION ISSUE DATE 03-04-29 Fig 31. Package outline SOT815-1 (DHVQFN24) PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 27 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset HVQFN24: plastic thermal enhanced very thin quad flat package; no leads; 24 terminals; body 4 x 4 x 0.85 mm A B D SOT616-1 terminal 1 index area A A1 E c detail X e1 C 1/2 e e 12 y y1 C v M C A B w M C b 7 L 13 6 e e2 Eh 1/2 1 e 18 terminal 1 index area 24 19 X Dh 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A(1) max. A1 b c D (1) Dh E (1) Eh e e1 e2 L v w y y1 mm 1 0.05 0.00 0.30 0.18 0.2 4.1 3.9 2.25 1.95 4.1 3.9 2.25 1.95 0.5 2.5 2.5 0.5 0.3 0.1 0.05 0.05 0.1 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT616-1 --- MO-220 --- EUROPEAN PROJECTION ISSUE DATE 01-08-08 02-10-22 Fig 32. Package outline SOT616-1 (HVQFN24) PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 28 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 15. Handling information All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling ensure that the appropriate precautions are taken as described in JESD625-A or equivalent standards. 16. Soldering of SMD packages This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note AN10365 “Surface mount reflow soldering description”. 16.1 Introduction to soldering Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization. 16.2 Wave and reflow soldering Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following: • Through-hole components • Leaded or leadless SMDs, which are glued to the surface of the printed circuit board Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging. The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable. Key characteristics in both wave and reflow soldering are: • • • • • • Board specifications, including the board finish, solder masks and vias Package footprints, including solder thieves and orientation The moisture sensitivity level of the packages Package placement Inspection and repair Lead-free soldering versus SnPb soldering 16.3 Wave soldering Key characteristics in wave soldering are: PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 29 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset • Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave • Solder bath specifications, including temperature and impurities 16.4 Reflow soldering Key characteristics in reflow soldering are: • Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see Figure 33) than a SnPb process, thus reducing the process window • Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board • Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 7 and 8 Table 7. SnPb eutectic process (from J-STD-020C) Package thickness (mm) Package reflow temperature (°C) Volume (mm3) < 350 ≥ 350 < 2.5 235 220 ≥ 2.5 220 220 Table 8. Lead-free process (from J-STD-020C) Package thickness (mm) Package reflow temperature (°C) Volume (mm3) < 350 350 to 2000 > 2000 < 1.6 260 260 260 1.6 to 2.5 260 250 245 > 2.5 250 245 245 Moisture sensitivity precautions, as indicated on the packing, must be respected at all times. Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 33. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 30 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset maximum peak temperature = MSL limit, damage level temperature minimum peak temperature = minimum soldering temperature peak temperature time 001aac844 MSL: Moisture Sensitivity Level Fig 33. Temperature profiles for large and small components For further information on temperature profiles, refer to Application Note AN10365 “Surface mount reflow soldering description”. 17. Abbreviations Table 9. PCA9671 Product data sheet Abbreviations Acronym Description CDM Charged Device Model CMOS Complementary Metal Oxide Semiconductor ESD ElectroStatic Discharge GPIO General Purpose Input/Output HBM Human Body Model I2C-bus Inter-Integrated Circuit bus I/O Input/Output IC Integrated Circuit ID Identification LED Light Emitting Diode LSB Least Significant Bit MM Machine Model MSB Most Significant Bit PLC Programmable Logic Controller PWM Pulse Width Modulation RAID Redundant Array of Independent Disks SMBus System Management Bus All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 31 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 18. Revision history Table 10. Revision history Document ID Release date Data sheet status Change notice Supersedes PCA9671 v.2 20100729 Product data sheet - PCA9671 v.1 Modifications: PCA9671 v.1 PCA9671 Product data sheet • Table 5 “Static characteristics”, sub-section “Input RESET” is corrected by removing IOH specification 20061220 Product data sheet - All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 - © NXP B.V. 2010. All rights reserved. 32 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 19. Legal information 19.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 19.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 19.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 33 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. 19.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I2C-bus — logo is a trademark of NXP B.V. 20. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] PCA9671 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 2 — 29 July 2010 © NXP B.V. 2010. All rights reserved. 34 of 35 PCA9671 NXP Semiconductors Remote 16-bit I/O expander for Fm+ I2C-bus with reset 21. Contents 1 2 3 4 5 6 6.1 6.2 7 7.1 7.1.1 7.2 7.2.1 7.2.2 8 8.1 8.2 8.3 8.4 8.5 9 9.1 9.1.1 9.2 9.3 10 10.1 10.2 11 12 13 14 15 16 16.1 16.2 16.3 16.4 17 18 19 19.1 19.2 19.3 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pinning information . . . . . . . . . . . . . . . . . . . . . . 4 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5 Functional description . . . . . . . . . . . . . . . . . . . 6 Device address . . . . . . . . . . . . . . . . . . . . . . . . . 6 Address maps. . . . . . . . . . . . . . . . . . . . . . . . . . 7 Software Reset call, and device ID addresses . 9 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . 9 Device ID (PCA9671 ID field) . . . . . . . . . . . . . 10 I/O programming . . . . . . . . . . . . . . . . . . . . . . . 12 Quasi-bidirectional I/O architecture . . . . . . . . 12 Writing to the port (Output mode) . . . . . . . . . . 12 Reading from a port (Input mode) . . . . . . . . . 13 Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . 16 RESET input . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Characteristics of the I2C-bus . . . . . . . . . . . . 16 Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 START and STOP conditions . . . . . . . . . . . . . 16 System configuration . . . . . . . . . . . . . . . . . . . 17 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 17 Application design-in information . . . . . . . . . 18 Bidirectional I/O expander applications . . . . . 18 High current-drive load applications . . . . . . . . 19 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 19 Static characteristics. . . . . . . . . . . . . . . . . . . . 20 Dynamic characteristics . . . . . . . . . . . . . . . . . 21 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 23 Handling information. . . . . . . . . . . . . . . . . . . . 29 Soldering of SMD packages . . . . . . . . . . . . . . 29 Introduction to soldering . . . . . . . . . . . . . . . . . 29 Wave and reflow soldering . . . . . . . . . . . . . . . 29 Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 29 Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 30 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 32 Legal information. . . . . . . . . . . . . . . . . . . . . . . 33 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 33 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 19.4 20 21 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Contact information . . . . . . . . . . . . . . . . . . . . 34 Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2010. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 29 July 2010 Document identifier: PCA9671