SHARP PQXXXFZ01Z

Low Power-Loss Voltage Regulators
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
Low Voltage Operation Low Power-Loss Voltage Regulators (SC-63)
■
Features
Low voltage operation (Minimum operating voltage: 1.7V)
1.8V input → available 1.0 to 1.2V output
● Surface mount package (equivalent to EIAJ SC-63)
●
■
(Unit : mm)
Outline Dimensions
2.3±0.5
6.6MAX.
5.2±0.5
(0.5)
3
(1.7)
5.5±0.5
Personal computers, power supply in peripherals
Power supplies for various electronic equipment such as
DVD player or STB
010FZ01
(0 to 0.25)
0.5 +0.2
- 0.1
(0.5)
4(1.27)
1
■
0.5A
1A
■
Taping
Sleeve
Taping
Sleeve
1.2V Output
PQ010FZ5MZP
PQ010FZ5MZZ
PQ010FZ01ZP
PQ010FZ01ZZ
PQ012FZ5MZP
PQ012FZ5MZZ
PQ012FZ01ZP
PQ012FZ01ZZ
Absolute Maximum Ratings
Bias supply voltage
❇2
❇3
4
5
Output Voltage
Output
PQxxxFZ5MZ series
current
PQxxxFZ01Z series
Power dissipation
Junction temperature
Operating temperature
Storage temperature
Soldering temperature
Rating
Unit
VIN
VB
VC
3.7
7
7
0.5
1
8
150
–25 to +85
–40 to +150
260(10s)
V
V
V
PD
Tj
Topr
Tstg
Tsol
1
2
3
Specific IC
2
4
4
5
DC input (VIN)
Bias input (VB)
DC output (VO)
ON/OFF control terminal (VC)
GND
5
(Ta=25°C)
Symbol
IO
3
1
1.0V Output
Parameter
Input voltage
❇1
3
Internal connection diagram
Model Line-up
Output Package
current (IO) type
2
A
W
˚C
˚C
˚C
˚C
❇1 All are open except GND and applicable terminals.
❇2 PD:With infinite heat sink
❇3 Overheat protection may operate at Tj=125˚C to 150˚C.
•Please refer to the chapter " Handling Precautions ".
Notice
(0.9)
●
9.7MAX.
●
Epoxy resin
Applications
2.5MIN.
■
In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/
Low Power-Loss Voltage Regulators
■
Electrical Characteristics (Unless otherwise specified, VIN=1.8V, VB=3.3V, IO=0.3A, VC=2.7V, Ta=25˚C(PQxxxFZ5MZ))
(Unless otherwise specified, VIN=1.8V, VB=3.3V, IO=0.5A, VC=2.7V, Ta=25˚C(PQxxxFZ01Z))
Parameter
Symbol
VIN
Input voltage
Bias supply voltage
VB
Output voltage
VO
PQxxxFZ5MZ
Load regulation
RegL
PQxxxFZ01Z
Line regulation
Temperature coefficient of output voltage
Ripple rejection
❇4
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
ON-state voltage for control
ON-state current for control
OFF-state voltage for control
OFF-state current for control
Bias inflow current
Output OFF-state dissipation current
RegI
TCVO
RR1
RR2
VC (ON)
IC (ON)
VC (OFF)
IC (OFF)
Conditions
–
–
–
IO=5mA to 0.5A
IO=5mA to 1A
VIN=1.7 to 3.7V, VB=2.35 to 7V, IO=5mA
Tj=0 to 125˚C, IO=5mA
Refer to Fig.2
Refer to Fig.3
MIN.
TYP.
MAX.
Unit
1.7
–
3.7
V
2.35
–
7
V
Refer to following table
V
–
0.2
1
%
–
0.2
1
%
–
0.5
–
%/˚C
–
65
–
dB
–
60
–
dB
–
–
V
µA
–
–
2
–
200
–
–
–
0.8
V
VC=0.4V
–
–
2
µA
IB
IO=0
–
1.5
3
mA
Iqs
IO=0, VC=0.4V
–
–
10
µA
❇4 In case of opening control terminal 4 , output voltage turns off
■
Output Voltage Line-up
Model No.
PQ010FZ5MZ/PQ010FZ01Z
PQ012FZ5MZ/PQ012FZ01Z
(Unless otherwise specified, VIN=1.8V, VB=3.3V, IO=0.3A, VC=2.7V, Ta=25˚C(PQxxxFZ5MZ))
(Unless otherwise specified, VIN=1.8V, VB=3.3V, IO=0.5A, VC=2.7V, Ta=25˚C(PQxxxFZ01Z))
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
VO
VO
–
–
0.97
1.17
1.0
1.2
1.03
1.23
V
Fig.1 Test Circuit
VIN
1
VO
3
A
VB
0.33µF
A
2
4
5
IB
A
A
0.33µF
Iqs
IO
VC
IC
V
100µF
(Rated voltage : 50V)
RL
Low Power-Loss Voltage Regulators
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
Fig.2 Test Circuit for Ripple Rejection
1
3
ei
IO
2
eo
5
0.33 µF
VB
3.3V
VIN
1.8V
4
VC
2.7V
100 µF
(50V Rated voltage)
RL
0.33µF
f=120Hz(sine wave)
ei(rms)=0.1V
VIN=1.8V, VB=3.3V
IO=0.3A
RR=20log (ei(rms)/eo(rms))
Fig.3 Test Circuit for Ripple Rejection
1
3
IO
0.33µF
2
4
eb
VIN
5
2.7V
VB
3.3V
1.8V
eo
VC
0.33µF
100µF
(50V
Rated voltage)
RL
f=120Hz(sine wave)
ei(rms)=0.1V
VIN=1.8V, VB=3.3V
IO=0.3A
RR=20log (ei(rms)/eo(rms))
Fig.4 Power Dissipation vs. Ambient
Temperature
Power dissipation PD (W)
10
8
PD : With infinite heat sink
5
0
–25
–20
0
20
40
60
Ambient temperature Ta (°C)
80
Low Power-Loss Voltage Regulators
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
VIN=3.7V
VIN=3.3V
VIN=2.5V
VIN=1.8V
VB=3.3V
CIN=0.33µF
CO=47µF(Ar)
VC=2.7V
0
0.5
1.0
Output current IO (A)
VIN=3.7V
VIN=3.3V
0.7
0.6
VIN=2.5V
VIN=1.8V
0.5
0.4
0.3
0.2
0
0.5
1.0
1.5
2.0
Output current IO (A)
0.5
1.0
Output current IO (A)
1.5
VIN=3.7V
VIN=3.3V
VIN=2.5V
VIN=1.8V
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
0.5
1.0
1.5
2.0
Output current IO (A)
2.5
Fig.10 Output Voltage vs. Ambeint Temperature
(PQ012FZ5MZ / PQ012FZ01Z)
1.005
PQ010FZ5MZ
PQ010FZ01Z
0.99
0.985
–50 –25 0 25 50 75 100 125 150
Ambient temperature Ta (˚C)
Output voltage VO (V)
Output voltage VO (V)
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
1.2
PQ010FZ01Z:VIN=1.8V,VB=3.3V,IO=0.5A,VC=2.7V
1.01 PQ010FZ5MZ:VIN=1.8V,VB=3.3V,IO=0.3A,VC=2.7V
0.995
VIN=1.8V
0
1.015
1
VIN=2.5V
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
2.5
Fig.9 Output Voltage vs. Ambient Temperature
(PQ010FZ5MZ / PQ010FZ01Z)
VIN=3.3V
Fig.8 Overcurrent Protection Characteristics
(PQ012FZ01Z)
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
0.1
0
VIN=3.7V
0
Output voltage VO (V)
Output voltage VO (V)
1.1
0.8
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
1.4
Fig.7 Overcurrent Protection Characteristics
(PQ010FZ01Z)
1.0
0.9
Fig.6 Overcurrent Protection Characteristics
(PQ012FZ5MZ)
Output voltage VO (V)
Output voltage VO (V)
Fig.5 Overcurrent Protection Characteristics
(PQ010FZ5MZ)
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
PQ012FZ01Z:VIN=1.8V,VB=3.3V,IO=0.5A,VC=2.7V
1.195 PQ012FZ5MZ:VIN=1.8V,VB=3.3V,IO=0.3A,VC=2.7V
1.19
PQ012FZ5MZ
1.185
PQ012FZ01Z
1.18
1.175
1.17
–50 –25
0 25 50 75 100 125 150
Ambient temperature Ta (˚C)
Low Power-Loss Voltage Regulators
Fig.11 Bias Inflow Current vs. Ambient
Temperature
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
Fig.12 Output Short-circuit Current vs.
Ambient Temperature (Reference)
2
Bias inflow current IB(mA)
Output short-circuit current IS(A)
2
1.9
PQ012FZ5MZ
1.8
1.7
1.6
PQ010FZ5MZ
PQ012FZ01Z
1.5
PQ010FZ01Z
1.4
1.3
VIN=1.8V
1.2 VB=3.3V
1.1 VC=2.7V
1 IO=0A
–50 –25 0 25 50 75 100 125 150
Ambient temperature Ta (°C)
Fig.13 Output Voltage vs. Input Voltage
(PQ010FZ5MZ)
Output voltage VO (V)
Output voltage VO (V)
IO=0A
IO=0.3A(RL=3.3Ω)
0.7
IO=0.5A(RL=2Ω)
0.6
0.5
0.4
0.3
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
0.2
0.1
0
0
1
2
3
Input voltage VIN (V)
IO=1A(RL=1Ω)
0.6
0.5
0.4
0.3
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
0.2
0.1
0
0
1
2
3
Input voltage VIN (V)
1.6
1.5
4
PQ012FZ5MZ
1.4
PQ010FZ5MZ
1.3
1.2
1.1 VIN=1.8V,VB=3.3V,VC=2.7V
1 RL=Short
–50 –25 0 25 50 75 100 125 150
Ambient temperature Ta (°C)
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
IO=0A
IO=0.3A(RL=4Ω)
IO=0.5A(RL=2Ω)
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
1
2
3
Input voltage VIN (V)
4
Fig.16 Output Voltage vs. Input Voltage
(PQ012FZ01Z)
Output voltage VO (V)
Output voltage VO (V)
IO=0.5A(RL=2Ω)
0.7
PQ012FZ01Z
0
1.1
1.0
IO=0A
PQ010FZ01Z
1.7
4
Fig.15 Output Voltage vs. Input Voltage
(PQ010FZ01Z)
0.9
0.8
1.8
Fig.14 Output Voltage vs. Input Voltage
(PQ012FZ5MZ)
1.1
1.0
0.9
0.8
1.9
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
IO=0A
IO=0.5A(RL=2.4Ω)
IO=1A(RL=1.2Ω)
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
0
1
2
3
Input voltage VIN (V)
4
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
Fig.17 Output Voltage vs. Bias Supply Voltage
(PQ010FZ5MZ)
Fig.18 Output Voltage vs. Bias Supply Voltage
(PQ012FZ5MZ)
Output voltage VO (V)
Output voltage VO (V)
1.1
1.0
0.9
0.8
IO=0A
0.7
IO=0.3A(RL=3.3Ω)
0.6
IO=0.5A(RL=2Ω)
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
Bias supply voltage VB (V)
IO=0.5A(RL=2Ω)
0.6
IO=1A(RL=1Ω)
Output voltage VO (V)
Output voltage VO (V)
0.7
0.5
0.4
0.3
0.2
0.1
0
1
2
3
4
Bias supply voltage VB (V)
16
14
IIN
IIN–VIN
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
IB–VB
VIN=1.7V
VC=2.7V
CIN=0.33µF
CO=47µF
12
10
8
IB
2
6
4
2
0
1
0
0
1
2
3
4
5
Input Voltage/Bias Supply Voltage VIN/VB(V)
Bias inflow current IB (mA)
Circuit operating current IBIAS (mA)
20
1
2
3
4
Bias supply voltage VB (V)
5
IO=0A
IO=0.5A(RL=2.4Ω)
IO=1A(RL=1.2Ω)
0
Fig.21 Circuit Operating Current vs. Input Voltage
/Bias Supply Voltage (PQ010FZ5MZ)
18
IO=0.5A(RL=2.4Ω)
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
5
1
2
3
4
Bias supply voltage VB (V)
5
Fig.22 Circuit Operating Current vs. Input Voltage
/Bias Supply Voltage (PQ012FZ5MZ)
Circuit operating current IBIAS (mA)
0
IO=0.3A(RL=4Ω)
Fig.20 Output Voltage vs. Bias Supply Voltage
(PQ012FZ01Z)
1.1
1.0
IO=0A
IO=0A
0
5
Fig.19 Output Voltage vs. Bias Supply Voltage
(PQ010FZ01Z)
0.9
0.8
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
26
24
22
20
18
16
14
12
10
8
6
4
2
0
IIN
IIN–VIN
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
IB
IB–VB
VIN=1.8V
VC=2.7V
CIN=0.33µF
CO=47µF
2
1
0
0
1
2
3
4
5
Input Voltage/Bias Supply Voltage VIN/VB(V)
Bias inflow current IB (mA)
Low Power-Loss Voltage Regulators
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
18
16
14
IIN
IIN–VIN
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
IB–VB
VIN=1.8V
VC=2.7V
CIN=0.33µF
CO=47µF
12
10
8
2
IB
6
4
1
2
0
26
24
22
20
18
16
14
12
10
8
6
4
2
0
IIN
IIN–VIN
VB=3.3V
VC=2.7V
CIN=0.33µF
CO=47µF
IB–VB
VIN=1.8V
VC=2.7V
CIN=0.33µF
CO=47µF
2
IB
1
Fig.25 Output Voltage vs. Input Voltage /
Bias Supply Voltage (PQ010FZ5MZ)
Fig.26 Output Voltage vs. Input Voltage /
Bias Supply Voltage (PQ010FZ01Z)
Output voltage deviation ∆VO(mV)
0
0
1
2
3
4
5
Input Voltage/Bias Supply Voltage VIN/VB(V)
Output voltage deviation ∆VO(mV)
0
0
1
2
3
4
5
Input Voltage/Bias Supply Voltage VIN/VB(V)
Fig.24 Circuit Operating Current vs. Input Voltage
/Bias Supply Voltage (PQ012FZ01Z)
+1.5
+1.0
VB
+0.5
0
VIN
–0.5
–1.0
VC=2.7V,CIN=0.33µF,CO=47µF,IO=0A
Based on VIN=1.8V, VB=3.3V
+1.5
+1.0
VB
+0.5
0
VIN
–0.5
–1.0
VC=2.7V,CIN=0.33µF,CO=47µF,IO=0A
Based on VIN=1.8V, VB=3.3V
0
1
2
3
4
5
6
7
Input Voltage/Bias Supply Voltage VIN/VB(V)
Fig.27 Output Voltage vs. Input Voltage /
Bias Supply Voltage (PQ012FZ5MZ)
Fig.28 Output Voltage vs. Input Voltage /
Bias Supply Voltage (PQ012FZ01Z)
Output voltage deviation ∆VO(mV)
Output voltage deviation ∆VO(mV)
0
1
2
3
4
5
6
7
Input Voltage/Bias Supply Voltage VIN/VB(V)
+1.5
+1.0
VB
+0.5
0
VIN
–0.5
–1.0
VC=2.7V,CIN=0.33µF,CO=47µF(Ar),IO=0A
Based on VIN=1.8V, VB=3.3V
0
1
2
3
4
5
6
7
Input Voltage/Bias Supply Voltage VIN/VB(V)
+1.5
+1.0
VB
+0.5
0
VIN
–0.5
–1.0
VC=2.7V,CIN=0.33µF,CO=47µF,IO=0A
Based on VIN=1.8V, VB=3.3V
0
1
2
3
4
5
6
7
Input Voltage/Bias Supply Voltage VIN/VB(V)
Bias inflow current IB (mA)
20
Bias inflow current IB (mA)
Circuit operating current IBIAS (mA)
Fig.23 Circuit Operating Current vs. Input Voltage
/Bias Supply Voltage (PQ010FZ01Z)
Circuit operating current IBIAS (mA)
Low Power-Loss Voltage Regulators
Low Power-Loss Voltage Regulators
Fig.29 Output Voltage vs. Output Current
80
PQ010FZ01Z
PQ012FZ01Z
+0.5
75
Ripple rejection RR (dB)
+1.0
0
–0.5
PQ010FZ5MZ
–1.0
PQ012FZ5MZ
–1.5
VIN=1.8V
VB=3.3V
VC=2.7V
CIN=0.33µF(Ar)
CO=47µF(Ar)
–2.0
–2.5
–3.0
0
Ripple rejection RR (dB)
70
60
55
1.5
75
75
65
60
PQ012FZ5M-VB
PQ012FZ01-VB
55
50
45
40
ei(rms)=0.1V,VIN=1.8V,VB=3.3V,VC=2.7V
IO=0.3A,CO=47µF,Ta=ROOM Temp
0.1
1
10
100
Input ripple frequency f (kHz)
Fig.33 Ripple Rejection vs. Output Current
(PQ010FZ5MZ / PQ010FZ01Z)
80
75
70
PQ012FZ5M-VIN
PQ012FZ01-VIN
65
60
55
PQ012FZ5M-VB
PQ012FZ01-VB
50
45
40
ei(rms)=0.1V,f=120Hz,VIN=1.8V,VB=3.3V
VC=2.7V,CO=47µF,Ta=ROOM Temp
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Output current IO (A)
ei(rms)=0.1V,VIN=1.8V,VB=3.3V,VC=2.7V
IO=0.3A,CO=47µF,Ta=ROOM Temp
1
10
100
Input ripple frequency f (kHz)
Fig.32 Ripple Rejection vs. Output Current
(PQ010FZ5MZ / PQ010FZ01Z)
80
PQ012FZ5M-VIN PQ012FZ01-VIN
PQ010FZ5M-VB
PQ010FZ01-VB
0.1
80
70
PQ010FZ01-VIN
50
40
0.3
0.6
0.9
1.2
Output current IO (A)
PQ010FZ5M-VIN
65
45
Fig.31 Ripple Rejection vs. Input Ripple
Frequency(PQ012FZ5MZ/PQ012FZ01Z)
Ripple rejection RR (dB)
Fig.30 Ripple Rejection vs. Input Ripple
Frequency(PQ010FZ5MZ/PQ010FZ01Z)
Ripple rejection RR (dB)
Output voltage deviation ∆VO(mV)
+1.5
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
70
PQ010FZ5M-VIN
PQ010FZ01-VIN
65
60
PQ010FZ5M-VB
PQ010FZ01-VB
55
50
45
40
ei(rms)=0.1V,f=120Hz,VIN=1.8V,VB=3.3V
VC=2.7V,CO=47µF,Ta=ROOM Temp
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Output current IO (A)
Low Power-Loss Voltage Regulators
PQxxxFZ5MZ Series/PQxxxFZ01Z Series
Fig.34 Typical Application
DC input
VIN
CIN
1
3
2
4
VO
CO
+
Load
5
VB
ON/OFF signal
High:Output ON



Low or open:Output OFF
Fig.35 Power Dissipation vs. Ambient
Temperature (Typical Value)
Power dissipation PD (W)
3
Cu area 740mm2
2
1
PWB
Cu area 180mm2
Cu area 100mm2
Cu area 70mm2
PWB
Cu
Cu area 36mm2
0
–20
Material
: Glass-cloth epoxy resin
Size
: 50×50×1.6mm
Cu thickness : 35µm
0
20
40
60
Ambient temperature Ta (°C)
80
NOTICE
●
The circuit application examples in this publication are provided to explain representative applications of SHARP
devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
SHARP's devices.
●
Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
also subject to change without notice.
●
Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
specified in the relevant specification sheet nor meet the following conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
- - - Personal computers
- -- Office automation equipment
- -- Telecommunication equipment [terminal]
- - - Test and measurement equipment
- - - Industrial control
- -- Audio visual equipment
- -- Consumer electronics
(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when
SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- - - Traffic signals
- - - Gas leakage sensor breakers
- - - Alarm equipment
- -- Various safety devices, etc.
(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of
reliability and safety such as:
- - - Space applications
- -- Telecommunication equipment [trunk lines]
- -- Nuclear power control equipment
- -- Medical and other life support equipment (e.g., scuba).
●
If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign
Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
●
This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright
laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written
permission is also required before any use of this publication may be made by a third party.
●
Contact and consult with a SHARP representative if there are any questions about the contents of this publication.