Low Power-Loss Voltage Regulators PQxxxFZ5MZ Series/PQxxxFZ01Z Series PQxxxFZ5MZ Series/PQxxxFZ01Z Series Low Voltage Operation Low Power-Loss Voltage Regulators (SC-63) ■ Features Low voltage operation (Minimum operating voltage: 1.7V) 1.8V input → available 1.0 to 1.2V output ● Surface mount package (equivalent to EIAJ SC-63) ● ■ (Unit : mm) Outline Dimensions 2.3±0.5 6.6MAX. 5.2±0.5 (0.5) 3 (1.7) 5.5±0.5 Personal computers, power supply in peripherals Power supplies for various electronic equipment such as DVD player or STB 010FZ01 (0 to 0.25) 0.5 +0.2 - 0.1 (0.5) 4(1.27) 1 ■ 0.5A 1A ■ Taping Sleeve Taping Sleeve 1.2V Output PQ010FZ5MZP PQ010FZ5MZZ PQ010FZ01ZP PQ010FZ01ZZ PQ012FZ5MZP PQ012FZ5MZZ PQ012FZ01ZP PQ012FZ01ZZ Absolute Maximum Ratings Bias supply voltage ❇2 ❇3 4 5 Output Voltage Output PQxxxFZ5MZ series current PQxxxFZ01Z series Power dissipation Junction temperature Operating temperature Storage temperature Soldering temperature Rating Unit VIN VB VC 3.7 7 7 0.5 1 8 150 –25 to +85 –40 to +150 260(10s) V V V PD Tj Topr Tstg Tsol 1 2 3 Specific IC 2 4 4 5 DC input (VIN) Bias input (VB) DC output (VO) ON/OFF control terminal (VC) GND 5 (Ta=25°C) Symbol IO 3 1 1.0V Output Parameter Input voltage ❇1 3 Internal connection diagram Model Line-up Output Package current (IO) type 2 A W ˚C ˚C ˚C ˚C ❇1 All are open except GND and applicable terminals. ❇2 PD:With infinite heat sink ❇3 Overheat protection may operate at Tj=125˚C to 150˚C. •Please refer to the chapter " Handling Precautions ". Notice (0.9) ● 9.7MAX. ● Epoxy resin Applications 2.5MIN. ■ In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/ Low Power-Loss Voltage Regulators ■ Electrical Characteristics (Unless otherwise specified, VIN=1.8V, VB=3.3V, IO=0.3A, VC=2.7V, Ta=25˚C(PQxxxFZ5MZ)) (Unless otherwise specified, VIN=1.8V, VB=3.3V, IO=0.5A, VC=2.7V, Ta=25˚C(PQxxxFZ01Z)) Parameter Symbol VIN Input voltage Bias supply voltage VB Output voltage VO PQxxxFZ5MZ Load regulation RegL PQxxxFZ01Z Line regulation Temperature coefficient of output voltage Ripple rejection ❇4 PQxxxFZ5MZ Series/PQxxxFZ01Z Series ON-state voltage for control ON-state current for control OFF-state voltage for control OFF-state current for control Bias inflow current Output OFF-state dissipation current RegI TCVO RR1 RR2 VC (ON) IC (ON) VC (OFF) IC (OFF) Conditions – – – IO=5mA to 0.5A IO=5mA to 1A VIN=1.7 to 3.7V, VB=2.35 to 7V, IO=5mA Tj=0 to 125˚C, IO=5mA Refer to Fig.2 Refer to Fig.3 MIN. TYP. MAX. Unit 1.7 – 3.7 V 2.35 – 7 V Refer to following table V – 0.2 1 % – 0.2 1 % – 0.5 – %/˚C – 65 – dB – 60 – dB – – V µA – – 2 – 200 – – – 0.8 V VC=0.4V – – 2 µA IB IO=0 – 1.5 3 mA Iqs IO=0, VC=0.4V – – 10 µA ❇4 In case of opening control terminal 4 , output voltage turns off ■ Output Voltage Line-up Model No. PQ010FZ5MZ/PQ010FZ01Z PQ012FZ5MZ/PQ012FZ01Z (Unless otherwise specified, VIN=1.8V, VB=3.3V, IO=0.3A, VC=2.7V, Ta=25˚C(PQxxxFZ5MZ)) (Unless otherwise specified, VIN=1.8V, VB=3.3V, IO=0.5A, VC=2.7V, Ta=25˚C(PQxxxFZ01Z)) Symbol Conditions MIN. TYP. MAX. Unit VO VO – – 0.97 1.17 1.0 1.2 1.03 1.23 V Fig.1 Test Circuit VIN 1 VO 3 A VB 0.33µF A 2 4 5 IB A A 0.33µF Iqs IO VC IC V 100µF (Rated voltage : 50V) RL Low Power-Loss Voltage Regulators PQxxxFZ5MZ Series/PQxxxFZ01Z Series Fig.2 Test Circuit for Ripple Rejection 1 3 ei IO 2 eo 5 0.33 µF VB 3.3V VIN 1.8V 4 VC 2.7V 100 µF (50V Rated voltage) RL 0.33µF f=120Hz(sine wave) ei(rms)=0.1V VIN=1.8V, VB=3.3V IO=0.3A RR=20log (ei(rms)/eo(rms)) Fig.3 Test Circuit for Ripple Rejection 1 3 IO 0.33µF 2 4 eb VIN 5 2.7V VB 3.3V 1.8V eo VC 0.33µF 100µF (50V Rated voltage) RL f=120Hz(sine wave) ei(rms)=0.1V VIN=1.8V, VB=3.3V IO=0.3A RR=20log (ei(rms)/eo(rms)) Fig.4 Power Dissipation vs. Ambient Temperature Power dissipation PD (W) 10 8 PD : With infinite heat sink 5 0 –25 –20 0 20 40 60 Ambient temperature Ta (°C) 80 Low Power-Loss Voltage Regulators 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 VIN=3.7V VIN=3.3V VIN=2.5V VIN=1.8V VB=3.3V CIN=0.33µF CO=47µF(Ar) VC=2.7V 0 0.5 1.0 Output current IO (A) VIN=3.7V VIN=3.3V 0.7 0.6 VIN=2.5V VIN=1.8V 0.5 0.4 0.3 0.2 0 0.5 1.0 1.5 2.0 Output current IO (A) 0.5 1.0 Output current IO (A) 1.5 VIN=3.7V VIN=3.3V VIN=2.5V VIN=1.8V VB=3.3V VC=2.7V CIN=0.33µF CO=47µF 0.5 1.0 1.5 2.0 Output current IO (A) 2.5 Fig.10 Output Voltage vs. Ambeint Temperature (PQ012FZ5MZ / PQ012FZ01Z) 1.005 PQ010FZ5MZ PQ010FZ01Z 0.99 0.985 –50 –25 0 25 50 75 100 125 150 Ambient temperature Ta (˚C) Output voltage VO (V) Output voltage VO (V) VB=3.3V VC=2.7V CIN=0.33µF CO=47µF 1.2 PQ010FZ01Z:VIN=1.8V,VB=3.3V,IO=0.5A,VC=2.7V 1.01 PQ010FZ5MZ:VIN=1.8V,VB=3.3V,IO=0.3A,VC=2.7V 0.995 VIN=1.8V 0 1.015 1 VIN=2.5V 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2.5 Fig.9 Output Voltage vs. Ambient Temperature (PQ010FZ5MZ / PQ010FZ01Z) VIN=3.3V Fig.8 Overcurrent Protection Characteristics (PQ012FZ01Z) VB=3.3V VC=2.7V CIN=0.33µF CO=47µF 0.1 0 VIN=3.7V 0 Output voltage VO (V) Output voltage VO (V) 1.1 0.8 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1.4 Fig.7 Overcurrent Protection Characteristics (PQ010FZ01Z) 1.0 0.9 Fig.6 Overcurrent Protection Characteristics (PQ012FZ5MZ) Output voltage VO (V) Output voltage VO (V) Fig.5 Overcurrent Protection Characteristics (PQ010FZ5MZ) PQxxxFZ5MZ Series/PQxxxFZ01Z Series PQ012FZ01Z:VIN=1.8V,VB=3.3V,IO=0.5A,VC=2.7V 1.195 PQ012FZ5MZ:VIN=1.8V,VB=3.3V,IO=0.3A,VC=2.7V 1.19 PQ012FZ5MZ 1.185 PQ012FZ01Z 1.18 1.175 1.17 –50 –25 0 25 50 75 100 125 150 Ambient temperature Ta (˚C) Low Power-Loss Voltage Regulators Fig.11 Bias Inflow Current vs. Ambient Temperature PQxxxFZ5MZ Series/PQxxxFZ01Z Series Fig.12 Output Short-circuit Current vs. Ambient Temperature (Reference) 2 Bias inflow current IB(mA) Output short-circuit current IS(A) 2 1.9 PQ012FZ5MZ 1.8 1.7 1.6 PQ010FZ5MZ PQ012FZ01Z 1.5 PQ010FZ01Z 1.4 1.3 VIN=1.8V 1.2 VB=3.3V 1.1 VC=2.7V 1 IO=0A –50 –25 0 25 50 75 100 125 150 Ambient temperature Ta (°C) Fig.13 Output Voltage vs. Input Voltage (PQ010FZ5MZ) Output voltage VO (V) Output voltage VO (V) IO=0A IO=0.3A(RL=3.3Ω) 0.7 IO=0.5A(RL=2Ω) 0.6 0.5 0.4 0.3 VB=3.3V VC=2.7V CIN=0.33µF CO=47µF 0.2 0.1 0 0 1 2 3 Input voltage VIN (V) IO=1A(RL=1Ω) 0.6 0.5 0.4 0.3 VB=3.3V VC=2.7V CIN=0.33µF CO=47µF 0.2 0.1 0 0 1 2 3 Input voltage VIN (V) 1.6 1.5 4 PQ012FZ5MZ 1.4 PQ010FZ5MZ 1.3 1.2 1.1 VIN=1.8V,VB=3.3V,VC=2.7V 1 RL=Short –50 –25 0 25 50 75 100 125 150 Ambient temperature Ta (°C) 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 IO=0A IO=0.3A(RL=4Ω) IO=0.5A(RL=2Ω) VB=3.3V VC=2.7V CIN=0.33µF CO=47µF 1 2 3 Input voltage VIN (V) 4 Fig.16 Output Voltage vs. Input Voltage (PQ012FZ01Z) Output voltage VO (V) Output voltage VO (V) IO=0.5A(RL=2Ω) 0.7 PQ012FZ01Z 0 1.1 1.0 IO=0A PQ010FZ01Z 1.7 4 Fig.15 Output Voltage vs. Input Voltage (PQ010FZ01Z) 0.9 0.8 1.8 Fig.14 Output Voltage vs. Input Voltage (PQ012FZ5MZ) 1.1 1.0 0.9 0.8 1.9 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 IO=0A IO=0.5A(RL=2.4Ω) IO=1A(RL=1.2Ω) VB=3.3V VC=2.7V CIN=0.33µF CO=47µF 0 1 2 3 Input voltage VIN (V) 4 PQxxxFZ5MZ Series/PQxxxFZ01Z Series Fig.17 Output Voltage vs. Bias Supply Voltage (PQ010FZ5MZ) Fig.18 Output Voltage vs. Bias Supply Voltage (PQ012FZ5MZ) Output voltage VO (V) Output voltage VO (V) 1.1 1.0 0.9 0.8 IO=0A 0.7 IO=0.3A(RL=3.3Ω) 0.6 IO=0.5A(RL=2Ω) 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 Bias supply voltage VB (V) IO=0.5A(RL=2Ω) 0.6 IO=1A(RL=1Ω) Output voltage VO (V) Output voltage VO (V) 0.7 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 Bias supply voltage VB (V) 16 14 IIN IIN–VIN VB=3.3V VC=2.7V CIN=0.33µF CO=47µF IB–VB VIN=1.7V VC=2.7V CIN=0.33µF CO=47µF 12 10 8 IB 2 6 4 2 0 1 0 0 1 2 3 4 5 Input Voltage/Bias Supply Voltage VIN/VB(V) Bias inflow current IB (mA) Circuit operating current IBIAS (mA) 20 1 2 3 4 Bias supply voltage VB (V) 5 IO=0A IO=0.5A(RL=2.4Ω) IO=1A(RL=1.2Ω) 0 Fig.21 Circuit Operating Current vs. Input Voltage /Bias Supply Voltage (PQ010FZ5MZ) 18 IO=0.5A(RL=2.4Ω) 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 5 1 2 3 4 Bias supply voltage VB (V) 5 Fig.22 Circuit Operating Current vs. Input Voltage /Bias Supply Voltage (PQ012FZ5MZ) Circuit operating current IBIAS (mA) 0 IO=0.3A(RL=4Ω) Fig.20 Output Voltage vs. Bias Supply Voltage (PQ012FZ01Z) 1.1 1.0 IO=0A IO=0A 0 5 Fig.19 Output Voltage vs. Bias Supply Voltage (PQ010FZ01Z) 0.9 0.8 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 26 24 22 20 18 16 14 12 10 8 6 4 2 0 IIN IIN–VIN VB=3.3V VC=2.7V CIN=0.33µF CO=47µF IB IB–VB VIN=1.8V VC=2.7V CIN=0.33µF CO=47µF 2 1 0 0 1 2 3 4 5 Input Voltage/Bias Supply Voltage VIN/VB(V) Bias inflow current IB (mA) Low Power-Loss Voltage Regulators PQxxxFZ5MZ Series/PQxxxFZ01Z Series 18 16 14 IIN IIN–VIN VB=3.3V VC=2.7V CIN=0.33µF CO=47µF IB–VB VIN=1.8V VC=2.7V CIN=0.33µF CO=47µF 12 10 8 2 IB 6 4 1 2 0 26 24 22 20 18 16 14 12 10 8 6 4 2 0 IIN IIN–VIN VB=3.3V VC=2.7V CIN=0.33µF CO=47µF IB–VB VIN=1.8V VC=2.7V CIN=0.33µF CO=47µF 2 IB 1 Fig.25 Output Voltage vs. Input Voltage / Bias Supply Voltage (PQ010FZ5MZ) Fig.26 Output Voltage vs. Input Voltage / Bias Supply Voltage (PQ010FZ01Z) Output voltage deviation ∆VO(mV) 0 0 1 2 3 4 5 Input Voltage/Bias Supply Voltage VIN/VB(V) Output voltage deviation ∆VO(mV) 0 0 1 2 3 4 5 Input Voltage/Bias Supply Voltage VIN/VB(V) Fig.24 Circuit Operating Current vs. Input Voltage /Bias Supply Voltage (PQ012FZ01Z) +1.5 +1.0 VB +0.5 0 VIN –0.5 –1.0 VC=2.7V,CIN=0.33µF,CO=47µF,IO=0A Based on VIN=1.8V, VB=3.3V +1.5 +1.0 VB +0.5 0 VIN –0.5 –1.0 VC=2.7V,CIN=0.33µF,CO=47µF,IO=0A Based on VIN=1.8V, VB=3.3V 0 1 2 3 4 5 6 7 Input Voltage/Bias Supply Voltage VIN/VB(V) Fig.27 Output Voltage vs. Input Voltage / Bias Supply Voltage (PQ012FZ5MZ) Fig.28 Output Voltage vs. Input Voltage / Bias Supply Voltage (PQ012FZ01Z) Output voltage deviation ∆VO(mV) Output voltage deviation ∆VO(mV) 0 1 2 3 4 5 6 7 Input Voltage/Bias Supply Voltage VIN/VB(V) +1.5 +1.0 VB +0.5 0 VIN –0.5 –1.0 VC=2.7V,CIN=0.33µF,CO=47µF(Ar),IO=0A Based on VIN=1.8V, VB=3.3V 0 1 2 3 4 5 6 7 Input Voltage/Bias Supply Voltage VIN/VB(V) +1.5 +1.0 VB +0.5 0 VIN –0.5 –1.0 VC=2.7V,CIN=0.33µF,CO=47µF,IO=0A Based on VIN=1.8V, VB=3.3V 0 1 2 3 4 5 6 7 Input Voltage/Bias Supply Voltage VIN/VB(V) Bias inflow current IB (mA) 20 Bias inflow current IB (mA) Circuit operating current IBIAS (mA) Fig.23 Circuit Operating Current vs. Input Voltage /Bias Supply Voltage (PQ010FZ01Z) Circuit operating current IBIAS (mA) Low Power-Loss Voltage Regulators Low Power-Loss Voltage Regulators Fig.29 Output Voltage vs. Output Current 80 PQ010FZ01Z PQ012FZ01Z +0.5 75 Ripple rejection RR (dB) +1.0 0 –0.5 PQ010FZ5MZ –1.0 PQ012FZ5MZ –1.5 VIN=1.8V VB=3.3V VC=2.7V CIN=0.33µF(Ar) CO=47µF(Ar) –2.0 –2.5 –3.0 0 Ripple rejection RR (dB) 70 60 55 1.5 75 75 65 60 PQ012FZ5M-VB PQ012FZ01-VB 55 50 45 40 ei(rms)=0.1V,VIN=1.8V,VB=3.3V,VC=2.7V IO=0.3A,CO=47µF,Ta=ROOM Temp 0.1 1 10 100 Input ripple frequency f (kHz) Fig.33 Ripple Rejection vs. Output Current (PQ010FZ5MZ / PQ010FZ01Z) 80 75 70 PQ012FZ5M-VIN PQ012FZ01-VIN 65 60 55 PQ012FZ5M-VB PQ012FZ01-VB 50 45 40 ei(rms)=0.1V,f=120Hz,VIN=1.8V,VB=3.3V VC=2.7V,CO=47µF,Ta=ROOM Temp 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Output current IO (A) ei(rms)=0.1V,VIN=1.8V,VB=3.3V,VC=2.7V IO=0.3A,CO=47µF,Ta=ROOM Temp 1 10 100 Input ripple frequency f (kHz) Fig.32 Ripple Rejection vs. Output Current (PQ010FZ5MZ / PQ010FZ01Z) 80 PQ012FZ5M-VIN PQ012FZ01-VIN PQ010FZ5M-VB PQ010FZ01-VB 0.1 80 70 PQ010FZ01-VIN 50 40 0.3 0.6 0.9 1.2 Output current IO (A) PQ010FZ5M-VIN 65 45 Fig.31 Ripple Rejection vs. Input Ripple Frequency(PQ012FZ5MZ/PQ012FZ01Z) Ripple rejection RR (dB) Fig.30 Ripple Rejection vs. Input Ripple Frequency(PQ010FZ5MZ/PQ010FZ01Z) Ripple rejection RR (dB) Output voltage deviation ∆VO(mV) +1.5 PQxxxFZ5MZ Series/PQxxxFZ01Z Series 70 PQ010FZ5M-VIN PQ010FZ01-VIN 65 60 PQ010FZ5M-VB PQ010FZ01-VB 55 50 45 40 ei(rms)=0.1V,f=120Hz,VIN=1.8V,VB=3.3V VC=2.7V,CO=47µF,Ta=ROOM Temp 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Output current IO (A) Low Power-Loss Voltage Regulators PQxxxFZ5MZ Series/PQxxxFZ01Z Series Fig.34 Typical Application DC input VIN CIN 1 3 2 4 VO CO + Load 5 VB ON/OFF signal High:Output ON Low or open:Output OFF Fig.35 Power Dissipation vs. Ambient Temperature (Typical Value) Power dissipation PD (W) 3 Cu area 740mm2 2 1 PWB Cu area 180mm2 Cu area 100mm2 Cu area 70mm2 PWB Cu Cu area 36mm2 0 –20 Material : Glass-cloth epoxy resin Size : 50×50×1.6mm Cu thickness : 35µm 0 20 40 60 Ambient temperature Ta (°C) 80 NOTICE ● The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices. ● Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice. ● Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions: (i) The devices in this publication are designed for use in general electronic equipment designs such as: - - - Personal computers - -- Office automation equipment - -- Telecommunication equipment [terminal] - - - Test and measurement equipment - - - Industrial control - -- Audio visual equipment - -- Consumer electronics (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as: - -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.) - - - Traffic signals - - - Gas leakage sensor breakers - - - Alarm equipment - -- Various safety devices, etc. (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as: - - - Space applications - -- Telecommunication equipment [trunk lines] - -- Nuclear power control equipment - -- Medical and other life support equipment (e.g., scuba). ● If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices. ● This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party. ● Contact and consult with a SHARP representative if there are any questions about the contents of this publication.