R1160x SERIES 3-MODE 200mA LDO REGULATOR NO.EA-083-0607 OUTLINE The R1160x Series consist of CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current, and low ON-resistance. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors for setting Output Voltage, a current limit circuit, and a chip enable circuit. These ICs perform with low dropout voltage and a chip enable function. To prevent the destruction by over current, current limit circuit is included. The R1160x Series have 3-mode. One is standby mode with CE or standby control pin. Other two modes are realized with ECO pin™. Fast Transient Mode (FT mode) and Low Power Mode (LP mode) are alternative with ECO pin™. Consumption current is reduced to 1/10 at Low Power Mode compared with Fast Transient Mode. Output voltage is maintained between FT mode and LP mode. The output voltage of these ICs is internally fixed with high accuracy. Since the packages for these ICs are SOT-23-5 and SON-6 packages, high density mounting of the ICs on boards is possible. FEATURES • Ultra-Low Supply Current..................................Typ. 3.5µA (Low Power Mode, VOUT < = 1.5V) Typ. 40µA (Fast Transient Mode) • Standby Mode ...................................................Typ. 0.1µA • Low Dropout Voltage.........................................Typ. 0.30V (IOUT=200mA 3.0V Output Voltage=1.0V Type) Typ. 0.20V (IOUT=200mA 3.0V Output Voltage=1.5V Type) Typ. 0.14V (IOUT=200mA 3.0V Output Voltage=3.0V Type) • High Ripple Rejection .......................................Typ. 70dB (f=1kHz,FT Mode) • Low Temperature-Drift Coefficient of Output Voltage Typ. ±100ppm/°C • Excellent Line Regulation .................................Typ. 0.05%/V • High Output Voltage Accuracy ..........................±2.0% (±3.0% at LP Mode) • Output Voltage ..................................................0.8V to 3.3V • Input Voltage .....................................................Min.1.4V • Built-in Fold Back Protection Circuit .................Typ. 50mA (Current at short mode) • Small Packages ..............................................SOT-23-5 (Super Mini-mold),SON-6 APPLICATIONS • Precision Voltage References. • Power source for electrical appliances such as cameras, VCRs and hand-held communication equipment. • Power source for battery-powered equipment. 1 R1160x BLOCK DIAGRAMS R1160xxx1A ECO R1160xxx1B ECO VOUT VDD VOUT VDD Vref Vref Current Limit Current Limit GND CE CE GND SELECTION GUIDE The output voltage, chip enable polarity, and the taping type for the ICs can be selected at the user's request. The selection can be available by designating the part number as shown below; R1160xxx1x-xx-x ←Part Number ↑↑ a b Code a b c d e 2 ↑ ↑ ↑ cd e Contents Designation of Package Type : N: SOT-23-5 (Mini mold) D: SON-6 Setting Output Voltage (VOUT) : Stepwise setting with a step of 0.1V in the range of 0.8V to 3.3V is possible. Designation of Chip Enable Option : A: "L" active type. B: "H" active type. Designation of Taping Type : Refer to Taping Specifications; TR type is the standard direction. Designation of composition of pin plating -F: Lead free plating (SOT-23-5,SON-6) R1160x PIN CONFIGURATION SOT-23-5 Top View 5 SON-6 Bottom View 4 6 5 4 4 5 6 1 2 3 3 2 1 (mark side) 1 2 3 PIN DESCRIPTIONS • SOT-23-5 SON-6 Pin No Symbol 1 VDD 2 GND 3 CE or CE 4 5 Pin Description Pin No Symbol Pin Description Input Pin 1 VDD Input Pin Ground Pin 2 NC No Connection Chip Enable Pin 3 VOUT Output pin ECO MODE alternative pin 4 ECO MODE alternative pin VOUT Output pin 5 GND Ground Pin 6 CE or CE Chip Enable Pin * Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns. ABSOLUTE MAXIMUM RATINGS Symbol Rating Unit Input Voltage 6.5 V VECO Input Voltage ( ECO Pin) 6.5 V VCE Input Voltage ( CE or CE Pin) 6.5 V VOUT Output Voltage −0.3 ~ VIN+0.3 V IOUT Output Current 250 mA Power Dissipation (SOT-23-5)* 420 mW Power Dissipation (SON-6)* 500 mW VIN PD Item Topt Operating Temperature Range −40 ~ 85 °C Tstg Storage Temperature Range −55 ~ 125 °C * ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described. 3 R1160x ELECTRICAL CHARACTERISTICS • R1160xxx1A Topt=25°C Symbol VOUT IOUT Item Conditions Output Voltage ISS1 Supply Current (FT Mode) Istandby ×0.970 (-45mV) ×1.030 (45mV) V < = 1.0V 200 mA 20 40 mV VIN=Set VOUT+1V, VECO=GND 10 40 mV 1mA < = IOUT < = 100mA Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE 40 70 µA VIN=Set VOUT+1V, IOUT=0mA VOUT < = 1.5V, VECO=GND 3.5 6.0 µA VIN=Set VOUT+1V, IOUT=0mA VOUT > = 1.6V, VECO=GND 4.5 8.0 µA Supply Current (Standby) VIN=VCE=Set VOUT+1V VECO=GND 0.1 1.0 µA Line Regulation (FT Mode) Set VOUT+0.5V < = VIN IOUT=30mA,VECO=VIN, 0.05 0.20 %/V 0.10 0.30 %/V Supply Current (LP Mode) Line Regulation (LP Mode) 4 VIN=Set VOUT+1V,VECO=GND 2 1µA < = IOUT < = 30mA * VIN=Set VOUT+1V VECO=VIN, IOUT=0mA ∆VOUT/∆VIN RR Ripple Rejection (FT Mode) VIN Input Voltage ∆VOUT/ ∆Topt V VIN=Set VOUT+1V, VECO=VIN 1mA < = IOUT < = 200mA Dropout Voltage Unit ×1.020 (30mV) Load Regulation(FT Mode) VDIF Max. ×0.980 (-30mV) VIN −VOUT=0.5V VIN > = 1.5V,VOUT Load Regulation(LP Mode) Typ. VIN=Set VOUT+1V,VECO=VIN 1 1µA < = IOUT < = 30mA * Output Current ∆VOUT/∆IOUT ISS2 Min. < = 6.0V Set VOUT+0.5V < = VIN < = 6.0V IOUT=30mA,VECO=GND f=1kHz,Ripple 0.2Vp-p VIN=Set VOUT+1V IOUT=30mA,VECO=VIN 70 1.4 dB 6.0 V Output Voltage Temperature Coefficient IOUT=30mA −40°C < = Topt Ilim Short Current Limit VOUT=0V RPU CE Pull-up Resistance 2.0 5.0 14.0 MΩ RPD ECO Pull-down Resistance 1.5 5.0 14.0 MΩ VCEH CE ,ECO Input Voltage “H” 1.0 6.0 V VCEL CE ,ECO Input Voltage “L” 0.0 0.3 V *1 : ±30mV Tolerance for VOUT < = 1.5V *2 : ±45mV Tolerance for VOUT < = 1.5V < = 85°C ±100 ppm /°C 50 mA R1160x • R1160xxx1B Topt=25°C Symbol VOUT IOUT Item Conditions Output Voltage Min. ×1.020 (30mV) V VIN=Set VOUT+1V,VECO=GND 2 1µA < = IOUT < = 30mA * ×0.970 (-45mV) ×1.030 (45mV) V Load Regulation(FT Mode) VIN=Set VOUT+1V, VECO=VIN 1mA < = IOUT < = 200mA VDIF Dropout Voltage ISS1 Supply Current (FT Mode) Unit ×0.980 (-30mV) VIN−VOUT=0.5V VIN > = 1.5V,VOUT Load Regulation(LP Mode) Max. VIN=Set VOUT+1V,VECO=VIN 1 1µA < = IOUT < = 30mA * Output Current ∆VOUT/∆IOUT Typ. < = 1.0V 200 mA 20 40 mV VIN=Set VOUT+1V, VECO=GND 10 40 mV 1mA < = IOUT < = 100mA Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE VIN=Set VOUT+1V VECO=VIN, IOUT=0mA 40 70 µA VIN=Set VOUT+1V, IOUT=0mA VOUT < = 1.5V, VECO=GND 3.5 6.0 µA VIN=Set VOUT+1V, IOUT=0mA VOUT > = 1.6V, VECO=GND 4.5 8.0 µA Supply Current (Standby) VIN=Set VOUT+1V VCE=GND, VECO=GND 0.1 1.0 µA Line Regulation (FT Mode) Set VOUT+0.5V < = VIN IOUT=30mA,VECO=VIN, 0.05 0.20 %/V Line Regulation (LP Mode) Set VOUT+0.5V < = VIN < = 6.0V IOUT=30mA,VECO=GND 0.10 0.30 %/V RR Ripple Rejection (FT Mode) f=1kHz,Ripple 0.2Vp-p VIN=Set VOUT+1V IOUT=30mA,VECO=VIN VIN Input Voltage ISS2 Istandby Supply Current (LP Mode) ∆VOUT/∆VIN ∆VOUT/ ∆Topt < = 6.0V 70 1.4 dB 6.0 V Output Voltage Temperature Coefficient IOUT=30mA −40°C < = Topt Ilim Short Current Limit VOUT=0V RPDC CE Pull-down Resistance 2.0 5.0 14.0 MΩ RPDE ECO Pull-down Resistance 1.5 5.0 14.0 MΩ VCEH CE,ECO Input Voltage “H” 1.0 6.0 V VCEL CE,ECO Input Voltage “L” 0.0 0.3 V *1 : ±30mV Tolerance for VOUT < = 1.5V *2 : ±45mV Tolerance for VOUT < = 1.5V < = 85°C ±100 ppm /°C 50 mA 5 R1160x • ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE Topt=25°C Dropout Voltage VDIF (V) Output Voltage VOUT (V) Typ. Max. VOUT < 0.9 0.40 0.70 < = VOUT < 1.4 0.30 0.50 < = VOUT < 2.5 0.20 0.30 0.8 < = 1.0 1.5 2.6 < = Condition IOUT=200mA 0.20 (VECO=”H”) 0.25 (VECO=”L”) VOUT TEST CIRCUITS VDD OUT IOUT VIN R1160xxx1x SERIES C1 C1=Tantal 1.0µF C2=Tantal 2.2µF A C2 GND CE ECO Fig.1 Output Voltage vs. Output Current Test Circuit VDD VIN C1 OUT R1160xxx1x SERIES C1=Tantal 1.0µF C2=Tantal 2.2µF IOUT C2 GND VOUT CE ECO V Fig.2 Output Voltage vs. Input Voltage Test Circuit 6 R1160x A VIN C1=Tantal 1.0µF C2=Tantal 2.2µF OUT VDD R1160xxx1x SERIES C1 C2 GND ECO CE Fig.3 Supply Current vs. Input Voltage Test Circuit OUT VDD VIN R1160xxx1x SERIES C1 IOUT =30mA C2 GND C1=Tantal 1.0µF C2=Tantal 2.2µF VOUT ECO CE V Fig.4 Output Voltage vs. Temperature Test Circuit A VDD VIN C1 OUT R1160xxx1x SERIES ISO C2 A C1=Tantal 1.0µF C2=Tantal 2.2µF GND VOUT CE ECO Fig.5 Supply Current vs. Temperature Test Circuit 7 R1160x V OUT VDD C1 VDIF C1=Tantal 1.0µF C2=Tantal 2.2µF R1160xxx1x SERIES C2 GND ECO CE V VOUT Fig. 6 Dropout Voltage vs. Output Current/ Set Output Voltage Test Circuit VIN VDD Pulse Generator VOUT OUT R1160xxx1x SERIES C2 IOUT GND C2=Tantalum Capacitor CE ECO Fig. 7 Ripple Rejection Test Circuit VIN VDD Pulse Generator VOUT OUT R1160xxx1x SERIES C2 IOUT GND CE ECO Fig.8 Input Transient Response Test Circuit 8 C2=Tantalum Capacitor R1160x VDD VIN VOUT OUT R1160xxx1x SERIES C1 C1=Tantal 1.0µF C2=Tantalum Capacitor C2 GND I1 CE I2 ECO Fig.9 Load Transient Response Test Circuit VDD VIN C1 OUT R1160xxx1x SERIES C1=Tantal 1.0µF C2=Tantal 2.2µF C2 GND CE ECO Function Generator Fig.10 Turn on Speed with CE pin Test Circuit VDD VIN C1 VOUT OUT R1160xxx1x SERIES C2 GND CE ECO IOUT Pulse Generator C1=Tantalum 1.0µF C2=Tantalum 2.2µF Fig.11 MODE Transient Response Test Circuit 9 R1160x VDD R1160xxx1x SERIES VIN C1 Spectrum Analyzer S.A. OUT C2 SR GND IOUT C1=Ceramic 1.0µF C2=Ceramic Capacitor CE ECO Fig.12 Output Noise Test Circuit ( IOUT vs. ESR ) TYPICAL APPLICATION VDD C1 OUT R1160xxx1x SERIES C2 GND C1=1.0µF C2=2.2µF CE (External Components) C1: Ceramic Capacitor 1µF C2: Tantalum Capacitor 2.2µF 10 ECO R1160x TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current R1160x081x R1160x081x ECO=H VIN=2.8V 0.8 0.7 0.6 0.5 0.4 0.3 1.4V 0.2 0.1 ECO=L 0.9 Output Voltage VOUT(V) Output Voltage VOUT(V) 0.9 VIN=2.8V 0.8 0.7 0.6 0.5 0.4 0.3 1.4V 0.2 0.1 0.0 0.0 0 100 200 300 0 400 R1160x151x 300 400 VIN=3.5V 1.2 1.0 0.8 1.8V 0.6 0.4 0.2 ECO=L 1.6 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.6 0.0 1.4 VIN=3.5V 1.2 1.0 0.8 1.8V 0.6 0.4 0.2 0.0 0 100 200 300 400 0 Output Current IOUT(mA) 100 200 300 400 Output Current IOUT(mA) R1160x261x R1160x261x ECO=H 2.5 VIN=4.6V 2.0 2.9V 1.5 1.0 0.5 0.0 ECO=L 3.0 Output Voltage VOUT(V) 3.0 Output Voltage VOUT(V) 200 R1160x151x ECO=H 1.4 100 Output Current IOUT(mA) Output Current IOUT(mA) 2.5 VIN=4.6V 2.0 1.5 2.9V 1.0 0.5 0.0 0 100 200 300 Output Current IOUT(mA) 400 0 100 200 300 400 Output Current IOUT(mA) 11 R1160x R1160x331x R1160x331x ECO=H 3.0 VIN=5.3V 2.5 2.0 ECO=L 3.5 Output Voltage VOUT(V) Output Voltage VOUT(V) 3.5 3.6V 1.5 1.0 0.5 0.0 3.0 VIN=5.3V 2.5 2.0 3.6V 1.5 1.0 0.5 0.0 0 100 200 300 400 0 Output Current IOUT(mA) 100 2) Output Voltage vs. Input Voltage R1160x081x 0.9 0.8 0.7 0.6 0.5 IOUT= 1mA IOUT=30mA IOUT=50mA 0.2 0.1 0.0 0.9 0.8 0.7 0.6 0.5 0.4 IOUT= 1mA IOUT=30mA IOUT=50mA 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 0 1 Input Voltage VIN(V) 4 5 6 1.4 1.2 1.0 0.8 IOUT= 1mA IOUT=30mA IOUT=50mA 0.2 0.0 ECO=L 1.6 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.6 0.4 3 R1160x151x ECO=H 0.6 2 Input Voltage VIN(V) R1160x151x 1.4 1.2 1.0 0.8 0.6 IOUT= 1mA IOUT=30mA IOUT=50mA 0.4 0.2 0.0 0 1 2 3 4 Input Voltage VIN(V) 12 400 ECO=L 1.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.0 0.3 300 R1160x081x ECO=H 0.4 200 Output Current IOUT(mA) 5 6 0 1 2 3 4 Input Voltage VIN(V) 5 6 R1160x R1160x261x R1160x261x ECO=H 2.5 2.0 1.5 IOUT= 1mA IOUT=30mA IOUT=50mA 1.0 0.5 ECO=L 3.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 3.0 0.0 2.5 2.0 1.5 IOUT= 1mA IOUT=30mA IOUT=50mA 1.0 0.5 0.0 0 1 2 3 4 5 6 0 1 Input Voltage VIN(V) R1160x331x 3.0 2.5 2.0 IOUT= 1mA IOUT=30mA IOUT=50mA 0.5 0.0 5 6 ECO=L 3.0 2.5 2.0 1.5 IOUT= 1mA IOUT=30mA IOUT=50mA 1.0 0.5 0.0 0 1 2 3 4 5 6 0 1 Input Voltage VIN(V) 2 3 4 5 6 Input Voltage VIN(V) 3) Supply Current vs. Input Voltage R1160x081x R1160x081x ECO=H 70 60 50 40 30 20 10 ECO=L 8 Supply Current ISS(µA) Supply Current ISS(µA) 4 3.5 Output Voltage VOUT(V) Output Voltage VOUT(V) 3.5 1.0 3 R1160x331x ECO=H 1.5 2 Input Voltage VIN(V) 7 6 5 4 3 2 1 0 0 0 1 2 3 4 Input Voltage VIN(V) 5 6 0 1 2 3 4 5 6 Input Voltage VIN(V) 13 R1160x R1160x151x R1160x151x ECO=H 60 50 40 30 20 10 ECO=L 8 Supply Current ISS(µA) Supply Current ISS(µA) 70 7 6 5 4 3 2 1 0 0 0 1 2 3 4 5 0 6 1 R1160x261x 60 Supply Current ISS(µA) Supply Current ISS(µA) 4 5 6 50 40 30 20 10 ECO=L 8 0 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 0 1 Input Voltage VIN(V) 2 3 4 5 6 Input Voltage VIN(V) R1160x331x R1160x331x ECO=H 70 60 50 40 30 20 10 0 ECO=L 8 Supply Current ISS(µA) Supply Current ISS(µA) 3 R1160x261x ECO=H 70 7 6 5 4 3 2 1 0 0 1 2 3 4 Input Voltage VIN(V) 14 2 Input Voltage VIN(V) Input Voltage VIN(V) 5 6 0 1 2 3 4 Input Voltage VIN(V) 5 6 R1160x 4) Output Voltage vs. Temperature R1160x081x R1160x081x ECO=H 0.82 0.81 0.80 0.79 0.78 0.77 -50 -25 0 25 50 75 ECO=L 0.83 Output Voltage VOUT(V) Output Voltage VOUT(V) 0.83 0.82 0.81 0.80 0.79 0.78 0.77 -50 100 -25 Temperature Topt(°C) 1.52 1.51 1.50 1.49 1.48 1.47 25 50 75 1.51 1.50 1.49 1.48 1.47 1.46 -50 100 -25 50 75 100 2.64 2.63 2.62 2.61 2.60 2.59 2.58 50 Temperature Topt(°C) 75 100 ECO=L 2.65 Output Voltage VOUT(V) Output Voltage VOUT(V) 2.65 25 25 R1160x261x ECO=H 0 0 Temperature Topt(°C) R1160x261x -25 100 1.52 Temperature Topt(°C) 2.57 -50 75 ECO=L 1.53 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.53 0 50 R1160x151x ECO=H -25 25 Temperature Topt(°C) R1160x151x 1.46 -50 0 2.64 2.63 2.62 2.61 2.60 2.59 2.58 2.57 -50 -25 0 25 50 75 100 Temperature Topt(°C) 15 R1160x R1160x331x R1160x331x ECO=H 3.35 3.33 3.31 3.29 3.27 3.25 3.23 -50 -25 0 25 50 75 ECO=L 3.37 Output Voltage VOUT(V) Output Voltage VOUT(V) 3.37 3.35 3.33 3.31 3.29 3.27 3.25 3.23 -50 100 -25 Temperature Topt(°C) 5) Supply Current vs. Input Voltage R1160x081x 50 40 30 20 10 0 25 50 75 6 5 4 3 2 1 0 -50 100 -25 50 75 100 50 40 30 20 10 50 75 100 ECO=L 8 Supply Current ISS(µA) Supply Current ISS(µA) 60 Temperature Topt(°C) 16 25 R1160x151x 70 25 0 Temperature Topt(°C) ECO=H 0 100 7 R1160x151x -25 75 ECO=L Temperature Topt(°C) 0 -50 50 8 Supply Current ISS(µA) Supply Current ISS(µA) 60 -25 25 R1160x081x ECO=H 70 0 -50 0 Temperature Topt(°C) 7 6 5 4 3 2 1 0 -50 -25 0 25 50 Temperature Topt(°C) 75 100 R1160x R1160x261x R1160x261x ECO=H 60 50 40 30 20 10 0 -50 -25 0 25 50 75 ECO=L 8 Supply Current ISS(µA) Supply Current ISS(µA) 70 7 6 5 4 3 2 1 0 -50 100 -25 Temperature Topt(°C) R1160x331x 60 50 40 30 20 10 0 25 50 75 6 5 4 3 2 1 0 -50 100 -25 0 25 50 75 100 Temperature Topt(°C) R1160x081x ECO=H 85°C 25°C -40°C 0.4 0.3 0.2 0.1 0.0 ECO=L 0.6 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 100 7 6) Dropout Voltage vs. Output Current R1160x081x 0.5 75 ECO=L Temperature Topt(°C) 0.6 50 8 Supply Current ISS(µA) Supply Current ISS(µA) 70 -25 25 R1160x331x ECO=H 0 -50 0 Temperature Topt(°C) 85°C 25°C -40°C 0.5 0.4 0.3 0.2 0.1 0.0 0 25 50 75 100 125 150 175 200 Output Current IOUT(mA) 0 25 50 75 100 125 150 175 200 Output Current IOUT(mA) 17 R1160x R1160x101x 0.40 85°C 25°C -40°C 0.35 0.30 0.25 0.20 0.15 0.10 0.05 ECO=L 0.40 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) R1160x101x ECO=H 0.00 85°C 25°C -40°C 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 25 50 75 100 125 150 175 200 0 25 Output Current IOUT(mA) R1160x151x 0.20 0.15 0.10 0.05 ECO=L 0.30 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 85°C 25°C -40°C 0.25 0.00 85°C 25°C -40°C 0.25 0.20 0.15 0.10 0.05 0.00 0 25 50 75 100 125 150 175 200 0 25 Output Current IOUT(mA) 0.10 0.05 0.00 ECO=L 0.20 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 85°C 25°C -40°C 0.15 75 100 125 150 175 200 R1160x261x ECO=H 0.20 50 Output Current IOUT(mA) R1160x261x 85°C 25°C -40°C 0.15 0.10 0.05 0.00 0 25 50 75 100 125 150 175 200 Output Current IOUT(mA) 18 75 100 125 150 175 200 R1160x151x ECO=H 0.30 50 Output Current IOUT(mA) 0 25 50 75 100 125 150 175 200 Output Current IOUT(mA) R1160x R1160x331x R1160x331x ECO=H 85°C 25°C -40°C 0.15 0.10 0.05 ECO=L 0.20 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 0.20 0.00 85°C 25°C -40°C 0.15 0.10 0.05 0.00 0 25 50 75 100 125 150 175 200 0 Output Current IOUT(mA) 25 50 75 100 125 150 175 200 Output Current IOUT(mA) 7) Dropout Voltage vs. Set Output Voltage (Topt=25°C) R1160xxx1x R1160xxx1x ECO=H 0.40 IOUT=10mA 30mA 50mA 120mA 200mA 0.35 0.30 0.25 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 0.45 0.20 0.15 0.10 0.05 0.00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.5 Set Output Voltage VREG(V) 60 50 40 30 0 2.60 f=400Hz f=1kHz f=10kHz f=100kHz 2.70 2.80 2.90 3.00 Input Voltage VIN(V) 1.5 2.0 2.5 3.0 3.5 3.10 Ripple 0.5Vp-p, IOUT=1mA, CIN; none, COUT=Tantal 2.2µF 80 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 70 10 1.0 R1160x261x Ripple 0.2Vp-p, IOUT=1mA, CIN; none, COUT=Tantal 2.2µF 20 IOUT=10mA 30mA 50mA 120mA 200mA Set Output Voltage VREG(V) 8) Ripple Rejection vs. Input Bias (Topt=25°C) R1160x261x 80 ECO=L 70 60 50 40 30 f=400Hz f=1kHz f=10kHz f=100kHz 20 10 0 2.60 2.70 2.80 2.90 3.00 3.10 Input Voltage VIN(V) 19 R1160x R1160x261x 60 50 40 30 f=400Hz f=1kHz f=10kHz f=100kHz 20 10 0 2.60 2.70 2.80 2.90 3.00 70 60 50 40 30 10 0 2.60 3.10 40 30 f=400Hz f=1kHz f=10kHz f=100kHz 20 10 2.70 2.80 2.90 3.00 60 50 40 30 20 10 0 2.60 3.10 2.80 2.90 3.00 3.10 R1160x081x 80 90 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 2.70 Input Voltage VIN(V) ECO=H, VIN1.8VDC+0.2Vp-p, CIN; none, COUT=Tantal 2.2µF 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=50mA 1 3.10 f=400Hz f=1kHz f=10kHz f=100kHz 70 9) Ripple Rejection vs. Frequency R1160x081x 10 Frequency f(kHz) 20 3.00 Ripple 0.5Vp-p, IOUT=50mA, CIN; none, COUT=Tantal 2.2µF 80 Input Voltage VIN(V) 0 0.1 2.90 R1160x261x Ripple 0.2Vp-p, IOUT=50mA, CIN; none, COUT=Tantal 2.2µF 50 10 2.80 R1160x261x 60 20 2.70 Input Voltage VIN(V) 70 90 f=400Hz f=1kHz f=10kHz f=100kHz 20 Input Voltage VIN(V) 80 0 2.60 Ripple 0.5Vp-p, IOUT=30mA, CIN; none, COUT=Tantal 2.2µF 80 Ripple Rejection RR(dB) 70 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 80 Ripple Rejection RR(dB) R1160x261x Ripple 0.2Vp-p, IOUT=30mA, CIN; none, COUT=Tantal 2.2µF 100 ECO=L, VIN1.8VDC+0.2Vp-p, CIN; none, COUT=Tantal 2.2µF 80 IOUT=1mA IOUT=30mA IOUT=50mA 70 60 50 40 30 20 10 0 0.1 1 10 Frequency f(kHz) 100 R1160x R1160x151x 80 70 60 50 40 30 20 10 0 0.1 IOUT=1mA IOUT=30mA IOUT=50mA 1 90 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 90 R1160x151x ECO=H, VIN2.5VDC+0.2Vp-p, CIN; none, COUT=Tantal 2.2µF 10 80 60 50 40 30 20 10 Frequency f(kHz) 60 50 40 30 0 0.1 IOUT=1mA IOUT=30mA IOUT=50mA 1 90 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 70 10 10 60 50 40 30 20 10 0 0.1 100 90 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=50mA 1 10 100 R1160x261x ECO=H, VIN3.6VDC+0.2Vp-p, CIN; none, COUT=Tantal 2.2µF 70 0 0.1 1 Frequency f(kHz) 80 10 IOUT=1mA IOUT=30mA IOUT=50mA 70 R1160x261x 20 100 ECO=L, VIN3.6VDC+0.2Vp-p, CIN; none, COUT=Tantal 1.0µF 80 Frequency f(kHz) 90 10 R1160x261x ECO=H, VIN3.6VDC+0.2Vp-p, CIN; none, COUT=Tantal 1.0µF 80 20 1 Frequency f(kHz) R1160x261x 90 IOUT=1mA IOUT=30mA IOUT=50mA 70 0 0.1 100 ECO=L, VIN2.5VDC+0.2Vp-p, CIN; none, COUT=Tantal 2.2µF 10 Frequency f(kHz) 100 ECO=L, VIN3.6VDC+0.2Vp-p, CIN; none, COUT=Tantal 2.2µF 80 IOUT=1mA IOUT=30mA IOUT=50mA 70 60 50 40 30 20 10 0 0.1 1 10 100 Frequency f(kHz) 21 R1160x R1160x331x 90 Ripple Rejection RR(dB) 80 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=50mA 20 10 0 0.1 1 10 80 60 50 40 30 20 10 Frequency f(kHz) Ripple Rejection RR(dB) Ripple Rejection RR(dB) 90 80 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=50mA 10 0 0.1 1 10 4 2.64 3 2.62 2 2.60 1 Output Voltage 0 2.56 0 10 20 30 40 50 60 70 80 90 100 Time T(µs) 22 5.00 Output Voltage VOUT(V) Output Voltage VOUT(V) 5 Input Voltage 2.58 60 50 40 30 20 10 1 10 100 R1160x261x Input Voltage VIN(V) ECO=H, IOUT=30mA, tr=tf=5µs, COUT=Tantal 1.0µF IOUT=1mA IOUT=30mA IOUT=50mA 70 Frequency f(kHz) 10) Input Transient Response R1160x261x 2.66 100 ECO=L, VIN4.3VDC+0.2Vp-p, CIN; none, COUT=Tantal 2.2µF 80 0 0.1 100 Frequency f(kHz) 2.68 10 R1160x331x ECO=H, VIN4.3VDC+0.2Vp-p, CIN; none, COUT=Tantal 2.2µF 20 1 Frequency f(kHz) R1160x331x 90 IOUT=1mA IOUT=30mA IOUT=50mA 70 0 0.1 100 ECO=L, VIN4.3VDC+0.2Vp-p, CIN; none, COUT=Tantal 1.0µF ECO=L, IOUT=10mA, tr=tf=5µs, COUT=Tantal 1.0µF 4.50 5 4 Input Voltage 4.00 3 3.50 2 3.00 Output Voltage 2.50 1 0 2.00 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 Time T(ms) Input Voltage VIN(V) 90 Ripple Rejection RR(dB) R1160x331x ECO=H, VIN4.3VDC+0.2Vp-p, CIN; none, COUT=Tantal 1.0µF R1160x 11) Load Transient Response R1160x261x Load Current 2.7 50 0 2.6 2.5 Output Voltage 2 4 6 8 10 12 14 16 18 Load Current 2.7 150 50 0 2.6 Output Voltage 4.5 6 8 10 12 14 16 18 150 2.7 50 0 2.6 Output Voltage 2.4 4 6 8 10 12 14 16 18 Time T(µs) 6.0 7.0 ECO=L, VIN=3.6V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF 20 10 Load Current 3.5 0 3 2.5 Output Voltage 2 4.5 Output Voltage VOUT(V) Load Current 2 5.0 1.0 2.0 3.0 4.0 5.0 R1160x261x 100 0 4.0 R1160x261x 2.9 2.5 3.0 Time T(ms) ECO=H, VIN=3.6V, CIN=Tantal 1.0µF, COUT=Tantal 4.7µF 2.8 2.0 Time T(µs) Load Current IOUT(mA) Output Voltage VOUT(V) 3 4 1.0 4 1.5 0.0 2.4 2 Output Voltage 2 R1160x261x 100 0 2.5 R1160x261x 2.9 2.5 3 Time T(ms) ECO=H, VIN=3.6V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF 2.8 0 Time T(µs) Output Voltage VOUT(V) Output Voltage VOUT(V) 3 0 Load Current IOUT(mA) -2 3.5 1.5 0.0 2.4 10 Load Current 6.0 7.0 ECO=L, VIN=3.6V, CIN=Tantal 1.0µF, COUT=Tantal 4.7µF 4 20 10 Load Current 3.5 0 3 2.5 Output Voltage 2 1.5 0.0 Load Current IOUT(mA) 2.8 4 20 Load Current IOUT(mA) 100 4.5 ECO=L, VIN=3.6V, CIN=Tantal 1.0µF, COUT=Tantal 1.0µF Load Current IOUT(mA) 2.9 150 Output Voltage VOUT(V) Output Voltage VOUT(V) 3 R1160x261x Load Current IOUT(mA) ECO=H, VIN=3.6V, CIN=Tantal 1.0µF, COUT=Tantal 1.0µF 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Time T(ms) 23 R1160x 12) Turn on speed with CE pin R1160x081B IOUT=200mA 0.0 CE Input Voltage VCE(V) 2.5 2.0 1.5 IOUT=200mA 0.0 1.0 0.5 0.0 ECO=L, VIN=2.5V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF 2.4 2.0 1.6 0.8 1.5 IOUT=200mA 0.0 0.0 0 100 200 300 400 500 600 700 R1160x261B R1160x261B 5.0 4.0 2.0 3.0 1.0 2.0 1.0 IOUT=200mA 0.0 10 20 30 40 50 60 70 Time T(µs) 1.0 0.5 Time T(µs) 0.0 2.5 VCE=0V→2.5V Time T(µs) VCE=0V→3.6V 0 3.2 10 20 30 40 50 60 70 ECO=H, VIN=3.6V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF 3.0 0.0 R1160x151B 1.6 0.5 0 100 200 300 400 500 600 700 VCE=0V→2.5V 4.0 IOUT=200mA R1160x151B 2.4 0 0.0 1.5 1.0 Time T(µs) ECO=H, VIN=2.5V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF 0.8 0.6 10 20 30 40 50 60 70 CE Input Voltage VCE(V) CE Input Voltage VCE(V) 3.2 VCE=0V→1.8V Time T(µs) 4.0 CE Input Voltage VCE(V) 0 24 0.5 Output Voltage VOUT(V) 0.0 1.2 2.0 Output Voltage VOUT(V) 1.0 1.8 2.5 Output Voltage VOUT(V) 0.6 1.5 ECO=L, VIN=1.8V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF 3.0 ECO=L, VIN=3.6V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF VCE=0V→3.6V 5.0 4.0 2.0 3.0 1.0 2.0 0.0 1.0 IOUT=200mA 0.0 0 100 200 300 400 500 600 700 Time T(µs) Output Voltage VOUT(V) VCE=0V→1.8V CE Input Voltage VCE(V) 2.0 1.2 2.4 2.5 Output Voltage VOUT(V) 1.8 R1160x081B Output Voltage VOUT(V) CE Input Voltage VCE(V) 2.4 ECO=H, VIN=1.8V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF R1160x 6.0 VCE=0V→4.3V 3.0 4.0 2.0 3.0 1.0 2.0 1.0 IOUT=200mA 0.0 0 VCE=0V→4.3V 3.0 4.0 2.0 3.0 1.0 2.0 0.0 Time T(µs) R1160x101x 1.05 1.04 1.03 1.02 1.01 1.00 0.99 3.0 2.0 1.0 0.0 IOUT=1mA IOUT=10mA IOUT=50mA IOUT=100mA IOUT=200mA 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Time T(ms) Output Voltage VOUT(V) IOUT=0mA ECO Input Voltage ECO-IN(V) Output Voltage VOUT(V) 1.01 1.00 0.99 1.01 1.00 0.99 1.00 0.99 0.98 1.00 0.99 0.98 1.01 1.00 0.99 1.0 0 100 200 300 400 500 600 700 13) Output Voltage at Mode alternative point R1160x101x VECO-0V←→1.3V IOUT=200mA 0.0 Time T(µs) 1.05 1.04 1.03 1.02 1.01 1.00 0.99 6.0 5.0 4.0 10 20 30 40 50 60 70 VIN=1.3V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF ECO=L, VIN=4.3V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF VIN=2.0V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF VECO-0V←→2.0V 3.0 2.0 1.0 0.0 IOUT=0mA IOUT=1mA 1.01 1.00 0.99 IOUT=10mA 1.01 1.00 0.99 IOUT=50mA 1.00 0.99 0.98 IOUT=100mA 1.00 0.99 0.98 IOUT=200mA 1.01 1.00 0.99 0.98 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 ECO Input Voltage ECO-IN(V) 0.0 CE Input Voltage VCE(V) 5.0 4.0 5.0 Output Voltage VOUT(V) 5.0 CE Input Voltage VCE(V) R1160x331B ECO=H, VIN=4.3V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF Output Voltage VOUT(V) R1160x331B Time T(ms) 25 R1160x IOUT=0mA IOUT=1mA IOUT=10mA IOUT=50mA IOUT=100mA IOUT=200mA 2.60 2.59 2.58 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Time T(ms) 26 4.0 3.0 2.0 1.0 0.0 2.67 2.66 2.65 2.64 2.63 2.62 2.61 2.60 2.62 2.61 2.60 2.61 2.60 2.59 2.61 2.60 2.59 2.61 2.60 2.59 - VIN=3.6V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF VECO-0V←→3.6V IOUT=0mA IOUT=1mA IOUT=10mA IOUT=50mA IOUT=100mA IOUT=200mA 2.60 2.59 2.58 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Time T(ms) 4.0 3.0 2.0 1.0 0.0 ECO Input Voltage ECO-IN(V) VECO-0V←→2.9V R1160x261x Output Voltage VOUT(V) 2.67 2.66 2.65 2.64 2.63 2.62 2.61 2.60 2.62 2.61 2.60 2.61 2.60 2.59 2.61 2.60 2.59 2.61 2.60 2.59 - VIN=2.9V, CIN=Tantal 1.0µF, COUT=Tantal 2.2µF ECO Input Voltage ECO-IN(V) Output Voltage VOUT(V) R1160x261x R1160x TECHNICAL NOTES C1 VDD VOUT R1160x Series C2 CE ECO GND (External Components) C1: Ceramic Capacitor 1µF C2: Tantalum Capacitor 2.2µF When using these ICs, consider the following points: 1.Mounting on PCB Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as 1.0µF or more as C1 between VDD and GND pin, and as close as possible to the pins. Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible. 2.Phase Compensation In these ICs, phase compensation is made for securing stable operation even if the output current is varied. For this purpose, be sure to use a 2.2µF or more capacitor COUT with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: When the additional ceramic capacitors are connected to the Output Pin with Output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.) If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable. Evaluate your circuit with considering frequency characteristics. Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit with actual using capacitors. 27 R1160x ESR vs. Output Current When using these ICs, consider the following points: In these ICs, phase compensation is made for securing stable operation even if the Output Current is varied. For this purpose, be sure to use a capacitor COUT with good frequency characteristics and ESR (Equivalent Series Resistance) in the range described as follows: The relations between IOUT (Output Current) and ESR of Output Capacitor are shown below. The conditions when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph. <Test conditions> (1)Frequency band: 10Hz to 2MHz (2)Temperature: 25°C R1160x261x 100 R1160x261x ECO=H, VIN=3.6V, CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF 100 10 ESR(Ω) ESR(Ω) 10 1 0.1 0.01 ECO=L, VIN=3.6V, CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF 1 0.1 0 20 40 60 80 100 120 140 160 180 200 0.01 0 Output Current IOUT(mA) Output Current IOUT(mA) R1160x261x 100 R1160x261x ECO=H, VIN=3.6V, CIN=Ceramic 1.0µF, COUT=Ceramic 2.2µF 100 1 0.1 1 0.1 0 20 40 60 80 100 120 140 160 180 200 Output Current IOUT(mA) 28 ECO=L, VIN=3.6V, CIN=Ceramic 1.0µF, COUT=Ceramic 2.2µF 10 ESR(Ω) ESR(Ω) 10 0.01 20 40 60 80 100 120 140 160 180 200 0.01 0 20 40 60 80 100 120 140 160 180 200 Output Current IOUT(mA) R1160x R1160x081x 100 R1160x081x ECO=H, VIN=1.8V, CIN=Ceramic 1.0µF, COUT=Ceramic 2.2µF 100 10 ESR(Ω) ESR(Ω) 10 1 0.1 0.01 ECO=L, VIN=1.8V, CIN=Ceramic 1.0µF, COUT=Ceramic 2.2µF 1 0.1 0 20 40 60 80 100 120 140 160 180 200 Output Current IOUT(mA) 0.01 0 20 40 60 80 100 120 140 160 180 200 Output Current IOUT(mA) 29 PACKAGE INFORMATION PE-SOT-23-5-0510 x SOT-23-5 (SC-74A) Unit: mm PACKAGE DIMENSIONS 2.9±0.2 +0.2 1.1 −0.1 1.9±0.2 (0.95) (0.95) 2 0 to 0.1 3 +0.1 0.15 −0.05 0.4±0.1 0.2 MIN. 1 2.8±0.3 4 +0.2 1.6 −0.1 5 0.8±0.1 3.2 3.5±0.05 2.0±0.05 3.3 4.0±0.1 2.0MAX. ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 2±0.5 21±0.8 ∅60 +1 0 ∅180 0 −1.5 ∅ 13±0.2 11.4±1.0 9.0±0.3 8.0±0.3 4.0±0.1 +0.1 φ1.5 0 0.3±0.1 1.75±0.1 TAPING SPECIFICATION PACKAGE INFORMATION PE-SOT-23-5-0510 POWER DISSIPATION (SOT-23-5) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: (Power Dissipation (SOT-23-5) is substitution of SOT-23-6.) Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm u 40mm u 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole I0.5mm u 44pcs Measurement Result (Topt=25qC,Tjmax=125qC) Standard Land Pattern Free Air Power Dissipation 420mW 250mW Thermal Resistance Tja (12525qC)/0.42W 263qC/W 400qC/W 500 40 On Board 420 400 Free Air 300 250 40 Power Dissipation PD(mW) 600 200 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area Unit : mm RECOMMENDED LAND PATTERN 0.7 MAX. 1.0 2.4 0.95 0.95 1.9 (Unit: mm) PACKAGE INFORMATION PE-SON-6-0510 x SON-6 Unit: mm PACKAGE DIMENSIONS 3 0.85MAX. 0.13±0.05 0.1 1.34 Bottom View (0.3) 1 2.6±0.2 3.0±0.15 4 (0.3) 1.6±0.2 6 Attention: Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.2±0.1 0.5 4.0±0.1 3.2 3.5±0.05 2.0±0.05 1.9 4.0±0.1 1.7MAX. ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) +1 60 0 2±0.5 21±0.8 0 180 −1.5 13±0.2 11.4±1.0 9.0±0.3 8.0±0.3 ∅ 1.5+0.1 0 0.2±0.1 1.75±0.1 TAPING SPECIFICATION PACKAGE INFORMATION PE-SON-6-0510 POWER DISSIPATION (SON-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm u 40mm u 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole I0.5mm u 44pcs Measurement Result (Topt=25qC,Tjmax=125qC) Standard Land Pattern Free Air Power Dissipation 500mW 250mW Thermal Resistance Tja (12525qC)/0.5W 200qC/W - On Board 500 40 400 300 Free Air 250 200 40 Power Dissipation PD(mW) 600 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area (Unit : mm) RECOMMENDED LAND PATTERN 1.05 0.75 0.25 0.5 (Unit: mm) MARK INFORMATION ME-R1160D-0511 R1160D SERIES MARK SPECIFICATION x SON-6 1 2 3 4 1 , 2 : Product Code (refer to Part Number vs. Product Code) 3 , 4 : Lot Number x Part Number vs. Product Code Part Number Product Code 1 2 R1160D081A A 8 R1160D091A A 9 R1160D101A B R1160D111A R1160D121A Part Number Product Code 1 2 R1160D231A C 3 R1160D241A C 4 0 R1160D251A C B 1 R1160D261A B 2 R1160D271A R1160D131A B 3 R1160D141A B R1160D151A B R1160D161A Part Number Product Code 1 2 R1160D081B E 8 R1160D091B E 9 5 R1160D101B F C 6 R1160D111B C 7 R1160D121B R1160D281A C 8 4 R1160D291A C 5 R1160D301A D B 6 R1160D311A R1160D171A B 7 R1160D181A B 8 R1160D191A B R1160D201A R1160D211A R1160D221A Part Number Product Code 1 2 R1160D231B G 3 R1160D241B G 4 0 R1160D251B G 5 F 1 R1160D261B G 6 F 2 R1160D271B G 7 R1160D131B F 3 R1160D281B G 8 9 R1160D141B F 4 R1160D291B G 9 0 R1160D151B F 5 R1160D301B H 0 D 1 R1160D161B F 6 R1160D311B H 1 R1160D321A D 2 R1160D171B F 7 R1160D321B H 2 R1160D331A D 3 R1160D181B F 8 R1160D331B H 3 9 R1160D281A5 A 0 R1160D191B F 9 R1160D281B5 E 0 C 0 R1160D131A5 A 1 R1160D201B G 0 R1160D131B5 E 1 C 1 R1160D111A5 A 2 R1160D211B G 1 R1160D111B5 E 2 C 2 R1160D221B G 2 R1160D181B5 E 3 MARK INFORMATION ME-R1160N-0511 R1160N SERIES MARK SPECIFICATION x SOT-23-5 (SC-74A) 1 2 3 4 1 , 2 4 , 5 , 3 : Product Code (refer to Part Number vs. Product Code) : Lot Number 5 x Part Number vs. Product Code Part Number Product Code Part Number Product Code Part Number Product Code Part Number Product Code 1 2 3 1 2 3 1 2 3 1 2 3 R1160N081A 0 0 8 R1160N231A 0 2 3 R1160N081B 1 0 8 R1160N231B 1 2 3 R1160N091A 0 0 9 R1160N241A 0 2 4 R1160N091B 1 0 9 R1160N241B 1 2 4 R1160N101A 0 1 0 R1160N251A 0 2 5 R1160N101B 1 1 0 R1160N251B 1 2 5 R1160N111A 0 1 1 R1160N261A 0 2 6 R1160N111B 1 1 1 R1160N261B 1 2 6 R1160N121A 0 1 2 R1160N271A 0 2 7 R1160N121B 1 1 2 R1160N271B 1 2 7 R1160N131A 0 1 3 R1160N281A 0 2 8 R1160N131B 1 1 3 R1160N281B 1 2 8 R1160N141A 0 1 4 R1160N291A 0 2 9 R1160N141B 1 1 4 R1160N291B 1 2 9 R1160N151A 0 1 5 R1160N301A 0 3 0 R1160N151B 1 1 5 R1160N301B 1 3 0 R1160N161A 0 1 6 R1160N311A 0 3 1 R1160N161B 1 1 6 R1160N311B 1 3 1 R1160N171A 0 1 7 R1160N321A 0 3 2 R1160N171B 1 1 7 R1160N321B 1 3 2 R1160N181A 0 1 8 R1160N331A 0 3 3 R1160N181B 1 1 8 R1160N331B 1 3 3 R1160N191A 0 1 9 R1160N281A5 0 0 0 R1160N191B 1 1 9 R1160N281B5 1 0 0 R1160N201A 0 2 0 R1160N131A5 0 0 1 R1160N201B 1 2 0 R1160N131B5 1 0 1 R1160N211A 0 2 1 R1160N111A5 0 0 2 R1160N211B 1 2 1 R1160N111B5 1 0 2 R1160N221A 0 2 2 R1160N221B 1 2 2