RICOH R5212D014C

R5212D SERIES
Step-down DC/DC Converter with VR and Reset
NO.EA-128-0510
OUTLINE
The R5212D is CMOS-based PWM step-down DC/DC converter combined with a voltage regulator (VR) and
a voltage detector (VD), with low supply current.
Each of these ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a
soft-start circuit, a current limit circuit, a phase compensation circuit, a resistor net for voltage detect circuit, an
output driver transistor, and so on. A low ripple, high efficiency step-down DC/DC converter can be easily
composed of this IC with some external components, or an inductor, a diode, and capacitors.
The oscillator frequency is 1.2MHz, therefore small inductor and capacitor can be used with this IC. Further,
this IC equips the under voltage lockout function (UVLO). If the input voltage becomes equal or less than 2.35V
(Typ.), the output of DC/DC converter turns off. However, in the A/B version, embedded voltage regulator and
detector continue to operate. In the C/D version, LDO output also turns off and only the voltage detector is
working.
The voltage regulator consists of a voltage reference unit, a resistor net for voltage detect circuit, an error
amplifier, an output driver transistor, and so on.
The input source voltage of the built-in voltage regulator is VIN pin (A/B version) or VOUT1 pin, the output of
DC/DC converter (C/D version).
The built-in voltage detector supervises the input voltage and the output is N-channel open drain.
Power-on reset delay time is also included and internally set typically at 12ms (A/C version) or 50ms(B/D
version).
FEATURES
•
•
•
•
•
•
Range of Input Voltage ............................. 3.0V~5.5V
Built-in Soft-start Function (Typ. 1ms) and built-in power-on reset delay (Typ. 12ms or 50ms)
Maximum Output Current...........................500mA (DC/DC), 200mA (VR)
Accuracy Output Voltage .......................... ±2.0% (DC/DC and Voltage Regulator Output)
Accuracy of voltage detector .................... ±2.5%
Output Voltage (VR)(A/B Version) ............ Stepwise Setting with a step of 0.1V in the range of 2.0V to 3.6V
(C/D Version) ............ Stepwise Setting with a step of 0.1V in the range of 1.2V to 3.0V
• Output Voltage (DC/DC) (A/B Version) ..... Stepwise Setting with a step of 0.1V in the range of 1.2V to 3.6V
(C/D Version) ..... Stepwise Setting with a step of 0.1V in the range of 2.5V to 3.6V
• Output Voltage (VD).................................. Stepwise Setting with a step of 0.1V in the range of 3.0V to 4.5V
• Package .................................................... HSON-6 (t=0.9mm)
APPLICATIONS
• Power source for hand-held communication equipment, CD or DVD drives.
• Power source for battery-powered equipment.
1
R5212D
BLOCK DIAGRAMS
R5212xxxA/B
VIN
6
Current Limit
OSC
4 VOUT1
LX
1
Output Control Logic
Vref
Soft Start
Current Limit
Vref
U.V.L.O.
Delay Circuit
5
Vref
VOUT2
2
3
VDOUT
4
VOUT1
5
VOUT2
GND
R5212DxxxC/D
VIN
LX
6
Current Limit
& Feedback
1
OSC
Output Control Logic
Vref
Soft Start
Current Limit
U.V.L.O.
Vref
Delay Circuit
3
Vref
VDOUT
2
2
GND
R5212D
SELECTION GUIDE
In the R5212D Series, the output voltage combination for the ICs can be selected at the user’s re-quest.
The selection can be made with designating the part number as shown below;
R5212Dxxxx-TR
↑ ↑
a b
Code
←Part Number
↑
c
Contents
a
Output Voltage Combination Code Number
b
Designation of Optional Function
A: VR input pin=VIN pin, VD delay=12ms
B: VR input pin=VIN pin, VD delay=50ms
C: VR input pin=DC/DC Output, VD delay=Typ. 12ms
D: VR input pin=DC/DC Output, VD delay=Typ. 50ms
c
Designation of Taping Type: Refer to Taping specification.
3
R5212D
PIN CONFIGURATION
HSON-6
Top View
Bottom View
6
5
4
4
5
6
1
2
3
3
2
1
PIN DESCRIPTIONS
Pin No
Symbol
Pin Description
1
LX
2
GND
Ground Pin
3
VDOUT
Output Pin of Voltage Detector (N-channel open-drain out-put type)
4
VOUT1
DC/DC converter Step-down Output monitoring Pin
5
VOUT2
Output Pin of Voltage Regulator
6
VIN
Switching Pin (P-channel open-drain output type)
Voltage Supply Pin
∗ Tab in the
parts have GND level. (They are connected to the reverse side of this IC.)
Do not connect to other wires or land patterns.
ABSOLUTE MAXIMUM RATINGS
(GND=0V)
Symbol
Item
Rating
Unit
VIN
VIN Pin Voltage
6.5
V
VLX
Lx Pin Voltage
−0.3 ~ VIN+0.3
V
VOUT1
VOUT1 Pin Voltage
−0.3 ~ VIN+0.3
V
VOUT2
VOUT2 Pin Voltage
−0.3 ~ VIN+0.3
V
VDOUT
VDOUT Pin Voltage
−0.3 ~ 6.5
V
800
mA
400
mA
900
mW
ILX
IOUT2
Lx Pin Output Current
VOUT2 Pin Output Current
∗1
PD
Power Dissipation (On Board)
Topt
Operating Temperature Range
−40 ~ +85
°C
Tstg
Storage Temperature Range
−55 ~ +125
°C
∗1 ) For Power Dissipation please refer to PACKAGE INFORMATION to be described.
4
R5212D
ELECTRICAL CHARACTERISTICS
•
R5212DxxxA
Symbol
Operating Input Voltage
IDD
Supply Current
VUVLOHYS
Min.
Typ.
Max.
Unit
5.5
V
400
800
µA
2.35
2.50
2.65
V
0.05
0.15
0.25
V
3.0
VIN=5.0V, VOUT1=0V
UVLO Release Voltage
UVLO Detector Threshold
Voltage Hysteresis
Topt=25°C
Item
Conditions
VOUT1
DC/DC Output Voltage
VIN=5.0V, at no load
OPEN LOOP
∆VOUT1/
∆Topt
fosc
DC/DC Output Voltage
Temperature Coefficient
40°C
Oscillator Frequency
VIN=5.0V
Lx on Resistance
ILXleak
ILXLIM
RLX
Maxduty
tstart
<
=
Topt
<
=
Min.
VOUT1
×0.98
Typ.
Max.
VOUT1
×1.02
960
Unit
V
ppm
/°C
±100
85°C
1200
1440
kHz
VIN=5.0V, ILX=100mA
0.4
0.8
Ω
Lx Leakage Current
VIN=VOUT1=5.5V, VLX=0V
0.01
5.00
µA
Lx Current Limit
VIN=5.0V
600
Maximum duty cycle
Soft-start Time
800
mA
100
VIN=5.0V
0.35
%
1.00
3.00
VR Part
Symbol
ms
Topt=25°C
Item
Conditions
VIN=5.0V, IOUT2=10mA
Min.
VOUT2
×0.98
200
Typ.
Max.
VOUT2
×1.02
Unit
V
VOUT2
VR Output Voltage
IOUT2
Maximum Output Current of VR
VIN=5.0V
VREG2
VR Load Regulation
VIN−VOUT2=0V
1mA <
= IOUT2 <
= 80mA
20
60
mV
VDIF2
Dropout Voltage
IOUT2=100mA
0.2
0.3
V
ILIM2
Short Current Limit
VOUT2=0V
50
mA
VR Output Voltage
Temperature Coefficient
40°C
±100
ppm
/°C
∆VOUT2/
∆Topt
•
Conditions
DC/DC Part
Symbol
•
Item
VIN
VUVLO2
•
Topt=25°C
<
=
Topt
<
=
85°C
mA
VD Part
Symbol
Topt=25°C
Item
−VDET
VD Detector Threshold
∆−VDET/
∆Topt
VD Detector Threshold
Temperature Coefficient
Conditions
Min.
Typ.
−VDET
×0.975
40°C
<
=
Topt
<
=
Max.
Unit
−VDET
×1.025
V
ppm
/°C
±100
85°C
−VDET
V
VHYS
Hysteresis Range
tPLH
VD Output Delay Time for Release
VIN=VDOUT=−VDET×0.9 to 5.0
3
12
30
ms
VDOUT “L” Output Current
VIN=2.0V, IOUT=0.1V
2
7
20
mA
IDOUTL
×0.05
5
R5212D
•
R5212DxxxB
Symbol
Operating Input Voltage
IDD
Supply Current
VUVLOHYS
Max.
Unit
5.5
V
400
800
µA
2.35
2.50
2.65
V
0.05
0.15
0.25
V
VIN=5.0V, VOUT1=0V
UVLO Release Voltage
UVLO Detector Threshold
Voltage Hysteresis
Typ.
Topt=25°C
Item
Conditions
DC/DC Output Voltage
VIN=5.0V, at no load
OPEN LOOP
∆VOUT1/
∆Topt
fosc
DC/DC Output Voltage
Temperature Coefficient
40°C
Oscillator Frequency
VIN=5.0V
Lx on Resistance
ILXleak
ILXLIM
Maxduty
tstart
<
=
Topt
<
=
Min.
VOUT1
×0.98
Typ.
Max.
VOUT1
×1.02
960
Unit
V
ppm
/°C
±100
85°C
1200
1440
kHz
VIN=5.0V, ILX=100mA
0.4
0.8
Ω
Lx Leakage Current
VIN=VOUT1=5.5V, VLX=0V
0.01
5.00
µA
Lx Current Limit
VIN=5.0V
600
Maximum duty cycle
Soft-start Time
850
mA
100
VIN=5.0V
0.35
%
1.00
3.00
VR Part
Symbol
ms
Topt=25°C
Item
Conditions
Min.
VOUT2
×0.98
200
Typ.
Max.
VOUT2
×1.02
Unit
VOUT2
VR Output Voltage
VIN=5.0V, IOUT2=10mA
IOUT2
Maximum Output Current of VR
VIN=5.0V
VREG2
VR Load Regulation
VIN−VOUT2=0V
1mA <
= IOUT2 <
= 80mA
20
60
mV
VDIF2
Dropout Voltage
IOUT2=100mA
0.2
0.3
V
ILIM2
Short Current Limit
VOUT2=0V
50
mA
±100
ppm
/°C
∆VOUT2/
∆Topt
VR Output Voltage
Temperature Coefficient
40°C
<
=
Topt
<
=
85°C
Topt=25°C
Item
−VDET
VD Detector Threshold
∆−VDET/
∆Topt
VD Detector Threshold
Temperature Coefficient
VHYS
tPLH
IDOUTL
V
mA
VD Part
Symbol
6
Min.
3.0
VOUT1
RLX
•
Conditions
DC/DC Part
Symbol
•
Item
VIN
VUVLO2
•
Topt=25°C
Conditions
Min.
−VDET
×0.975
40°C
<
=
Topt
<
=
85°C
Hysteresis Range
VD Output Delay Time for
Release
VDOUT “L” Output Current
Typ.
Max.
Unit
−VDET
×1.025
V
±100
ppm
/°C
−VDET
×0.05
V
VIN=VDOUT=−VDET×0.9 to 5.0
3
12
30
ms
VIN=2.0V, VDOUT=0.1V
2
7
20
mA
R5212D
•
R5212DxxxC
Symbol
Operating Input Voltage
IDD
Supply Current
VUVLOHYS
Min.
Typ.
Max.
Unit
5.5
V
400
800
µA
2.35
2.50
2.65
V
0.05
0.15
0.25
V
3.0
VIN=5.0V, VOUT1=0V
UVLO Release Voltage
UVLO Detector Threshold
Voltage Hysteresis
Topt=25°C
Item
Conditions
VOUT1
DC/DC Output Voltage
VIN=5.0V, at no load
OPEN LOOP
∆VOUT1/
∆Topt
fosc
DC/DC Output Voltage
Temperature Coefficient
40°C
Oscillator Frequency
VIN=5.0V
Lx on Resistance
ILXleak
ILXLIM
RLX
Maxduty
tstart
<
=
Topt
<
=
Min.
VOUT1
×0.98
Typ.
Max.
VOUT1
×1.02
960
Unit
V
ppm
/°C
±100
85°C
1200
1440
kHz
VIN=5.0V, ILX=100mA
0.4
0.8
Ω
Lx Leakage Current
VIN=VOUT1=5.5V, VLX=0V
0.01
5.00
µA
Lx Current Limit
VIN=5.0V
600
Maximum duty cycle
Soft-start Time
850
mA
100
VIN=5.0V
0.35
%
1.00
3.00
VR Part
Symbol
ms
Topt=25°C
Item
Conditions
VOUT1=3.3V
IOUT2=10mA
Min.
Typ.
VOUT2
×0.98
Max.
Unit
VOUT2
×1.02
V
VOUT2
VR Output Voltage
IOUT2
Maximum Output Current of VR VIN=5.0V
VREG2
VR Load Regulation
VIN−VOUT2=0V
1mA <
= IOUT2 <
= 80mA
20
60
mV
VDIF2
Dropout Voltage
IOUT2=100mA
0.2
0.3
V
ILIM2
Short Current Limit
VOUT2=0V
50
mA
VR Output Voltage
Temperature Coefficient
40°C
±100
ppm
/°C
∆VOUT2/
∆Topt
•
Conditions
DC/DC Part
Symbol
•
Item
VIN
VUVLO2
•
Topt=25°C
<
=
Topt
200
<
=
85°C
mA
VD Part
Symbol
Topt=25°C
Item
−VDET
VD Detector Threshold
∆−VDET/
∆Topt
VD Detector Threshold
Temperature Coefficient
VHYS
tPLH
IDOUTL
Conditions
Min.
−VDET
×0.975
40°C
<
=
Topt
<
=
85°C
Hysteresis Range
VD Output Delay Time
for Release
VDOUT “L” Output Current
Typ.
Max.
Unit
−VDET
×1.025
V
±100
ppm
/°C
−VDET
×0.05
V
VIN=VDOUT=−VDET×0.9 to 5.0
3
12
30
ms
VIN=2.0V, VDOUT=0.1V
2
7
20
mA
7
R5212D
•
R5212DxxxD
Symbol
Operating Input Voltage
IDD
Supply Current
VUVLOHYS
Max.
Unit
5.5
V
400
800
µA
2.35
2.50
2.65
V
0.05
0.15
0.25
V
VIN=5.0V, VOUT1=0V
UVLO Release Voltage
UVLO Detector Threshold
Voltage Hysteresis
Typ.
Topt=25°C
Item
Conditions
DC/DC Output Voltage
VIN=5.0V, at no load
OPEN LOOP
∆VOUT1/
∆Topt
fosc
DC/DC Output Voltage
Temperature Coefficient
40°C
Oscillator Frequency
VIN=5.0V
Lx on Resistance
ILXleak
ILXLIM
Maxduty
tstart
<
=
Topt
<
=
Min.
VOUT1
×0.98
Typ.
Max.
VOUT1
×1.02
960
Unit
V
ppm
/°C
±100
85°C
1200
1440
kHz
VIN=5.0V, ILX=100mA
0.4
0.8
Ω
Lx Leakage Current
VIN=VOUT1=5.5V, VLX=0V
0.01
5.00
µA
Lx Current Limit
VIN=5.0V
600
Maximum duty cycle
Soft-start Time
850
mA
100
VIN=5.0V
0.35
%
1.00
3.00
VR Part
Symbol
ms
Topt=25°C
Item
Conditions
Min.
Typ.
Max.
Unit
VOUT2
×1.02
V
VOUT2
VR Output Voltage
VOUT1=3.3V
IOUT2=10mA
IOUT2
Maximum Output Current of VR
VIN=5.0V, VOUT1=3.3V
VREG2
VR Load Regulation
VIN−VOUT2=0V
1mA <
= IOUT2 <
= 80mA
20
60
mV
VDIF2
Dropout Voltage
IOUT2=100mA
0.2
0.3
V
ILIM2
Short Current Limit
VOUT2=0V
50
mA
VR Output Voltage
Temperature Coefficient
40°C
±100
ppm
/°C
∆VOUT2/
∆Topt
<
=
Topt
<
=
VOUT2
×0.98
200
85°C
mA
VD Part
Symbol
Topt=25°C
Item
−VDET
VD Detector Threshold
∆−VDET/
∆Topt
VD Detector Threshold
Temperature Coefficient
VHYS
tPLH
IDOUTL
8
Min.
3.0
VOUT1
RLX
•
Conditions
DC/DC Part
Symbol
•
Item
VIN
VUVLO2
•
Topt=25°C
Conditions
Min.
−VDET
×0.975
40°C
<
=
Topt
<
=
85°C
Hysteresis Range
VD Output Delay Time for
Release
VDOUT “L” Output Current
Typ.
Max.
Unit
−VDET
×1.025
V
±100
ppm
/°C
−VDET
×0.05
V
VIN=VDOUT=−VDET×0.9 to 5.0
10
50
120
ms
VIN=2.0V, VDOUT=0.1V
2
7
20
mA
R5212D
TYPICAL APPLICATION AND APPLICATION HINTS
R5212Dxxxx
C3
VOUT2
VDOUT
R1
VOUT2
VIN
VDOUT
GND
VOUT1
LX
C1
L1
C2 VOUT1
D1
Examples of Components
Symbol
Item
(VOUT1
L1
<
=
1.6V)
(VOUT1 > 1.6V)
4.7µH
LQH43C Series
Murata
4.7µH
VLP5610 Series
TDK
6.8µH
LQH43C Series
Murata
6.8µH
VLP5610 Series
TDK
D1
RB491D(ROHM) or EP05Q03 (Nihon Inter)
R1
50kΩ
C1
10µF Ceramic Capacitor
C2
10µF Ceramic Capacitor
C3
2.2µF Ceramic Capacitor
9
R5212D
When you use these ICs, consider the following issues;
Set external components as close as possible to the IC and minimize the connection between the components
and the IC. In particular, a capacitor should be connected to between VIN and GND with the minimum connection.
Make sufficient grounding, and reinforce supplying. A large switching current may flow through the connection of
power supply, an inductor and the connection of VOUT1. If the impedance of the connection of power supply or
ground is high, the voltage level of power supply of the IC fluctuates with the switching current. This may cause
unstable operation of the IC.
Use a capacitor with a capacity of 10µF or more for VIN and GND, and with low ESR ceramic type. In terms of
VOUT1, use a ceramic capacitor with a capacity of 10µF or more. For VOUT2 pin, use a ceramic capacitor with a
capacitance of 2.2µF or around.
Choose an inductor that has a small D.C. resistance and large allowable current and which is hard to reach
magnetic saturation. If the value of inductance of an inductor is extremely small, the ILX , which flows through Lx
transistor and an inductor, may exceed the absolute maximum rating at the maximum loading.
Use an inductor with appropriate inductance.
Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.
If the spike noise of Lx pin is too large, make snub circuit (such as serial connection of CR) between Lx and
GND, then the noise will be reduced. The time constant of the CR depends on the actual PCB, so evaluate it on
the actual PCB.
If the load current of the voltage regulator is small, because of the switching noise of DC/DC converter, the
output voltage of VOUT2 may be large. To avoid this, use the voltage regulator with a load current at least 0.5mA.
In terms of LDO, the difference between the set output voltage and input voltage should be 0.5V or more,
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their
respected rated values.
10
R5212D
OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the
energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output
voltage than the input voltage is obtained. The operation will be explained with reference to the following
diagrams:
<Basic Circuits>
<Current through L>
IL
ILmax
i1
VIN
Lx Tr
L
SD
i2
IOUT
ILxmin
topen
VOUT
CL
ton
toff
t=1/fosc
Step 1 : Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment,
IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of LX Tr.
Step 2 : When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax,
and current IL (=i2) flows.
Step 3 : IL decreases gradually and reaches ILmin after a time period of topen, and SD turns off,
provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not
enough. In this case, IL value is from this ILmin (>0).
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton),
with the oscillator frequency (fosc) being maintained constant.
11
R5212D
•
Discontinuous Conduction Mode and Continuous Conduction Mode
The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the
same as those when Lx Tr. turns on and when it turns off.
The difference between ILmax and ILmin, which is represented by ∆I;
∆I=ILmax−ILmin=VOUT×topen/L=(VIN−VOUT)×ton/L ........................................................Equation 1
Where, t=1/fosc=ton+toff
duty (%)=ton/t×100=ton×fosc×100
topen <
= toff
In Equation A, VOUT×topen/L and (VIN−VOUT) ×ton/L are respectively shown the change of the current at ON,
and the change of the current at OFF.
When the output current (IOUT) is relatively small, topen < toff as illustrated in the above diagram. In this case,
the energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time
period of toff, therefore ILmin becomes to zero (ILmin=0). When IOUT is gradually increased, eventually, topen
becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The
former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc
tonc=t×VOUT/VIN .............................................................................................................Equation 2
When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode.
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When Lx Tr. is “ON”:
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of LX Tr. is described as RP the direct
current of the inductor is described as RL. The threshold level of Shottky diode is described as VF.)
VIN=VOUT+(RP+RL)×IOUT+L×IRP/ton ..................................................................................Equation 3
When Lx Tr. is “OFF”:
L×IRP/toff=VF+VOUT+RL×IOUT ...........................................................................................Equation 4
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON,
DON=(VOUT+VF+RL×IOUT)/(VIN+VF−RP×IOUT)......................................................................Equation 5
Ripple Current is as follows;
IRP=(VIN−VOUT−RP×IOUT−RL×IOUT)×DON/f/L .......................................................................Equation 6
Wherein, peak current that flows through L, Lx Tr., and SD is as follows;
ILmax=IOUT+IRP/2 ...........................................................................................................Equation 7
Consider ILmax, condition of input and output and select external components.
ÌThe above explanation is directed to the calculation in an ideal case in continuous mode.
12
R5212D
Timing Chart
•
R5212DxxxA/B
(-VDET+VHYS)
-VDET
VUVLO2
VUVLO1
VIN Voltage
Soft-start
Time
VOUT1 Voltage
LX Voltage
VD Delay
for Release
VD Delay
for Release
VDOUT Voltage
VOUT2 Voltage
13
R5212D
•
R5212DxxxC/D
(-VDET+VHYS)
-VDET
VUVLO2
VUVLO1
VIN Voltage
Soft-start
Time
VOUT1 Voltage
Lx Voltage
VD Delay
For Release
VD Delay
For Release
VDOUT Voltage
VOUT2 Voltage
The timing chart which is shown in the previous page describes the relation of supply voltage changes with
time and each output of DC/DC converter, voltage detector, and voltage regulator.
(1) DC/DC converter
When the power turns on and in the case of rising the VIN voltage, while the VIN voltage is at UVLO release
level (VUVLO2) or less, the operation of the DC/DC converter stops and does not make switching, therefore VOUT1
voltage does not rise.
When the VIN voltage becomes UVLO release level or more, the DC/DC converter starts soft-start operation,
and start switching, then VOUT1 will rise. After the soft-start time, if VIN voltage becomes set VOUT1 level or more,
VOUT1 will be settled at VOUT1 set output voltage. If VIN voltage becomes UVLO detector threshold level (VUVLO1) or
less, the DC/DC converter stops switching then Lx transistor in the IC turns off.
(2) Voltage Detector
If the VIN voltage is at VD detector threshold level or less, the N-channel transistor of VDOUT pin turns on and
outputs “L” to VDOUT pin. Then, when the VIN voltage becomes VD detector threshold level + its hysteresis range
(−VDET +VHYS ) or more, after VD delay for release (tPLH) passing, the N-channel transistor inside the IC turns off,
VDOUT pin voltage reaches to the pull-up voltage. Besides, the release circuit for VD starts from when VIN voltage
reaches (−VDET +VHYS ).
14
R5212D
(3)Voltage Regulator
• R5212DxxxA/B
The voltage regulator always operates even if UVLO function would work. Therefore, VOUT2 voltage is nearly
equal to VIN voltage. Actual value depends on the load current. When the VIN voltage becomes set VOUT2 voltage
or more, VOUT2 voltage will be the set output voltage. The short current limit can operate after soft-start time.
•
R5212DxxxC/D
VOUT1 voltage is the input voltage for the built-in LDO, when the VOUT1 voltage is equal or less than VOUT2 set
voltage, VOUT2 voltage is depending on the load current for VOUT2, however almost same as VOUT1 Voltage. When
the VOUT1 voltage is equal or more than set VOUT2 voltage, VOUT2 voltage becomes the set output voltage. Short
Current Limit works after soft-start operation.
TEST CIRCUITS
OSCILLOSCOPE
VIN
VIN
A
LX
VOUT1
VOUT1
GND
GND
Supply Current
VIN
UVLO Detector Threshold/ Released Voltage
LX
VIN
A
VOUT1
LX
VOUT1
GND
V
GND
Lx Leakage Current
Lx On Resistance
OSCILLOSCOPE
OSCILLOSCOPE
VIN
LX
VIN
LX
VOUT1
VOUT1
VOUT2
GND
Lx Current Limit
GND
VOUT1 Output Voltage
15
R5212D
OSCILLOSCOPE
VIN
OSCILLOSCOPE
VOUT1
LX
VOUT1
GND
Oscillator Frequency, Soft-start Time
VIN
VIN
LX
VOUT1
VOUT1
VOUT2
GND
V
IOUT2
VOUT2 Output Voltage, Load Regulation, Dropout
Voltage, Current Limit, Short Current Limit
VIN
VOUT1
GND VDOUT
A
VDOUT “L” Output Current
16
LX
GND
VDOUT
OSCILLOSCOPE
VDOUT Detector Threshold, Hysteresis Range,
VD Output Delay Time for Release
R5212D
TYPICAL CHARACTERISTICS
1) DC/DC Output Voltage vs. Output Current (Topt=25°C)
R5212D014C
1.63
DC/DC Output Voltage VOUT1(V)
DC/DC Output Voltage VOUT1(V)
R5212D011A
1.62
1.61
1.60
VIN=4.0V
VIN=5.0V
VIN=5.5V
1.59
1.58
0
100
200
300
400
Output Current IOUT1(mA)
500
3.36
3.34
3.32
3.30
3.28
VIN=4.0V
VIN=5.0V
VIN=5.5V
3.26
3.24
0
100
200
300
400
Output Current IOUT1(mA)
500
2) Efficiency vs. Output Current (Topt=25°C)
R5211D011A
R5211D014C
VOUT1=1.6V
90
70
Efficiency η(%)
Efficiency η(%)
80
60
50
40
30
VIN=4.0V
VIN=5.0V
VIN=5.5V
20
10
0
0.1
1
10
100
Output Current IOUT1(mA)
1000
100
90
80
70
60
50
40
30
20
10
0
0.1
VOUT1=3.3V
VIN=4.0V
VIN=5.0V
VIN=5.5V
1
10
100
Output Current IOUT1(mA)
1000
3) VR Output Voltage vs. Output Current (Topt=25°C)
R5212D011A
VIN=5V
2.63
2.61
2.59
2.57
2.55
0
50
100
150
Output Current IOUT2(mA)
200
VIN=5V
3.0
VR Output Voltage VOUT2(V)
2.65
VR Output Voltage VOUT2(V)
R5212D011A
2.5
2.0
1.5
1.0
0.5
0
0
100
200
300
400
Output Current IOUT2(mA)
500
17
R5212D
R5212D011A
VIN=5V
VR Output Voltage VOUT2(V)
3.0
2.5
2.0
1.5
1.0
-40°C
25°C
85°C
0.5
0
0
100
200
300
400
Output Current IOUT2(mA)
500
4) DC/DC Output Voltage vs. Temperature
5) VR Output Voltage vs. Temperature
1.70
R5212D011A
VIN=5V OpenLooP
1.65
1.60
1.55
1.50
-50
2.70
VR Output Voltage VOUT2(V)
DC/DC Output Voltage VOUT1(V)
R5212D011A
0
50
Temperature Topt(°C)
6) VD Detector Threshold vs. Temperature
2.65
2.60
2.55
2.50
-50
100
VD Released Delay TimeTPLH(ms)
VD Detector Threshold -VDET(V)
18
4.30
4.25
4.20
4.15
4.10
4.05
0
50
Temperature Topt(°C)
100
R5212D
VIN=5V
4.35
4.00
-50
0
50
Temperature Topt(°C)
7) VD Released Delay Time vs. Temperature
R5212D011A
4.40
VIN=5V IOUT2=10mA
100
50
45
40
35
30
25
20
15
10
5
0
-50
B/D version
A/C version
0
50
Temperature Topt(°C)
100
R5212D
8) Soft-start time vs. Temperature
9)Frequency vs. Temperature
R5212D011A
1.5
1.0
0.5
0.0
-50
0
50
Temperature Topt(°C)
1300
1250
1200
1150
1100
1050
-50
100
10) Supply Current vs. Temperature
340
320
0.8
0.6
0.4
0.2
0.0
-50
100
12) UVLO Released Voltage vs. Temperature
2.70
VIN=5V
1000
2.60
2.50
2.40
0
50
Temperature Topt(°C)
100
R5212D011A
LX Current Limit ILXLIM(mA)
UVLO Released Voltage VUVLO2(V)
0
50
Temperature Topt(°C)
13) Lx Current Limit vs. Temperature
R5212D011A
2.30
-50
VIN=5V
1.0
ON Resistance RLX(Ω)
Supply Current IDD(µA)
360
0
50
Temperature Topt(°C)
100
R5212D011A
VIN=5V
380
300
-50
0
50
Temperature Topt(°C)
11) ON Resistance vs. Temperature
R5212D011A
400
VIN=5V
1350
Frequency fosc(kHz)
2.0
Soft-start Time tstart(ms)
R5212D011A
VIN=5V
100
900
800
700
600
500
-50
0
50
Temperature Topt(°C)
100
19
R5212D
14) Soft-start Output Waveform (Topt=25°C)
VIN=5V
10
VIN
8
6
4
2
6
VOUT2
4
0
2
VOUT1
0
-0.5
0
0.5
1
1.5
2
Time (ms)
15) VD Released Delay Waveform (Topt=25°C)
10
10
5
VIN
5
0
Input Voltage VIN(V)
VDOUT Detector Output Voltage VDOUT(V)
R5212D011A
15
VDOUT
0
-10
-5
0
5
10
Time (ms)
15
20
25
30
16) DC/DC Load Transient Response 1 (Topt=25°C)
20
L=4.7µH, C1=C2=10µF, VIN=5V
1.7
1000
VOUT1
1.6
800
1.5
600
1.4
400
IOUT1:10mA→200mA
1.3
1.2
-20
200
0
20
40
Time (µs)
60
80
100
0
DC/DC Output Current IOUT1(mA)
DC/DC Output Voltage VOUT1(V)
R5212D011A
Input Voltage VIN(V)
DC/DC,VR Output Voltage VOUT1,VOUT2(V)
R5212D011A
R5212D
L=10µH, C1=C2=10µF, VIN=5V
3.4
1000
VOUT1
3.3
800
3.2
600
3.1
400
IOUT1:10mA→200mA
3.0
200
2.9
-20
0
20
40
Time (µs)
60
80
100
0
DC/DC Output Current IOUT1(mA)
DC/DC Output Voltage VOUT1(V)
R5212D014C
L=4.7µH, C1=C2=10µF, VIN=5V
1.8
1000
1.7
800
VOUT1
1.6
600
1.5
400
IOUT1:200mA→10mA
1.4
200
1.3
-100
0
100
200
300
0
400
DC/DC Output Current IOUT1(mA)
DC/DC Output Voltage VOUT1(V)
R5212D011A
Time (µs)
L=10µH, C1=C2=10µF VIN=5V
3.5
3.4
1000
800
VOUT1
3.3
600
3.2
400
3.1
3.0
-100
200
IOUT1:200mA→10mA
0
100
200
300
Time (µs)
400
600
700
800
0
DC/DC Output Current IOUT1(mA)
DC/DC Output Voltage VOUT1(V)
R5212D014C
21
R5212D
17) VR Load Transient Response (Topt=25°C)
R5212D011A
C1=C2=10µF, C3=2.2µF VIN=5V
900
2.62
800
2.61
700
2.60
600
2.59
500
2.58
400
2.57
300
2.56
200
2.55
2.54
100
IOUT2:10mA→150mA
-4
-2
0
2
4
6
8
10
VR Output Current IOUT2(mA)
VR Output Voltage VOUT2(V)
2.63
0
Time (µs)
18) DC/DC, VR Ripple Waveform (C=10µF, VIN=5V, IOUT1=280mA, IOUT2=150mA, Topt=25°C)
L=4.7µH, VOUT1=1.6V, VOUT2=2.6V
0
0.5
1
1.5
2
100
90
80
70
60
50
40
30
20
10
0
-10
-20
-30
VR Ripple Waveform VOUT2(mV)
30
DC/DC
20
10
0
-10
-20
-30
-40
-50
VR
-60
-70
-80
-90
-100
-0.5
100
90
80
70
60
50
40
30
20
10
0
-10
-20
-30
-40
-50
VR Ripple Waveform VOUT2(mV)
DC/DC Ripple Waveform VOUT1(mV)
R5212D011A
Time (µs)
DC/DC Ripple Waveform VOUT1(mV)
R5212D014C
50
40
30
20
10
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-0.5
L=10µH, VOUT1=3.3V, VOUT2=2.5V
DC/DC
VR
0
0.5
1
Time (µs)
22
1.5
2
R5212D
19) DC/DC Output Voltage vs. Input Voltage (Topt=25°C)
R5212D011A
1.61
1.60
1.59
1.58
3.31
Output Voltage VOUT1(V)
1.62
Output Voltage VOUT1(V)
R5212D014C
IOUT1=10mA
3
3.5
4
4.5
5
Input Voltage VIN(V)
5.5
IOUT1=10mA
3.30
3.29
3.28
3.27
3.5
4
4.5
5
Input Voltage VIN(V)
5.5
20) VR Output Voltage vs. Input Voltage (Topt=25°C)
R5212D011A
IOUT2=10mA
Output Voltage VOUT2(V)
2.65
2.63
2.61
2.59
2.57
2.55
3
3.5
4
4.5
5
Input Voltage VIN(V)
5.5
23
PACKAGE INFORMATION
•
PE-HSON-6-0510
HSON-6
Unit: mm
PACKAGE DIMENSIONS
2.9±0.2
0.5TYP
1
3
0.3±0.1
(1.6)
Attention: Tabs or Tab suspension leads in the
parts have VDD or GND level.(They are
connected to the reverse side of this IC.)
Refer to PIN DESCRIPTIONS.
Do not connect to other wires or land patterns.
0.1
0.95
(0.2)
(0.65)
3.0±0.2
Bottom View
0.9MAX.
0.15±0.05
2.8±0.2
(0.15)
4
(0.2)
(1.5)
6
0.1 M
2.0±0.05
8.0±0.3
4.0±0.1
3.5±0.05
+0.1
∅1.5 0
3.2
0.2±0.1
1.75±0.1
TAPING SPECIFICATION
3.3
4.0±0.1
2.0MAX.
∅1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
2±0.5
21±0.8
+1
60 0
0
180 −1.5
13±0.2
11.4±1.0
9.0±0.3
PACKAGE INFORMATION
PE-HSON-6-0510
POWER DISSIPATION (HSON-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Free Air
Power Dissipation
900mW
400mW
Thermal Resistance
θja=(125−25°C)/0.9W=111°C/W
250°C/W
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
On Board
40
Free Air
40
Power Dissipation PD(mW)
Standard Land Pattern
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
1.7
1.6
0.65
0.95
1.15
0.35
(Unit: mm)
MARK INFORMATION
ME-R5212D-0510
R5212D SERIES MARK SPECIFICATION
• HSON-6
to
1
•
1
2
3
4
5
6
5
,
6
4
: Product Code (refer to Part Number vs. Product Code)
: Lot Number
Part Number vs. Product Code
Part Number
Product Code
1
2
3
4
R5212D011A
D
1
1
A
R5212D014C
D
1
4
C
R5212D017A
D
1
7
A
R5212D016B
D
1
6
B