R5212D SERIES Step-down DC/DC Converter with VR and Reset NO.EA-128-0510 OUTLINE The R5212D is CMOS-based PWM step-down DC/DC converter combined with a voltage regulator (VR) and a voltage detector (VD), with low supply current. Each of these ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a soft-start circuit, a current limit circuit, a phase compensation circuit, a resistor net for voltage detect circuit, an output driver transistor, and so on. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with some external components, or an inductor, a diode, and capacitors. The oscillator frequency is 1.2MHz, therefore small inductor and capacitor can be used with this IC. Further, this IC equips the under voltage lockout function (UVLO). If the input voltage becomes equal or less than 2.35V (Typ.), the output of DC/DC converter turns off. However, in the A/B version, embedded voltage regulator and detector continue to operate. In the C/D version, LDO output also turns off and only the voltage detector is working. The voltage regulator consists of a voltage reference unit, a resistor net for voltage detect circuit, an error amplifier, an output driver transistor, and so on. The input source voltage of the built-in voltage regulator is VIN pin (A/B version) or VOUT1 pin, the output of DC/DC converter (C/D version). The built-in voltage detector supervises the input voltage and the output is N-channel open drain. Power-on reset delay time is also included and internally set typically at 12ms (A/C version) or 50ms(B/D version). FEATURES • • • • • • Range of Input Voltage ............................. 3.0V~5.5V Built-in Soft-start Function (Typ. 1ms) and built-in power-on reset delay (Typ. 12ms or 50ms) Maximum Output Current...........................500mA (DC/DC), 200mA (VR) Accuracy Output Voltage .......................... ±2.0% (DC/DC and Voltage Regulator Output) Accuracy of voltage detector .................... ±2.5% Output Voltage (VR)(A/B Version) ............ Stepwise Setting with a step of 0.1V in the range of 2.0V to 3.6V (C/D Version) ............ Stepwise Setting with a step of 0.1V in the range of 1.2V to 3.0V • Output Voltage (DC/DC) (A/B Version) ..... Stepwise Setting with a step of 0.1V in the range of 1.2V to 3.6V (C/D Version) ..... Stepwise Setting with a step of 0.1V in the range of 2.5V to 3.6V • Output Voltage (VD).................................. Stepwise Setting with a step of 0.1V in the range of 3.0V to 4.5V • Package .................................................... HSON-6 (t=0.9mm) APPLICATIONS • Power source for hand-held communication equipment, CD or DVD drives. • Power source for battery-powered equipment. 1 R5212D BLOCK DIAGRAMS R5212xxxA/B VIN 6 Current Limit OSC 4 VOUT1 LX 1 Output Control Logic Vref Soft Start Current Limit Vref U.V.L.O. Delay Circuit 5 Vref VOUT2 2 3 VDOUT 4 VOUT1 5 VOUT2 GND R5212DxxxC/D VIN LX 6 Current Limit & Feedback 1 OSC Output Control Logic Vref Soft Start Current Limit U.V.L.O. Vref Delay Circuit 3 Vref VDOUT 2 2 GND R5212D SELECTION GUIDE In the R5212D Series, the output voltage combination for the ICs can be selected at the user’s re-quest. The selection can be made with designating the part number as shown below; R5212Dxxxx-TR ↑ ↑ a b Code ←Part Number ↑ c Contents a Output Voltage Combination Code Number b Designation of Optional Function A: VR input pin=VIN pin, VD delay=12ms B: VR input pin=VIN pin, VD delay=50ms C: VR input pin=DC/DC Output, VD delay=Typ. 12ms D: VR input pin=DC/DC Output, VD delay=Typ. 50ms c Designation of Taping Type: Refer to Taping specification. 3 R5212D PIN CONFIGURATION HSON-6 Top View Bottom View 6 5 4 4 5 6 1 2 3 3 2 1 PIN DESCRIPTIONS Pin No Symbol Pin Description 1 LX 2 GND Ground Pin 3 VDOUT Output Pin of Voltage Detector (N-channel open-drain out-put type) 4 VOUT1 DC/DC converter Step-down Output monitoring Pin 5 VOUT2 Output Pin of Voltage Regulator 6 VIN Switching Pin (P-channel open-drain output type) Voltage Supply Pin ∗ Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns. ABSOLUTE MAXIMUM RATINGS (GND=0V) Symbol Item Rating Unit VIN VIN Pin Voltage 6.5 V VLX Lx Pin Voltage −0.3 ~ VIN+0.3 V VOUT1 VOUT1 Pin Voltage −0.3 ~ VIN+0.3 V VOUT2 VOUT2 Pin Voltage −0.3 ~ VIN+0.3 V VDOUT VDOUT Pin Voltage −0.3 ~ 6.5 V 800 mA 400 mA 900 mW ILX IOUT2 Lx Pin Output Current VOUT2 Pin Output Current ∗1 PD Power Dissipation (On Board) Topt Operating Temperature Range −40 ~ +85 °C Tstg Storage Temperature Range −55 ~ +125 °C ∗1 ) For Power Dissipation please refer to PACKAGE INFORMATION to be described. 4 R5212D ELECTRICAL CHARACTERISTICS • R5212DxxxA Symbol Operating Input Voltage IDD Supply Current VUVLOHYS Min. Typ. Max. Unit 5.5 V 400 800 µA 2.35 2.50 2.65 V 0.05 0.15 0.25 V 3.0 VIN=5.0V, VOUT1=0V UVLO Release Voltage UVLO Detector Threshold Voltage Hysteresis Topt=25°C Item Conditions VOUT1 DC/DC Output Voltage VIN=5.0V, at no load OPEN LOOP ∆VOUT1/ ∆Topt fosc DC/DC Output Voltage Temperature Coefficient 40°C Oscillator Frequency VIN=5.0V Lx on Resistance ILXleak ILXLIM RLX Maxduty tstart < = Topt < = Min. VOUT1 ×0.98 Typ. Max. VOUT1 ×1.02 960 Unit V ppm /°C ±100 85°C 1200 1440 kHz VIN=5.0V, ILX=100mA 0.4 0.8 Ω Lx Leakage Current VIN=VOUT1=5.5V, VLX=0V 0.01 5.00 µA Lx Current Limit VIN=5.0V 600 Maximum duty cycle Soft-start Time 800 mA 100 VIN=5.0V 0.35 % 1.00 3.00 VR Part Symbol ms Topt=25°C Item Conditions VIN=5.0V, IOUT2=10mA Min. VOUT2 ×0.98 200 Typ. Max. VOUT2 ×1.02 Unit V VOUT2 VR Output Voltage IOUT2 Maximum Output Current of VR VIN=5.0V VREG2 VR Load Regulation VIN−VOUT2=0V 1mA < = IOUT2 < = 80mA 20 60 mV VDIF2 Dropout Voltage IOUT2=100mA 0.2 0.3 V ILIM2 Short Current Limit VOUT2=0V 50 mA VR Output Voltage Temperature Coefficient 40°C ±100 ppm /°C ∆VOUT2/ ∆Topt • Conditions DC/DC Part Symbol • Item VIN VUVLO2 • Topt=25°C < = Topt < = 85°C mA VD Part Symbol Topt=25°C Item −VDET VD Detector Threshold ∆−VDET/ ∆Topt VD Detector Threshold Temperature Coefficient Conditions Min. Typ. −VDET ×0.975 40°C < = Topt < = Max. Unit −VDET ×1.025 V ppm /°C ±100 85°C −VDET V VHYS Hysteresis Range tPLH VD Output Delay Time for Release VIN=VDOUT=−VDET×0.9 to 5.0 3 12 30 ms VDOUT “L” Output Current VIN=2.0V, IOUT=0.1V 2 7 20 mA IDOUTL ×0.05 5 R5212D • R5212DxxxB Symbol Operating Input Voltage IDD Supply Current VUVLOHYS Max. Unit 5.5 V 400 800 µA 2.35 2.50 2.65 V 0.05 0.15 0.25 V VIN=5.0V, VOUT1=0V UVLO Release Voltage UVLO Detector Threshold Voltage Hysteresis Typ. Topt=25°C Item Conditions DC/DC Output Voltage VIN=5.0V, at no load OPEN LOOP ∆VOUT1/ ∆Topt fosc DC/DC Output Voltage Temperature Coefficient 40°C Oscillator Frequency VIN=5.0V Lx on Resistance ILXleak ILXLIM Maxduty tstart < = Topt < = Min. VOUT1 ×0.98 Typ. Max. VOUT1 ×1.02 960 Unit V ppm /°C ±100 85°C 1200 1440 kHz VIN=5.0V, ILX=100mA 0.4 0.8 Ω Lx Leakage Current VIN=VOUT1=5.5V, VLX=0V 0.01 5.00 µA Lx Current Limit VIN=5.0V 600 Maximum duty cycle Soft-start Time 850 mA 100 VIN=5.0V 0.35 % 1.00 3.00 VR Part Symbol ms Topt=25°C Item Conditions Min. VOUT2 ×0.98 200 Typ. Max. VOUT2 ×1.02 Unit VOUT2 VR Output Voltage VIN=5.0V, IOUT2=10mA IOUT2 Maximum Output Current of VR VIN=5.0V VREG2 VR Load Regulation VIN−VOUT2=0V 1mA < = IOUT2 < = 80mA 20 60 mV VDIF2 Dropout Voltage IOUT2=100mA 0.2 0.3 V ILIM2 Short Current Limit VOUT2=0V 50 mA ±100 ppm /°C ∆VOUT2/ ∆Topt VR Output Voltage Temperature Coefficient 40°C < = Topt < = 85°C Topt=25°C Item −VDET VD Detector Threshold ∆−VDET/ ∆Topt VD Detector Threshold Temperature Coefficient VHYS tPLH IDOUTL V mA VD Part Symbol 6 Min. 3.0 VOUT1 RLX • Conditions DC/DC Part Symbol • Item VIN VUVLO2 • Topt=25°C Conditions Min. −VDET ×0.975 40°C < = Topt < = 85°C Hysteresis Range VD Output Delay Time for Release VDOUT “L” Output Current Typ. Max. Unit −VDET ×1.025 V ±100 ppm /°C −VDET ×0.05 V VIN=VDOUT=−VDET×0.9 to 5.0 3 12 30 ms VIN=2.0V, VDOUT=0.1V 2 7 20 mA R5212D • R5212DxxxC Symbol Operating Input Voltage IDD Supply Current VUVLOHYS Min. Typ. Max. Unit 5.5 V 400 800 µA 2.35 2.50 2.65 V 0.05 0.15 0.25 V 3.0 VIN=5.0V, VOUT1=0V UVLO Release Voltage UVLO Detector Threshold Voltage Hysteresis Topt=25°C Item Conditions VOUT1 DC/DC Output Voltage VIN=5.0V, at no load OPEN LOOP ∆VOUT1/ ∆Topt fosc DC/DC Output Voltage Temperature Coefficient 40°C Oscillator Frequency VIN=5.0V Lx on Resistance ILXleak ILXLIM RLX Maxduty tstart < = Topt < = Min. VOUT1 ×0.98 Typ. Max. VOUT1 ×1.02 960 Unit V ppm /°C ±100 85°C 1200 1440 kHz VIN=5.0V, ILX=100mA 0.4 0.8 Ω Lx Leakage Current VIN=VOUT1=5.5V, VLX=0V 0.01 5.00 µA Lx Current Limit VIN=5.0V 600 Maximum duty cycle Soft-start Time 850 mA 100 VIN=5.0V 0.35 % 1.00 3.00 VR Part Symbol ms Topt=25°C Item Conditions VOUT1=3.3V IOUT2=10mA Min. Typ. VOUT2 ×0.98 Max. Unit VOUT2 ×1.02 V VOUT2 VR Output Voltage IOUT2 Maximum Output Current of VR VIN=5.0V VREG2 VR Load Regulation VIN−VOUT2=0V 1mA < = IOUT2 < = 80mA 20 60 mV VDIF2 Dropout Voltage IOUT2=100mA 0.2 0.3 V ILIM2 Short Current Limit VOUT2=0V 50 mA VR Output Voltage Temperature Coefficient 40°C ±100 ppm /°C ∆VOUT2/ ∆Topt • Conditions DC/DC Part Symbol • Item VIN VUVLO2 • Topt=25°C < = Topt 200 < = 85°C mA VD Part Symbol Topt=25°C Item −VDET VD Detector Threshold ∆−VDET/ ∆Topt VD Detector Threshold Temperature Coefficient VHYS tPLH IDOUTL Conditions Min. −VDET ×0.975 40°C < = Topt < = 85°C Hysteresis Range VD Output Delay Time for Release VDOUT “L” Output Current Typ. Max. Unit −VDET ×1.025 V ±100 ppm /°C −VDET ×0.05 V VIN=VDOUT=−VDET×0.9 to 5.0 3 12 30 ms VIN=2.0V, VDOUT=0.1V 2 7 20 mA 7 R5212D • R5212DxxxD Symbol Operating Input Voltage IDD Supply Current VUVLOHYS Max. Unit 5.5 V 400 800 µA 2.35 2.50 2.65 V 0.05 0.15 0.25 V VIN=5.0V, VOUT1=0V UVLO Release Voltage UVLO Detector Threshold Voltage Hysteresis Typ. Topt=25°C Item Conditions DC/DC Output Voltage VIN=5.0V, at no load OPEN LOOP ∆VOUT1/ ∆Topt fosc DC/DC Output Voltage Temperature Coefficient 40°C Oscillator Frequency VIN=5.0V Lx on Resistance ILXleak ILXLIM Maxduty tstart < = Topt < = Min. VOUT1 ×0.98 Typ. Max. VOUT1 ×1.02 960 Unit V ppm /°C ±100 85°C 1200 1440 kHz VIN=5.0V, ILX=100mA 0.4 0.8 Ω Lx Leakage Current VIN=VOUT1=5.5V, VLX=0V 0.01 5.00 µA Lx Current Limit VIN=5.0V 600 Maximum duty cycle Soft-start Time 850 mA 100 VIN=5.0V 0.35 % 1.00 3.00 VR Part Symbol ms Topt=25°C Item Conditions Min. Typ. Max. Unit VOUT2 ×1.02 V VOUT2 VR Output Voltage VOUT1=3.3V IOUT2=10mA IOUT2 Maximum Output Current of VR VIN=5.0V, VOUT1=3.3V VREG2 VR Load Regulation VIN−VOUT2=0V 1mA < = IOUT2 < = 80mA 20 60 mV VDIF2 Dropout Voltage IOUT2=100mA 0.2 0.3 V ILIM2 Short Current Limit VOUT2=0V 50 mA VR Output Voltage Temperature Coefficient 40°C ±100 ppm /°C ∆VOUT2/ ∆Topt < = Topt < = VOUT2 ×0.98 200 85°C mA VD Part Symbol Topt=25°C Item −VDET VD Detector Threshold ∆−VDET/ ∆Topt VD Detector Threshold Temperature Coefficient VHYS tPLH IDOUTL 8 Min. 3.0 VOUT1 RLX • Conditions DC/DC Part Symbol • Item VIN VUVLO2 • Topt=25°C Conditions Min. −VDET ×0.975 40°C < = Topt < = 85°C Hysteresis Range VD Output Delay Time for Release VDOUT “L” Output Current Typ. Max. Unit −VDET ×1.025 V ±100 ppm /°C −VDET ×0.05 V VIN=VDOUT=−VDET×0.9 to 5.0 10 50 120 ms VIN=2.0V, VDOUT=0.1V 2 7 20 mA R5212D TYPICAL APPLICATION AND APPLICATION HINTS R5212Dxxxx C3 VOUT2 VDOUT R1 VOUT2 VIN VDOUT GND VOUT1 LX C1 L1 C2 VOUT1 D1 Examples of Components Symbol Item (VOUT1 L1 < = 1.6V) (VOUT1 > 1.6V) 4.7µH LQH43C Series Murata 4.7µH VLP5610 Series TDK 6.8µH LQH43C Series Murata 6.8µH VLP5610 Series TDK D1 RB491D(ROHM) or EP05Q03 (Nihon Inter) R1 50kΩ C1 10µF Ceramic Capacitor C2 10µF Ceramic Capacitor C3 2.2µF Ceramic Capacitor 9 R5212D When you use these ICs, consider the following issues; Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, a capacitor should be connected to between VIN and GND with the minimum connection. Make sufficient grounding, and reinforce supplying. A large switching current may flow through the connection of power supply, an inductor and the connection of VOUT1. If the impedance of the connection of power supply or ground is high, the voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation of the IC. Use a capacitor with a capacity of 10µF or more for VIN and GND, and with low ESR ceramic type. In terms of VOUT1, use a ceramic capacitor with a capacity of 10µF or more. For VOUT2 pin, use a ceramic capacitor with a capacitance of 2.2µF or around. Choose an inductor that has a small D.C. resistance and large allowable current and which is hard to reach magnetic saturation. If the value of inductance of an inductor is extremely small, the ILX , which flows through Lx transistor and an inductor, may exceed the absolute maximum rating at the maximum loading. Use an inductor with appropriate inductance. Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity. If the spike noise of Lx pin is too large, make snub circuit (such as serial connection of CR) between Lx and GND, then the noise will be reduced. The time constant of the CR depends on the actual PCB, so evaluate it on the actual PCB. If the load current of the voltage regulator is small, because of the switching noise of DC/DC converter, the output voltage of VOUT2 may be large. To avoid this, use the voltage regulator with a load current at least 0.5mA. In terms of LDO, the difference between the set output voltage and input voltage should be 0.5V or more, The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values. 10 R5212D OPERATION of step-down DC/DC converter and Output Current The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams: <Basic Circuits> <Current through L> IL ILmax i1 VIN Lx Tr L SD i2 IOUT ILxmin topen VOUT CL ton toff t=1/fosc Step 1 : Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of LX Tr. Step 2 : When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, and current IL (=i2) flows. Step 3 : IL decreases gradually and reaches ILmin after a time period of topen, and SD turns off, provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value is from this ILmin (>0). In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant. 11 R5212D • Discontinuous Conduction Mode and Continuous Conduction Mode The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the same as those when Lx Tr. turns on and when it turns off. The difference between ILmax and ILmin, which is represented by ∆I; ∆I=ILmax−ILmin=VOUT×topen/L=(VIN−VOUT)×ton/L ........................................................Equation 1 Where, t=1/fosc=ton+toff duty (%)=ton/t×100=ton×fosc×100 topen < = toff In Equation A, VOUT×topen/L and (VIN−VOUT) ×ton/L are respectively shown the change of the current at ON, and the change of the current at OFF. When the output current (IOUT) is relatively small, topen < toff as illustrated in the above diagram. In this case, the energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period of toff, therefore ILmin becomes to zero (ILmin=0). When IOUT is gradually increased, eventually, topen becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode. In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc tonc=t×VOUT/VIN .............................................................................................................Equation 2 When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode. OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS When Lx Tr. is “ON”: (Wherein, Ripple Current P-P value is described as IRP, ON resistance of LX Tr. is described as RP the direct current of the inductor is described as RL. The threshold level of Shottky diode is described as VF.) VIN=VOUT+(RP+RL)×IOUT+L×IRP/ton ..................................................................................Equation 3 When Lx Tr. is “OFF”: L×IRP/toff=VF+VOUT+RL×IOUT ...........................................................................................Equation 4 Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON, DON=(VOUT+VF+RL×IOUT)/(VIN+VF−RP×IOUT)......................................................................Equation 5 Ripple Current is as follows; IRP=(VIN−VOUT−RP×IOUT−RL×IOUT)×DON/f/L .......................................................................Equation 6 Wherein, peak current that flows through L, Lx Tr., and SD is as follows; ILmax=IOUT+IRP/2 ...........................................................................................................Equation 7 Consider ILmax, condition of input and output and select external components. ÌThe above explanation is directed to the calculation in an ideal case in continuous mode. 12 R5212D Timing Chart • R5212DxxxA/B (-VDET+VHYS) -VDET VUVLO2 VUVLO1 VIN Voltage Soft-start Time VOUT1 Voltage LX Voltage VD Delay for Release VD Delay for Release VDOUT Voltage VOUT2 Voltage 13 R5212D • R5212DxxxC/D (-VDET+VHYS) -VDET VUVLO2 VUVLO1 VIN Voltage Soft-start Time VOUT1 Voltage Lx Voltage VD Delay For Release VD Delay For Release VDOUT Voltage VOUT2 Voltage The timing chart which is shown in the previous page describes the relation of supply voltage changes with time and each output of DC/DC converter, voltage detector, and voltage regulator. (1) DC/DC converter When the power turns on and in the case of rising the VIN voltage, while the VIN voltage is at UVLO release level (VUVLO2) or less, the operation of the DC/DC converter stops and does not make switching, therefore VOUT1 voltage does not rise. When the VIN voltage becomes UVLO release level or more, the DC/DC converter starts soft-start operation, and start switching, then VOUT1 will rise. After the soft-start time, if VIN voltage becomes set VOUT1 level or more, VOUT1 will be settled at VOUT1 set output voltage. If VIN voltage becomes UVLO detector threshold level (VUVLO1) or less, the DC/DC converter stops switching then Lx transistor in the IC turns off. (2) Voltage Detector If the VIN voltage is at VD detector threshold level or less, the N-channel transistor of VDOUT pin turns on and outputs “L” to VDOUT pin. Then, when the VIN voltage becomes VD detector threshold level + its hysteresis range (−VDET +VHYS ) or more, after VD delay for release (tPLH) passing, the N-channel transistor inside the IC turns off, VDOUT pin voltage reaches to the pull-up voltage. Besides, the release circuit for VD starts from when VIN voltage reaches (−VDET +VHYS ). 14 R5212D (3)Voltage Regulator • R5212DxxxA/B The voltage regulator always operates even if UVLO function would work. Therefore, VOUT2 voltage is nearly equal to VIN voltage. Actual value depends on the load current. When the VIN voltage becomes set VOUT2 voltage or more, VOUT2 voltage will be the set output voltage. The short current limit can operate after soft-start time. • R5212DxxxC/D VOUT1 voltage is the input voltage for the built-in LDO, when the VOUT1 voltage is equal or less than VOUT2 set voltage, VOUT2 voltage is depending on the load current for VOUT2, however almost same as VOUT1 Voltage. When the VOUT1 voltage is equal or more than set VOUT2 voltage, VOUT2 voltage becomes the set output voltage. Short Current Limit works after soft-start operation. TEST CIRCUITS OSCILLOSCOPE VIN VIN A LX VOUT1 VOUT1 GND GND Supply Current VIN UVLO Detector Threshold/ Released Voltage LX VIN A VOUT1 LX VOUT1 GND V GND Lx Leakage Current Lx On Resistance OSCILLOSCOPE OSCILLOSCOPE VIN LX VIN LX VOUT1 VOUT1 VOUT2 GND Lx Current Limit GND VOUT1 Output Voltage 15 R5212D OSCILLOSCOPE VIN OSCILLOSCOPE VOUT1 LX VOUT1 GND Oscillator Frequency, Soft-start Time VIN VIN LX VOUT1 VOUT1 VOUT2 GND V IOUT2 VOUT2 Output Voltage, Load Regulation, Dropout Voltage, Current Limit, Short Current Limit VIN VOUT1 GND VDOUT A VDOUT “L” Output Current 16 LX GND VDOUT OSCILLOSCOPE VDOUT Detector Threshold, Hysteresis Range, VD Output Delay Time for Release R5212D TYPICAL CHARACTERISTICS 1) DC/DC Output Voltage vs. Output Current (Topt=25°C) R5212D014C 1.63 DC/DC Output Voltage VOUT1(V) DC/DC Output Voltage VOUT1(V) R5212D011A 1.62 1.61 1.60 VIN=4.0V VIN=5.0V VIN=5.5V 1.59 1.58 0 100 200 300 400 Output Current IOUT1(mA) 500 3.36 3.34 3.32 3.30 3.28 VIN=4.0V VIN=5.0V VIN=5.5V 3.26 3.24 0 100 200 300 400 Output Current IOUT1(mA) 500 2) Efficiency vs. Output Current (Topt=25°C) R5211D011A R5211D014C VOUT1=1.6V 90 70 Efficiency η(%) Efficiency η(%) 80 60 50 40 30 VIN=4.0V VIN=5.0V VIN=5.5V 20 10 0 0.1 1 10 100 Output Current IOUT1(mA) 1000 100 90 80 70 60 50 40 30 20 10 0 0.1 VOUT1=3.3V VIN=4.0V VIN=5.0V VIN=5.5V 1 10 100 Output Current IOUT1(mA) 1000 3) VR Output Voltage vs. Output Current (Topt=25°C) R5212D011A VIN=5V 2.63 2.61 2.59 2.57 2.55 0 50 100 150 Output Current IOUT2(mA) 200 VIN=5V 3.0 VR Output Voltage VOUT2(V) 2.65 VR Output Voltage VOUT2(V) R5212D011A 2.5 2.0 1.5 1.0 0.5 0 0 100 200 300 400 Output Current IOUT2(mA) 500 17 R5212D R5212D011A VIN=5V VR Output Voltage VOUT2(V) 3.0 2.5 2.0 1.5 1.0 -40°C 25°C 85°C 0.5 0 0 100 200 300 400 Output Current IOUT2(mA) 500 4) DC/DC Output Voltage vs. Temperature 5) VR Output Voltage vs. Temperature 1.70 R5212D011A VIN=5V OpenLooP 1.65 1.60 1.55 1.50 -50 2.70 VR Output Voltage VOUT2(V) DC/DC Output Voltage VOUT1(V) R5212D011A 0 50 Temperature Topt(°C) 6) VD Detector Threshold vs. Temperature 2.65 2.60 2.55 2.50 -50 100 VD Released Delay TimeTPLH(ms) VD Detector Threshold -VDET(V) 18 4.30 4.25 4.20 4.15 4.10 4.05 0 50 Temperature Topt(°C) 100 R5212D VIN=5V 4.35 4.00 -50 0 50 Temperature Topt(°C) 7) VD Released Delay Time vs. Temperature R5212D011A 4.40 VIN=5V IOUT2=10mA 100 50 45 40 35 30 25 20 15 10 5 0 -50 B/D version A/C version 0 50 Temperature Topt(°C) 100 R5212D 8) Soft-start time vs. Temperature 9)Frequency vs. Temperature R5212D011A 1.5 1.0 0.5 0.0 -50 0 50 Temperature Topt(°C) 1300 1250 1200 1150 1100 1050 -50 100 10) Supply Current vs. Temperature 340 320 0.8 0.6 0.4 0.2 0.0 -50 100 12) UVLO Released Voltage vs. Temperature 2.70 VIN=5V 1000 2.60 2.50 2.40 0 50 Temperature Topt(°C) 100 R5212D011A LX Current Limit ILXLIM(mA) UVLO Released Voltage VUVLO2(V) 0 50 Temperature Topt(°C) 13) Lx Current Limit vs. Temperature R5212D011A 2.30 -50 VIN=5V 1.0 ON Resistance RLX(Ω) Supply Current IDD(µA) 360 0 50 Temperature Topt(°C) 100 R5212D011A VIN=5V 380 300 -50 0 50 Temperature Topt(°C) 11) ON Resistance vs. Temperature R5212D011A 400 VIN=5V 1350 Frequency fosc(kHz) 2.0 Soft-start Time tstart(ms) R5212D011A VIN=5V 100 900 800 700 600 500 -50 0 50 Temperature Topt(°C) 100 19 R5212D 14) Soft-start Output Waveform (Topt=25°C) VIN=5V 10 VIN 8 6 4 2 6 VOUT2 4 0 2 VOUT1 0 -0.5 0 0.5 1 1.5 2 Time (ms) 15) VD Released Delay Waveform (Topt=25°C) 10 10 5 VIN 5 0 Input Voltage VIN(V) VDOUT Detector Output Voltage VDOUT(V) R5212D011A 15 VDOUT 0 -10 -5 0 5 10 Time (ms) 15 20 25 30 16) DC/DC Load Transient Response 1 (Topt=25°C) 20 L=4.7µH, C1=C2=10µF, VIN=5V 1.7 1000 VOUT1 1.6 800 1.5 600 1.4 400 IOUT1:10mA→200mA 1.3 1.2 -20 200 0 20 40 Time (µs) 60 80 100 0 DC/DC Output Current IOUT1(mA) DC/DC Output Voltage VOUT1(V) R5212D011A Input Voltage VIN(V) DC/DC,VR Output Voltage VOUT1,VOUT2(V) R5212D011A R5212D L=10µH, C1=C2=10µF, VIN=5V 3.4 1000 VOUT1 3.3 800 3.2 600 3.1 400 IOUT1:10mA→200mA 3.0 200 2.9 -20 0 20 40 Time (µs) 60 80 100 0 DC/DC Output Current IOUT1(mA) DC/DC Output Voltage VOUT1(V) R5212D014C L=4.7µH, C1=C2=10µF, VIN=5V 1.8 1000 1.7 800 VOUT1 1.6 600 1.5 400 IOUT1:200mA→10mA 1.4 200 1.3 -100 0 100 200 300 0 400 DC/DC Output Current IOUT1(mA) DC/DC Output Voltage VOUT1(V) R5212D011A Time (µs) L=10µH, C1=C2=10µF VIN=5V 3.5 3.4 1000 800 VOUT1 3.3 600 3.2 400 3.1 3.0 -100 200 IOUT1:200mA→10mA 0 100 200 300 Time (µs) 400 600 700 800 0 DC/DC Output Current IOUT1(mA) DC/DC Output Voltage VOUT1(V) R5212D014C 21 R5212D 17) VR Load Transient Response (Topt=25°C) R5212D011A C1=C2=10µF, C3=2.2µF VIN=5V 900 2.62 800 2.61 700 2.60 600 2.59 500 2.58 400 2.57 300 2.56 200 2.55 2.54 100 IOUT2:10mA→150mA -4 -2 0 2 4 6 8 10 VR Output Current IOUT2(mA) VR Output Voltage VOUT2(V) 2.63 0 Time (µs) 18) DC/DC, VR Ripple Waveform (C=10µF, VIN=5V, IOUT1=280mA, IOUT2=150mA, Topt=25°C) L=4.7µH, VOUT1=1.6V, VOUT2=2.6V 0 0.5 1 1.5 2 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 VR Ripple Waveform VOUT2(mV) 30 DC/DC 20 10 0 -10 -20 -30 -40 -50 VR -60 -70 -80 -90 -100 -0.5 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 VR Ripple Waveform VOUT2(mV) DC/DC Ripple Waveform VOUT1(mV) R5212D011A Time (µs) DC/DC Ripple Waveform VOUT1(mV) R5212D014C 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -0.5 L=10µH, VOUT1=3.3V, VOUT2=2.5V DC/DC VR 0 0.5 1 Time (µs) 22 1.5 2 R5212D 19) DC/DC Output Voltage vs. Input Voltage (Topt=25°C) R5212D011A 1.61 1.60 1.59 1.58 3.31 Output Voltage VOUT1(V) 1.62 Output Voltage VOUT1(V) R5212D014C IOUT1=10mA 3 3.5 4 4.5 5 Input Voltage VIN(V) 5.5 IOUT1=10mA 3.30 3.29 3.28 3.27 3.5 4 4.5 5 Input Voltage VIN(V) 5.5 20) VR Output Voltage vs. Input Voltage (Topt=25°C) R5212D011A IOUT2=10mA Output Voltage VOUT2(V) 2.65 2.63 2.61 2.59 2.57 2.55 3 3.5 4 4.5 5 Input Voltage VIN(V) 5.5 23 PACKAGE INFORMATION • PE-HSON-6-0510 HSON-6 Unit: mm PACKAGE DIMENSIONS 2.9±0.2 0.5TYP 1 3 0.3±0.1 (1.6) Attention: Tabs or Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DESCRIPTIONS. Do not connect to other wires or land patterns. 0.1 0.95 (0.2) (0.65) 3.0±0.2 Bottom View 0.9MAX. 0.15±0.05 2.8±0.2 (0.15) 4 (0.2) (1.5) 6 0.1 M 2.0±0.05 8.0±0.3 4.0±0.1 3.5±0.05 +0.1 ∅1.5 0 3.2 0.2±0.1 1.75±0.1 TAPING SPECIFICATION 3.3 4.0±0.1 2.0MAX. ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 2±0.5 21±0.8 +1 60 0 0 180 −1.5 13±0.2 11.4±1.0 9.0±0.3 PACKAGE INFORMATION PE-HSON-6-0510 POWER DISSIPATION (HSON-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.5mm × 44pcs Measurement Result (Topt=25°C,Tjmax=125°C) Free Air Power Dissipation 900mW 400mW Thermal Resistance θja=(125−25°C)/0.9W=111°C/W 250°C/W 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 On Board 40 Free Air 40 Power Dissipation PD(mW) Standard Land Pattern 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area Unit : mm RECOMMENDED LAND PATTERN 1.7 1.6 0.65 0.95 1.15 0.35 (Unit: mm) MARK INFORMATION ME-R5212D-0510 R5212D SERIES MARK SPECIFICATION • HSON-6 to 1 • 1 2 3 4 5 6 5 , 6 4 : Product Code (refer to Part Number vs. Product Code) : Lot Number Part Number vs. Product Code Part Number Product Code 1 2 3 4 R5212D011A D 1 1 A R5212D014C D 1 4 C R5212D017A D 1 7 A R5212D016B D 1 6 B