S1D13A05 LCD/USB Companion Chip Hardware Functional Specification Document Number: X40A-A-001-07 Status: Revision 7.7 Issue Date: 2012/02/27 © SEIKO EPSON CORPORATION 2002 - 2012. Inc. All Rights Reserved. Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws. EPSON is a registered trademark of Seiko Epson Corporation. All other Trademarks are the property of their respective owners Page 2 Epson Research and Development Vancouver Design Center S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 3 Table of Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Overview Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Features . . . . . . . . . . 2.1 Integrated Frame Buffer 2.2 CPU Interface . . . . 2.3 Display Support . . . . 2.4 Display Modes . . . . 2.5 Display Features . . . 2.6 Clock Source . . . . . 2.7 USB Device . . . . . 2.8 2D Acceleration . . . 2.9 Miscellaneous . . . . 3 Typical System Implementation Diagrams . . . . . . . . . . . . . . . . . . . . . . 11 3.1 Typical System Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 USB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Pins . . . . . . . . . . . . . . . . . 4.1 Pinout Diagrams . . . . . . . 4.1.1 PFBGA 121-pin . . . . . . . 4.2 Pin Descriptions . . . . . . . 4.2.1 Host Interface . . . . . . . . 4.2.2 LCD Interface . . . . . . . . 4.2.3 Clock Input . . . . . . . . . 4.2.4 Miscellaneous . . . . . . . . 4.2.5 Power And Ground . . . . . 4.3 Summary of Configuration Options 4.4 Host Bus Interface Pin Mapping . 4.5 LCD Interface Pin Mapping . . . 5 D.C. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 A.C. Characteristics . . . . . . . . 6.1 Clock Timing . . . . . . . . 6.1.1 Input Clocks . . . . . . . . . 6.1.2 Internal Clocks . . . . . . . 6.2 RESET# Timing . . . . . . . 6.3 CPU Interface Timing . . . . . 6.3.1 Generic #1 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware Functional Specification Issue Date: 2012/02/27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 .8 .8 .8 .9 .9 .9 .9 10 10 16 16 16 17 17 20 24 24 24 25 26 27 29 29 29 31 31 32 32 S1D13A05 X40A-A-001-07 Revision 7.7 Page 4 Epson Research and Development Vancouver Design Center 6.3.2 Generic #2 Interface Timing . . . . . . . . . . . . . . . 6.3.3 Hitachi SH-3 Interface Timing . . . . . . . . . . . . . 6.3.4 Hitachi SH-4 Interface Timing . . . . . . . . . . . . . 6.3.5 Motorola MC68K #1 Interface Timing . . . . . . . . . 6.3.6 Motorola MC68K #2 Interface Timing . . . . . . . . . 6.3.7 Motorola REDCAP2 Interface Timing . . . . . . . . . 6.3.8 Motorola Dragonball Interface Timing with DTACK . 6.3.9 Motorola Dragonball Interface Timing w/o DTACK . . 6.4 LCD Power Sequencing . . . . . . . . . . . . . . . 6.4.1 Passive/TFT Power-On Sequence . . . . . . . . . . . . 6.4.2 Passive/TFT Power-Off Sequence . . . . . . . . . . . . 6.5 Display Interface . . . . . . . . . . . . . . . . . . 6.5.1 Generic STN Panel Timing . . . . . . . . . . . . . . . 6.5.2 Single Monochrome 4-Bit Panel Timing . . . . . . . . 6.5.3 Single Monochrome 8-Bit Panel Timing . . . . . . . . 6.5.4 Single Color 4-Bit Panel Timing . . . . . . . . . . . . 6.5.5 Single Color 8-Bit Panel Timing (Format 1) . . . . . . 6.5.6 Single Color 8-Bit Panel Timing (Format 2) . . . . . . 6.5.7 Single Color 16-Bit Panel Timing . . . . . . . . . . . . 6.5.8 Generic TFT Panel Timing . . . . . . . . . . . . . . . 6.5.9 9/12/18-Bit TFT Panel Timing . . . . . . . . . . . . . 6.5.10 Sharp HR-TFT Panel Timing . . . . . . . . . . . . . . 6.5.11 Casio TFT Panel Timing . . . . . . . . . . . . . . . . 6.5.12 TFT Type 2 Panel Timing . . . . . . . . . . . . . . . . 6.5.13 TFT Type 3 Panel Timing . . . . . . . . . . . . . . . . 6.5.14 TFT Type 4 Panel Timing . . . . . . . . . . . . . . . . 6.6 USB Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Clocks . . . . . . . . . . . 7.1 Clock Descriptions . . 7.1.1 BCLK . . . . . . 7.1.2 MCLK . . . . . . 7.1.3 PCLK . . . . . . 7.1.4 PWMCLK . . . . 7.2 Clock Selection . . . 7.3 Clocks versus Functions 8 Registers . . . . . . . . . . . . . . . . . 8.1 Register Mapping . . . . . . . . . 8.2 Register Set . . . . . . . . . . . . 8.3 LCD Register Descriptions (Offset = 0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . 36 . . 38 . . 40 . . 42 . . 44 . . 46 . . 48 . .50 . . 50 . . 51 . .52 . . 53 . . 54 . . 56 . . 58 . . 60 . . 62 . . 64 . . 66 . . 67 . . 70 . . 72 . . 74 . . 76 . . 80 . .83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 . . . . .85 . . . . . . 85 . . . . . . 85 . . . . . . 86 . . . . . . 87 . . . . .88 . . . . .89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1D13A05 X40A-A-001-07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 .90 .91 .93 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 5 8.3.1 Read-Only Configuration Registers . . . . . . . . . 8.3.2 Clock Configuration Registers . . . . . . . . . . . 8.3.3 Panel Configuration Registers . . . . . . . . . . . . 8.3.4 Look-Up Table Registers . . . . . . . . . . . . . . 8.3.5 Display Mode Registers . . . . . . . . . . . . . . . 8.3.6 Picture-in-Picture Plus (PIP+) Registers . . . . . . 8.3.7 Miscellaneous Registers . . . . . . . . . . . . . . . 8.3.8 Extended Panel Registers . . . . . . . . . . . . . . 8.4 USB Registers (Offset = 4000h) . . . . . . . . . . 8.5 2D Acceleration (BitBLT) Registers (Offset = 8000h) . 8.6 2D Accelerator (BitBLT) Data Register Descriptions . . 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 . 94 . 96 . 101 . 103 . 110 115 . 124 . 135 . 153 . 160 2D Accelerator (BitBLT) Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.2 BitBLT Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10 Frame Rate Calculation 11 Display Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12 Look-Up Table Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 12.1 Monochrome Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 12.2 Color Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 13 SwivelView™ . . . . . . . . . . . . 13.1 Concept . . . . . . . . . . . 13.2 90° SwivelView™ . . . . . . 13.2.1 Register Programming . . . 13.3 180° SwivelView™ . . . . . . 13.3.1 Register Programming . . . 13.4 270° SwivelView™ . . . . . . 13.4.1 Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 . . . . 170 . . . . 170 . . . . . 171 . . . . 172 . . . . . 172 . . . . 173 . . . . . 174 14 Picture-in-Picture Plus (PIP+) 14.1 Concept . . . . . . . . 14.2 With SwivelView Enabled 14.2.1 SwivelView 90° . . . 14.2.2 SwivelView 180° . . 14.2.3 SwivelView 270° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 . . . . 175 . . . . 176 . . . . . 176 . . . . . 176 . . . . . 177 . . . . . . . . . . . . . . . . . . . . . 15 Power Save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 16 USB Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 16.1 USB Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 17 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 6 Epson Research and Development Vancouver Design Center 19 Sales and Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 7 1 Introduction 1.1 Scope This is the Hardware Functional Specification for the S1D13A05 LCD/USB Companion Chip. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers. This document is updated as appropriate. Please check for the latest revision of this document before beginning any development. The latest revision can be downloaded at www.erd.epson.com. We appreciate your comments on our documentation. Please contact us via email at [email protected]. 1.2 Overview Description The S1D13A05 is an LCD/USB solution designed for seamless connection to a wide variety of microprocessors. The S1D13A05 integrates a USB slave controller and an LCD graphics controller with an embedded 256K byte SRAM display buffer. The LCD controller supports all standard panel types and multiple TFT types eliminating the need for an external timing control IC. The S1D13A05 includes a Hardware Acceleration Engine to greatly improve screen drawing functions and the built-in USB controller provides revision 1.1 compliance for applications requiring a USB client. This high level of integration provides a low cost, low power, single chip solution to meet the demands of embedded markets requiring USB client support, such as Mobile Communications devices and Palmsize PCs. The S1D13A05 utilizes a guaranteed low-latency CPU architecture that provides support for microprocessors without READY/WAIT# handshaking signals. The 32-bit internal data path, write buffer and the Hardware Acceleration Engine provide high performance bandwidth into display memory allowing for fast display updates. Additionally, products requiring a rotated display can take advantage of the SwivelViewTM feature which provides hardware rotation of the display memory transparent to the software application. The S1D13A05 also provides support for “Picture-in-Picture Plus” (a variable size Overlay window). The S1D13A05, with its integrated USB client, provides impressive support for Palm OS® handhelds. However, its impartiality to CPU type or operating system makes it an ideal display solution for a wide variety of applications. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 8 Epson Research and Development Vancouver Design Center 2 Features 2.1 Integrated Frame Buffer • Embedded 256K byte SRAM display buffer. 2.2 CPU Interface • Direct support of the following interfaces: Hitachi SH-4 / SH-3. Motorola M68xxx (REDCAP2, DragonBall, ColdFire). Motorola DragonBall SZ Support (66MHz). Motorola “REDCAP2” - no WAIT# signal. Generic MPU bus interface with programmable ready (WAIT#). • “Fixed” low-latency CPU access times. • Registers are memory-mapped - M/R# input selects between memory and register address space. • The complete 256K byte display buffer is directly and contiguously available through the 18-bit address bus. 2.3 Display Support • Single-panel, single drive passive displays. • 4/8-bit monochrome LCD interface. • 4/8/16-bit color LCD interface. • Active Matrix TFT interface. • 9/12/18-bit interface. • Extended TFT interfaces (Type 2, 3, 4) • ‘Direct’ support for 18-bit Sharp HR-TFT LCD (or compatible interfaces). • ‘Direct’ support for the Casio TFT LCD (or compatible interfaces). S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 9 2.4 Display Modes • 1/2/4/8/16 bit-per-pixel (bpp) color depths. • Up to 64 gray shades on monochrome passive LCD panels. • Up to 64K colors on passive panels. • Up to 64K colors on active matrix LCD panels. • Example resolutions: 320x320 at a color depth of 16 bpp 160x160 at a color depth of 16 bpp (2 pages) 160x240 at a color depth of 16 bpp 2.5 Display Features • SwivelView™: 90°, 180°, 270° counter-clockwise hardware rotation of display image. • Picture-in-Picture Plus (PIP+): displays a variable size window overlaid over background image. • Pixel Doubling: independent control of both horizontal and vertical pixel doubling. • example usage: 160x160 8 bpp can be expanded to 320x320 8 bpp without any additional memory. • supports all color depths. • Double Buffering/Multi-pages: provides smooth animation and instantaneous screen updates. 2.6 Clock Source • Three independent clock inputs: CLKI, CLKI2 and USBCLK. • Flexible clock source selection: • internal Bus Clock (BCLK) selected from CLKI, CLKI/2, or CLKI2 • internal Memory Clock (MCLK) selected from BCLK or BCLK divide ratio (REG[04h) • internal Pixel Clock (PCLK) selected from CLKI, CLKI2, MCLK, or BCLK. PCLK can also be divided down from source • Single clock input possible if USB support not required. 2.7 USB Device • USB Client, revision 1.1 compliant. • Dedicated clock input: USBCLK. • 48MHz crystal oscillator for USBCLK. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 10 Epson Research and Development Vancouver Design Center 2.8 2D Acceleration • 2D BitBLT engine including: Write BitBLT Move BitBLT Solid Fill BitBLT Pattern Fill BitBLT Move BitBLT with Color Expansion Transparent Write BitBLT Transparent Move BitBLT Read BitBLT Color Expansion BitBLT 2.9 Miscellaneous • Software initiated Video Invert. • Software initiated Power Save mode. • General Purpose Input/Output pins are available. • IO Operates at 3.3 volts ± 10%. • Core operates at 2.0 volts ± 10% or 2.5 volts ± 10%. • 121-pin PFBGA package. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 11 3 Typical System Implementation Diagrams 3.1 Typical System Diagrams. Oscillator CLKI2 IOVDD BS# VSS A[27:18] Decoder CSn# AB0 FPDAT[15:0] FPFRAME M/R# CS# FPLINE A[17:1] AB[17:1] FPSHIFT D[15:0] DB[15:0] DRDY WE0# WE0# WE1# WE1# RD0# RD# RD1# RD/WR# WAIT# S1D13A05 16-bit Single FPFRAME LCD Display D[15:0] FPLINE FPSHIFT MOD Bias Power Generic #1 BUS GPIO0 WAIT# BUSCLK CLKI RESET# RESET# Figure 3-1: Typical System Diagram (Generic #1 Bus) . Oscillator CLKI2 IOVDD BS# RD/WR# A[27:18] Decoder CSn# FPDAT[8:0] M/R# FPFRAME CS# FPLINE A[17:0] AB[17:0] FPSHIFT D[15:0] DB[15:0] DRDY WE# WE0# BHE# WE1# RD# WAIT# S1D13A05 D[8:0] FPFRAME FPLINE FPSHIFT DRDY 9-bit TFT Display Bias Power Generic #2 BUS GPIO0 RD# WAIT# BUSCLK CLKI RESET# RESET# Figure 3-2: Typical System Diagram (Generic #2 Bus) Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 12 Epson Research and Development Vancouver Design Center . Oscillator A[25:18] Decoder CSn# A[17:1] AB0 M/R# FPDAT12 CS# FPDAT[9:0] FPFRAME AB[17:1] D[15:0] FPLINE DB[15:0] WE0# FPSHIFT WE0# WE1# WE1# BS# BS# RD/WR# DRDY D11 D10 12-bit TFT Display D[9:0] FPFRAME FPLINE FPSHIFT DRDY S1D13A05 GPIO0 RD/WR# RD# FPDAT15 Bias Power VSS CLKI2 SH-4 BUS RD# RDY# WAIT# CKIO CLKI RESET# RESET# Figure 3-3: Typical System Diagram (Hitachi SH-4 Bus) . Oscillator A[25:18] CSn# Decoder AB0 M/R# AB[17:1] D[15:0] DB[15:0] WE1# BS# RD/WR# RD# WAIT# CKIO RESET# FPFRAME CS# A[17:1] WE0# FPDAT[17:0] FPLINE FPSHIFT WE0# WE1# BS# DRDY S1D13A05 D[17:0] FPFRAME FPLINE FPSHIFT DRDY 18-bit TFT Display Bias Power VSS CLKI2 SH-3 BUS GPO0 RD/WR# RD# WAIT# CLKI RESET# Figure 3-4: Typical System Diagram (Hitachi SH-3 Bus) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 13 . Oscillator MC68K #1 BUS CLKI2 IOVDD RD# WE0# A[23:18] FC0, FC1 Decoder FPDAT[17:0] FPFRAME FPLINE M/R# FPSHIFT Decoder CS# A[17:1] AB[17:1] D[15:0] DB[15:0] LDS# AB0 UDS# WE1# AS# S1D13A05 D[17:0] SPS LP 18-bit HR-TFT Display CLK GPIO0 PS GPIO1 CLS GPIO2 REV GPIO3 SPL BS# R/W# RD/WR# DTACK# WAIT# CLK CLKI RESET# RESET# Figure 3-5: Typical System Diagram (MC68K # 1, Motorola 16-Bit 68000) . Oscillator A[31:18] FC0, FC1 Decoder M/R# Decoder CS# CLKI2 MC68K #2 BUS FPDAT[17:0] A[17:0] FPFRAME FPLINE AB[17:0] D[31:16] FPSHIFT DB[15:0] DS# WE1# AS# BS# R/W# RD/WR# SIZ1 RD# SIZ0 WE0# DSACK1# WAIT# CLK S1D13A05 D[17:0] SPS LP 18-bit HR-TFT Display CLK GPIO0 PS GPIO1 CLS GPIO2 REV GPIO3 SPL CLKI RESET# RESET# Figure 3-6: Typical System Diagram (MC68K #2, Motorola 32-Bit 68030) Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 14 Epson Research and Development Vancouver Design Center . Oscillator CLKI2 IOVDD BS# FPDAT[7:4] A[21:18] M/R# Decoder CSn D[3:0] FPSHIFT FPSHIFT CS# A[17:1] D[15:0] FPLINE DB[15:0] R/W RD/WR# OE FPFRAME FPFRAME AB[17:1] FPLINE DRDY S1D13A05 4-bit Single LCD Display MOD Bias Power REDCAP2 BUS GPIO0 RD# EB1 WE0# EB0 WE1# CLK CLKI RESET_OUT RESET# AB0 VSS *Note: CSn# can be any of CS0-CS4 Figure 3-7: Typical System Diagram (Motorola REDCAP2 Bus) . IOVDD BS# FPDAT[7:0] RD/WR# A[25:18] FPSHIFT M/R# Decoder CSX FPFRAME CS# A[17:1] FPLINE AB[17:1] D[15:0] DB[15:0] LWE WE0# UWE WE1# OE DRDY S1D13A05 D[7:0] FPSHIFT FPFRAME FPLINE MOD 8-bit Single LCD Display Bias Power MC68EZ328/ MC68VZ328 DragonBall BUS CLKI2 Oscillator GPIO0 RD# WAIT# DTACK CLKO CLKI RESET RESET# AB0 VSS Figure 3-8: Typical System Diagram (Motorola MC68EZ328/MC68VZ328 “DragonBall” Bus) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 15 3.2 USB Interface USB Socket S1D13A05 150kΩ USBDETECT (GPIO5) VBus 300kΩ USBPUP (GPIO4) Full Speed Device IOVDD 1.5kΩ 20Ω USBDP (GPIO7) DP 20Ω USBDM (GPIO6) DM 300kΩ NNCD5.6LG Overvoltage Protection ESD Protection VSS GND Figure 3-9: USB Typical Implementation Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 16 Epson Research and Development Vancouver Design Center 4 Pins 4.1 Pinout Diagrams 4.1.1 PFBGA 121-pin L K J H G F E D C B A 1 2 3 4 5 6 7 8 BOTTOM VIEW 9 10 11 Figure 4-1: Pinout Diagram - PFBGA 121-pin Table 4-1: PFBGA 121-pin Mapping L NC IOVDD DB7 DB3 DB0 GPIO7 GPIO3 K GPO0 VSS DB8 DB4 DB1 GPIO6 GPIO2 IRQ J GPO1 DB9 DB6 DB5 DB2 GPO3 GPIO1 USBCLK H DB12 DB11 DB10 DB13 GPO2 IOVDD GPIO4 GPO5 FPLINE FPSHIFT FPDAT0 G WAIT# DB15 DB14 IOVDD VSS GPIO5 FPDAT5 FPDAT1 FPDAT2 FPDAT3 FPDAT4 F RESET# VSS RD/WR# WE1# CLKI GPO4 FPDAT8 FPDAT6 VSS FPDAT7 IOVDD E RD# BS# M/R# CS# WE0# AB13 TESTEN FPDAT9 FPDAT12 FPDAT11 FPDAT10 D AB0 AB1 AB2 AB8 AB12 AB17 CNF3 FPDAT13 FPDAT16 FPDAT15 FPDAT14 AB9 AB16 CNF2 CNF5 CNF6 FPDAT17 GPO8 GPIO0 IOVDD COREVDD NC DRDY VSS GPO6 FPFRAME COREVDD GPO7 C USBOSCO COREVDD AB3 AB6 B USBOSCI VSS AB5 GPO10 AB10 AB14 CNF1 CNF4 CLKI2 VSS GPO9 A NC COREVDD AB4 AB7 AB11 AB15 CNF0 NC PWMOUT IOVDD NC 1 2 3 4 5 6 7 8 9 10 11 S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 17 4.2 Pin Descriptions Key: I O IO P CI LI LB2A LB3P LO3 LB3M T1 Hi-Z CUS = = = = = = = = = = = = = Input Output Bi-Directional (Input/Output) Power pin CMOS input LVTTLa input LVTTL IO buffer (6mA/[email protected]) Low noise LVTTL IO buffer (6mA/[email protected]) Low noise LVTTL Output buffer (3mA/[email protected]) Low noise LVTTL IO buffer with input mask (3mA/[email protected]) Test mode control input with pull-down resistor (typical value of 50KΩ at 3.3V) High Impedance Custom Cell Type a LVTTL is Low Voltage TTL. 4.2.1 Host Interface Table 4-2: Host Interface Pin Descriptions Pin Name PFBGA Pin # I/O type (see key above) RESET# State Description This input pin has multiple functions. AB0 D1 LI ⎯ AB[17:1] D6,C6,A6, B6,E6,D5, A5,B5,C5, D4,A4,C4, B3,A3,C3, D3,D2 CI ⎯ • • • • • • • For Generic #1, this pin is not used and should be connected to VSS. For Generic #2, this pin inputs system address bit 0 (A0). For SH-3/SH-4, this pin is not used and should be connected to VSS. For MC68K #1, this pin inputs the lower data strobe (LDS#). For MC68K #2, this pin inputs system address bit 0 (A0). For REDCAP2, this pin is not used and should be connected to VSS. For DragonBall, this pin is not used and should be connected to VSS. System address bus bits 17-1. Input data from the system data bus. DB[15:0] G2, G3, H4, H1, H2, H3, J2, K3, L3, J3, J4, K4, L4, J5, K5, L5 LB2A Hi-Z • • • • • For Generic #1, these pins are connected to D[15:0]. For Generic #2, these pins are connected to D[15:0]. For SH-3/SH-4, these pins are connected to D[15:0]. For MC68K #1, these pins are connected to D[15:0]. For MC68K #2, these pins are connected to D[31:16] for a 32-bit device (e.g. MC68030) or D[15:0] for a 16-bit device (e.g. MC68340). • For REDCAP2, these pins are connected to D[15:0]. • For DragonBall, these pins are connected to D[15:0]. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 18 Epson Research and Development Vancouver Design Center Table 4-2: Host Interface Pin Descriptions Pin Name PFBGA Pin # I/O type (see key above) RESET# State Description This input pin has multiple functions. WE0# E5 LI ⎯ • For Generic #1, this pin inputs the write enable signal for the lower data byte (WE0#). • For Generic #2, this pin inputs the write enable signal (WE#) • For SH-3/SH-4, this pin inputs the write enable signal for data byte 0 (WE0#). • For MC68K #1, this pin must be tied to IO VDD • For MC68K #2, this pin inputs the bus size bit 0 (SIZ0). • For REDCAP2, this pin inputs the byte enable signal for the D[7:0] data byte (EB1). • For DragonBall, this pin inputs the byte enable signal for the D[7:0] data byte (LWE). This input pin has multiple functions. • For Generic #1, this pin inputs the write enable signal for the upper data byte (WE1#). • For Generic #2, this pin inputs the byte enable signal for the high data byte (BHE#). • For SH-3/SH-4, this pin inputs the write enable signal for data byte 1 (WE1#). • For MC68K #1, this pin inputs the upper data strobe (UDS#). • For MC68K #2, this pin inputs the data strobe (DS#). • For REDCAP2, this pin inputs the byte enable signal for the D[15:8] data byte (EB0). • For DragonBall, this pin inputs the byte enable signal for the D[15:8] data byte (UWE). WE1# F4 LI ⎯ CS# E4 CI ⎯ Chip select input. M/R# E3 LI ⎯ This input pin is used to select between the display buffer and register address spaces of the S1D13A05. M/R# is set high to access the display buffer and low to access the registers. This input pin has multiple functions. BS# E2 LI ⎯ • • • • • • • For Generic #1, this pin must be tied to IO VDD. For Generic #2, this pin must be tied to IO VDD. For SH-3/SH-4, this pin inputs the bus start signal (BS#). For MC68K #1, this pin inputs the address strobe (AS#). For MC68K #2, this pin inputs the address strobe (AS#). For REDCAP2, this pin must be tied to IO VDD. For DragonBall, this pin must be tied to IO VDD. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 19 Table 4-2: Host Interface Pin Descriptions Pin Name PFBGA Pin # I/O type (see key above) RESET# State Description This input pin has multiple functions. RD/WR# F3 LI ⎯ • For Generic #1, this pin inputs the read command for the upper data byte (RD1#). • For Generic #2, this pin must be tied to IO VDD. • For SH-3/SH-4, this pin inputs the RD/WR# signal. The S1D13A05 needs this signal for early decode of the bus cycle. • For MC68K #1, this pin inputs the R/W# signal. • For MC68K #2, this pin inputs the R/W# signal. • For REDCAP2, this pin inputs the R/W signal. • For DragonBall, this pin must be tied to IO VDD. This input pin has multiple functions. RD# E1 LI ⎯ • For Generic #1, this pin inputs the read command for the lower data byte (RD0#). • For Generic #2, this pin inputs the read command (RD#). • For SH-3/SH-4, this pin inputs the read signal (RD#). • For MC68K #1, this pin must be tied to IO VDD. • For MC68K #2, this pin inputs the bus size bit 1 (SIZ1). • For REDCAP2, this pin inputs the output enable (OE). • For DragonBall, this pin inputs the output enable (OE). During a data transfer, this output pin is driven active to force the system to insert wait states. It is driven inactive to indicate the completion of a data transfer. WAIT# is released to the high impedance state after the data transfer is complete. Its active polarity is configurable. • • • • • WAIT# G1 LB2A Hi-Z For Generic #1, this pin outputs the wait signal (WAIT#). For Generic #2, this pin outputs the wait signal (WAIT#). For SH-3 mode, this pin outputs the wait request signal (WAIT#). For SH-4 mode, this pin outputs the device ready signal (RDY#). For MC68K #1, this pin outputs the data transfer acknowledge signal (DTACK#). • For MC68K #2, this pin outputs the data transfer and size acknowledge bit 1 (DSACK1#). • For REDCAP2, this pin is unused (Hi-Z). • For DragonBall, this pin outputs the data transfer acknowledge signal (DTACK). Note: This pin should be tied to the inactive voltage level as selected by CNF5, using a pull-up or pull-down resistor. If CNF5 = 1, the WAIT# pin should be tied low using a pull-down resistor. If CNF5 = 0, the WAIT# pin should be tied high using a pull-up resistor. If WAIT# is not used, this pin should be tied either high or low using a pull-up or pull-down resistor. RESET# F1 LI ⎯ Active low input to set all internal registers to the default state and to force all signals to their inactive states. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 20 Epson Research and Development Vancouver Design Center 4.2.2 LCD Interface Table 4-3: LCD Interface Pin Descriptions Pin Name PFBGA Pin# C10,D9,D10, D11,D8,E9, E10,E11, FPDAT[17:0] E8,F7,F10, F8,G7,G11, G10,G9,G8, H11 I/O type (see key above) RESET# State LB3P 0 Description Panel Data bits 17-0. This output pin has multiple functions. FPFRAME J9 LB3P 0 • • • • • Frame Pulse SPS for HR-TFT GSRT for Casio STV for TFT Type 2 STV for TFT Type 3 This output pin has multiple functions. FPLINE H9 LB3P 0 • • • • • Line Pulse LP for HR-TFT GPCK for Casio STB for TFT Type 2 LP for TFT Type 3 This output pin has multiple functions. FPSHIFT H10 LB3P 0 • • • • • Shift Clock DCLK for HR-TFT CLK for Casio CLK for TFT Type 2 CPH for TFT Type 3 This output pin has multiple functions. DRDY K9 LO3 0 GPO0 K1 LO3 0 GPO1 J1 LO3 0 • • • • • • LCD backplane bias signal (MOD) for all other LCD panels 2nd shift clock (FPSHIFT2) for passive LCD with Format 1 interface Display enable (DRDY) for TFT panels INV for TFT Type 2/3 DRDY for TFT Type 4 General Purpose Output This is a general purpose output This output pin has multiple functions. • When in TFT Type 3 mode, operates as VCOM • General purpose output bit otherwise This output pin has multiple functions. GPO2 H5 LO3 0 GPO3 J6 LO3 0 • When in TFT Type 3 mode, operates as XOEV • General purpose output bit otherwise This output pin has multiple functions. • When in TFT Type 3 mode, operates as CMD • General purpose output bit otherwise S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 21 Table 4-3: LCD Interface Pin Descriptions Pin Name PFBGA Pin# I/O type (see key above) RESET# State Description This output pin has multiple functions. GPO4 F6 LO3 0 GPO5 H8 LO3 0 • When in TFT Type 3 mode, operates as PCLK1 • General purpose output bit otherwise This output pin has multiple functions. • When in TFT Type 3 mode, operates as PCLK2 • General purpose output bit otherwise This output pin has multiple functions. GPO6 K11 LO3 0 GPO7 J11 LO3 0 • When in TFT Type 3 mode, operates as XRESH • General purpose output bit otherwise This output pin has multiple functions. • When in TFT Type 3 mode, operates as XRESV • General purpose output bit otherwise This output pin has multiple functions. GPO8 C11 LO3 0 GPO9 B11 LO3 0 • When in TFT Type 3 mode, operates as XOHV • General purpose output bit otherwise This output pin has multiple functions. • When in TFT Type 3 mode, operates as XSTBY • General purpose output bit otherwise This output pin has multiple functions. GPO10 B4 LO3 0 • When in TFT Type 3 mode, operates as PMDE • General purpose output bit otherwise This pin has multiple functions. GPIO0 L8 LB3M ⎯ • • • • • PS for HR-TFT POL for Casio VCLK for TFT Type 2 CPV for TFT Type 3 General purpose IO pin 0 (GPIO0) When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain. This pin has multiple functions. GPIO1 J7 LB3M ⎯ • • • • • CLS for HR-TFT GRES for Casio AP for TFT Type 2 OE for TFT Type 3 General purpose IO pin 1 (GPIO1) When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 22 Epson Research and Development Vancouver Design Center Table 4-3: LCD Interface Pin Descriptions Pin Name PFBGA Pin# I/O type (see key above) RESET# State Description This pin has multiple functions. GPIO2 K7 LB3M ⎯ • • • • REV for HR-TFT FRP for Casio POL for TFT Type 2/3 General purpose IO pin 2 (GPIO2) When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain. This pin has multiple functions. GPIO3 L7 LB3M ⎯ • • • • • SPL for HR-TFT STH for Casio STH for TFT Type 2 EIO for TFT Type 3 General purpose IO pin 3 (GPIO3) When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain. This pin has multiple functions. GPIO4 H7 LB3M ⎯ • USBPUP • General purpose IO pin 4 (GPIO4) This pin is Hi-Z after every RESET and must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain. This pin has multiple functions. GPIO5 G6 LB3M ⎯ • USBDETECT • General purpose IO pin 5 (GPIO5) This pin always defaults as an input. When not used as a USBDETECT pin, it must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 23 Table 4-3: LCD Interface Pin Descriptions Pin Name PFBGA Pin# I/O type (see key above) RESET# State Description This pin has multiple functions. GPIO6 K6 CUS ⎯ • USBDM • General purpose IO pin 6 (GPIO6) When not used as a USB connection, this pin defaults to a Hi-Z state after every RESET and must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain. This pin has multiple functions. GPIO7 L6 CUS ⎯ • USBDP • General purpose IO pin 7 When not used as a USB connection, this pin defaults to a Hi-Z state after every RESET and must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain. IRQ K8 LO3 0 This output pin is the IRQ pin for USB. When IRQ is activated, an active high pulse is generated and stays high until the IRQ is serviced by software at REG[404Ah] or REG[404Ch]. This pin has multiple functions. PWMOUT A9 LO3 0 • PWM Clock output • General purpose output Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 24 Epson Research and Development Vancouver Design Center 4.2.3 Clock Input Table 4-4: Clock Input Pin Descriptions Pin Name PFBGA Pin# I/O type (see key above) RESET# State CLKI F5 CI — CLKI2 B9 CI — Description Typically used as input clock source for bus clock and memory clock Optionally used as input clock source for pixel clock Used as input clock source for USB. USBCLK USBOSCI J8 CI B1 — I Note: If this pin is not connected to an input clock source, this pin must be connected to VSS. USB Crystal Oscillator feedback input from crystal. For an example implementation circuit using a crystal oscillator, see Section 16.1, “USB Oscillator Circuit” on page 179. — Note: If this pin is not connected to a USB Crystal Oscillator, this pin must be connected to VSS. USBOSCO C1 O USB Crystal Oscillator output to crystal. For an example implementation circuit using a crystal oscillator, see Section 16.1, “USB Oscillator Circuit” on page 179. — 4.2.4 Miscellaneous Table 4-5: Miscellaneous Pin Descriptions Pin Name PFBGA Pin# I/O type (see key above) RESET# State CNF[6:0] C9,C8,B8, D7,C7,B7, A7 CI — TESTEN E7 T1 ⎯ Description These inputs are used to configure the S1D13A05 - see Table 4-7: “Summary of Power-On/Reset Options,” on page 25. Note: These pins are used for configuration of the S1D13A05 and must be connected directly to IO VDD or VSS. Test Enable input used for production test only (has type 1 pull-down resistor with a typical value of 50KΩ at 3.3V). Note: This pin must be left un-connected. 4.2.5 Power And Ground Table 4-6: Power And Ground Pin Descriptions I/O type RESET# (see key State above) Pin Name PFBGA Pin# IOVDD L2,G4,H6, L9,A10,F11 P — IO power supply. COREVDD A2,C2,L10, J10 P — Core power supply. VSS B2,F2,K2, G5,F9,B10, K10 P — GND for IOVDD and COREVDD. Description S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 25 4.3 Summary of Configuration Options These pins are used for configuration of the S1D13A05 and must be connected directly to IOVDD or VSS. The state of CNF[6:0] are latched on the rising edge of RESET#. Changing state at any other time has no effect. Table 4-7: Summary of Power-On/Reset Options Power-On/Reset State S1D13A05 Configuration Input 1 (connected to IO VDD) 0 (connected to VSS) Select host bus interface as follows: CNF4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 X CNF4,CNF[2:0] CNF3 CNF5 (see note) CNF6 CNF2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 CNF1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 CNF0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 Host Bus SH-4/SH-3 interface, Big Endian SH-4/SH-3 interface, Little Endian MC68K #1, Big Endian Reserved MC68K #2, Big Endian Reserved Generic #1, Big Endian Generic #1, Little Endian Reserved Generic #2, Little Endian REDCAP2, Big Endian Reserved DragonBall (MC68EZ328/VZ328/SZ328), Big Endian Reserved Reserved Reserved. Must be set to 1. WAIT# is active high WAIT# is active low CLKI to BCLK divide ratio 2:1 CLKI to BCLK divide ratio 1:1 Note If CNF5 = 1, the WAIT# pin should be tied low using a pull-down resistor. If CNF5 = 0, the WAIT# pin should be tied high using a pull-up resistor. If WAIT# is not used, this pin should be tied either high or low using a pull-up or pull-down resistor. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 26 Epson Research and Development Vancouver Design Center 4.4 Host Bus Interface Pin Mapping Table 4-8: Host Bus Interface Pin Mapping Generic #2 Hitachi SH-3 /SH-4 Motorola MC68K #1 Motorola MC68K #2 Motorola REDCAP2 Motorola MC68EZ328/ MC68VZ328 DragonBall A[17:1] A[17:1] A[17:1] A[17:1] A[17:1] A[17:1] S1D13A05 Pin Name Generic #1 AB[17:1] A[17:1] AB0 A01 A0 A0 LDS# A0 A0 DB[15:0] D[15:0] D[15:0] D[15:0] D[15:0] D[15:0]2 D[15:0] D[15:0] CSn CSX CLKO CS# External Decode 1 CSn# M/R# CLKI BS# External Decode 1 A01 External Decode BUSCLK BUSCLK Connected to IOVDD CKIO CLK CLK CLK Connected to IOVDD BS# AS# AS# RD/WR# R/W# R/W# R/W Connected to IOVDD RD/WR# RD1# Connected to IOVDD RD# RD0# RD# RD# Connected to IOVDD SIZ1 OE OE WE0# WE0# WE# WE0# Connected to IOVDD SIZ0 EB1 LWE WE1# WE1# BHE# WE1# UDS# DS# EB0 UWE WAIT# WAIT# WAIT# WAIT#/ RDY# DTACK# DSACK1# N/A DTACK RESET# RESET# RESET# RESET# RESET# RESET# RESET_OUT RESET Note 1 A0 for these busses is not used internally by the S1D13A05 and should be connected to VSS. 2 If the target MC68K bus is 32-bit, then these signals should be connected to D[31:16]. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 27 4.5 LCD Interface Pin Mapping Table 4-9: LCD Interface Pin Mapping Monochrome Passive Panel Pin Name Color Passive Panel Single 4-bit Color TFT Panel Single Generic TFT (TFT Type 1) Format 2 8-bit 16-Bit TFT Type 4 USB 3 18-bit 18-bit 18-bit 18-bit SPS GSRT STV STV FPFRAME ⎯ FPLINE FPLINE LP GPCK STB LP FPLINE ⎯ FPSHIFT FPSHIFT DCLK CLK CLK CPH FPSHIFT ⎯ driven 0 no connect INV INV DRDY ⎯ MOD 18-bit TFT Type 31 18-bit FPSHIFT 2 12-bit TFT Type 21 FPFRAME MOD 9-bit Casio TFT1 FPFRAME DRDY 8-bit Format 1 8-bit 4-bit Sharp HR-TFT1 DRDY FPDAT0 driven 0 D0 driven 0 D0 (B5)2 D0 (G3)2 D0 (R6)2 R2 R3 R5 R5 R5 R5 R5 R5 ⎯ FPDAT1 driven 0 D1 driven 0 D1 (R5)2 D1 (R3)2 D1 (G5)2 R1 R2 R4 R4 R4 R4 R4 R4 ⎯ FPDAT2 driven 0 D2 driven 0 D2 (G4)2 D2 (B2)2 D2 (B4)2 R0 R1 R3 R3 R3 R3 R3 R3 ⎯ FPDAT3 driven 0 D3 driven 0 D3 (B3)2 D3 (G2)2 D3 (R4)2 G2 G3 G5 G5 G5 G5 G5 G5 ⎯ FPDAT4 D0 D4 D0 (R2)2 D4 (R3)2 D4 (R2)2 D8 (B5)2 G1 G2 G4 G4 G4 G4 G4 G4 ⎯ FPDAT5 D1 D5 D1 (B1)2 D5 (G2)2 D5 (B1)2 D9 (R5)2 G0 G1 G3 G3 G3 G3 G3 G3 ⎯ FPDAT6 D2 D6 D2 (G1)2 D6 (B1)2 D6 (G1)2 D10 (G4)2 B2 B3 B5 B5 B5 B5 B5 B5 ⎯ FPDAT7 D3 D7 D3 (R1)2 D7 (R1)2 D7 (R1)2 D11 (B3)2 B1 B2 B4 B4 B4 B4 B4 B4 ⎯ FPDAT8 driven 0 driven 0 driven 0 driven 0 driven 0 D4 (G3)2 B0 B1 B3 B3 B3 B3 B3 B3 ⎯ FPDAT9 driven 0 driven 0 driven 0 driven 0 driven 0 D5 (B2)2 driven 0 R0 R2 R2 R2 R2 R2 R2 ⎯ FPDAT10 driven 0 driven 0 driven 0 driven 0 driven 0 D6 (R2)2 driven 0 driven 0 R1 R1 R1 R1 R1 R1 ⎯ FPDAT11 driven 0 driven 0 driven 0 driven 0 driven 0 D7 (G1)2 driven 0 driven 0 R0 R0 R0 R0 R0 R0 ⎯ FPDAT12 driven 0 driven 0 driven 0 driven 0 driven 0 D12 (R3)2 driven 0 G0 G2 G2 G2 G2 G2 G2 ⎯ FPDAT13 driven 0 driven 0 driven 0 driven 0 driven 0 D13 (G2)2 driven 0 driven 0 G1 G1 G1 G1 G1 G1 ⎯ FPDAT14 driven 0 driven 0 driven 0 driven 0 driven 0 D14 (B1)2 driven 0 driven 0 G0 G0 G0 G0 G0 G0 ⎯ FPDAT15 driven 0 driven 0 driven 0 driven 0 driven 0 D15 (R1)2 driven 0 B0 B2 B2 B2 B2 B2 B2 ⎯ FPDAT16 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 B1 B1 B1 B1 B1 B1 ⎯ FPDAT17 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 B0 B0 B0 B0 B0 B0 ⎯ GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 PS POL VCLK CPV GPIO0 ⎯ GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 CLS GRES AP OE GPIO1 ⎯ GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 REV FRP POL POL GPIO2 ⎯ GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 SPL STH STH EIO GPIO3 ⎯ GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 USBPUP GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 USBDETECT GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 GPIO6 USBDM GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 USBDP GPO0 ⎯ GPO0 (General Purpose Output) GPO1 GPO1 VCOM GPO1 ⎯ GPO2 GPO2 XOEV GPO2 ⎯ GPO3 GPO3 CMD GPO3 ⎯ GPO4 GPO4 PCLK1 GPO4 ⎯ GPO5 GPO5 PCLK2 GPO5 ⎯ GPO6 GPO6 XRESH GPO6 ⎯ GPO7 GPO7 XRESV GPO7 ⎯ GPO8 GPO8 XOHV GPO8 ⎯ GPO9 GPO9 XSTBY GPO9 ⎯ GPO10 GPO10 PMDE GPO10 ⎯ PWMOUT PWMOUT ⎯ Note 1 GPIO pins which are used by the HR-TFT, Casio, TFT Type 2, and TFT Type 3 interfaces, must be configured as outputs using REG[64h] bits 23-16 after every RESET or power-up. 2 These pin mappings use signal names commonly used for each panel type, however signal names may differ between panel manufacturers. The values shown in brackets represent the color components as mapped to the corresponding FPDATxx signals at the first valid edge of FPSHIFT. For further FPDATxx to LCD interface mapping, see Section 6.5, “Display Interface” on page 52. 3 The S1D13A05 also supports the 9-bit and 12-bit variations of the Type 4 TFT panel. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 28 Epson Research and Development Vancouver Design Center 5 D.C. Characteristics Note When applying Supply Voltages to the S1D13A05, Core VDD must be applied to the chip before, or simultaneously with IO VDD, or damage to the chip may result. Table 5-1: Absolute Maximum Ratings Symbol Parameter Rating Units Core VDD Supply Voltage VSS - 0.3 to 3.0 V IO VDD Supply Voltage VSS - 0.3 to 4.0 V VIN Input Voltage VSS - 0.3 to IO VDD + 0.5 V VOUT Output Voltage VSS - 0.3 to IO VDD + 0.5 V TSTG Storage Temperature -65 to 150 °C TSOL Solder Temperature/Time 260 for 10 sec. max at lead °C Table 5-2: Recommended Operating Conditions Symbol Parameter Core VDD Supply Voltage IO VDD Supply Voltage VIN Input Voltage TOPR Operating Temperature Condition VSS = 0 V Min Typ Max Units 1.8 (note 1) 2.0 (note 1) 2.2 (note 1) V VSS = 0 V 2.25 2.5 2.75 V VSS = 0 V 3.0 3.3 3.6 V VSS IO VDD V VSS CORE VDD -40 25 °C 85 1. When Core VDD is 2.0V ± 10%, the MCLK must be less than or equal to 30MHz (MCLK ≤ 30MHz) Table 5-3: Electrical Characteristics for VDD = 3.3V typical Symbol IDDS IIZ IOZ Parameter Quiescent Current Input Leakage Current Output Leakage Current VOH High Level Output Voltage VOL Low Level Output Voltage VIH VIL RPD CI CO CIO High Level Input Voltage Low Level Input Voltage Pull Down Resistance Input Pin Capacitance Output Pin Capacitance Bi-Directional Pin Capacitance Condition Quiescent Conditions Min Typ -1 -1 VDD = min IOH = -3mA (Type 1) -6mA (Type 2) VDD = min IOL = 3mA (Type 1) 6mA (Type 2) LVTTL Level, VDD = max LVTTL Level, VDD = min VIN = VDD S1D13A05 X40A-A-001-07 Max 170 1 1 VDD - 0.4 V 0.4 V 0.8 120 10 10 10 V V kΩ pF pF pF 2.0 20 Units μA μA μA 50 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 29 6 A.C. Characteristics Conditions: IO VDD = 3.3V ± 10% TA = -40° C to 85° C Trise and Tfall for all inputs must be < 5 nsec (10% ~ 90%) CL = 50pF (Bus/MPU Interface) CL = 0pF (LCD Panel Interface) 6.1 Clock Timing 6.1.1 Input Clocks Clock Input Waveform t PWH t PWL 90% V IH VIL 10% t tr f TOSC Figure 6-1: Clock Input Requirements Table 6-1: Clock Input Requirements for CLKI when CLKI to BCLK divide > 1 Symbol Parameter Min Max Units 100 MHz fOSC Input Clock Frequency (CLKI) TOSC Input Clock period (CLKI) 1/fOSC ns tPWH Input Clock Pulse Width High (CLKI) 4.5 ns tPWL Input Clock Pulse Width Low (CLKI) 4.5 ns tf Input Clock Fall Time (10% - 90%) 5 ns tr Input Clock Rise Time (10% - 90%) 5 ns Note Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, “Internal Clocks” on page 31 for internal clock requirements. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 30 Epson Research and Development Vancouver Design Center Table 6-2: Clock Input Requirements for CLKI when CLKI to BCLK divide = 1 Symbol Parameter Min Max Units 66 MHz fOSC Input Clock Frequency (CLKI) TOSC Input Clock period (CLKI) tPWH Input Clock Pulse Width High (CLKI) 3 ns tPWL Input Clock Pulse Width Low (CLKI) 3 ns 1/fOSC ns tf Input Clock Fall Time (10% - 90%) 5 ns tr Input Clock Rise Time (10% - 90%) 5 ns Note Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, “Internal Clocks” on page 31 for internal clock requirements. Table 6-3: Clock Input Requirements for CLKI2 Symbol Parameter fOSC Input Clock Frequency (CLKI2) TOSC Input Clock period (CLKI2) tPWH tPWL Min Max Units 66 MHz 1/fOSC ns Input Clock Pulse Width High (CLKI2) 3 ns Input Clock Pulse Width Low (CLKI2) 3 ns tf Input Clock Fall Time (10% - 90%) 5 ns tr Input Clock Rise Time (10% - 90%) 5 ns Note Maximum internal requirements for clocks derived from CLKI2 must be considered when determining the frequency of CLKI2. See Section 6.1.2, “Internal Clocks” on page 31 for internal clock requirements. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 31 6.1.2 Internal Clocks Table 6-4: Internal Clock Requirements Symbol Parameter Min Bus Clock frequency fBCLK Max Units 66 MHz COREVDD = 2.0V 30 MHz COREVDD = 2.5V 50 MHz fMCLK Memory Clock frequency (see note 1) fPCLK Pixel Clock frequency 50 MHz fPWMCLK PWM Clock frequency 66 MHz 1. MCLK is derived from BCLK, therefore when BCLK is greater than 50MHz, MCLK must be divided using REG[04h] bits 5-4. Note For further information on internal clocks, refer to Section 7, “Clocks” on page 85. 6.2 RESET# Timing t1 RESET# Figure 6-2 S1D13A05 RESET# Timing Table 6-5 S1D13A05 RESET# Timing Symbol t1 Parameter Active Reset Pulse Width Hardware Functional Specification Issue Date: 2012/02/27 Min Max Units 1 — CLKI S1D13A05 X40A-A-001-07 Revision 7.7 Page 32 Epson Research and Development Vancouver Design Center 6.3 CPU Interface Timing 6.3.1 Generic #1 Interface Timing TCLK CLK t5 t1 A[16:1], M/R# t6 t2 CS# t15 t7 t3 t8 WE0#, WE1#, RD0#, RD1# t9 t10 t4 WAIT# t12 t11 valid D[15:0] (write) t13 t14 valid D[15:0] (read) Figure 6-3: Generic #1 Interface Timing S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 33 Table 6-6: Generic #1 Interface Timing Symbol Parameter fCLK Bus clock frequency TCLK Bus clock period Min Max Unit 50 MHz 1/fCLK ns t1 A[16:1], M/R# setup to first CLK rising edge where CS# = 0 and either RD0#, RD1# = 0 or WE0#, WE1# = 0 0 ns t2 CS# setup to CLK rising edge 0 ns t3 RD0#, RD1#, WE0#, WE1# setup to CLK rising edge 0 ns t4 RD0#, RD1# or WE0#, WE1# state change to WAIT# driven low 3 t5 A[16:1], M/R# and CS# hold from RD0#, RD1#, WE0#, WE1# rising edge 0 ns t6 CS# deasserted to reasserted 0 ns t7 WAIT# rising edge to RD0#, RD1#, WE0#, WE1# rising edge 0 ns t8 WE0#, WE1#, RD0#, RD1# deasserted to reasserted 1 t9 CLK rising edge to WAIT# rising edge 5 t10 Rising edge of either RD0#, RD1# or WE0#, WE1# to WAIT# high impedance t11 D[15:0] setup to 4th rising CLK edge after CS#=0 and WE0#, WE1#=0 1 TCLK t12 D[15:0] hold from WE0#, WE1# rising edge (write cycle) 0 ns t13 D[15:0] valid to WAIT# rising edge (read cycle) 0.5 TCLK t14 D[15:0] hold from RD0#, RD1# rising edge (read cycle) 2 ns t15 Cycle Length 6 TCLK 8 ns TCLK 14 ns 5 ns Table 6-7: Generic #1 Interface Truth Table for Little Endian WE0# WE1# RD0# RD1# D[15:8] D[7:0] Comments 0 0 1 1 valid valid 16-bit write 0 1 1 1 - valid 8-bit write; data on low byte (even byte address1) 1 0 1 1 valid - 8-bit write; data on high byte (odd byte address1) 1 1 0 0 valid valid 16-bit read 1 1 0 1 - valid 8-bit read; data on low byte (even byte address1) 1 1 1 0 valid - 8-bit read; data on high byte (odd byte address1) Table 6-8: Generic #1 Interface Truth Table for Big Endian WE0# WE1# RD0# RD1# D[15:8] D[7:0] Comments 0 0 1 1 valid valid 16-bit write 0 1 1 1 - valid 8-bit write; data on low byte (odd byte address1) 1 0 1 1 valid - 1 1 0 0 valid valid 16-bit read 1 1 0 1 - valid 8-bit read; data on low byte (odd byte address1) 1 1 1 0 valid - 8-bit write; data on high byte (even byte address1) 8-bit read; data on high byte (even byte address1) 1. Because A0 is not used internally, all addresses are seen by the S1D13A05 as even addresses (16-bit word address aligned on even byte addresses). Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 34 Epson Research and Development Vancouver Design Center 6.3.2 Generic #2 Interface Timing TBUSCLK BUSCLK t5 t1 A[16:0], M/R#, BHE# t6 t2 CS# t15 t7 t3 t8 WE#, RD# t9 t10 t4 WAIT# t12 t11 D[15:0] (write) valid t13 t14 valid D[15:0] (read) Figure 6-4: Generic #2 Interface Timing S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 35 Table 6-9: Generic #2 Interface Timing Symbol Parameter fBUSCLK Bus clock frequency TBUSCLK Bus clock period Min Max Unit 50 MHz 1/fBUSCLK ns t1 A[16:0], M/R#, BHE# setup to first BUSCLK rising edge where CS# = 0 and either RD# = 0 or WE# = 0 0 ns t2 CS# setup to BUSCLK rising edge 0 ns t3 RD#, WE# setup to BUSCLK rising edge 0 ns t4 RD# or WE# state change to WAIT# driven low 3 t5 A[16:0], M/R#, BHE# and CS# hold from RD#, WE# rising edge 0 ns t6 CS# deasserted to reasserted 0 ns t7 WAIT# rising edge to RD#, WE# rising edge 0 ns t8 WE#, RD# deasserted to reasserted 1 TBUSCLK 5 9 ns t9 WAIT# rising edge after BUSCLK rising edge t10 Rising edge of either RD# or WE# to WAIT# high impedance 14 ns 7 ns t11 D[15:0] setup to 4th rising BUSCLK edge after CS#=0 and WE#=0 1 TBUSCLK t12 D[15:0] hold from WE# rising edge (write cycle) 0 ns t13 D[15:0] valid to WAIT# rising edge setup (read cycle) 0.5 TBUSCLK t14 D[15:0] hold from RD# rising edge (read cycle) 2 ns t15 Cycle Length 6 TBUSCLK Table 6-10: Generic #2 Interface Truth Table for Little Endian WE# RD# BHE# A0 D[15:8] D[7:0] Comments 0 1 0 0 valid valid 16-bit write 0 1 1 0 - valid 8-bit write at even address 8-bit write at odd address 0 1 0 1 valid - 1 0 0 0 valid valid 16-bit read 1 0 1 0 - valid 8-bit read at even address 1 0 0 1 valid - 8-bit read at odd address Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 36 Epson Research and Development Vancouver Design Center 6.3.3 Hitachi SH-3 Interface Timing TCKIO CKIO t1 t8 A[16:1], M/R#, RD/WR# t17 t9 t2 t3 BS# t4 CSn# t10 t11 t5 WEn#, RD# t13 t12 t6 WAIT# t14 t7 D[15:0] (write) t15 t16 D[15:0] (read) Figure 6-5: Hitachi SH-3 Interface Timing Note A minimum of one software wait state is required. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 37 Table 6-11: Hitachi SH-3 Interface Timing Symbol fCKIO Parameter Min Bus clock frequency Unit 66 MHz 1/fCKIO ns t1 A[16:1], RD/WR# setup to CKIO 0 ns t2 BS# setup 0 ns t3 BS# hold 9 ns t4 CSn# setup 0 ns t5 WEn#, RD# setup to next CKIO after BS# low 0 ns t6 Falling edge CSn# to WAIT# driven low 4 t7 D[15:0] setup to 3rd CKIO rising edge after BS# deasserted (write cycle) 1 ns t8 WE#, RD# deasserted to A[16:1], M/R#, RD/WR# deasserted 0 ns t9 Rising edge of WAIT# to BS# falling TCKIO + 16 ns t10 CKIO rising edge before WAIT# deasserted to WEn#, RD# asserted for next cycle 2 TCKIO t11 Rising edge of WAIT# to WE#, RD# deasserted 0 ns t12 WAIT# rising edge after CKIO rising edge 5 t13 Rising edge of CSn# to WAIT# high impedance TCKIO Bus clock period Max 9 ns 14 ns 6 ns t14 D[15:0] hold from WEn# deasserted (write cycle) 0 ns t15 D[15:0] setup to WAIT# rising edge (read cycle) 0.5 TCKIO t16 Rising edge of RD# to D[15:0] high impedance (read cycle) 3 t17 Cycle Length 5 7 ns TCKIO 1. The S1D13A05 requires 2ns of write data hold time. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 38 Epson Research and Development Vancouver Design Center 6.3.4 Hitachi SH-4 Interface Timing TCKIO CKIO t1 t8 A[16:1], RD/WR#, M/R# t18 t9 t2 t3 BS# t4 CSn# t10 t11 t5 WEn#, RD# t14 t12 t6 t13 RDY t7 t15 D[15:0] (write) t16 t17 D[15:0] (read) Figure 6-6: Hitachi SH-4 Interface Timing Note A minimum of one software wait state is required. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 39 Table 6-12: Hitachi SH-4 Interface Timing Symbol fCKIO Parameter Min Bus clock frequency Unit 66 MHz 1/fCKIO ns t1 A[16:1], M/R#, RD/WR# setup to CKIO 0 ns t2 BS# setup 0 ns t3 BS# hold 9 ns t4 CSn# setup 0 ns t5 WEn#, RD# setup to 1st CKIO rising edge after BS# low 0 ns t6 Falling edge CSn# to RDY driven high 3 t7 D[15:0] setup to 3rd CKIO rising edge after BS# deasserted (write cycle) 1 ns t8 WE#,RD# deasserted to A[16:1],M/R#,RD/WR# deasserted 0 ns t9 RDY falling edge to BS# falling TCKIO + 11 ns t10 CKIO rising edge before RDY deasserted to WEn#, RD# asserted for next cycle 2 TCKIO t11 RDY falling edge to WE#,RD# deasserted 0 ns t12 RDY falling edge after CKIO rising edge 5 14 ns t13 Rising edge CSn# to RDY rising edge 4 10 ns t14 CKIO falling edge to RDY tristate 4 12 t15 D[15:0] hold from WEn# deasserted (write cycle) 0 ns t16 D[15:0] valid setup to RDY falling edge (read cycle) 0.5 TCKIO t17 Rising edge of RD# to D[15:0] high impedance (read cycle) 2 t18 Cycle Length 4 TCKIO Bus clock period Max Hardware Functional Specification Issue Date: 2012/02/27 7 7 ns ns ns TCKIO S1D13A05 X40A-A-001-07 Revision 7.7 Page 40 Epson Research and Development Vancouver Design Center 6.3.5 Motorola MC68K #1 Interface Timing TCLK CLK t3 t1 A[16:1], R/W#, M/R# t13 t3 t1 CS# t4 t1 AS# t1 t5 UDS#, LDS#, (A0) t8 t6 t2 t7 DTACK# t9 t10 D[15:0] (write) t11 t12 D[15:0] (read) Figure 6-7: Motorola MC68K #1 Interface Timing S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 41 Table 6-13: Motorola MC68K#1 Interface Timing Symbol fCLK Parameter Min Bus clock frequency Unit 50 MHz 1/fCLK ns t1 A[16:1], M/R#, R/W# and CS# and AS# and UDS#, LDS# setup to first CLK rising edge 1 ns t2 CS# and AS# asserted to DTACK# driven 2 t3 A[16:1], M/R#, R/W# and CS# hold from AS# rising edge 0 ns t4 AS# rising edge to CLK falling edge 1 ns t5 DTACK# falling edge to UDS#, LDS# rising edge 0 ns t6 CLK rising edge to DTACK# falling edge 5 t7 AS# rising edge to DTACK# rising edge 3 t8 1st CLK falling edge after AS# deasserted to DTACK# high impedance t9 D[15:0] valid to 4th CLK rising edge where CS# = 0, AS# = 0 and either UDS# = 0 or LDS# = 0 (write cycle) 1 TCLK t10 D[15:0] hold from DTACK# falling edge (write cycle) 0 ns t11 D[15:0] valid setup time to DTACK# goes low (read cycle) 0.5 TCLK t12 UDS#, LDS# rising edge to D[15:0] high impedance (read cycle) 2 ns t13 Cycle Length 7 TCLK TCLK Bus clock period Max Hardware Functional Specification Issue Date: 2012/02/27 7 ns 14 ns 9 ns 0.5 TCLK + 12 ns S1D13A05 X40A-A-001-07 Revision 7.7 Page 42 Epson Research and Development Vancouver Design Center 6.3.6 Motorola MC68K #2 Interface Timing TCLK CLK t3 t1 A[16:1], M/R#, R/W#, SIZ[1:0] t15 t4 t1 CS# t5 t1 t6 AS# t1 t7 DS# t10 t9 t8 t2 DSACK1# t11 t12 valid D[31:16] (write) t13 t14 valid D[31:16] (read) Figure 6-8: Motorola MC68K #2 Interface Timing S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 43 Table 6-14: Motorola MC68K#2 Interface Timing Symbol fCLK Parameter Min Bus clock frequency Unit 50 MHz 1/fCLK ns t1 A[16:0], M/R#, R/W#, SIZ[1:0] and CS# and AS# and DS# setup to first CLK rising edge 0 ns t2 CS# and AS# asserted low to DSACK1# driven 2 TCLK Bus clock period Max 7 ns t3 A[16:1], M/R#, R/W#, SIZ[1:0] hold from AS# rising edge 0 ns t4 CS# hold from AS# rising edge 0 ns t5 DS# rising edge to AS# rising edge 0 ns t6 AS# setup to CLK falling edge 1 ns t7 DSACK1# falling edge to DS# rising edge 0 t8 CLK rising edge to DSACK1# falling edge 5 14 ns t9 AS# rising edge to DSACK1# rising edge 3 9 ns t10 1st CLK falling edge after AS# deasserted to DSACK1# high impedance TCLK + 3 ns t11 D[15:0] setup to 4th CLK rising edge after CS#=0, AS#=0, DS#=0, and DSACK1#=0 1 TCLK t12 D[15:0] hold from DSACK1# falling edge 0 ns t13 D[15:0] valid setup to DSACK1# falling edge (read cycle) 0.5 t14 DS# rising edge to D[15:0] high impedance (read cycle) 2 t15 Cycle Length 7 Hardware Functional Specification Issue Date: 2012/02/27 ns TCLK 9 ns TCLK S1D13A05 X40A-A-001-07 Revision 7.7 Page 44 Epson Research and Development Vancouver Design Center 6.3.7 Motorola REDCAP2 Interface Timing TCKO CKO t8 t1 A[16:1], R/W#, CS# t12 t9 t2 EBO#, EB1# (write) t3 D[15:0] (write) t4 valid t10 t5 EB0#, EB1#, OE# (read) t7 t6 t11 D[15:0] (read) valid Figure 6-9: Motorola Redcap2 Interface Timing S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 45 Table 6-15: Motorola Redcap2 Interface Timing Symbol Parameter fCKO Bus clock frequency TCKO Bus clock period Min Max Unit 17 MHz 1/fCKO ns t1 A[16:1], R/W, CSn# setup to CKO rising edge 0 ns t2 EB0,EB1 setup to CKO rising edge (write) 0 ns t3 D[15:0] input setup to 4th CKO rising edge after CSn# and EB0 or EB1 asserted low (write cycle) 1 TCKO t4 D[15:0] input hold from 4th CKO rising edge after CSn# and EB0 or EB1 asserted low (write cycle) 7 ns t5 EB0,EB1,OE setup to CKO rising edge (read cycle) 0 ns t6a 1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to D[15:0] valid for MCLK = BCLK (read cycle) 6TCKO+17 ns t6b 1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to D[15:0] valid for MCLK = BCLK ÷ 2 (read cycle) 9TCKO+17 ns t6c 1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to D[15:0] valid for MCLK = BCLK ÷ 3 (read cycle) 12TCKO+17 ns t6d 1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to D[15:0] valid for MCLK = BCLK ÷ 4 (read cycle) 15TCKO+17 ns t7 EB0,EB1,OE falling edge to D[15:0] driven (read cycle) 2 9 ns t8 A[16:1], R/W, CSn hold from CKO rising edge 0 ns t9 EB0, EB1 setup to CKO rising edge (write cycle) 1 ns t10 CKO falling edge to EB0, EB1, OE deasserted (read) 0 ns t11 OE, EB0, EB1 deasserted to D[15:0] output high impedance (read) 2 t12 Cycle Length (note 1) 8 ns TCKO 1. The cycle length for the REDCAP interface is fixed at 10 TCKO. 2. The Read and Write 2D BitBLT functions are not available when using the REDCAP interface. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 46 Epson Research and Development Vancouver Design Center 6.3.8 Motorola Dragonball Interface Timing with DTACK TCLKO CLKO t1 t3 A[16:1] t13 t1 t4 t1 t4 CSX# t5 UWE#, LWE# (write) t1 OE# (read) t6 D[15:0] (write) t7 Valid t8 D[15:0] (read) t9 Valid t12 t2 t10 t11 DTACK# Figure 6-10: Motorola Dragonball Interface Timing with DTACK S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 47 Table 6-16: Motorola Dragonball Interface Timing with DTACK Symbol Parameter fCLKO Clock frequency TCLKO Clock period Min Max Unit 66 (note 1) MHz 1/fCLKO ns t1 A[16:1], CSX, UWE, LWE, OE setup to CLKO rising edge 1 ns t2 CSX asserted low to DTACK driven 2 t3 A[16:1] hold from CSX rising edge 0 t4 DTACK falling edge to UWE, LWE and CSX rising edge 0 ns t5 UWE, LWE deasserted to reasserted 1 TCLKO t6 D[15:0] valid to fourth CLKO rising edge where CSX = 0 and UWE = 0 or LWE = 0 (write cycle) 1 TCLKO t7 D[15:0] hold from DTACK falling edge (write cycle) 7 ns ns 0 ns 0.5 TCLKO t8 D[15:0] valid setup to DTACK falling edge (read cycle) t9 2 6 ns t10 CSX rising edge to D[15:0] high impedance (read cycle) CLKO rising edge to DTACK# falling edge 5 14 ns t11 CSX rising edge to DTACK rising edge 3 9 ns t12 t13 First CLKO falling edge after deassertion of CSX# to DTACK# high impedance Cycle Length 0.5TCLKO + 4 0.5TCLKO + 8 8 ns TCLKO 1. The MC68SZ328 with a maximum clock frequency of 66MHz is supported. The MC68VZ328 with a maximum clock frequency of 33MHz is supported. The MC68EZ328 with a maximum clock frequency of 16MHz is supported. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 48 Epson Research and Development Vancouver Design Center 6.3.9 Motorola Dragonball Interface Timing w/o DTACK TCLKO CLKO t1 t5 A[16:1] t7 t1 CSX# t1 t5 UWE#, LWE# (write) t1 t5 OE# t2 t5 D[15:0] (write) t4 t6 t3 D[15:0] (read) Figure 6-11: Motorola Dragonball Interface Timing w/o DTACK S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 49 Table 6-17: Motorola Dragonball Interface Timing w/o DTACK Symbol Parameter fCLKO Bus clock frequency TCLKO Bus clock period Min Max Unit 33 (note 1) MHz 1/fCLKO ns t1 A[16:1] and CSX# and UWE#, LWE# and OE# setup to CLKO rising edge 1 ns t2 D[15:0] valid to 4th CLK rising edge where CSX# = 0 and UWE# = 0 or LWE# = 0 (write cycle) 1 TCLKO t3 CSX# and OE# asserted low to D[15:0] driven (read cycle) 2 t4a 8 ns 1st CLKO rising edge after CSX# and OE# asserted to D[15:0] valid for MCLK=BCLK (read cycle) 7 TCLKO t4b 1st CLKO rising edge after CSX# and OE# asserted to D[15:0] valid for MCLK=BCLK ÷ 2 (read cycle) 10 TCLKO t4c 1st CLKO rising edge after CSX# and OE# asserted to D[15:0] valid for MCLK=BCLK ÷ 3 (read cycle) (see note 2) 13 TCLKO t5 A[16:1] and UWE#, LWE# and OE# and D[15:0] (write) hold from CSX# rising edge 0 t6 CSX# rising edge to D[15:0] high impedance 2 t7 Cycle Length (see note 3) ns 8 ns TCLKO 1. The MC68VZ328 with a maximum clock frequency of 33MHz is supported. The MC68EZ328 with a maximum clock frequency of 16MHz is supported. 2. The MC68EZ328 does not support the MCLK = BCLK ÷ 3 and MCLK = BCLK ÷ 4 options. The MC68VZ328 does not support the MCLK = BCLK ÷ 4 option. 3. The cycle length for the Dragonball w/o DTACK interface is fixed at 10 TCLKO. 4. The Read and Write 2D BitBLT functions are not available when using the Dragonball w/o DTACK interface. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 50 Epson Research and Development Vancouver Design Center 6.4 LCD Power Sequencing 6.4.1 Passive/TFT Power-On Sequence GPIO0* t1 Power Save Mode Enable** (REG[14h] bit 4) t2 LCD Signals*** *It is recommended to use the general purpose IO pin GPIO0 to control the LCD bias power. **The LCD power-on sequence is activated by programming the Power Save Mode Enable bit (REG[14h] bit 4) to 0. ***LCD Signals include: FPDAT[17:0], FPSHIFT, FPLINE, FPFRAME, and DRDY. Figure 6-12: Passive/TFT Power-On Sequence Timing Table 6-18: Passive/TFT Power-On Sequence Timing Symbol Parameter t1 LCD signals active to LCD bias active t2 Power Save Mode disabled to LCD signals active Min Max Note 1 Note 1 0 1 Units BCLK 1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel connected. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 51 6.4.2 Passive/TFT Power-Off Sequence t1 GPIO0* Power Save Mode Enable** (REG[14h] bit 4) t2 LCD Signals*** *It is recommended to use the general purpose IO pin GPIO0 to control the LCD bias power. **The LCD power-off sequence is activated by programming the Power Save Mode Enable bit (REG[14h] bit 4) to 1. ***LCD Signals include: FPDAT[17:0], FPSHIFT, FPLINE, FPFRAME, and DRDY. Figure 6-13: Passive/TFT Power-Off Sequence Timing Table 6-19: Passive/TFT Power-Off Sequence Timing Symbol Parameter t1 LCD bias deactivated to LCD signals inactive t2 Power Save Mode enabled to LCD signals low Min Max Note 1 Note 1 0 1 Units BCLK 1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel connected. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 52 Epson Research and Development Vancouver Design Center 6.5 Display Interface The timing parameters required to drive a flat panel display are shown below. Timing details for each supported panel type are provided in the remainder of this section. HT HDPS HPS HPW VPS VDPS VPW HDP VDP VT Figure 6-14: Panel Timing Parameters Table 6-20: Panel Timing Parameter Definition and Register Summary Symbol HT HDP1 HDPS HPS HPW VT VDP VDPS VPS VPW Description Horizontal Total Horizontal Display Period1 Derived From ((REG[20h] bits 6-0) + 1) x 8 ((REG[24h] bits 6-0) + 1) x 8 For STN panels: ((REG[28h] bits 9-0) + 22) Horizontal Display Period Start Position For TFT panels: ((REG[28h] bits 9-0) + 5) FPLINE Pulse Start Position (REG[2Ch] bits 9-0) + 1 FPLINE Pulse Width (REG[2Ch] bits 22-16) + 1 Vertical Total (REG[30h] bits 9-0) + 1 Vertical Display Period (REG[34h] bits 9-0) + 1 Vertical Display Period Start Position REG[38h] bits 9-0 FPFRAME Pulse Start Position REG[3Ch] bits 9-0 FPFRAME Pulse Width (REG[3Ch] bits 18-16) + 1 Units Ts Lines (HT) 1. For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16. For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8. 2. The following formulas must be valid for all panel timings: HDPS + HDP < HT VDPS + VDP < VT S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 53 6.5.1 Generic STN Panel Timing VT (= 1 Frame) VPW FPFRAME VDP FPLINE MOD1 (DRDY) FPDAT[17:0] HT (= 1 Line) HPS HPW FPLINE FPSHIFT 1 PCLK 2 MOD (DRDY) HDPS HDP FPDAT[17:0] Figure 6-15: Generic STN Panel Timing VT = Vertical Total = [(REG[30h] bits 9-0) + 1] lines VPS = FPFRAME Pulse Start Position = 0 lines, because REG[3Ch] bits 9-0 = 0 VPW = FPFRAME Pulse Width = [(REG[3Ch] bits 18-16) + 1] lines VDPS = Vertical Display Period Start Position = 0 lines, because REG[38h] bits 9-0 = 0 VDP = Vertical Display Period = [(REG[34h] bits 9-0) + 1] lines HT = Horizontal Total = [((REG[20h] bits 6-0) + 1) x 8] pixels HPS = FPLINE Pulse Start Position = [(REG[2Ch] bits 9-0) + 1] pixels HPW = FPLINE Pulse Width = [(REG[2Ch] bits 22-16) + 1] pixels HDPS = Horizontal Display Period Start Position= 22 pixels, because REG[28h] bits 9-0 = 0 HDP = Horizontal Display Period = [((REG[24h] bits 6-0) + 1) x 8] pixels *For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16. *HPS should comply with the following formula: HPS > HDP + 22 HPS + HPW < HT *Panel Type Bits (REG[0Ch] bits 1-0) = 00b (STN) *FPFRAME Pulse Polarity Bit (REG[3Ch] bit 23) = 1 (active high) *FPLINE Polarity Bit (REG[2Ch] bit 23) = 1 (active high) *MOD1 is the MOD signal when REG[0Ch] bits 21-16 = 0 (MOD toggles every FPFRAME) *MOD2 is the MOD signal when REG[0Ch] bits 21-16 = n (MOD toggles every n FPLINE) Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 54 Epson Research and Development Vancouver Design Center 6.5.2 Single Monochrome 4-Bit Panel Timing VDP VNDP FPFRAME FPLINE DRDY (MOD) FPDAT[7:4] Invalid LINE1 LINE2 LINE3 LINE4 LINE239 LINE240 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP HNDP FPSHIFT FPDAT7 Invalid 1-1 1-5 1-317 Invalid FPDAT6 FPDAT5 Invalid 1-2 1-6 1-318 Invalid Invalid 1-3 1-7 1-319 Invalid FPDAT4 Invalid 1-4 1-8 1-320 Invalid * Diagram drawn with 2 FPLINE vertical blank period Example timing for a 320x240 panel Figure 6-16: Single Monochrome 4-Bit Panel Timing VDP VNDP HDP HNDP = Vertical Display Period = (REG[34h] bits 9:0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines = Horizontal Display Period = ((REG[24h] bits 6:0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 55 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 t13 1 FPDAT[7:4] 2 Figure 6-17: Single Monochrome 4-Bit Panel A.C. Timing Table 6-21: Single Monochrome 4-Bit Panel A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[7:4] setup to FPSHIFT falling edge FPDAT[7:4] hold to FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 2 4 2 2 1 2 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 2, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 56 Epson Research and Development Vancouver Design Center 6.5.3 Single Monochrome 8-Bit Panel Timing VDP VNDP FPFRAME FPLINE DRDY (MOD) FPDAT[7:0] LINE1 Invalid LINE2 LINE3 LINE4 LINE479 LINE480 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP HNDP FPSHIFT FPDAT7 Invalid 1-1 1-9 1-633 Invalid FPDAT6 Invalid 1-2 1-10 1-634 Invalid FPDAT5 FPDAT4 FPDAT3 Invalid 1-3 1-11 1-635 Invalid Invalid 1-4 1-12 1-636 Invalid Invalid 1-5 1-13 1-637 Invalid FPDAT2 Invalid 1-6 1-14 1-638 Invalid FPDAT1 FPDAT0 Invalid 1-7 1-15 1-639 Invalid Invalid 1-8 1-16 1-640 Invalid * Diagram drawn with 2 FPLINE vertical blank period Example timing for a 640x480 panel Figure 6-18: Single Monochrome 8-Bit Panel Timing VDP VNDP HDP HNDP = Vertical Display Period = (REG[34h] bits 9:0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines = Horizontal Display Period = ((REG[24h] bits 6:0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 57 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 t13 1 FPDAT[7:0] 2 Figure 6-19: Single Monochrome 8-Bit Panel A.C. Timing Table 6-22: Single Monochrome 8-Bit Panel A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[7:0] setup to FPSHIFT falling edge FPDAT[7:0] hold to FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 4 8 4 4 4 4 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 4, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 58 Epson Research and Development Vancouver Design Center 6.5.4 Single Color 4-Bit Panel Timing VNDP VDP FPFRAME FPLINE DRDY (MOD) FPDAT[7:4] LINE1 Invalid LINE2 LINE3 LINE4 LINE239 LINE240 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP .5Ts FPSHIFT FPDAT7 FPDAT6 FPDAT5 Notes: FPDAT4 .5Ts .5Ts Invalid 1-R1 .5Ts .5Ts 1-G2 .5Ts .5Ts .5Ts .5Ts .5Ts .5Ts .5Ts HNDP 2.5Ts .5Ts .5Ts .5Ts .5Ts .5Ts .5Ts 1-B3 1-B319 Invalid Invalid 1-G1 1-B2 1-R4 1-R320 Invalid Invalid 1-B1 1-R3 1-G4 1-G320 Invalid Invalid 1-R2 1-G3 1-B4 1-B320 Invalid - FPSHIFT uses extended low states in order to process 8 pixels in 6 FPSHIFT clocks - Ts = Pixel clock period (PCLK) - Diagram drawn with 2 FPLINE vertical blank period - Example timing for a 320x240 panel Figure 6-20: Single Color 4-Bit Panel Timing VDP VNDP HDP HNDP = Vertical Display Period = (REG[34h] bits 9:0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines = Horizontal Display Period = ((REG[24h] bits 6:0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 59 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 t13 1 FPDAT[7:4] 2 Figure 6-21: Single Color 4-Bit Panel A.C. Timing Table 6-23: Single Color 4-Bit Panel A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[7:4] setup to FPSHIFT falling edge FPDAT[7:4] hold to FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 0.5 1 0.5 0.5 0.5 0.5 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 1.5), if negative add t3min = HDPS - (HPS + t4min) + 1, if negative add t3min Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 60 Epson Research and Development Vancouver Design Center 6.5.5 Single Color 8-Bit Panel Timing (Format 1) VNDP VDP FPFRAME FPLINE FPDAT[7:0] LINE1 Invalid LINE2 LINE3 LINE4 LINE239 LINE240 Invalid 2Ts 2Ts LINE1 LINE2 FPLINE HDP 2Ts FPSHIFT 2Ts 2Ts 4Ts 2Ts 2Ts 2Ts 4Ts 2Ts 2Ts 4Ts 2Ts 4Ts 2Ts 2Ts 4Ts 2Ts HNDP 2Ts 2Ts 2Ts 4Ts 2Ts 2Ts 4Ts 2Ts FPSHIFT2 2Ts 2Ts 4Ts 2Ts 2Ts 2Ts 1R316 2Ts 2Ts FPDAT7 Invalid 1-R1 1-G1 1-G6 1-B6 1-B11 1-R12 1R316 Invalid FPDAT6 Invalid 1-B1 1-R2 1-R7 1-G7 1-G12 1-B12 1B316 Invalid FPDAT5 FPDAT4 FPDAT3 Invalid 1-G2 1-B2 1-B7 1-R8 1-R13 1-G13 1G317 Invalid Invalid 1-R3 1-G3 1-G8 1-B8 1-B13 1-R14 1R318 Invalid Invalid 1-B3 1-R4 1-R9 1-G9 1-G14 1-B14 1B318 Invalid FPDAT2 Invalid 1-G4 1-B4 1-B9 1-R10 1-R15 1-G15 1G319 Invalid FPDAT1 Invalid 1-R5 1-G5 1-G10 1-B10 1-B15 1-R16 1R320 Invalid FPDAT0 Invalid 1-B5 1-R6 1-R11 1-G11 1-G16 1-B16 1B320 Invalid Notes: - The duty cycle of FPSHIFT changes in order to process 16 pixels in 6 FPSHIFT/FPSHIFT2 rising edges - Ts = Pixel clock period (PCLK) - Diagram drawn with 2 FPLINE vertical blank period - Example timing for a 320x240 panel Figure 6-22: Single Color 8-Bit Panel Timing (Format 1) VDP VNDP HDP HNDP = Vertical Display Period = (REG[34h] bits 9:0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines = Horizontal Display Period = ((REG[24h] bits 6:0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 61 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE Data Timing FPLINE t6a t6b t7a t8 t9 t14 t11 t10 FPSHIFT t7b FPSHIFT2 t12 t13 t12 t13 1 FPDAT[7:0] 2 Figure 6-23: Single Color 8-Bit Panel A.C. Timing (Format 1) Table 6-24: Single Color 8-Bit Panel A.C. Timing (Format 1) Symbol t1 t2 t3 t4 t6a t6b t7a t7b t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t6amin t6bmin t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width FPSHIFT falling edge to FPLINE rising edge FPSHIFT2 falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPSHIFT2 falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT rising, FPSHIFT2 falling edge FPSHIFT2, FPSHIFT period FPSHIFT2, FPSHIFT pulse width low FPSHIFT2, FPSHIFT pulse width high FPDAT[7:0] setup to FPSHIFT2, FPSHIFT falling edge FPDAT[7:0] hold from FPSHIFT2, FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6a + t4 t6b + t4 t14 + 2 4 2 2 1 1 note 8 Typ Max 6 Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - (HDP + HDPS), if negative add t3min = HPS - (HDP + HDPS) + 2, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 62 Epson Research and Development Vancouver Design Center 6.5.6 Single Color 8-Bit Panel Timing (Format 2) VDP VNDP FPFRAME FPLINE DRDY (MOD) FPDAT[7:0] Invalid LINE1 LINE2 LINE3 LINE4 LINE239 LINE240 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP 2Ts FPSHIFT Ts Ts 2Ts 2Ts Ts Ts 2Ts HNDP 2Ts Ts Ts Ts 2Ts Ts Ts FPDAT7 FPDAT6 FPDAT5 FPDAT4 FPDAT3 Invalid 1-R1 1-B3 1-G6 Ts 1-G318 Invalid Invalid 1-G1 1-R4 1-B6 1-B318 Invalid Invalid Invalid 1-B1 1-G4 1-R7 1-R319 Invalid 1-R2 1-B4 1-G7 1-G319 Invalid Invalid 1-G2 1-R5 1-B7 1-B319 Invalid FPDAT2 Invalid 1-B2 1-G5 1-R8 1-R320 Invalid FPDAT1 Invalid 1-R3 1-B5 1-G8 1-G320 Invalid FPDAT0 Invalid 1-G3 1-R6 1-B8 1-B320 Invalid Notes: - The duty cycle of FPSHIFT changes in order to process 8 pixels in 3 FPSHIFT rising clocks - Ts = Pixel clock period (PCLK) - Diagram drawn with 2 FPLINE vertical blank period - Example timing for a 320x240 panel Figure 6-24: Single Color 8-Bit Panel Timing (Format 2) VDP VNDP HDP HNDP = Vertical Display Period = (REG[34h] bits 9:0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines = Horizontal Display Period = ((REG[24h] bits 6:0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 63 t1 Sync Timing t2 FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 t13 1 FPDAT[7:0] 2 Figure 6-25: Single Color 8-Bit Panel A.C. Timing (Format 2) Table 6-25: Single Color 8-Bit Panel A.C. Timing (Format 2) Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[7:0] setup to FPSHIFT falling edge FPDAT[7:0] hold to FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 2 2 1 1 1 1 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 1, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 64 Epson Research and Development Vancouver Design Center 6.5.7 Single Color 16-Bit Panel Timing VDP VNDP FPFRAME FPLINE DRDY (MOD) FPDAT[15:0] LINE1 Invalid LINE2 LINE3 LINE4 LINE479 LINE480 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP 3Ts FPSHIFT 2Ts 3Ts 3Ts 2Ts 3Ts 3Ts 3Ts HNDP 3Ts 3Ts 2Ts 3Ts 3Ts 1-G635 Invalid 1-G12 1-G636 Invalid 1-B7 1-R13 1-R637 Invalid 1-R3 1-G8 1-B13 1-B637 Invalid 1-B3 1-R9 1-G14 1-G638 Invalid 1-G4 1-B9 1-R15 1-R639 Invalid Invalid 1-R5 1-G10 1-B15 1-B639 Invalid Invalid 1-B5 1-R11 1-G16 1-G640 Invalid FPDAT11 FPDAT10 FPDAT9 FPDAT8 Invalid 1-G1 1-B6 1-R12 1-R636 Invalid Invalid 1-R2 1-G7 1-B12 1-B636 Invalid Invalid 1-B2 1-R8 1-G13 1-G637 Invalid Invalid 1-G3 1-B8 1-R14 1-R638 Invalid FPDAT3 Invalid 1-R4 1-G9 1-B14 1-B638 Invalid FPDAT2 Invalid 1-B4 1-R10 1-G15 1-G639 Invalid FPDAT1 Invalid 1-G5 1-B10 1-R16 1-R640 Invalid FPDAT0 Invalid 1-R6 1-G11 1-B16 1-B640 Invalid FPDAT15 FPDAT14 FPDAT13 FPDAT12 FPDAT7 FPDAT6 Invalid 1-R1 3Ts 3Ts 2Ts 1-G6 1-B11 Invalid 1-B1 1-R7 Invalid 1-G2 Invalid Invalid Invalid FPDAT5 FPDAT4 3Ts 2Ts 2Ts 3Ts Notes: - The duty cycle of FPSHIFT changes in order to process 16 pixels in 3 FPSHIFT rising clocks - Ts = Pixel clock period (PCLK) - Diagram drawn with 2 FPLINE vertical blank period - Example timing for a 640x480 panel Figure 6-26: Single Color 16-Bit Panel Timing VDP VNDP HDP HNDP = Vertical Display Period = (REG[34h] bits 9:0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines = Horizontal Display Period = ((REG[24h] bits 6:0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 65 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 t13 1 FPDAT[15:0] 2 Figure 6-27: Single Color 16-Bit Panel A.C. Timing Table 6-26: Single Color 16-Bit Panel A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[15:0] setup to FPSHIFT rising edge FPDAT[15:0] hold to FPSHIFT rising edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 3 5 2 2 2 2 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 2, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 66 Epson Research and Development Vancouver Design Center 6.5.8 Generic TFT Panel Timing VT (= 1 Frame) VPS VPW FPFRAME VDP VDPS FPLINE DRDY FPDAT[17:0] HT (= 1 Line) HPS HPW FPLINE FPSHIFT DRDY HDPS FPDAT[17:0] HDP invalid invalid Figure 6-28: Generic TFT Panel Timing VT VPS VPW VDPS VDP HT HPS HPW HDPS HDP = Vertical Total = [(REG[30h] bits 9-0) + 1] lines = FPFRAME Pulse Start Position = (REG[3Ch] bits 9-0) lines = FPFRAME Pulse Width = [(REG[3Ch] bits 18-16) + 1] lines = Vertical Display Period Start Position= (REG[38h] bits 9-0) lines = Vertical Display Period = [(REG[34h] bits 9-0) + 1] lines = Horizontal Total = [((REG[20h] bits 6-0) + 1) x 8] pixels = FPLINE Pulse Start Position = [(REG[2Ch] bits 9-0) + 1] pixels = FPLINE Pulse Width = [(REG[2Ch] bits 22-16) + 1] pixels = Horizontal Display Period Start Position= [(REG[28h] bits 9-0) + 5] pixels = Horizontal Display Period = [((REG[24h] bits 6-0) + 1) x 8] pixels *For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8. *Panel Type Bits (REG[0Ch] bits 1-0) = 01 (TFT) *FPLINE Pulse Polarity Bit (REG[2Ch] bit 23) = 0 (active low) *FPFRAME Polarity Bit (REG[3Ch] bit 23) = 0 (active low) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 67 6.5.9 9/12/18-Bit TFT Panel Timing VNDP2 VDP VNDP1 FPFRAME FPLINE FPDAT[17:0] LINE240 LINE1 LINE480 DRDY FPLINE HDP HNDP1 HNDP2 FPSHIFT DRDY FPDAT[17:0] invalid 1-1 1-2 1-320 invalid Note: DRDY is used to indicate the first pixel Example Timing for 18-bit 320x240 panel Figure 6-29: 18-Bit TFT Panel Timing VDP VNDP VNDP1 VNDP2 HDP HNDP HNDP1 HNDP2 = Vertical Display Period = VDP Lines = Vertical Non-Display Period = VNDP1 + VNDP2 = VT - VDP Lines = Vertical Non-Display Period 1 = VNDP - VNDP2 Lines = Vertical Non-Display Period 2 = VDPS - VPS Lines = Horizontal Display Period = HDP Ts = Horizontal Non-Display Period = HNDP1 + HNDP2 = HT - HDP Ts = Horizontal Non-Display Period 1 = HDPS - HPS Ts = Horizontal Non-Display Period 2 = HPS - (HDP + HDPS) Ts if negative add VT if negative add HT if negative add HT Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 68 Epson Research and Development Vancouver Design Center t1 t2 FPFRAME t3 FPLINE t4 FPLINE t5 t8 t7 t6 DRDY t9 t12 t13 t10 t11 t14 FPSHIFT t15 t16 FPDAT[17:0] invalid 1 2 319 320 invalid Note: DRDY is used to indicate the first pixel Figure 6-30: TFT A.C. Timing S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 69 Table 6-27: TFT A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 1. Ts 2. t6min 3. t8min Parameter FPFRAME cycle time FPFRAME pulse width low FPFRAME falling edge to FPLINE falling edge phase difference FPLINE cycle time FPLINE pulse width low FPLINE Falling edge to DRDY active DRDY pulse width DRDY falling edge to FPLINE falling edge FPSHIFT period FPSHIFT pulse width high FPSHIFT pulse width low FPLINE setup to FPSHIFT falling edge DRDY to FPSHIFT falling edge setup time DRDY hold from FPSHIFT falling edge Data setup to FPSHIFT falling edge Data hold from FPSHIFT falling edge = pixel clock period = HDPS - HPS = HPS - (HDP + HDPS) Min VT VPW HPS HT HPW note 2 HDP note 3 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Typ Max 250 Units Lines Lines Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts if negative add HT if negative add HT Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 70 Epson Research and Development Vancouver Design Center 6.5.10 Sharp HR-TFT Panel Timing t1 t2 FPSHIFT (DCLK) Ts FPDAT[17:0] (OB[5:0], OG[5:0], OR[5:0]) t3 1 2 3 last t4 GPIO3 (SPL) t5 t6 FPLINE (LP) t7 GPIO1 (CLS) t8 PS1 t10 GPIO0 (PS) t9 t9 t9 t9 t9 PS2 t11 PS3 t12 t12 GPIO2 (REV) Figure 6-31: Sharp HR-TFT Panel Horizontal Timing Table 6-28: Sharp HR-TFT Panel Horizontal Timing Symbol Parameter Horizontal total period FPSHIFT (DCLK) active Horizontal display period GPIO3 (SPL) pulse width FPLINE (LP) pulse width FPLINE (LP) falling edge to GPIO3 (SPL) rising edge GPIO1 (CLS) pulse width GPIO1 (CLS) falling edge to GPIO0 (PS1) rising edge GPIO0 (PS2) toggle width GPIO0 (PS2) first falling edge to GPIO0 (PS2) first rising edge GPIO0 (PS3) pulse width GPIO2 (REV) toggle position to FPLINE (LP) rising edge t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 1. Ts 2. t1typ 3. t2typ 4. t3typ Min 8 9 8 1 2 0 0 0 0 0 0 Typ note 2 note 3 note 4 1 note 5 note 6 note 7 note 8 note 9 note 10 note 11 note 12 Max 1024 1025 1024 256 511 63 127 255 127 31 Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = [(REG[20h] bits 6-0) + 1] * 8 = [((REG[24h] bits 6-0) + 1) * 8] + 1 = [(REG[24h] bits 6-0) + 1] * 8 S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center 5. t5typ 6. t6typ 7. t7typ 8. t8typ 9. t9typ 10. t10typ 11. t11typ 12. t12typ Page 71 = (REG[2Ch] bits 22-16) + 1 = (REG[28h] bits 9-0) - (REG[2Ch] bits 22-16) + 2 = (REG[A0h] bits 8-0) = (REG[A4h] bits 5-0) = (REG[ACh] bits 6-0) = (REG[A8h] bits 7-0) = (REG[B0h] bits 6-0) = (REG[B4h] bits 4-0) t1 t2 FPFRAME (SPS) t4 t3 t3 t4 t3 FPLINE (LP) t5 t6 Vertical Display Period FPDAT[17:0] (OB[5:0], OG[5:0], OR[5:0]) Line 1 Last t7 Driving period for PS3 Driving period for PS3 Driving period for PS1 or PS2 Figure 6-32: Sharp HR-TFT Panel Vertical Timing Table 6-29: Sharp HR-TFT Panel Vertical Timing Symbol Parameter Min Typ Max t1 FPFRAME (SPS) pulse width 1 note 3 8 t2 Vertical total period 1 1024 t3 FPFRAME (SPS) rising/falling edge to FPLINE (LP) rising edge t4 FPLINE (LP) rising edge to FPFRAME (SPS) rising/falling edge Vertical display start position Vertical display period Extra driving period for GPIO0 (PS1/2) note 4 1 (note 5) note 5 note 6 note 7 note 8 t5 t6 t7 1. Lines 2. Ts 3. t1typ 4. t2typ 5. t3typ 6. t5typ 7. t6typ 8. t7typ 0 0 1 0 Units Lines (note 1) Lines Ts (note 2) 1023 1023 1024 7 Ts Lines Lines Lines = 1 Horizontal Line = pixel clock period = (REG[3Ch] bits 18-16) + 1 = (REG[30h] bits 9-0) + 1 The FPFRAME (SPS) rising/falling edge can occur before or after FPLINE (LP) rising edge depending on the value stored in the FPLINE Pulse Start Position bits (REG[2Ch] bits 9-0). To obtain the case indicated by t3, set the FPLINE Pulse Start Position bits to 0 and the FPFRAME (SPS) rising/falling edge will occur 1 Ts before the FPLINE (LP) rising edge. To obtain the case indicated by t4, set the FPLINE Pulse Start Position bits to a value between 1 and the Horizontal Total - 1. Then t4 = (Horizontal Total Period - 1) - (REG[2Ch] bits 9-0) = (REG[38h] bits 9-0) = (REG[34h] bits 9-0) + 1 = (REG[B8h] bits 2-0) Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 72 Epson Research and Development Vancouver Design Center 6.5.11 Casio TFT Panel Timing Vertical Timing FPFRAME (GSRT) t1 FPLINE (GPCK) t2 Horizontal Timing t3 FPLINE (GPCK) t4 FPSHIFT (CLK) t5 t6 FPDAT[17:0] t7 t8 GPIO3 (STH) GPIO0 (POL) GPIO1 (GRES) t10 t9 t11 GPIO2 (FRP) Figure 6-33: Casio TFT Horizontal Timing Table 6-30: Casio TFT Horizontal Timing Symbol Parameter Horizontal pulse start position Horizontal total Horizontal pulse width Pixel clock period Horizontal display period start position Horizontal display period FPLINE (GPCK) rising edge to GPIO3 (STH) rising edge GPIO3 (STH) pulse width FPLINE (GPCK) rising edge to GPIO1 (GRES) falling edge GPIO1 (GRES) falling edge to FPLINE (GPCK) rising edge FPLINE (GPCK) rising edge to GPIO2 (FRP) toggle point t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 1. 2. 3. 4. 5. Ts t1typ t2typ t3typ t4typ Min 1 8 1 4 8 0 0 1 0 Typ note 2 note 3 note 4 note 5 note 6 note 7 note 8 1 note 9 note 10 note 11 Max 1024 1024 128 1027 1024 63 63 64 127 Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = [(REG[2Ch] bits 9-0) + 1) = [(REG[20h] bits 6-0) + 1) * 8 = [(REG[2Ch] bits 22-16) + 1 = depends on the pixel clock (PCLK) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center 6. 7. 8. 9. 10. 11. t5typ t6typ t7typ t9typ t10typ t11typ Page 73 = (REG[28h] bits 9-0) + 4 = [(REG[24h] bits 6-0) + 1] * 8 = (REG[C0h] bits 29-24) = (REG[C0h] bits 5-0) = (REG[C0h] bits 13-8) + 1 = (REG[C0h] bits 22-16) t3 FPFRAME (GSRT) t2 t1 FPLINE (GPCK) GPIO1 (GRES) GPIO2 (FRP) GPIO0 (POL) t4 t5 FPDAT[17:0] Figure 6-34: Casio TFT Vertical Timing Table 6-31: Casio TFT Vertical Timing Symbol t1 t2 t3 t4 t5 1. 2. 3. 4. 5. 6. Lines t1typ t2typ t3typ t4typ t5typ Parameter Vertical total Vertical pulse start Vertical pulse width Vertical display period start position Vertical display period Min 1 0 1 1 1 Typ note 2 note 3 note 4 note 5 note 6 Max 1024 1023 8 1024 1024 Units lines (note 1) lines lines lines lines = 1 Horizontal Line = (REG[30h] bits 9-0) + 1 = (REG[3Ch] bits 9-0) = (REG[3Ch] bits 18-16) + 1 = (REG[38h] bits 9-0) + 1 = (REG[34h] bits 9-0) + 1 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 74 Epson Research and Development Vancouver Design Center 6.5.12 TFT Type 2 Panel Timing t1 t2 FPLINE (STB) GPIO0 (VCLK) t3 t4 t5 t6 GPIO3 (STH) FPSHIFT (CLK) t7 D[17:0] t8 1 DRDY (INV) 2 Last t9 t11 t10 GPIO1 (AP) t12 GPIO2 (POL) Figure 6-35: TFT Type 2 Horizontal Timing Table 6-32: TFT Type 2 Horizontal Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 Parameter Horizontal total period FPLINE (STB) pulse width GPIO0 (VCLK) rising edge to FPLINE (STB) rising edge FPLINE (STB) rising edge to GPIO0 (VCLK) falling edge FPLINE (STB) rising edge to GPIO3 (STH) rising edge GPIO3 (STH) pulse width Data setup time Data hold time Horizontal display period FPLINE (STB) rising edge to GPIO1 (AP) rising edge GPIO1 (AP) pulse width FPLINE (STB) rising edge to GPIO2 (POL) toggle position S1D13A05 X40A-A-001-07 Min 1 7 7 0.5 0.5 8 40 20 Typ note 2 5 note 3 note 4 note 5 1 Max 1024 note 6 note 7 note 8 10 1024 90 270 16 16 Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 75 1. Ts 2. t1typ 3. t3typ = pixel clock period = [(REG[20h] bits 6-0) + 1] * 8 = (REG[BCh] bits 1-0) Selected from 7, 9, 12 or 16 Ts 4. t4typ = (REG[BCh] bits 4-3) Selected from 7, 9, 12 or 16 Ts 5. t5typ = (REG[28h] bits 9-0) + 3 Ts 6. t9typ = [(REG[24h] bits 6-0) + 1] * 8 7. t10typ = (REG[BCh] bits 9-8) Selected from 40, 52, 68 or 90 Ts 8. t11typ = (REG[BCh] bits 13-11) Selected from 20, 40, 80, 120, 150, 190, 240 or 270 Ts t1 t2 FPFRAME (STV) t3 GPIO3 (STH) t4 t5 Line1 D[17:0] Line2 Last GPIO2 (POL) (Odd Frame) GPIO2 (POL) (Even Frame) GPIO2 (POL) (Alternate Timing) Figure 6-36: TFT Type 2 Vertical Timing Table 6-33: TFT Type 2 Vertical Timing Symbol t1 t2 t3 t4 t5 1. 2. 3. 4. Ts Lines t4typ t5typ Parameter Vertical total period FPFRAME (STV) pulse width GPIO3 (STH) rising edge to FPFRAME (STV) rising edge Vertical display start position Vertical display period Min 8 0 1 Typ 1 0 note 3 note 4 Max 1024 1024 1024 Units Lines Lines Ts (note 1) Lines (note 2) Ts = pixel clock period = 1 Horizontal Line = (REG[38h] bits 9-0) = (REG[34h] bits 9-0) Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 76 Epson Research and Development Vancouver Design Center 6.5.13 TFT Type 3 Panel Timing t1 t2 FPLINE (LP) t3 t4 GPIO3 (EIO) FPSHIFT (CPH) t5 D[17:0] t7 t6 1 DRDY (INV) t8 2 t10 t9 GPIO1 (OE) t11 GPIO2 (POL) t12 GPO1 (VCOM) t13 t14 GPIO0 (CPV) Figure 6-37: TFT Type 3 Horizontal Timing S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 77 Table 6-34: TFT Type 3 Horizontal Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 3. 4. 6. 7. 8. 9. 10. 7. Ts t1typ t2typ t3typ t4typ t8typ t9typ t10typ t11typ t12typ t14typ Parameter Horizontal total period FPLINE (LP) pulse width FPLINE (LP) rising edge to GPIO3 (EIO) rising edge GPIO3 (EIO) pulse width GPIO3 (EIO) rising edge to 1st data Data setup time Data hold time Horizontal display period FPLINE (LP) rising edge to GPIO1 (OE) rising edge GPIO1 (OE) pulse width FPLINE (LP) rising edge to GPIO2 (POL) toggle position FPLINE (LP) rising edge to GPO1 (VCOM) toggle position FPLINE (LP) rising edge to GPIO0 (CPV) rising edge GPIO0 (CPV) pulse width Min 8 1 Typ Max 1024 256 1 1 0.5 0.5 8 0 0 0 0 1024 512 512 512 512 0 0 512 Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = [(REG[20h] bits 6-0) + 1] * 8 = (REG[2Ch] bits 22-16) + 1 = (REG[28h] bits 9-0) + 4 Ts = Selected from 0, 1, 2 Ts = [(REG[24h] bits 6-0) + 1] * 8 = (REG[D8h] bits 15-8) * 2 = (REG[D8h] bits 23-16) * 2 = (REG[D8h] bits 31-24) * 2 = (REG[DCh] bits 7-0) * 2 = (REG[DCh] bits 15-8) * 2 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 78 Epson Research and Development Vancouver Design Center t1 t2 FPFRAME (STV) t3 t3 GPIO0 (CPV) FPLINE (LP) D[17:0] t4 t5 Line1 Line2 Last t5 GPIO1 (OE) t6 t7 GPO2 (XOEV) GPIO2 (POL) (Odd Frame) GPO1 (VCOM) (Odd Frame) GPIO2 (POL) (Even Frame) GPO1 (VCOM) (Even Frame) Figure 6-38: TFT Type 3 Vertical Timing S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 79 Table 6-35: TFT Type 3 Vertical Timing Symbol t1 t2 t3 t4 t5 t6 t7 1. 2. 2. 3. 4. Ts t4typ t5typ t6typ t7typ Parameter Vertical total period FPFRAME (STV) pulse width GPIO0 (CPV) rising edge to FPFRAME (STV) rising (falling) edge Vertical display start position Vertical display period GPO2 (XOEV) rising edge to GPIO0 (CPV) rising edge GPIO0 (CPV) rising edge to GPO2 (XOEV) falling edge Min 1 Typ Max 1024 1 0.5 1 1 0 0 1024 512 512 Units Lines Lines Lines Lines Lines Ts Ts = pixel clock period = (REG[38h] bits 9-0) = (REG[34h] bits 9-0) + 1 = (REG[DCh] bits 23-16) * 2 = (REG[DCh] bits 31-24) * 2 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 80 Epson Research and Development Vancouver Design Center 6.5.14 TFT Type 4 Panel Timing VNDP2 VDP VNDP1 FPFRAME FPLINE FPDAT[17:0] LINE480 LINE1 LINE480 DRDY FPLINE HDP HNDP1 HNDP2 FPSHIFT DRDY FPDAT[17:0] invalid 1-1 1-2 1-640 invalid Note: DRDY is used to indicate the first pixel Example Timing for 12-bit 640x480 panel Figure 6-39: TFT Type 4 Panel Timing VDP VNDP VNDP1 VNDP2 HDP HNDP HNDP1 HNDP2 = Vertical Display Period = VDP Lines = Vertical Non-Display Period = VNDP1 + VNDP2 = VT - VDP Lines = Vertical Non-Display Period 1 = VNDP - VNDP2 Lines = Vertical Non-Display Period 2 = VDPS - VPS Lines = Horizontal Display Period = HDP Ts = Horizontal Non-Display Period = HNDP1 + HNDP2 = HT - HDP Ts = Horizontal Non-Display Period 1 = HDPS - (HPS + 1) + 5 Ts = Horizontal Non-Display Period 2 = (HPS + 1) - (HDP + HDPS + 5) Ts if negative add VT if negative add HT if negative add HT S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 81 t1 t2 FPFRAME t3 FPLINE t4 FPLINE t5 t6 t9 t7 t8 DRDY t10 t13 t15 t14 t11 t12 FPSHIFT t16 t17 FPDAT[17:0] invalid 1 2 639 640 invalid Note: DRDY is used to indicate the first pixel Figure 6-40: TFT Type 4 A.C. Timing Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 82 Epson Research and Development Vancouver Design Center Table 6-36: TFT Type 4 A.C. Timing Symbol Parameter FPFRAME cycle time FPFRAME pulse width low FPFRAME falling edge to FPLINE falling edge phase difference FPLINE cycle time FPLINE pulse width low FPLINE Falling edge to DRDY active DRDY active to data setup DRDY pulse width DRDY falling edge to FPLINE falling edge FPSHIFT period FPSHIFT pulse width high FPSHIFT pulse width low FPLINE setup to FPSHIFT falling edge DRDY to FPSHIFT falling edge setup time DRDY hold from FPSHIFT falling edge Data setup to FPSHIFT falling edge Data hold from FPSHIFT falling edge t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 1. Ts 2. t6min 3. t8min = pixel clock period = HDPS - (HPS + 1) + 5 = (HPS + 1) - (HDP + HDPS + 5) Min VT VPW HPS + 1 HT HPW note 2 Typ 250 8 HDP note 3 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Max Units Lines Lines Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts if negative add HT if negative add HT S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 83 6.6 USB Timing Data Signal Rise and Fall Time Figure 6-41 Data Signal Rise and Fall Time Figure 6-42 Differential Data Jitter Figure 6-43 Differential to EOP Transition Skew and EOP Width Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 84 Epson Research and Development Vancouver Design Center Figure 6-44 Receiver Jitter Tolerance Table 6-37 USB Interface Timing Symbol Parameter USBFREQ USB Clock Frequency TPERIOD USB Clock Period TR Conditions Waveform Typ Max 48 CL = 50 pF Notes 1,2 Figure 6-41 TRFM Rise/Fall time matching (TR/ TF) Figure 6-41 VCRS Output Signal Crossover Voltage Unit MHz 1 ------------------------USBFREQ Figure 6-41 Rise & Fall Times TF Min 4 20 4 20 90 110 % 1.3 2.0 V 28Note 5 ns 44 Ω 11.97 12 12.03 Mbs Figure 6-42 -3.5 0 3.5 ns Source Differential Driver Jitter for Notes 3,4 Paired Transitions Figure 6-42 -4.0 0 4.0 ns TDEOP Differential to EOP Transition Skew Note 4 Figure 6-43 -2 0 5 ns TEOPT Source EOP Width Note 4 Figure 6-43 160 167 175 ns TJR1 Receiver Data Jitter Tolerance to Next Transition Note 4 Figure 6-44 -18.5 0 18.5 ns TJR2 Receiver Data Jitter Tolerance for Note 4 Paired Transitions Figure 6-44 -9 0 9 ns TEOPR1 EOP Width at Receiver; Must reject as EOP Note 4 Figure 6-43 40 ns TEOPR2 EOP Width at Receiver; Must accept as EOP Note 4 Figure 6-43 80 ns ZDRV Driver Output Resistance TDRATE Data Rate TDDJ1 Source Differential Driver Jitter to Notes 3,4. Next Transition TDDJ2 1 2 3 4 5 Steady State Drive Measured from 10% to 90% of the data signal. The rising and falling edges should be smoothly transitioning (monotonic). Timing difference between the differential data signals. Measured at crossover point of differential data signals. 20 Ω is placed in series to meet this USB specification. The actual driver output impedance is 15 Ω. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 85 7 Clocks 7.1 Clock Descriptions 7.1.1 BCLK BCLK is an internal clock derived from CLKI or CLKI2 (see REG[04h] bit 0). If CLKI is selected as the source, BCLK can be a divided version (÷1, ÷2) of CLKI. CLKI is typically derived from the host CPU bus clock. The source clock options for BCLK may be selected as in the following table. Table 7-1: BCLK Clock Selection Source Clock Options BCLK Selection CLKI CNF6 = 0 CLKI ÷ 2 CNF6 = 1 Note For synchronous bus interfaces, it is recommended that BCLK be set the same as the CPU bus clock (not a divided version of CLKI) e.g. SH-3, SH-4. 7.1.2 MCLK MCLK provides the internal clock required to access the embedded SRAM. The S1D13A05 is designed with efficient power saving control for clocks (clocks are turned off when not used); reducing the frequency of MCLK does not necessarily save more power. Furthermore, reducing the MCLK frequency relative to the BCLK frequency increases the CPU cycle latency and so reduces screen update performance. For a balance of power saving and performance, the MCLK should be configured to have a high enough frequency setting to provide sufficient screen refresh as well as acceptable CPU cycle latency. Note The maximum frequency of MCLK is 50MHz (30MHz if running CORE VDD at 2.0V ± 10%). As MCLK is derived from BCLK, when BCLK is greater than 50MHz, MCLK must be divided using REG[04h] bits 5-4. The source clock options for MCLK may be selected as in the following table. Table 7-2: MCLK Clock Selection Source Clock Options MCLK Selection BCLK REG[04h] bits 5-4 = 00 BCLK ÷ 2 REG[04h] bits 5-4 = 01 BCLK ÷ 3 REG[04h] bits 5-4 = 10 BCLK ÷ 4 REG[04h] bits 5-4 = 11 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 86 Epson Research and Development Vancouver Design Center 7.1.3 PCLK PCLK is the internal clock used to control the panel. It should be chosen to match the optimum frame rate of the panel. See Section 10, “Frame Rate Calculation” on page 162 for details on the relationship between PCLK and frame rate. Some flexibility is possible in the selection of PCLK. Firstly, panels typically have a range of permissible frame rates. Secondly, it may be possible to choose a higher PCLK frequency and tailor the horizontal non-display period to bring down the frame-rate to its optimal value. The source clock options for PCLK may be selected as in the following table. Table 7-3: PCLK Clock Selection Source Clock Options PCLK Selection MCLK REG[08h] bits 7-0 = 00h MCLK ÷2 MCLK ÷3 MCLK ÷4 MCLK ÷8 REG[08h] bits 7-0 = 10h REG[08h] bits 7-0 = 20h REG[08h] bits 7-0 = 30h REG[08h] bits 7-0 = 40h BCLK REG[08h] bits 7-0 = 01h BCLK ÷2 REG[08h] bits 7-0 = 11h BCLK ÷3 REG[08h] bits 7-0 = 21h BCLK ÷4 REG[08h] bits 7-0 = 31h BCLK ÷8 REG[08h] bits 7-0 = 41h CLKI REG[08h] bits 7-0 = 02h CLKI ÷2 REG[08h] bits 7-0 = 12h CLKI ÷3 REG[08h] bits 7-0 = 22h CLKI ÷4 CLKI ÷8 REG[08h] bits 7-0 = 32h CLKI2 REG[08h] bits 7-0 = 03h REG[08h] bits 7-0 = 42h CLKI2 ÷2 REG[08h] bits 7-0 = 13h CLKI2 ÷3 REG[08h] bits 7-0 = 23h CLKI2 ÷4 RREG[08h] bits 7-0 = 33h CLKI2 ÷8 REG[08h] bits 7-0 = 43h S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 87 There is a relationship between the frequency of MCLK and PCLK that must be maintained. Table 7-4: Relationship between MCLK and PCLK SwivelView Orientation Color Depth (bpp) MCLK to PCLK Relationship 16 fMCLK ≥ fPCLK 8 fMCLK ≥ fPCLK ÷ 2 4 fMCLK ≥ fPCLK ÷ 4 2 fMCLK ≥ fPCLK ÷ 8 1 fMCLK ≥ fPCLK ÷16 16/8/4/2/1 fMCLK ≥ 1.25fPCLK SwivelView 0° and 180° SwivelView 90° and 270° 7.1.4 PWMCLK PWMCLK is the internal clock used by the Pulse Width Modulator for output to the panel. The source clock options for PWMCLK may be selected as in the following table. Table 7-5: PWMCLK Clock Selection Source Clock Options PWMCLK Selection CLKI REG[70h] bits 2-1 = 00 CLKI2 REG[70h] bits 2-1 = 01 MCLK REG[70h] bits 2-1 = 10 PCLK REG[70h] bits 2-1 = 11 For further information on controlling PWMCLK, see “PWM Clock Configuration Register” on page 121.. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 88 Epson Research and Development Vancouver Design Center 7.2 Clock Selection The following diagram provides a logical representation of the S1D13A05 internal clocks used for the LCD controller. CLKI 0 ÷2 0 1 BCLK 1 CNF61 REG[04h] bit 0 REG[04h] bits 5-4 00 ÷2 01 ÷3 10 ÷4 11 MCLK 00 01 000 10 CLKI2 11 REG[08h] bits 1,0 ÷2 001 ÷3 010 ÷4 011 ÷8 1xx PCLK 00 REG[08h] bits 6-4 01 PWMCLK 10 11 REG[70h] bits 2-1 Figure 7-1: Clock Selection Note 1 CNF6 must be set at RESET#. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 89 7.3 Clocks versus Functions Table 7-6: “S1D13A05 Internal Clock Requirements”, lists the internal clocks required for the following S1D13A05 functions. Table 7-6: S1D13A05 Internal Clock Requirements Function Bus Clock (BCLK) Memory Clock (MCLK) Pixel Clock (PCLK) PWM Clock (PWMCLK) USB Clock (USBCLK) Register Read/Write Required Not Required Not Required Not Required1 Not Required Memory Read/Write Required Required Not Required Not Required1 Not Required Look-Up Table Register Read/Write Required Required Not Required Not Required1 Not Required Software Power Save Required Not Required Not Required Not Required1 Not Required 1 LCD Output Required Required Required Not Required Not Required USB Register Read/Write Required Not Required Not Required Not Required Required Note 1 PWMCLK is an optional clock (see Section 7.1.4, “PWMCLK” on page 87). Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 90 Epson Research and Development Vancouver Design Center 8 Registers This section discusses how and where to access the S1D13A05 registers. It also provides detailed information about the layout and usage of each register. 8.1 Register Mapping The S1D13A05 registers are memory-mapped. When the system decodes the input pins as CS# = 0 and M/R# = 0, the registers may be accessed. The register space is decoded by AB[17:0] and is mapped as follows. Table 8-1: S1D13A05 Register Mapping M/R# Address Size Function 1 00000h to 40000h 256K bytes SRAM memory 0 0000h to 00E3h 227 bytes Configuration registers 0 4000h to 4054h 84 bytes USB registers 0 8000h to 8019h 25 bytes 2D Acceleration Registers 0 10000h to 1FFFEh 65536 bytes (64K bytes) 2D Accelerator Data Port S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 91 8.2 Register Set The S1D13A05 register set is as follows. Table 8-2: S1D13A05 Register Set Register Pg Register Pg LCD Register Descriptions (Offset = 0h) Read-Only Configuration Registers REG[00h] Product Information Register 93 Clock Configuration Registers REG[04h] Memory Clock Configuration Register 94 REG[08h] Pixel Clock Configuration Register 95 Panel Configuration Registers REG[0Ch] Panel Type & MOD Rate Register 96 REG[14h] Power Save Configuration Register REG[10h] Display Settings Register 97 100 Look-Up Table Registers REG[18h] Look-Up Table Write Register 101 REG[1Ch] Look-Up Table Read Register 102 Display Mode Registers REG[20h] Horizontal Total Register 103 REG[24h] Horizontal Display Period Register 103 REG[28h] Horizontal Display Period Start Position Register 104 REG[2Ch] FPLINE Register 104 REG[30h] Vertical Total Register 105 REG[34h] Vertical Display Period Register 106 REG[38h] Vertical Display Period Start Position Register 106 REG[3Ch] FPFRAME Register 107 REG[40h] Main Window Display Start Address Register 108 REG[44h] Main Window Line Address Offset Register 108 REG[48h] Extended Panel Type Register 108 Picture-in-Picture Plus (PIP+) Registers REG[50h] PIP+ Window Display Start Address Register 110 REG[54h] PIP+ Window Line Address Offset Register 110 REG[58h] PIP+ Window X Positions Register 111 REG[5Ch] PIP+ Window Y Positions Register 113 Miscellaneous Registers REG[60h] Reserved 115 REG[64h] GPIO Status and Control Register 115 REG[68h] GPO Status and Control Register 119 REG[70h] PWM Clock Configuration Register 121 REG[74h] PWMOUT Duty Cycle Register 122 REG[80h] Scratch Pad A Register 123 REG[84h] Scratch Pad B Register 123 REG[88h] Scratch Pad C Register 123 Extended Panel Registers REG[A0h] HR-TFT CLS Width Register 124 REG[A4h] HR-TFT PS1 Rising Edge Register 124 REG[A8h] HR-TFT PS2 Rising Edge Register 124 REG[ACh] HR-TFT PS2 Toggle Width Register 125 REG[B0h] HR-TFT PS3 Signal Width Register 125 REG[B4h] HR-TFT REV Toggle Point Register 125 REG[B8h] HR-TFT PS1/2 End Register 126 REG[BCh] Type 2 TFT Configuration Register 126 REG[C0h] Casio TFT Timing Register 129 REG[D8h] Type 3 TFT Configuration 0 Register 128 REG[DCh] Type 3 TFT Configuration 1 Register 129 REG[E0h] Type 3 TFT PCLK Divide Register 130 REG[E4h] Type 3 TFT Partial Mode Display Control Register 131 REG[E8h] Type 3 TFT Partial Area 0 Positions Register 132 REG[ECh] Type 3 TFT Partial Area 1 Positions Register 132 REG[F0h] Type 3 TFT Partial Area 2 Positions Register 133 REG[F4h] Type 3 TFT Command Store Register 133 REG[F8h] Type 3 TFT Miscellaneous Register 134 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 92 Epson Research and Development Vancouver Design Center Table 8-2: S1D13A05 Register Set Register Pg Register Pg USB Register Descriptions (Offset = 4000h) REG[4000h] Control Register 135 REG[4002h] Interrupt Enable Register 0 136 REG[4004h] Interrupt Status Register 0 137 REG[4006h] Interrupt Enable Register 1 138 REG[4008h] Interrupt Status Register 1 138 REG[4010h] Endpoint 1 Index Register 139 REG[4012h] Endpoint 1 Receive Mailbox Data Register 139 REG[4018h] Endpoint 2 Index Register 139 REG[401Ah] Endpoint 2 Transmit Mailbox Data Register 140 REG[401Ch] Endpoint 2 Interrupt Polling Interval Register 140 REG[4020h] Endpoint 3 Receive FIFO Data Register 140 REG[4022h] Endpoint 3 Receive FIFO Count Register 140 REG[4024h] Endpoint 3 Receive FIFO Status Register 141 REG[4026h] Endpoint 3 Maximum Packet Size Register 141 REG[4028h] Endpoint 4 Transmit FIFO Data Register 141 REG[402Ah] Endpoint 4 Transmit FIFO Count Register 142 REG[402Ch] Endpoint 4 Transmit FIFO Status Register 142 REG[402Eh] Endpoint 4 Maximum Packet Size Register 142 REG[4030h] Endpoint 4 Maximum Packet Size Register 142 REG[4032h] USB Status Register 143 REG[4034h] Frame Counter MSB Register 144 REG[4036h] Frame Counter LSB Register 144 REG[4038h] Extended Register Index 144 REG[403Ah] Extended Register Data 144 REG[403Ah], Index[00h] Vendor ID MSB 145 REG[403Ah], Index[01h] Vendor ID LSB 145 REG[403Ah], Index[02h] Product ID MSB 145 REG[403Ah], Index[03h] Product ID LSB 145 145 REG[403Ah], Index[04h] Release Number MSB 145 REG[403Ah], Index[05h] Release Number LSB REG[403Ah], Index[06h] Receive FIFO Almost Full Threshold 146 REG[403Ah], Index[07h] Transmit FIFO Almost Empty Threshold 146 REG[403Ah], Index[08h] USB Control 146 REG[403Ah], Index[09h] Maximum Power Consumption 146 REG[403Ah], Index[0Ah] Packet Control 147 REG[403Ah], Index[0Bh] Reserved 148 REG[403Ah], Index[0Ch] FIFO Control 148 REG[4040h] USBFC Input Control Register 148 REG[4042h] Reserved 149 REG[4044h] Pin Input Status / Pin Output Data Register 149 REG[4046h] Interrupt Control Enable Register 0 149 REG[4048h] Interrupt Control Enable Register 1 150 REG[404Ah] Interrupt Control Status/Clear Register 0 150 REG[404Ch] Interrupt Control Status/Clear Register 1 151 REG[404Eh] Interrupt Control Masked Status Register 0 152 REG[4050h] Interrupt Control Masked Status Register 1 152 REG[4052h] USB Software Reset Register 152 REG[4054h] USB Wait State Register 152 2D Acceleration (BitBLT) Register Descriptions (Offset = 8000h) REG[8000h] BitBLT Control Register 153 REG[8004h] BitBLT Status Register 154 REG[8008h] BitBLT Command Register 155 REG[800Ch] BitBLT Source Start Address Register 157 REG[8010h] BitBLT Destination Start Address Register 157 REG[8014h] BitBLT Memory Address Offset Register 158 REG[8018h] BitBLT Width Register 158 REG[801Ch] BitBLT Height Register 158 REG[8020h] BitBLT Background Color Register 159 REG[8024h] BitBLT Foreground Color Register 159 2D Acceleration (BitBLT) Data Register Descriptions (Offset = 10000h) AB16-AB0 = 10000h-1FFFEh, 2D Accelerator (BitBLT) Data Memory Mapped Region Register S1D13A05 X40A-A-001-07 160 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 93 8.3 LCD Register Descriptions (Offset = 0h) Unless specified otherwise, all register bits are set to 0 during power-on. 8.3.1 Read-Only Configuration Registers Product Information Register REG[00h] Default = 2Dxx402Dh Product Code bits 5-0 31 30 29 28 Read Only Revision Code bits 1-0 27 26 25 24 n/a 23 CNF[6:0] Status 22 Display Buffer Size bits 7-0 15 14 13 12 11 21 20 19 18 3 2 Product Code bits 5-0 10 9 8 7 6 5 4 17 16 Revision Code bits 1-0 1 0 bits 31-26 Product Code These read-only bits indicate the product code. The product code is 001011 (0Bh). bits 25-24 Revision Code These are read-only bits that indicates the revision code. The revision code is 01. bits 22-16 CNF[6:0] Status These read-only status bits return the status of the configuration pins CNF[6:0]. CNF[6:0] are latched at the rising edge of RESET#. Note For a functional description of each configuration bit (CNF[6:0]), see Section 4.3, “Summary of Configuration Options” on page 25. bits 15-8 Display Buffer Size Bits [7:0] This is a read-only register that indicates the size of the SRAM display buffer measured in 4K byte increments. The S1D13A05 display buffer is 256K bytes and therefore this register returns a value of 64 (40h). Value of this register = display buffer size ÷ 4K bytes = 256K bytes ÷ 4K bytes = 64 (40h) bits 7-2 Product Code These read-only bits indicate the product code. The product code is 001011 (0Bh). bits 1-0 Revision Code These are read-only bits that indicates the revision code. The revision code is 01. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 94 Epson Research and Development Vancouver Design Center 8.3.2 Clock Configuration Registers Memory Clock Configuration Register REG[04h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 14 bits 5-4 13 12 11 20 19 MCLK Divide Select bits 1-0 n/a 15 21 10 9 8 7 6 5 18 17 16 BCLK Source Select 1 0 n/a 4 3 2 MCLK Divide Select Bits [1:0] These bits determine the divide used to generate the Memory Clock (MCLK) from the Bus Clock (BCLK). Table 8-3: MCLK Divide Selection bit 0 MCLK Divide Select Bits BCLK to MCLK Frequency Ratio 00 1:1 01 2:1 10 3:1 11 4:1 BCLK Source Select When this bit = 0, the source of the Bus Clock (BCLK) is input pin CLKI or a divided down version of CLKI. CLKI may be divided down using the CLKI to BCLK divide select configuration pin CNF6. When this bit = 1, the source of the Bus Clock (BCLK) is input pin CLKI2. Note Changing this bit allows the BCLK source to be switched in a glitch-free manner. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 95 Pixel Clock Configuration Register REG[08h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 n/a 15 bits 6-4 14 13 12 11 22 21 20 19 PCLK Divide Select bits 2-0 10 9 8 7 6 5 4 18 n/a 3 2 17 16 PCLK Source Select bits 1-0 1 0 PCLK Divide Select Bits [1:0] These bits determine the divide used to generate the Pixel Clock (PCLK) from the Pixel Clock Source. Table 8-4: PCLK Divide Selection bits 1-0 PCLK Divide Select Bits PCLK Source to PCLK Frequency Ratio 000 1:1 001 2:1 010 3:1 011 4:1 1XX 8:1 PCLK Source Select Bits [1:0] These bits determine the source of the Pixel Clock (PCLK). Table 8-5: PCLK Source Selection PCLK Source Select Bits PCLK Source 00 MCLK 01 BCLK 10 CLKI 11 CLKI2 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 96 Epson Research and Development Vancouver Design Center 8.3.3 Panel Configuration Registers Panel Type & MOD Rate Register REG[0Ch] Default = 00000000h Read/Write FPSHIFT n/a 31 30 29 28 27 26 25 14 13 12 24 HR-TFT PS Mode n/a 15 n/a Invert 11 10 9 MOD Rate bits 5-0 23 Panel Data Format Select 22 Color/ Mono Panel Select 7 6 8 21 20 Panel Data Width bits 1-0 5 19 18 17 Reserv ed n/a Panel Type bits 1-0 3 2 4 1 16 0 bit 24 FPSHIFT Invert This bit inverts the FPSHIFT signal used by active panels. For passive panels, this bit has no effect. When this bit is 0, FPSHIFT is unchanged. When this bit is 1, FPSHIFT is inverted. bits 21-16 MOD Rate Bits [5:0] These bits are for passive LCD panels only. When these bits are all 0, the MOD output signal (DRDY) toggles every FPFRAME. For a non-zero value n, the MOD output signal (DRDY) toggles every n FPLINE. bit 8 HR-TFT PS Mode This bit is for HR-TFT panels only. This bit selects the timing used for the PS signal. The alternate PS timings (PS1, PS2, PS3) result in additional power savings on the HR-TFT Panel. When this bit = 0, the PS signal uses PS1 timing. When this bit = 1, the PS signal uses PS2 timing. bit 7 Panel Data Format Select When this bit = 0, 8-bit single color passive LCD panel data format 1 is selected. For AC timing see Section 6.5.5, “Single Color 8-Bit Panel Timing (Format 1)” on page 60. When this bit = 1, 8-bit single color passive LCD panel data format 2 is selected. For AC timing see Section 6.5.6, “Single Color 8-Bit Panel Timing (Format 2)” on page 62. bit 6 Color/Mono Panel Select When this bit = 0, a monochrome LCD panel is selected. When this bit = 1, a color LCD panel is selected. bits 5-4 Panel Data Width Bits [1:0] These bits select the data width size of the LCD panel. Table 8-6: Panel Data Width Selection Panel Data Width Bits [1:0] Passive Panel Data Width Size Active Panel Data Width Size 00 4-bit 9-bit 01 8-bit 12-bit 10 16-bit 18-bit 11 Reserved Reserved S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 97 bit 3 Reserved. This bit must be set to 0. bits 1-0 Panel Type Bits[1:0] These bits select the panel type. Table 8-7: LCD Panel Type Selection Panel Type Bits [1:0] Panel Type 00 STN 01 TFT 10 Reserved 11 HR-TFT Display Settings Register REG[10h] Default = 00000000h Read/Write Pixel n/a 31 Pixel Doubling Doubling Display Blank Dithering Disable Display Blank Polarity SW Video Invert Vertical Horiz. 30 29 28 27 26 25 24 23 22 21 20 14 13 12 11 10 9 8 7 6 5 4 n/a 15 bit 25 + PIP Window Enable n/a SwivelView Mode Select 19 18 17 Bits-per-pixel Select (actual value: 1, 2, 4, 8 or 16 bpp) 3 2 1 16 0 Pixel Doubling Vertical Enable This bit controls the pixel doubling feature for the vertical dimension or height of the panel (i.e. 160 pixel high data doubled to 320 pixel high panel). When this bit = 1, pixel doubling in the vertical dimension (height) is enabled. When this bit = 0, there is no hardware effect. Note Pixel Doubling is not supported in SwivelView 90° or SwivelView 270° modes. bit 24 Pixel Doubling Horizontal Enable This bit controls the pixel doubling feature for the horizontal dimension or width of the panel (i.e. 160 pixel wide data doubled to 320 pixel wide panel) When this bit = 1, pixel doubling in the horizontal dimension (width) is enabled. When this bit = 0, there is no hardware effect. Note Pixel Doubling is not supported in SwivelView 90° or SwivelView 270° modes. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 98 Epson Research and Development Vancouver Design Center bit 23 Display Blank When this bit = 0, the LCD display pipeline is enabled. When this bit = 1, all applicable LCD data outputs (see Table 4-9: “LCD Interface Pin Mapping,” on page 27) are forced to zero or one. The following table summarizes the changes to the signals on FPDAT[17:0] for each combination of bits. Table 8-8: Display Control Summary Display Blank (REG[10h] bit 23) Display Blank Polarity (REG[10h] bit 21) 0 X Software Video Invert (REG[10h] bit 20) Output Data Lines (FPDAT[17:0]) 0 Normal 1 Inverted 0 All 0 1 All 1 0 All 1 1 All 0 0 1 1 bit 22 Dithering Disable When this bit = 0, dithering on the passive LCD panel is enabled, allowing a maximum of 64K colors (218) or 64 gray shades in 1/2/4/8 bpp mode. In 16bpp mode, only 64K colors (216) can also be achieved. When this bit = 1, dithering on the passive LCD panel is disabled, allowing a maximum of 4096 colors (212) or 16 gray shades. The dithering algorithm provides more shades of each primary color. Note For a summary of the results of dithering for each color depth, see Table 8-10: “LCD Bit-per-pixel Selection,” on page 99. bit 21 Display Blank Polarity When this bit = 0, the display blank function operates normally. When this bit = 1, the display blank function switches polarity. This bit works in conjunction with bit 23 and bit 20. Table 8-8: “Display Control Summary” summarizes the changes to the signals on FPDAT[17:0] for each combination of bits. bit 20 Software Video Invert When this bit = 0, video data is normal. When this bit = 1, video data is inverted. This bit works in conjunction with bit 23 and bit 21. Table 8-8: “Display Control Summary” summarizes the changes to the signals on FPDAT[17:0] for each combination of bits. Note Video data is inverted after the Look-Up Table S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 99 bit 19 PIP+ Window Enable This bit enables a PIP+ window within the main window. The location of the PIP+ window within the landscape window is determined by the PIP+ X Position register (REG[58h]) and PIP+ Y Position register (REG[5Ch]). The PIP+ window has its own Display Start Address register (REG[50h]) and Memory Address Offset register (REG[54h]). The PIP+ window shares the same color depth and SwivelViewTM orientation as the main window. bit 17-16 SwivelView Mode Select Bits [1:0] These bits select different SwivelViewTM orientations: Table 8-9: SwivelViewTM Mode Select Options bits 4-0 SwivelView Mode Select Bits SwivelView Orientation 00 0° (Normal) 01 90° 10 180° 11 270° Bit-per-pixel Select bits [4:0] These bits select the color depth (bit-per-pixel) for the displayed data for both the main window and the PIP+ window (if active). 1, 2, 4 and 8 bpp modes use the 18-bit LUT. 16 bpp mode bypasses the LUT. For further details on the LUT, refer to Section 12, “Look-Up Table Architecture” on page 164. Table 8-10: LCD Bit-per-pixel Selection Bit-per-pixel Select Bits [4:0] Color Depth (bpp) 00000 Max. No. Of Simultaneously Displayed Colors/Shades Reserved 00001 1 bpp 2/2 00010 2 bpp 4/4 00011 00100 Reserved 4 bpp 00101 - 00111 16/16 Reserved 01000 8 bpp 256/64 10000 16 bpp 64K/64 10001 - 11111 Reserved Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 100 Epson Research and Development Vancouver Design Center Power Save Configuration Register REG[14h] Default = 00000010h Read/Write n/a 31 30 29 28 27 26 25 24 VNDP Status (RO) n/a 15 14 13 12 23 11 10 9 8 7 22 Memory Power Save Status (RO) 6 21 20 n/a Power Save Enable 5 4 19 18 17 Reserv ed n/a 3 2 16 1 0 bit 7 Vertical Non-Display Period Status (Read-only) This is a read-only status bit. When this bit = 0, the LCD panel output is in a Vertical Display Period. When this bit = 1, the LCD panel output is in a Vertical Non-Display Period. bit 6 Memory Controller Power Save Status (Read-only) This read-only status bit indicates the power save state of the memory controller. When this bit = 0, the memory controller is powered up. When this bit = 1, the memory controller is powered down and the MCLK source can be turned off. Note Memory reads/writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer accesses. bit 4 Power Save Mode Enable When this bit = 1, the software initiated power save mode is enabled. When this bit = 0, the software initiated power save mode is disabled. At reset, this bit is set to 1. For a summary of Power Save Mode, see Section 15, “Power Save Mode” on page 178. Note Memory reads/writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer accesses. bit 0 Reserved This bit must be set to 0. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 101 8.3.4 Look-Up Table Registers Look-Up Table Write Register REG[18h] Default = 00000000h Write Only LUT Write Address 31 15 30 14 29 28 LUT Green Write Data 13 12 27 LUT Red Write Data 26 25 24 23 22 n/a 11 10 9 8 7 6 21 20 LUT Blue Write Data 5 4 n/a 19 18 17 16 n/a 3 2 1 0 Note The S1D13A05 has three 256-position, 6-bit wide LUTs, one for each of red, green, and blue (see Section 12, “Look-Up Table Architecture” on page 164). Note This is a write-only register and returns 00h if read. bits 31-24 LUT Write Address Bits [7:0] These bits form a pointer into the Look-Up Table (LUT) which is used to write the LUT Red, Green, and Blue data. When the S1D13A05 is set to a host bus interface using little endian (CNF4 = 0), the RGB data is updated to the LUT with the completion of a write to these bits. Note When a value is written to the LUT Write Address Bits, the same value is automatically placed in the LUT Read Address Bits (REG[1Ch] bits 31-24). bits 23-18 LUT Red Write Data Bits [5:0] These bits contains the data to be written to the red component of the Look-Up Table. The LUT position is controlled by the LUT Write Address bits (bits 31-24). bits 15-10 LUT Green Write Data Bits [5:0] These bits contains the data to be written to the green component of the Look-Up Table. The LUT position is controlled by the LUT Write Address bits (bits 31-24). bits 7-2 LUT Blue Write Data Bits [5:0] These bits contains the data to be written to the blue component of the Look-Up Table. The LUT position is controlled by the LUT Write Address bits (bits 31-24). When the S1D13A05 is set to a host bus interface using big endian (CNF4 = 1), the RGB data is updated to the LUT with the completion of a write to these bits. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 102 Epson Research and Development Vancouver Design Center Look-Up Table Read Register REG[1Ch] Default = 00000000h Write Only (bits 31-24)/Read Only LUT Read Address (write only) 31 15 30 14 29 28 LUT Green Read Data 13 12 27 26 LUT Red Read Data 25 24 23 22 n/a 11 10 9 8 7 6 21 20 LUT Blue Read Data 5 4 n/a 19 18 17 16 n/a 3 2 1 0 Note The S1D13A05 has three 256-position, 6-bit wide LUTs, one for each of red, green, and blue (see Section 12, “Look-Up Table Architecture” on page 164). bits 31-24 LUT Read Address Bits [7:0] (Write Only) This register forms a pointer into the Look-Up Table (LUT) which is used to read LUT data. Red data is read from bits 23-18, green data from bits 15-10, and blue data from bits 7-2. Note If a write to the LUT Write Address Bits (REG[18h] bits 31-24) is made, the LUT Read Address bits are automatically updated with the same value. bits 23-18 LUT Red Read Data Bits [5:0] (Read Only) These bits point to the data from the red component of the Look-Up Table. The LUT position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register. bits 15-10 LUT Green Read Data Bits [5:0] (Read Only) These bits point to the data from the green component of the Look-Up Table. The LUT position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register. bits 7-2 LUT Blue Read Data Bits [5:0] (Read Only) These bits point to the data from the blue component of the Look-Up Table. The LUT position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 103 8.3.5 Display Mode Registers Horizontal Total Register REG[20h] Default = 00000000h Read/Write n/a 31 30 29 28 27 n/a 26 25 24 23 22 21 15 14 13 12 11 10 9 8 7 6 5 bits 6-0 20 19 18 Horizontal Total bits 6-0 4 3 2 17 16 1 0 Horizontal Total Bits [6:0] These bits specify the LCD panel Horizontal Total period, in 8 pixel resolution. The Horizontal Total is the sum of the Horizontal Display period and the Horizontal Non-Display period. Since the maximum Horizontal Total is 1024 pixels, the maximum panel resolution supported is 800x600. REG[20h] bits 6:0 = (Horizontal Total in number of pixels ÷ 8) - 1 Note 1 For all panels this register must be programmed such that: HDPS + HDP < HT HT - HDP ≥ 8MCLK 2 For passive panels, this register must be programmed such that: HPS + HPW < HT 3 See Section 6.5, “Display Interface” on page 52. Horizontal Display Period Register REG[24h] Default = 00000000h Read/Write n/a 31 30 29 28 27 n/a 26 25 24 23 22 21 15 14 13 12 11 10 9 8 7 6 5 bits 6-0 20 19 18 Horizontal Display Period bits 6-0 4 3 2 17 16 1 0 Horizontal Display Period Bits [6:0] These bits specify the LCD panel Horizontal Display period, in 8 pixel resolution. The Horizontal Display period should be less than the Horizontal Total to allow for a sufficient Horizontal Non-Display period. REG[24h] bits 6:0 = (Horizontal Display Period in number of pixels ÷ 8) - 1 Note For passive panels, HDP must be a minimum of 32 pixels and must be increased by multiples of 16. For TFT panels, HDP must be a minimum of 8 pixels and must be increased by multiples of 8. Note See Section 6.5, “Display Interface” on page 52. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 104 Epson Research and Development Vancouver Design Center Horizontal Display Period Start Position Register REG[28h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 12 11 10 9 8 7 n/a 15 14 13 bits 9-0 22 21 20 19 18 Horizontal Display Period Start Position bits 9-0 6 5 4 3 2 17 16 1 0 Horizontal Display Period Start Position Bits [9:0] These bits specify a value used in the calculation of the Horizontal Display Period Start Position (in 1 pixel resolution) for TFT and HR-TFT panels. For passive LCD panels these bits must be set to 00h which will result in HDPS = 22. HDPS = (REG[28h] bits 9-0) + 22 For TFT panels, HDPS is calculated using the following formula. HDPS = (REG[28h] bits 9-0) + 5 Note This register must be programmed such that the following formula is valid. HDPS + HDP < HT FPLINE Register REG[2Ch] Default = 00000000h Read/Write FPLINE Polarity n/a 31 30 29 28 27 26 25 24 23 12 11 10 9 8 7 n/a 15 14 13 FPLINE Pulse Width bits 6-0 22 21 20 19 FPLINE Pulse Start Position bits 9-0 6 5 4 3 18 17 16 2 1 0 bit 23 FPLINE Pulse Polarity This bit selects the polarity of the horizontal sync signal. For passive panels, this bit must be set to 1. For active panels, this bit is set according to the horizontal sync signal of the panel (typically FPLINE or LP). This bit has no effect for TFT Type 2 and TFT Type 3 panels. When this bit = 0, the horizontal sync signal is active low. When this bit = 1, the horizontal sync signal is active high. bits 22-16 FPLINE Pulse Width Bits [6:0] These bits specify the width of the panel horizontal sync signal, in 1 pixel resolution. The horizontal sync signal is typically FPLINE or LP, depending on the panel type. REG[2Ch] bits 22:16 = FPLINE Pulse Width in number of pixels - 1 Note For passive panels, these bits must be programmed such that the following formula is valid. HPW + HPS < HT Note See Section 6.5, “Display Interface” on page 52. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center bits 9-0 Page 105 FPLINE Pulse Start Position Bits [9:0] These bits specify the start position of the horizontal sync signal, in 1 pixel resolution. FPLINE Pulse Start Position in pixels = (REG[2Ch] bits 9-0) + 1 Note For passive panels, these bits must be programmed such that the following formula is valid. HPW + HPS < HT Note See Section 6.5, “Display Interface” on page 52. Vertical Total Register REG[30h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 12 11 10 9 8 7 6 n/a 15 bits 9-0 14 13 21 20 Vertical Total bits 9-0 5 4 19 18 17 16 3 2 1 0 Vertical Total Bits [9:0] These bits specify the LCD panel Vertical Total period, in 1 line resolution. The Vertical Total is the sum of the Vertical Display Period and the Vertical Non-Display Period. The maximum Vertical Total is 1024 lines. REG[30h] bits 9:0 = Vertical Total in number of lines - 1 Note 1 This register must be programmed such that the following formula is valid. VT > VDPS + VDP 2 If an HR-TFT panel is selected, the following formula must also apply. VT > (REG[B8h] bits 2-0) + VDP + VPS + 1 3 See Section 6.5, “Display Interface” on page 52. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 106 Epson Research and Development Vancouver Design Center Vertical Display Period Register REG[34h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 21 20 19 Vertical Display Period bits 9-0 18 17 16 12 11 10 9 8 7 6 2 1 0 n/a 15 14 13 bits 9-0 5 4 3 Vertical Display Period Bits [9:0] These bits specify the LCD panel Vertical Display period, in 1 line resolution. The Vertical Display period should be less than the Vertical Total to allow for a sufficient Vertical Non-Display period. REG[34h] bits 9:0 = Vertical Display Period in number of lines - 1 Note 1 This register must be programmed such that the following formula is valid. VT > VDPS + VDP 2 If an HR-TFT panel is selected, the following formula must also apply. VT > (REG[B8h] bits 2-0) + VDP + VPS + 1 3 See Section 6.5, “Display Interface” on page 52. Vertical Display Period Start Position Register REG[38h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 12 11 10 9 8 7 n/a 15 14 bits 9-0 13 22 21 20 19 18 Vertical Display Period Start Position bits 9-0 6 5 4 3 17 16 1 0 2 Vertical Display Period Start Position Bits [9:0] These bits specify the Vertical Display Period Start Position for TFT and HR-TFT panels in 1 line resolution. For passive LCD panels these bits must be set to 00h. For passive LCD panels these bits must be set to 00h. For TFT panels, VDPS is calculated using the following formula. VDPS = REG[38h] bits 9-0 Note 1 This register must be programmed such that the following formula is valid. VT > VDPS + VDP 2 If an HR-TFT panel is selected, the following formula must also apply. VT > (REG[B8h] bits 2-0) + VDP + VPS + 1 3 See Section 6.5, “Display Interface” on page 52. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 107 FPFRAME Register REG[3Ch] Default = 00000000h Read/Write FPFRAME Polarity n/a 31 30 29 28 27 26 25 24 23 12 11 10 9 8 7 n/a 15 14 13 FPFRAME Pulse Width bits 2-0 n/a 22 21 20 19 FPFRAME Pulse Start Position bits 9-0 6 5 4 3 18 17 16 2 1 0 bit 23 FPFRAME Pulse Polarity This bit selects the polarity of the vertical sync signal. For passive panels, this bit must be set to 1. For TFT panels, this bit is set according to the horizontal sync signal of the panel (typically FPFRAME, SPS). This bit has no effect for TFT Type 2 panels. When this bit = 0, the vertical sync signal is active low. When this bit = 1, the vertical sync signal is active high. bits 18-16 FPFRAME Pulse Width Bits [2:0] These bits specify the width of the panel vertical sync signal, in 1 line resolution. The vertical sync signal is typically FPFRAME, or SPS, depending on the panel type. REG[3Ch] bits 2:0 = FPFRAME Pulse Width in number of lines - 1 Note See Section 6.5, “Display Interface” on page 52. bits 9-0 FPFRAME Pulse Start Position Bits [9:0] These bits specify the start position of the vertical sync signal, in 1 line resolution. For passive panels, these bits must be set to 00h. For TFT panels, VDPS is calculated using the following formula. VPS = REG[3Ch] bits 9-0 Note See Section 6.5, “Display Interface” on page 52. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 108 Epson Research and Development Vancouver Design Center Main Window Display Start Address Register REG[40h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 15 14 13 12 11 10 bits 16-0 bit 16 25 24 23 22 21 Main Window Display Start Address bits 15-0 9 8 7 6 5 20 19 18 17 16 4 3 2 1 0 Main Window Display Start Address Bits [16:0] This register specifies the starting address, in DWORDS, for the LCD image in the display buffer for the main window. Note that this is a double-word (32-bit) address. An entry of 00000h into these registers represents the first double-word of display memory, an entry of 00001h represents the second double-word of the display memory, and so on. Calculate the Display Start Address as follows: REG[40h] bits 16:0 = image address ÷ 4 (valid only for SwivelView 0°) Note For information on setting this register for other SwivelView orientations, see Section 13, “SwivelView™” on page 170. Main Window Line Address Offset Register REG[44h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 12 11 10 9 8 7 n/a 15 14 bits 9-0 13 22 21 20 19 Main Window Line Address Offset bits 9-0 6 5 4 3 18 17 16 2 1 0 Main Window Line Address Offset Bits [9:0] This register specifies the offset, in DWORDS, from the beginning of one display line to the beginning of the next display line in the main window. Note that this is a 32-bit address increment. Calculate the Line Address Offset as follows: REG[44h] bits 9:0 = display width in pixels ÷ (32 ÷ bpp) Note A virtual display can be created by programming this register with a value greater than the formula requires. When a virtual display is created the image width is larger than the display width and the displayed image becomes a window into the larger virtual image. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 109 Extended Panel Type Register REG[48h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 14 13 12 23 22 Compare n/a 15 24 Data 10 9 8 20 7 6 19 18 17 16 Extended Panel Type bits 3-0 n/a Invert Enable 11 21 5 4 3 2 1 0 bit 8 Data Compare Invert Enable This bit can be used to lower power consumption for TFT Type 2 and TFT Type 3 Interfaces. The Data Compare and Invert function reduces the amount of data toggled by counting the number of bits that are changed (1 to 0 or 0 to 1) from the previous pixel data. If more than half of the bits are changed the data is inverted and the lesser amount of bits are toggled. For all other panel interfaces it has no effect. When this bit = 0, the Data Compare and Invert functions are disabled. When this bit = 1, the Data Compare and Invert functions are enabled. bits 3-0 Extended Panel Type Bits [3:0] These bits override the setting in REG[0Ch] bits 1-0 and allow selection of the alternate TFT panel types. Table 8-11: Extended Panel Type Selection REG[48h] Bits [3:0] Panel Type 0000 no effect from REG[0Ch] bits 1-0 0001 TFT Type 2 0010 TFT Type 3 0011 TFT Type 4 0100 Casio TFT 0101 - 1111 Reserved Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 110 Epson Research and Development Vancouver Design Center 8.3.6 Picture-in-Picture Plus (PIP+) Registers PIP+ Display Start Address Register REG[50h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 15 14 13 12 11 10 bit 16 25 24 23 22 PIP+ Display Start Address bits 15-0 9 8 7 6 21 20 19 18 17 16 5 4 3 2 1 0 PIP+ Display Start Address Bits [16:0] These bits form the 17-bit address for the starting double-word of the PIP+ window. bits 16-0 Note that this is a double-word (32-bit) address. An entry of 00000h into these registers represents the first double-word of display memory, an entry of 00001h represents the second double-word of the display memory, and so on. Note These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[10h] bit 19). PIP+ Line Address Offset Register REG[54h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 21 20 19 PIP+ Line Address Offset bits 9-0 18 17 16 12 11 10 9 8 7 6 2 1 0 n/a 15 14 bits 9-0 13 5 4 3 PIP+ Window Line Address Offset Bits [9:0] These bits are the LCD display’s 10-bit address offset from the starting double-word of line “n” to the starting double-word of line “n + 1” for the PIP+window. Note that this is a 32-bit address increment. Note These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[10h] bit 19). S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 111 PIP+ X Positions Register REG[58h] Default = 00000000h Read/Write PIP+ X End Position bits 9-0 n/a 31 30 29 28 27 26 25 24 23 22 21 20 19 PIP+ X Start Position bits 9-0 18 17 16 12 11 10 9 8 7 6 2 1 0 n/a 15 14 13 5 4 3 Note The effect of REG[58h] through REG[5Ch] takes place only after REG[5Ch] is written and at the next vertical non-display period. bits 25-16 PIP+ Window X End Position Bits [9:0] These bits determine the X end position of the PIP+ window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the X end position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X End Position register, see Section 14, “Picture-in-Picture Plus (PIP+)” on page 175. The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X end position is incremented by x pixels where x is relative to the current color depth. Table 8-12: 32-bit Address Increments for Color Depth Color Depth Pixel Increment (x) 1 bpp 32 2 bpp 16 4 bpp 8 8 bpp 4 16 bpp 2 For 90° and 270° SwivelView the X end position is incremented in 1 line increments. Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels. Note These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[10h] bit 19). Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 112 Epson Research and Development Vancouver Design Center bits 9-0 PIP+ Window X Start Position Bits [9:0] These bits determine the X start position of the PIP+ window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the X start position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X Start Position register, see Section 14, “Picture-in-Picture Plus (PIP+)” on page 175. The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X start position is incremented by x pixels where x is relative to the current color depth. Table 8-13: 32-bit Address Increments for Color Depth Color Depth Pixel Increment (x) 1 bpp 32 2 bpp 16 4 bpp 8 8 bpp 4 16 bpp 2 For 90° and 270° SwivelView the X start position is incremented in 1 line increments. Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels. Note These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[10h] bit 19). S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 113 PIP+ Y Positions Register REG[5Ch] Default = 00000000h Read/Write PIP+ Y End Position bits 9-0 n/a 31 30 29 28 27 26 25 24 23 22 21 20 19 PIP+ Y Start Position bits 9-0 18 17 16 12 11 10 9 8 7 6 2 1 0 n/a 15 14 13 5 4 3 Note 1 The effect of REG[58h] through REG[5Ch] takes place only after REG[5Ch] is written and at the next vertical non-display period. 2 For host bus interfaces using little endian (CNF4 = 0), a write to bits 31-24 causes the PIP+ Window Y End Position to take effect. For host bus interfaces using big endian (CNF4 = 1), a write to bits 7-0 causes the PIP+ Window Y End Position to take effect. bits 25-16 PIP+ Window Y End Position Bits [9:0] These bits determine the Y end position of the PIP+ window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the Y end position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y End Position register, see Section 14, “Picture-in-Picture Plus (PIP+)” on page 175. The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y end position is incremented in 1 line increments. For 90° and 270° SwivelView the Y end position is incremented by y pixels where y is relative to the current color depth. Table 8-14: 32-bit Address Increments for Color Depth Color Depth Pixel Increment (y) 1 bpp 32 2 bpp 16 4 bpp 8 8 bpp 4 16 bpp 2 Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels. Note These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[10h] bit 19). Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 114 Epson Research and Development Vancouver Design Center bits 9-0 PIP+ Window Y Start Position Bits [9:0] These bits determine the Y start position of the PIP+ window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the Y start position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y Start Position register, see Section 14, “Picture-in-Picture Plus (PIP+)” on page 175. The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y start position is incremented in 1 line increments. For 90° and 270° SwivelView the Y start position is incremented by y pixels where y is relative to the current color depth. Table 8-15: 32-bit Address Increments for Color Depth Color Depth Pixel Increment (y) 1 bpp 32 2 bpp 16 4 bpp 8 8 bpp 4 16 bpp 2 Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels. Note These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[10h] bit 19). S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 115 8.3.7 Miscellaneous Registers Reserved REG[60h] Default = 00000000h Read/Write n/a 31 30 29 28 Reserved 27 26 25 24 n/a 15 14 13 12 11 10 9 8 23 Reserved 22 7 6 21 20 19 n/a 5 4 18 3 2 GPIO Status and Control Register REG[64h] Default = 20000000h GPIO6 Input Enable GPIO5 Input Enable GPIO4 Input Enable GPIO3 Input Enable GPIO2 Input Enable GPIO1 Input Enable GPIO0 Input Enable 31 30 29 28 27 26 25 11 10 9 13 12 1 0 GPIO7 Config GPIO6 Config GPIO5 Config GPIO4 Config GPIO3 Config GPIO2 Config GPIO1 Config GPIO0 Config 24 23 GPIO7 Control/ Status 22 GPIO6 Control/ Status 21 GPIO5 Control/ Status 20 GPIO4 Control/ Status 19 GPIO3 Control/ Status 18 GPIO2 Control/ Status 17 GPIO1 Control/ Status 16 GPIO0 Control/ Status 8 7 6 5 4 3 2 1 0 n/a 14 16 n/a Read/Write GPIO7 Input Enable 15 17 Reserved The S1D13A05 GPIO pins default to inputs, however they can be individually configured to outputs or inputs using the GPIO[7:0] Config bits (bits 23-16). If a GPIO pin is configured as an input, the input functionality must be enabled using the corresponding GPIO[7:0] Input Enable pin (see bits 31-24). Once the GPIO pin has been configured, it can be controlled/read using the GPIO[7:0] Control/Status bits (bits 7-0). See the individual bit descriptions for further details. Some GPIOs must be configured as outputs after every RESET for use with some extended panel types (i.e. Sharp HR-TFT, Casio TFT, etc.). See Table 4-9: “LCD Interface Pin Mapping,” on page 27 and the individual bit descriptions for bits 7-0 for specific information on each GPIO pin. bits 31-24 GPIO[7:0] Input Enable bits These bits individually enable the input function for each GPIO pin (GPIO[7:0]). After power-on/reset, each bit must be set to a 1 to enable the input function of each GPIO pin (default is 0 except for GPIO5 which is 1). If the GPIO pin is configured as an output the GPIO[7:0] Input Enable bit has no effect. Note At power-on/reset, the GPIO5 Input Enable bit (bit 29) defaults to 1. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 116 Epson Research and Development Vancouver Design Center bits 23-16 GPIO[7:0] IO Configuration At power-on/reset, the GPIO[7:0] pins default to inputs. These bits individually configure each GPIO pin as either an output or input. When these bits = 0, the associated GPIO pin is configured as an input. When these bits = 1, the associated GPIO pin is configured as an output. This may be required for some extended panel types (i.e. Sharp HR-TFT, Casio TFT, etc.) or USB. See Table 4-9: “LCD Interface Pin Mapping,” on page 27 and the individual bit descriptions for bits 7-0 for specific information on each GPIO pin. Note If a GPIO pin is configured as an input, the input function of the GPIO pin must be enabled using the corresponding GPIOx Input Enable bit (bits 31-24) before the input configuration takes effect. bit 7 GPIO7 IO Control/Status The following table shows the multiple uses of GPIO7. Table 8-16: GPIO7 Usage Function Pin Usage GPIO7 USB bit 6 Output Input Write 0 Write 1 Read GPIO7 driven low GPIO7 driven high GPIO7 status returned not available (used by USBDP) not available (used by USBDP) not available (used by USBDP) GPIO6 IO Control/Status The following table shows the multiple uses of GPIO6. Table 8-17: GPIO6 Usage Function Pin Usage GPIO6 USB bit 5 Output Input Write 0 Write 1 Read GPIO6 driven low GPIO6 driven high GPIO6 status returned not available (used by USBDM) not available (used by USBDM) not available (used by USBDM) GPIO5 IO Control/Status The following table shows the multiple uses of GPIO5. Table 8-18: GPIO5 Usage Function Pin Usage Output Input Write 0 Write 1 Read GPIO5 GPIO5 driven low GPIO5 driven high GPIO5 status returned USB not available (used by USBDETECT) not available (used by USBDETECT) not available (used by USBDETECT) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center bit 4 Page 117 GPIO4 IO Control/Status The following table shows the multiple uses of GPIO4. Table 8-19: GPIO4 Usage Function Pin Usage Output Input Write 0 Write 1 Read GPIO4 GPIO4 driven low GPIO4 driven high GPIO4 status returned USB not available (used by USBPUP) not available (used by USBPUP) not available (used by USBPUP) bit 3 GPIO3 IO Control/Status The following table shows the multiple uses of GPIO3. Table 8-20: GPIO3 Usage Function Pin Usage Output Input Write 0 Write 1 Read GPIO3 GPIO3 driven low GPIO3 driven high GPIO3 status returned Sharp HR-TFT not available (used by SPL) not available (used by SPL) not available (used by SPL) Casio TFT not available (used by STH) not available (used by STH) not available (used by STH) TFT Type 2 not available (used by STH) not available (used by STH) not available (used by STH) TFT Type 3 not available (used by EIO) not available (used by EIO) not available (used by EIO) Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 118 Epson Research and Development Vancouver Design Center bit 2 GPIO2 IO Control/Status The following table shows the multiple uses of GPIO2. Table 8-21: GPIO2 Usage Function Pin Usage Output Input Write 0 Write 1 Read GPIO2 GPIO2 driven low GPIO2 driven high GPIO2 status returned Sharp HR-TFT not available (used by REV) not available (used by REV) not available (used by REV) Casio TFT not available (used by FRP) not available (used by FRP) not available (used by FRP) TFT Type 2 not available (used by POL) not available (used by POL) not available (used by POL) TFT Type 3 not available (used by POL) not available (used by POL) not available (used by POL) bit 1 GPIO1 IO Control/Status The following table shows the multiple uses of GPIO1. Table 8-22: GPIO1 Usage Function Pin Usage Output Input Write 0 Write 1 Read GPIO1 GPIO1 driven low GPIO1 driven high GPIO1 status returned Sharp HR-TFT not available (used by CLS) not available (used by CLS) not available (used by CLS) Casio TFT GRES forced low GRES enabled GRES status returned TFT Type 2 not available (used by AP) not available (used by AP) not available (used by AP) TFT Type 3 OE forced low OE enabled OE status returned bit 0 GPIO0 IO Control/Status The following table shows the multiple uses of GPIO0. Table 8-23: GPIO0 Usage Function Pin Usage Output Input Write 0 Write 1 Read GPIO0 GPIO0 driven low GPIO0 driven high GPIO0 status returned Sharp HR-TFT not available (used by PS) not available (used by PS) not available (used by PS) Casio TFT not available (used by POL) not available (used by POL) not available (used by POL) TFT Type 2 not available (used by VCLK) not available (used by VCLK) not available (used by VCLK) TFT Type 3 not available (used by CPV) not available (used by CPV) not available (used by CPV) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 119 GPO Control Register REG[68h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 GPO10 Control 25 GPO9 Control 24 GPO8 Control 23 GPO7 Control 22 GPO6 Control 21 GPO5 Control 20 GPO4 Control 19 GPO3 Control 18 GPO2 Control 17 GPO1 Control 16 GPO0 Control 12 11 10 9 8 7 6 5 4 3 2 1 0 n/a 15 bit 10 14 13 GPO10 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO10 high and writing a 0 to this bit drives GPO10 low. A read from this bit returns the status of GPO10. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets PDME = 1 and writing a 0 sets PDME = 0. bit 9 GPO9 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO9 high and writing a 0 to this bit drives GPO9 low. A read from this bit returns the status of GPO9. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets XSTBY = 1 and writing a 0 sets XSTBY = 0. bit 8 GPO8 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO8 high and writing a 0 to this bit drives GPO8 low. A read from this bit returns the status of GPO8. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets XOHV = 1 and writing a 0 sets XOHV = 0. bit 7 GPO7 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO7 high and writing a 0 to this bit drives GPO7 low. A read from this bit returns the status of GPO7. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets XRESV = 1 and writing a 0 sets XRESV = 0. bit 6 GPO6 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO6 high and writing a 0 to this bit drives GPO6 low. A read from this bit returns the status of GPO6. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets XRESH = 1 and writing a 0 sets XRESH = 0. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 120 bit 5 Epson Research and Development Vancouver Design Center GPO5 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO5 high and writing a 0 to this bit drives GPO5 low. A read from this bit returns the status of GPO5. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit enables PCLK2 and writing a 0 forces PCLK2 low. bit 4 GPO4 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO4 high and writing a 0 to this bit drives GPO4 low. A read from this bit returns the status of GPO4. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit enables PCLK1 and writing a 0 forces PCLK1 low. bit 3 GPO3 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO3 high and writing a 0 to this bit drives GPO3 low. A read from this bit returns the status of GPO3. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), GPO3 is not available. bit 2 GPO2 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO2 low and writing a 0 to this bit drives GPO2 high. A read from this bit returns the status of GPO2. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit enables XOEV and writing a 0 sets XOEV = 0. bit 1 GPO1 Control When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO1 high and writing a 0 to this bit drives GPO1 low. A read from this bit returns the status of GPO1. When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit enables VCOM and writing a 0 sets VCOM = 0. bit 0 GPO0 Control Writing a 1 to this bit drives GPO0 high and writing a 0 to this bit drives GPO0 low. A read from this bit returns the status of GPO0. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 121 PWM Clock Configuration Register REG[70h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 14 13 12 21 20 PWM Clock Divide Select bits 3-0 n/a 15 22 11 10 9 8 7 6 5 4 19 PWM Clock Force High 3 18 17 PWMCLK Source Select bits 1-0 2 1 16 PWM Clock Enable 0 PWM Clock Enable PWMCLK Divided Clock PWM Clock Divider Clock Source / 2m m = PWM Clock Divide Select value PWM Duty Cycle Modulation to PWMOUT Duty = n / 256 n = PWM Clock Duty Cycle frequency = Clock Source / (2m X 256) PWM Clock Force High Figure 8-1: PWM Clock Block Diagram Note For further information on PWMCLK, see Section 7.1.4, “PWMCLK” on page 87. bits 7-4 PWM Clock Divide Select Bits [3:0] The value of these bits represents the power of 2 by which the selected PWM clock source is divided. Table 8-24: PWM Clock Divide Select Options PWM Clock Divide Select Bits [3:0] 0h 1h 2h 3h 4h 5h 6h 7h 8h 9h Ah Bh Ch Dh Eh Fh PWM Clock Divide Amount 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 Note This divided clock is further divided by 256 before it is output at PWMOUT. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 122 Epson Research and Development Vancouver Design Center bit 3 PWM Clock Force High When this bit = 0, the PWMOUT pin function is controlled by the PWM Clock enable bit. When this bit = 1, the PWMOUT pin is forced to high. bits 2-1 PWMCLK Source Select Bits [1:0] These bits determine the source of PWMCLK. Table 8-25: PWMCLK Source Selection REG[70h] bits 2-1 PWMCLK Source 00 CLKI 01 CLKI2 10 BCLK 11 PCLK Note For further information on the PWMCLK source select, see Section 7.2, “Clock Selection” on page 88. bit 0 PWM Clock Enable When this bit = 0, PWMOUT output acts as a general purpose output pin controllable by bit 3 of REG[70h]. When this bit = 1, the PWM Clock circuitry is enabled. Note The PWM Clock circuitry is disabled when Power Save Mode is enabled. PWMOUT Duty Cycle Register REG[74h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 21 20 19 18 PWMOUT Duty Cycle bits 7-0 17 16 11 10 9 8 7 6 5 1 0 n/a 15 14 bits 7-0 13 12 4 3 2 PWMOUT Duty Cycle Bits [7:0] This register determines the duty cycle of the PWMOUT output. Table 8-26: PWMOUT Duty Cycle Select Options PWMOUT Duty Cycle [7:0] PWMOUT Duty Cycle 00h Always Low 01h High for 1 out of 256 clock periods 02h High for 2 out of 256 clock periods ... ... FFh High for 255 out of 256 clock periods S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 123 Scratch Pad A Register REG[80h] Default = not applicable Read/Write Scratch Pad A bits 31-24 31 30 29 28 27 26 25 15 14 13 12 11 10 9 bits 31-0 24 23 22 Scratch Pad A bits 15-0 8 7 6 21 20 19 18 17 16 5 4 3 2 1 0 Scratch Pad A Bits [31:0] This register contains general purpose read/write bits. These bits have no effect on hardware. Note The contents of the Scratch Pad A register defaults to an un-defined state after initial power-up. Any data written to this register remains intact when the S1D13A05 is reset, as long as the chip is not powered off. Scratch Pad B Register REG[84h] Default = not applicable Read/Write Scratch Pad B bits 31-24 31 30 29 28 27 26 25 15 14 13 12 11 10 9 bits 31-0 24 23 22 Scratch Pad B bits 15-0 8 7 6 21 20 19 18 17 16 5 4 3 2 1 0 Scratch Pad B Bits [31:0] This register contains general purpose read/write bits. These bits have no effect on hardware. Note The contents of the Scratch Pad B register defaults to an un-defined state after initial power-up. Any data written to this register remains intact when the S1D13A05 is reset, as long as the chip is not powered off. Scratch Pad C Register REG[88h] Default = not applicable Read/Write Scratch Pad C bits 31-24 31 30 29 28 27 26 25 15 14 13 12 11 10 9 bits 31-0 24 23 22 Scratch Pad C bits 15-0 8 7 6 21 20 19 18 17 16 5 4 3 2 1 0 Scratch Pad C Bits [31:0] This register contains general purpose read/write bits. These bits have no effect on hardware. Note The contents of the Scratch Pad C register defaults to an un-defined state after initial power-up. Any data written to this register remains intact when the S1D13A04 is reset, as long as the chip is not powered off. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 124 Epson Research and Development Vancouver Design Center 8.3.8 Extended Panel Registers HR-TFT CLS Width Register REG[A0h] Default = 0000012Ch Read/Write n/a 31 30 29 28 n/a 27 26 25 24 23 22 15 14 13 12 11 10 9 8 7 6 bits 8-0 21 20 19 CLS Pulse Width bits 8-0 5 4 3 18 17 16 2 1 0 CLS Pulse Width Bits [8:0] This register determines the width of the CLS signal in PCLKs. Note This register must be programmed such that the following formula is valid. (REG[A0h] bits 8-0) > 0 HR-TFT PS1 Rising Edge Register REG[A4h] Default = 00000032h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 21 20 n/a 15 14 13 bits 5-0 12 11 19 18 17 16 1 0 PS1 Rising Edge bits 5-0 10 9 8 7 6 5 4 3 2 PS1 Rising Edge Bits [5:0] This register determines the number of PCLKs between the CLS falling edge and the PS1 rising edge. HR-TFT PS2 Rising Edge Register REG[A8h] Default = 00000064h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 21 n/a 15 14 bits 7-0 13 12 20 19 18 17 16 2 1 0 PS2 Rising Edge bits 7-0 11 10 9 8 7 6 5 4 3 PS2 Rising Edge Bits [7:0] This register determines the number of PCLKs between the LP falling edge and the first PS2 rising edge. Note This register must be programmed such that the following formula is valid. (REG[A8h] bits 7-0) > 0 S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 125 HR-TFT PS2 Toggle Width Register REG[ACh] Default = 0000000Ah Read/Write n/a 31 30 29 28 27 26 25 24 23 22 21 n/a 15 14 13 bits 6-0 12 11 20 19 18 17 16 1 0 PS2 Toggle Width bits 6-0 10 9 8 7 6 5 4 3 2 PS2 Toggle Width Bits [6:0] This register determines the width of the PS2 signal before toggling (in number of PCLKs). Note This register must be programmed such that the following formula is valid. (REG[ACh] bits 6-0) > 0 HR-TFT PS3 Signal Width Register REG[B0h] Default = 00000064h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 21 n/a 15 14 13 bits 6-0 12 11 20 19 18 17 16 1 0 PS3 Signal Width bits 6-0 10 9 8 7 6 5 4 3 2 PS3 Signal Width Bits [6:0] This register determines the width of the PS3 signal in PCLKs. Note This register must be programmed such that the following formula is valid. (REG[B0h] bits 6-0) > 0 HR-TFT REV Toggle Point Register REG[B4h] Default = 0000000Ah Read/Write n/a 31 30 29 28 27 26 25 24 23 22 21 20 n/a 15 bits 4-0 14 13 12 11 10 19 18 17 16 REV Toggle bits 4-0 9 8 7 6 5 4 3 2 1 0 REV Toggle Bits [4:0] This register determines the width in PCLKs to toggle the REV signal prior to LP rising edge. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 126 Epson Research and Development Vancouver Design Center HR-TFT PS1/2 End Register REG[B8h] Default = 00000007h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 21 20 19 18 n/a 15 14 13 bits 2-0 12 11 10 9 17 16 PS1/2 End bits 2-0 8 7 6 5 4 3 2 1 0 PS1/2 End Bits [2:0] This register allows the PS signal to continue into the vertical non-display period (in lines). Note This register must be programmed such that the following formula is valid. VT > (REG[B8h] bits 2-0) + VDP + VPS + 1 Type 2 TFT Configuration Register REG[BCh] Default = 00000000h Read/Write n/a 31 POL Type 15 30 29 n/a 14 13 28 27 AP Pulse Width bits 2-0 12 11 26 n/a 10 25 24 AP Rising Position bits 1-0 9 8 23 22 21 n/a 7 6 5 20 19 VCLK Hold bits 1-0 4 3 18 n/a 2 17 16 VCLK Setup bits 1-0 1 0 bit 15 POL Type This bit selects how often the POL signal is toggled. The S1D13A05 GPIO2 pin controls the POL signal used for the TFT Type 2 Interface. For all other panel interfaces this bit has no effect. When this bit = 0, the POL signal is toggled every line. When this bit = 1, the POL signal is toggled every frame. bits 13-11 AP Pulse Width Bits [2:0] These bits specify the AP Pulse Width used for the TFT Type 2 Interface. The S1D13A05 GPIO1 pin controls the AP signal for the TFT Type 2 Interface. For all other panel interfaces it has no effect. Table 8-27: AP Pulse Width REG[4Ch] bits 13-11 AP Pulse Width (in PCLKs) 000 20 001 40 010 80 011 120 100 150 101 190 110 240 111 270 S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center bits 9-8 Page 127 AP Rising Position Bits [1:0] These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE (STB) to the rising edge of GPIO1 (AP). The parameter is selected as follows. For all other panel interfaces it has no effect. Table 8-28: AP Rising Position bits 4-3 REG[4Ch] bits 9-8 AP Rising Position (in PCLKs) 00 40 01 52 10 68 11 90 VCLK Hold Bits [1:0] These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE (STB) to the falling edge of GPIO0 (VCLK). The parameter is selected as follows. For all other panel interfaces it has no effect. Table 8-29: VCLK Hold bits 1-0 REG[4Ch] bits 4-3 VCLK Hold (in PCLKs) 00 7 01 9 10 12 11 16 VCLK Setup Bits [1:0] These bits specify the TFT Type 2 AC timing parameter from the rising edge of GPIO0 (VCLK) to the rising edge of FPLINE (STB). The parameter is selected as follows. For all other panel interfaces it has no effect. Table 8-30: VCLK Setup REG[4Ch] bits 1-0 VCLK Setup (in PCLKs) 00 7 01 9 10 12 11 16 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 128 Epson Research and Development Vancouver Design Center Casio TFT Timing Register REG[C0h] Default = 09180E09h n/a 31 30 n/a 15 14 Read/Write GPCK Rising Edge to STH Pulse bits 5-0 n/a 29 28 27 26 25 24 GRES Falling Edge to GPCK Rising Edge bits 4-0 23 13 7 12 11 10 9 8 GRES Falling Edge to FRP Toggle Point bits 6-0 22 21 20 19 18 17 16 GPCK Rising Edge to GRES Rising Edge bits 5-0 6 5 n/a 4 3 2 1 0 bits 29-24 GPCK Rising Edge to STH Pulse Bits[5:0] These bits determine the number of PCLKs from GPCK rising edge to STH pulse. bits 22-16 GRES Falling Edge to FRP Toggle Point Bits[6:0] These bits determine the number of PCLKs from GRES falling edge to FRP Toggle point. bits 13-8 GRES Falling Edge to GPCK Rising Edge Bits[5:0] These bits determine the number of PCLKs from GRES falling edge to GPCK rising edge. bits 5-0 GPCK Rising Edge to GRES Rising Edge Bits[5:0] These bits determine the number of PCLKs from GPCK rising edge to GRES rising edge. Type 3 TFT Configuration Register 0 REG[D8h] Default = 00000000h Read/Write POL Toggle Position bits 7-0 31 30 29 28 27 26 OE Pulse Width bits 7-0 25 24 23 22 21 20 OE Rising Edge Position bits 7-0 15 14 bits 31-24 13 12 11 10 19 18 17 16 3 2 1 0 n/a 9 8 7 6 5 4 POL Toggle Position Bits [7:0] These bits specify the toggle position of the POL signal in 2 pixel resolution. The S1D13A05 GPIO2 pin controls the POL signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces. POL Toggle Position in pixels = (REG[D8h] bits 31-24) × 2 bits 23-16 OE Pulse Width Bits [7:0] These bits specify the pulse width of the OE signal in 2 pixel resolution. The S1D13A05 GPIO1 pin controls the OE signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces. OE Pulse Width in pixels = (REG[D8h] bits 23-16) × 2 bits 15-8 OE Rising Edge Position Bits [7:0] These bits specify the rising edge position of the OE signal in 2 pixel resolution. The S1D13A05 GPIO1 pin controls the OE signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces. OE Rising Edge Position in pixels = (REG[D8h] bits 15-8) × 2 S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 129 Type 3 TFT Configuration Register 1 REG[DCh] Default = 00000000h Read/Write XOEV End Position bits 7-0 31 30 29 15 14 13 bits 31-24 XOEV Start Position bits 7-0 28 27 26 CPV Pulse Width bits 6-0 12 11 10 25 24 23 22 21 20 19 18 VCOM Toggle Position bits 7-0 17 16 9 8 7 6 5 1 0 4 3 2 XOEV End Position Bits [7:0] These bits specify the falling/rising edge position of the XOEV signal in 2 pixel resolution (depending on the FPFRAME Pulse Polarity bit in REG[3Ch] bit 23). The S1D13A05 GPO2 pin controls the XOEV signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces. XOEV Falling Edge Position in pixels = (REG[DCh] bits 31-24) × 2 Note If this register is set to 0, no pulse is generated. bits 23-16 XOEV Start Position Bits [7:0] These bits specify the rising/falling edge position of the XOEV signal in 2 pixel resolution (depending on the FPFRAME Pulse Polarity bit in REG[3Ch] bit 23). The S1D13A05 GPO2 pin controls the XOEV signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces. XOEV Rising Edge Position in pixels = (REG[DCh] bits 23-16) × 2 Note If this register is set to 0, no pulse is generated. bits 15-8 CPV Pulse Width Bits [7:0] These bits specify the pulse width of the CPV signal in 2 pixel resolution. The S1D13A05 GPIO0 pin controls the CPV signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces. CPV Pulse Width in pixels = (REG[DCh] bits 15-8) × 2 bits 7-0 VCOM Toggle Position Bits [7:0] These bits specify the toggle position of the VCOM signal in 2 pixel resolution. The S1D13A05 GPO1 pin controls the VCOM signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces. VCOM Toggle Position in pixels = (REG[DCh] bits 7-0) × 2 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 130 Epson Research and Development Vancouver Design Center Type 3 TFT PCLK Divide Register REG[E0h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 10 9 8 7 6 n/a 15 14 bit 5-4 13 12 11 21 20 PCLK2 Divide Rate bits 1-0 5 4 19 18 17 16 PCLK1 Divide Rate bits 3-0 3 2 1 0 PCLK2 Divide Rate Bits [1:0] These bits specify the divide rate for PCLK2. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. Table 8-31: PCLK2 Divide Rate bits 3-0 REG[C8h] bits 5-4 PCLK2 Divide Rate 00 64 01 128 10 256 11 512 PCLK1 Divide Rate Bits [3:0] These bits specify the divide rate for PCLK1. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. Table 8-32: PCLK1 Divide Rate REG[C8h] bits 3-0 PCLK1 Divide Rate 0000 2 0001 4 0010 8 0011 16 0100 32 0101 64 0110 128 0111 256 1000 512 1001 1024 1010 2048 1011 4096 1100 8192 1101 16384 1110 32768 1111 65536 S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 131 Type 3 TFT Partial Mode Display Area Control Register REG[E4h] Default = 00000000h Read/Write n/a 31 30 29 n/a 15 28 27 26 25 24 23 Partial Mode Display Refresh Cycle bits 5-0 14 13 12 11 10 9 22 21 n/a 8 7 6 20 Partial Mode Display Enable 5 4 19 Partial Mode Display Type Select 3 18 17 16 Area 2 Display Enable Area 1 Display Enable Area 0 Display Enable 2 1 0 bits 13-8 Partial Mode Display Refresh Cycle Bits [5:0] These bits specify the refresh cycle for the Partial Mode Display. The refresh cycle can be a value from 0 to 63. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bit 4 Partial Mode Display Enable This bit enables/disables the Partial Mode Display for the TFT Type 3 and has no effect for all other panel interfaces. When this bit = 1, Partial Mode Display is enabled. When this bit = 0, Partial Mode Display is disabled. bit 3 Partial Mode Display Type Select This bit selects the type of partial mode display. When this bit =0, the Stripe type of partial mode display is selected. If Stripe is enabled only the Y Position registers are used in calculating the partial display. When this bit = 1, type Block type of partial mode display is selected. If Block is enabled both the X and Y Position registers are used in calculating the partial display. bit 2 Area 2 Display Enable This bit enables/disables the Area 2 for Partial Mode Display on the TFT Type 3 and has no effect for all other panel interfaces. When this bit = 1, Area 2 is enabled. When this bit = 0, Area 2 is disabled. bit 1 Area 1 Display Enable This bit enables/disables the Area 1 for Partial Mode Display on the TFT Type 3 and has no effect for all other panel interfaces. When this bit = 1, Area 1 is enabled. When this bit = 0, Area 1 is disabled. bit 0 Area 0 Display Enable This bit enables/disables the Area 0 for Partial Mode Display on the TFT Type 3 and has no effect for all other panel interfaces. When this bit = 1, Area 0 is enabled. When this bit = 0, Area 0 is disabled. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 132 Epson Research and Development Vancouver Design Center Type 3 TFT Partial Area 0 Positions Register REG[E8h] Default = 00000000h n/a 31 30 29 n/a 15 Read/Write Partial Area 0 Y End Position bits 5-0 14 13 28 27 26 25 Partial Area 0 Y Start Position bits 5-0 12 11 10 9 Partial Area 0 X End Position bits 5-0 n/a 24 23 22 21 6 5 n/a 8 7 20 19 18 17 Partial Area 0 X Start Position bits 5-0 4 3 2 1 16 0 bits 29-24 Partial Area 0 Y End Position Bits [5:0] These bits specify the Y End Position of Partial Area 0 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bits 21-16 Partial Area 0 X End Position Bits [5:0] These bits specify the X End Position of Partial Area 0 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bits 13-8 Partial Area 0 Y Start Position Bits [5:0] These bits specify the Y Start Position of Partial Area 0 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bits 5-0 Partial Area 0 X Start Position Bits [5:0] These bits specify the X Start Position of Partial Area 0 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. Type 3 TFT Partial Area 1 Positions Register REG[ECh] Default = 00000000h n/a 31 30 29 n/a 15 Read/Write Partial Area 1 Y End Position bits 5-0 14 13 28 27 26 25 Partial Area 1 Y Start Position bits 5-0 12 11 10 9 Partial Area 1 X End Position bits 5-0 n/a 24 23 22 21 6 5 n/a 8 7 20 19 18 17 Partial Area 1 X Start Position bits 5-0 4 3 2 1 16 0 bits 29-24 Partial Area 1 Y End Position Bits [5:0] These bits specify the Y End Position of Partial Area 1 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bits 21-16 Partial Area 1 X End Position Bits [5:0] These bits specify the X End Position of Partial Area 1 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bits 13-8 Partial Area 1 Y Start Position Bits [5:0] These bits specify the Y Start Position of Partial Area 1 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bits 5-0 Partial Area 1 X Start Position Bits [5:0] These bits specify the X Start Position of Partial Area 1 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 133 Type 3 TFT Partial Area 2 Positions Register REG[F0h] Default = 00000000h n/a 31 30 29 n/a 15 Read/Write Partial Area 2 Y End Position bits 5-0 14 13 28 27 26 25 Partial Area 2 Y Start Position bits 5-0 12 11 10 9 Partial Area 2 X End Position bits 5-0 n/a 24 23 22 21 6 5 n/a 8 7 20 19 18 17 Partial Area 2 X Start Position bits 5-0 4 3 2 1 16 0 bits 29-24 Partial Area 2 Y End Position Bits [5:0] These bits specify the Y End Position of Partial Area 2 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bits 21-16 Partial Area 2 X End Position Bits [5:0] These bits specify the X End Position of Partial Area 2 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bits 13-8 Partial Area 2 Y Start Position Bits [5:0] These bits specify the Y Start Position of Partial Area 2 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. bits 5-0 Partial Area 2 X Start Position Bits [5:0] These bits specify the X Start Position of Partial Area 2 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces. Type 3 TFT Command Store Register REG[F4h] Default = 00000000h Read/Write n/a 31 30 Command 1 Store bits 11-0 29 28 27 26 25 24 23 13 12 11 10 9 8 7 n/a 15 14 22 21 20 Command 0 Store bits 11-0 6 5 4 19 18 17 16 3 2 1 0 bits 27-16 Command 1 Store Bits [11:0] These bits store command 1 for the TFT Type 3 Interface. This register has no effect for all other panel interfaces. bits 11-0 Command 0 Store Bits [11:0] These bits store command 0 for the TFT Type 3 Interface. This register has no effect for all other panel interfaces. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 134 Epson Research and Development Vancouver Design Center Type 3 TFT Miscellaneous Register REG[F8h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 n/a 15 14 bits 9-8 13 25 24 23 22 21 Source Driver IC Number bits 1-0 12 11 10 9 8 20 19 18 17 16 Command Send Request 3 2 1 0 n/a 7 6 5 4 Source Driver IC Number Bits [1:0] These bits contain the number of Source Driver ICs. Table 8-33: Number of Source Driver ICs bit 0 REG[E0h] bits 1-0 Source Driver ICs 00 1 01 2 10 3 11 4 Command Send Request After the CPU sets this bit, the S1D13A05 sends the command in the next non-display period and clears this bit automatically. This register has no effect for all other panel interfaces. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 135 8.4 USB Registers (Offset = 4000h) The S1D13A05 USB device occupies a 48 byte local register space which can be accessed by the CPU on the local host interface. To access the USB registers: 1. A valid USBCLK must be provided. 2. The USBClk Enable bit (REG[4000h] bit 7) must be set to 1 and the USB Setup bit (REG[4000h] bit 2) must be set to 1. Both bits should be set together. If any of the above conditions are not true, the USB registers must not be accessed. Control Register REG[4000h] Default = 00h Read/Write n/a 15 USBClk Enable 14 Software EOT 13 USB Enable 12 Endpoint 4 Stall 11 Endpoint 3 Stall 10 USB Setup 9 Reserved 8 Reserved 7 6 5 4 3 2 1 0 bit 7 USBClk Enable. This bit allows the USBClk to be enabled/disabled allowing the S1D13A05 to save power when the USBClk is not required. The USBClk Enable bit operates independently of the Power Save Mode Enable bit (REG[14h] bit 4). For example, enabling power save mode does not disable the USB section of the S1D13A05. It must be disabled using the USBClk enable bit. This bit should initially be set with the USB Setup bit. However, it can be disabled/reenabled individually. When this bit = 1, the USBClk is enabled. When this bit = 0, the USBClk is disabled. Note The USB Registers must not be accessed when this bit is 0. bit 6 Software EOT This bit determines the response to an IN request to Endpoint 4 when the transmit FIFO is empty. If this bit is asserted, the S1D13A05 responds to an IN request to Endpoint 4 with an ACK and a zero length packet if the FIFO is empty. If this bit is not asserted, the S1D13A05 responds to an IN request from Endpoint 4 with an NAK if the FIFO is empty, indicating that it expects to transmit more data. This bit is automatically cleared when the S1D13A05 responds to the host with a zero length packet when the FIFO is empty. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 136 Epson Research and Development Vancouver Design Center bit 5 USB Enable Any device or configuration descriptor reads from the host will be acknowledged with a NAK until this bit is set. This allows time for the local CPU to set up the interrupt polling register, maximum packet size registers, and other configuration registers (e.g. Product ID and Vendor ID) before the host reads the descriptors. Note As the device and configuration descriptors cannot be read by the host until the USB Enable bit is set, the device enumeration process will not complete and the device will not be recognized on the USB. bit 4 Endpoint 4 Stall. If this bit is set, host bulk reads from the transmit FIFO will result in a STALL acknowledge by the S1D13A05. No data will be returned to the USB host. bit 3 Endpoint 3 Stall. If this bit is set, host bulk writes to the receive FIFO will result in a STALL acknowledge by the S1D13A05. Receive data will be discarded. bit 2 USB Setup This bit is used by software to select between GPIO and USB functions for multifunction GPIO pins (GPIO[7:4]). This bit should be set at the same time as the USBClk Enable bit. When this bit = 1, the USB function is selected. When this bit = 0, the GPIO function is selected. Note The USB Registers must not be accessed when this bit is 0. bit 1 Reserved. This bit must be set to 0. bit 0 Reserved. This bit must be set to 0. Interrupt Enable Register 0 REG[4002h] Default = 00h Read/Write n/a 15 Suspend Request Interrupt Enable 14 SOF Interrupt Enable 7 6 13 Reserved 12 Endpoint 4 Interrupt Enable 11 Endpoint 3 Interrupt Enable 10 Endpoint 2 Interrupt Enable 9 Endpoint 1 Interrupt Enable 4 3 2 1 5 8 n/a 0 bit 7 Suspend Request Interrupt Enable. When set, this bit enables an interrupt to occur when the USB host is requesting the S1D13A05 USB device to enter suspend mode. bit 6 SOF Interrupt Enable. When set, this bit enables an interrupt to occur when a start-of-frame packet is received by the S1D13A05. bit 5 Reserved. This bit must be set to 0. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 137 bit 4 Endpoint 4 Interrupt Enable. When set, this bit enables an interrupt to occur when a USB Endpoint 4 Data Packet has been sent by the S1D13A05. bit 3 Endpoint 3 Interrupt Enable. When set, this bit enables an interrupt to occur when a USB Endpoint 3 Data Packet has been received by the S1D13A05. bit 2 Endpoint 2 Interrupt Enable. When set, this bit enables an interrupt to occur when the USB Endpoint 2 Transmit Mailbox registers have been read by the USB host. bit 1 Endpoint 1 Interrupt Enable. When set, this bit enables an interrupt to occur when the USB Endpoint 1 Receive Mailbox registers have been written to by the USB host. Interrupt Status Register 0 REG[4004h] Default = 00h Read/Write n/a 15 14 13 12 11 10 9 Suspend Request Interrupt Status SOF Interrupt Status Reserved Endpoint 4 Interrupt Status Endpoint 3 Interrupt Status Endpoint 2 Interrupt Status Endpoint 1 Interrupt Status 7 6 5 4 3 2 1 8 Upper Interrupt Active (read only) 0 bit 7 Suspend Request Interrupt Status. This bit indicates when a suspend-request has been received by the S1D13A05. Writing a 1 clears this bit. bit 6 SOF Interrupt Status. This bit indicates when a start-of-frame packet has been received by the S1D13A05. Writing a 1 clears this bit. bit 5 Reserved. This bit must be set to 0. bit 4 Endpoint 4 Interrupt Status. This bit indicates when a USB Endpoint 4 Data packet has been sent by the S1D13A05. Writing a 1 clears this bit. bit 3 Endpoint 3 Interrupt Status (Receive FIFO Valid). This bit indicates when a USB Endpoint 3 Data packet has been received by the S1D13A05. No more packets to endpoint 3 will be accepted until this bit is cleared. Writing a 1 clears this bit. bit 2 Endpoint 2 Interrupt Status. This bit indicates when the USB Endpoint 2 Mailbox registers have been read by the USB host. Writing a 1 clears this bit. bit 1 Endpoint 1 Interrupt Status (Receive Mailbox Valid). This bit indicates when the USB Endpoint 1 Mailbox registers have been written to by the USB host. Writing a 1 clears this bit. bit 0 Upper Interrupt Active (read only). At least one interrupt status bit is set in register REG[4008h]. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 138 Epson Research and Development Vancouver Design Center Interrupt Enable Register 1 REG[4006h] Default = 00h Read/Write n/a 15 14 13 12 11 10 9 Transmit FIFO Almost Empty Interrupt Enable 8 Receive FIFO Almost Full Interrupt Enable 4 3 2 1 0 n/a 7 6 bit 1 5 Transmit FIFO Almost Empty Interrupt Enable. When set, this bit enables an interrupt to be generated when the Transmit FIFO Almost Empty status bit is set. Note The Transmit FIFO Almost Empty threshold must be set greater than zero, as the FIFO count must drop below the threshold to cause an interrupt. bit 0 Receive FIFO Almost Full Interrupt Enable. When set, this bit enables an interrupt to be generated when the Receive FIFO Almost Full status bit is set. Note The Receive FIFO Almost Full threshold must be set less than 64, as the FIFO count must rise above the threshold to cause an interrupt. Interrupt Status Register 1 REG[4008h] Default = 00h Read/Write n/a 15 14 13 12 11 10 n/a 7 6 5 4 3 2 9 Transmit FIFO Almost Empty Status 1 8 Receive FIFO Almost Full Status 0 bit 1 Transmit FIFO Almost Empty Status. This bit is set when the number of bytes in the Transmit FIFO is equal to the Transmit FIFO Almost Empty Threshold, and another byte is sent to the USB bus from the FIFO. Writing a 1 clears this bit. bit 0 Receive FIFO Almost Full Status. This bit is set when the number of bytes in the Receive FIFO is equal to the Receive FIFO Almost Full Threshold, and another byte is received from the USB bus into the FIFO. Writing a 1 clears this bit. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 139 Endpoint 1 Index Register REG[4010h] Default = 00h Read/Write n/a 15 14 13 n/a 12 11 10 9 Endpoint 1 Index bits 2-0 (RO) 8 7 6 5 4 3 2 1 0 bits 2-0 Endpoint 1 Index Register Bits [2:0]. This register determines which Endpoint 1 Receive Mailbox is accessed when the Endpoint 1 Receive Mailbox Data register is read. This register is automatically incremented after the Endpoint 1 Receive Mailbox Data register is read. This index register wraps around to zero when it reaches the maximum count (7). Endpoint 1 Receive Mailbox Data Register REG[4012h] Default = 00h Read Only n/a 15 14 13 7 6 5 bits 7-0 12 11 Endpoint 1 Receive Mailbox Data bits 7-0 4 3 10 9 8 2 1 0 Endpoint 1 Receive Mailbox Data Bits [7:0]. This register is used to read data from one of the receive mailbox registers. Data is returned from the register selected by the Endpoint 1 Index Register. The eight receive mailbox registers are written by a USB bulk transfer to endpoint 1, and can be used to pass messages from the USB host to the local CPU. The format and content of the messages are user defined. If enabled, USB writes to this register can generate an interrupt. Endpoint 2 Index Register REG[4018h] Default = 00h Read/Write n/a 15 14 13 n/a 12 11 10 9 Endpoint 2 Index bits 2-0 8 7 6 5 4 3 2 1 0 bits 2-0 Endpoint 2 Index Register Bits [2:0]. This register determines which Endpoint 2 Transmit Mailbox is accessed when the Endpoint 2 Transmit Mailbox Data register is read or written. This register is automatically incremented after the Endpoint 2 Transmit Mailbox Data port is read or written. This index register wraps around to zero when it reaches the maximum count (7). Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 140 Epson Research and Development Vancouver Design Center Endpoint 2 Transmit Mailbox Data Register REG[401Ah] Default = 00h Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 Endpoint 2 Transmit Mailbox Data bits 7-0 4 3 10 9 8 2 1 0 Endpoint 2 Transmit Mailbox Data Bits [7:0]. This register is used to read or write one of the transmit mailbox registers. The register being accessed is selected by the Endpoint 2 Index register. The eight Transmit Mailbox registers are written by the local CPU and are read by a USB transfer from endpoint 2. The format and content of the messages are user defined. If enabled, USB reads from this register can generate an interrupt. Endpoint 2 Interrupt Polling Interval Register REG[401Ch] Default = FFh Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 Interrupt Polling Interval bits 7-0 4 3 10 9 8 2 1 0 Interrupt Polling Interval Bits [7:0]. This register specifies the Endpoint 2 interrupt polling interval in milliseconds. It can be read by the host through the endpoint 2 descriptor. Endpoint 3 Receive FIFO Data Register REG[4020h] Default = 00h Read Only n/a 15 14 13 7 6 5 bits7-0 12 11 Endpoint 3 Receive FIFO Data bits 7-0 4 3 10 9 8 2 1 0 Endpoint 3 Receive FIFO Data Bits [7:0]. This register is used by the local CPU to read USB receive FIFO data. The FIFO data is written by the USB host using bulk or isochronous transfers to endpoint 3. Endpoint 3 Receive FIFO Count Register REG[4022h] Default = 00h Read Only n/a 15 14 13 7 6 5 bits 7-0 12 11 Receive FIFO Count bits 7-0 4 3 10 9 8 2 1 0 Receive FIFO Count Bits [7:0]. This register returns the number of receive FIFO entries containing valid entries. Values range from 0 (empty) to 64 (full). This register is automatically decremented after every read of the of the Receive FIFO Data Register (REG[4020h]). S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 141 Endpoint 3 Receive FIFO Status Register REG[4024h] Default = 01h Read/Write n/a 15 14 13 n/a 7 6 12 11 10 9 Receive FIFO Flush Receive FIFO Overflow Receive FIFO Underflow Receive FIFO Full (read only) 4 3 2 1 5 8 Receive FIFO Empty (read only) 0 bit 4 Receive FIFO Flush. Writing to this bit causes the receive FIFO to be flushed. Reading this bit always returns a 0. bit 3 Receive FIFO Overflow. If set, this bit indicates that an attempt was made by the USB host to write to the receive FIFO when the receive FIFO was full. Writing a 1 clears this bit. bit 2 Receive FIFO Underflow. If set, this bit indicates that an attempt was made to read the receive FIFO when the receive FIFO was empty. Writing a 1 clears this bit. bit 1 Receive FIFO Full. If set, this bit indicates that the receive FIFO is full. bit 0 Receive FIFO Empty. If set, this bit indicates that the receive FIFO is empty. Endpoint 3 Maximum Packet Size Register REG[4026h] Default = 08h Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 Endpoint 3 Max Packet Size bits 7-0 4 3 10 9 8 2 1 0 Endpoint 3 Max Packet Size Bits [7:0]. This register specifies the maximum packet size for endpoint 3 in units of 8 bytes (default = 64 bytes). It can be read by the host through the endpoint 3 descriptor. Endpoint 4 Transmit FIFO Data Register REG[4028h] Default = 00h Write Only n/a 15 14 13 7 6 5 bits 7-0 12 11 Transmit FIFO Data bits 7-0 4 3 10 9 8 2 1 0 Transmit FIFO Data Bits [7:0]. This register is used by the local CPU to write data to the transmit FIFO. The FIFO data is read by the USB host using bulk or isochronous transfers from endpoint 4. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 142 Epson Research and Development Vancouver Design Center Endpoint 4 Transmit FIFO Count Register REG[402Ah] Default = 00h Read Only n/a 15 14 13 7 6 5 bits 7-0 12 11 Transmit FIFO Count bits 7-0 4 3 10 9 8 2 1 0 Transmit FIFO Count Bits [7:0]. This register returns the number of transmit FIFO entries containing valid entries. Values range from 0 (empty) to 64 (full). Endpoint 4 Transmit FIFO Status Register REG[402Ch] Default = 01h Read/Write n/a 15 14 n/a 7 13 Transmit FIFO Valid 12 Transmit FIFO Flush 11 Transmit FIFO Overflow 5 4 3 6 10 Reserved 2 9 Transmit FIFO Full (read only) 8 Transmit FIFO Empty (read only) 1 0 bit 5 Transmit FIFO Valid. If set, this bit allows the data in the Transmit FIFO to be read by the next read from the host. This bit is automatically cleared by a host read. This bit is only used if bit 0 in USB[403Ah] Index [0Ch] is set. bit 4 Transmit FIFO Flush. Writing to this bit causes the transmit FIFO to be flushed. Reading this bit always returns a 0. bit 3 Transmit FIFO Overflow. If set, this bit indicates that an attempt was made by the local CPU to write to the transmit FIFO when the transmit FIFO was full. Writing a 1 clears this bit. bit 2 Reserved. bit 1 Transmit FIFO Full (read only). If set, this bit indicates that the transmit FIFO is full. bit 0 Transmit FIFO Empty (read only). If set, this bit indicates that the transmit FIFO is empty. Endpoint 4 Maximum Packet Size Register REG[402Eh] Default = 08h Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 Endpoint 4 Max Packet Size bits 7-0 4 3 10 9 8 2 1 0 Endpoint 4 Max Packet Size Bits [7:0]. This register specifies the maximum packet size for endpoint 4 in units of 8 bytes (default = 64 bytes). It can be read by the host through the endpoint 4 descriptor. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Revision Register REG[4030h] Page 143 Default = 01h Read Only n/a 15 14 13 12 11 Chip Revision bits 7-0 10 9 8 7 6 5 4 2 1 0 bits 7-0 3 Chip Revision Bits [7:0]. This register returns current silicon revision number of the USB client. USB Status Register REG[4032h] Default = 00h Read/Write n/a 15 Suspend Control 7 14 USB Endpoint 4 STALL 13 USB Endpoint 4 NAK 12 USB Endpoint 4 ACK 11 USB Endpoint 3 STALL 10 USB Endpoint 3 NAK 9 USB Endpoint 3 ACK 6 5 4 3 2 1 8 Endpoint 2 Valid 0 bit 7 Suspend Control If set, this bit indicates that there is a pending suspend request. Writing a 1 clears this bit and causes the S1D13A05 USB device to enter suspended mode. bit 6 USB Endpoint 4 STALL The last USB IN token could not be serviced because the endpoint was stalled (REG[4000h] bit 4 set), and was acknowledged with a STALL. Writing a 1 clears this bit. bit 5 USB Endpoint 4 NAK The last USB packet transmitted (IN packet) encountered a FIFO underrun condition, and was acknowledged with a NAK. Writing a 1 clears this bit. bit 4 USB Endpoint 4 ACK The last USB packet transmitted (IN packet) was successfully acknowledged with an ACK from the USB host. Writing a 1 clears this bit. bit 3 USB Endpoint 3 STALL The last USB packet received (OUT packet) could not be accepted because the endpoint was stalled (REG[4000h] bit 3 set), and was acknowledged with a STALL. Writing a 1 clears this bit. bit 2 USB Endpoint 3 NAK The last USB packet received (OUT packet) could not be accepted, and was acknowledged with a NAK. Writing a 1 clears this bit. bit 1 USB Endpoint 3 ACK. The last USB packet received (OUT packet) was successfully acknowledged with an ACK. Writing a 1 clears this bit. bit 0 Endpoint 2 Valid. When this bit is set, the 8-byte endpoint 2 mailbox registers have been written by the local CPU, but not yet read by the USB host. The local CPU should not write into these registers while this bit is set. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 144 Epson Research and Development Vancouver Design Center Frame Counter MSB Register REG[4034h] Default = 00h Read Only n/a 15 14 13 n/a 12 11 10 9 Frame Counter bits 10-8 8 7 6 5 4 3 2 1 0 Frame Counter LSB Register REG[4036h] Default = 00h Read Only n/a 15 14 13 7 6 5 bits 10-0 12 11 Frame Counter bits 7-0 4 3 10 9 8 2 1 0 Frame Counter Bits [10:0] This register contains the frame counter from the most recent start-of-frame packet. Extended Register Index REG[4038h] Default = 00h Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 Extended Register Index bits 7-0 4 3 10 9 8 2 1 0 Extended Register Index Bits [7:0] This register selects which extended data register is accessed when the REG[403Ah] is read or written. Extended Register Data REG[403Ah] Default = 04h Read/Write n/a 15 14 13 7 6 5 bits 7-0 12 11 Extended Data bits 7-0 4 3 10 9 8 2 1 0 Extended Data Bits [7:0] This port provides access to one of the extended data registers. The index of the current register is held in REG[4038h]. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Vendor ID MSB REG[403Ah], Index[00h] Page 145 Default = 04h Read/Write Vendor ID bits 15-8 7 6 5 Vendor ID LSB REG[403Ah], Index[01h] 4 3 2 1 Default = B8h 0 Read/Write Vendor ID bits 7-0 7 6 bits 15-0 5 4 3 2 1 0 Vendor ID Bits [15:0] These registers determine the Vendor ID returned in a “Get Device Descriptor” request. Product ID MSB REG[403Ah], Index[02h] Default = 88h Read/Write Product ID bits 15-8 7 6 5 Product ID LSB REG[403Ah], Index[03h] 4 3 2 1 Default = 21h 0 Read/Write Product ID bits 7-0 7 6 bits 15-0 5 4 3 2 1 0 Product ID Bits [15:0] These registers determine the Product ID returned in a “Get Device Descriptor” request. Release Number MSB REG[403Ah], Index[04h] Default = 01h Read/Write Release Number bits 15-8 7 6 5 Release Number LSB REG[403Ah], Index[05h] 4 3 2 1 Default = 00h 0 Read/Write Release Number bits 7-0 7 bits 15-0 6 5 4 3 2 1 0 Release Number Bits [15:0] These registers determine the device release number returned in a “Get Device Descriptor” request. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 146 Epson Research and Development Vancouver Design Center Receive FIFO Almost Full Threshold REG[403Ah], Index[06h] Default = 3Ch Read/Write n/a 7 Receive FIFO Almost Full Threshold bits 5-0 6 bits 5-0 5 4 3 2 1 0 Receive FIFO Almost Full Threshold Bits [5:0] This register determines the threshold at which the receive FIFO almost full status bit is set. Note The Receive FIFO Almost Full threshold must be set less than 64, as the FIFO count must rise above the threshold to cause an interrupt. Transmit FIFO Almost Empty Threshold REG[403Ah], Index[07h] Default = 04h Read/Write n/a 7 Transmit FIFO Almost Empty Threshold bits 5-0 6 bits 5-0 5 4 3 2 1 0 Transmit FIFO Almost Empty Threshold Bits [5:0]. This register determines the threshold at which the transmit FIFO almost empty status bit is set. Note The Transmit FIFO Almost Empty threshold must be set greater than zero, as the FIFO count must drop below the threshold to cause an interrupt. USB Control REG[403Ah], Index[08h] Default = 01h Read/Write USB String Enable n/a 7 6 bit 0 5 4 3 2 1 0 USB String Enable. When set, this bit allows the default Vendor and Product ID String Descriptors to be returned to the host. When this bit is cleared, the string index values in the Device Descriptor are set to zero. Maximum Power Consumption REG[403Ah], Index[09h] Default = FAh Read/Write Maximum Current bits 7-0 7 bits 7-0 6 5 4 3 2 1 0 Maximum Current Bits [7:0]. The amount of current drawn by the peripheral from the USB port in increments of 2 mA. The S1D13A05 reports this value to the host controller in the configuration descriptor. The default and maximum value is 500 mA (FAh * 2 mA). In order to comply with the USB specification the following formula must apply: REG[403Ah] index[09h] ≤ FAh. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Packet Control REG[403Ah], Index[0Ah] Page 147 Default = 00h Read/Write EP4 Data Toggle EP3 Data Toggle EP2 Data Toggle EP1 Data Toggle Reserved Reserved n/a Reserved 7 6 5 4 3 2 1 0 bit 7 EP4 Data Toggle Bit. Contains the value of the Data Toggle bit to be sent in response to the next IN token to endpoint 4 from the USB host. Note When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK. bit 6 EP3 Data Toggle Bit. Contains the value of the Data Toggle bit expected in the next DATA packet to endpoint 3 from the USB host. Note When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK. bit 5 EP2 Data Toggle Bit. Contains the value of the Data Toggle bit to be sent in response to the next IN token to endpoint 2 from the USB host. Note When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK. bit 4 EP1 Data Toggle Bit. Contains the value of the Data Toggle bit expected in the next DATA packet to endpoint 1 from the USB host. Note When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK. bit 3 Reserved. This bit must be set to 0. bit 2 Reserved. This bit must be set to 0. bit 0 Reserved. This bit must be set to 0. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 148 Epson Research and Development Vancouver Design Center Reserved REG[403Ah], Index[0Bh] Default = 00h Read/Write n/a 7 6 bit 0 5 Reserved 4 3 2 1 0 Reserved. This bit must be set to 0. FIFO Control REG[403Ah], Index[0Ch] Default = 00h Read/Write Transmit FIFO Valid Mode n/a 7 6 bit 0 5 4 3 2 1 0 Transmit FIFO Valid Mode. When set, this bit causes a NAK response to a host read request from the transmit FIFO (EP4) unless the FIFO Valid bit (in register EP4STAT) is set. When this bit is cleared, any data waiting in the transmit FIFO will be sent in response to a host read request, and the FIFO Valid bit is ignored. USBFC Input Control Register REG[4040h] Default = 0Dh Read/Write n/a 15 n/a 14 USCMPEN 13 Reserved 12 Reserved 11 ISO 10 WAKEUP 9 Reserved 8 Reserved 7 6 5 4 3 2 1 0 These bits control inputs to the USB module. bit 6 USCMPEN This bit controls the USB differential input receiver. 0 = differential input receiver disabled 1 = differential input receiver enabled bits 5 Reserved. This bit must be set to 0. bits 4 Reserved. This bit must be set to 0. bit 3 ISO This bits selects between isochronous and bulk transfer modes for the FIFOs (Endpoint 3 and Endpoint 4). 0 = Isochronous transfer mode 1 = Bulk transfer mode bit 2 WAKEUP This active low bit initiates a USB remote wake-up. 0 = initiate USB remote wake-up 1 = no action S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 149 bit 1 Reserved. This bit must be set to 0. bit 0 Reserved. This bit must be set to 0. Reserved REG[4042h] n/a 15 14 13 12 11 10 9 8 3 2 1 0 n/a 7 6 5 4 Pin Input Status / Pin Output Data Register REG[4044h] Default = depends on USB input pin state Read/Write n/a 15 14 13 12 11 10 n/a 7 6 5 4 3 2 9 USBDETECT Input Pin Status (read only) 1 8 USBPUP Output Pin Status 0 These bits can generate interrupts. bit 1 USBDETECT Input Pin Status This read-only bit indicates the status of the USBDETECT input pin after a steady-state period of 0.5 seconds. bit 0 USBPUP Output Pin Status This bit controls the state of the USBPUP output pin. This bit must be set to 1 to enable the USB interface and USB registers. See the S1D13A05 Programming Notes and Examples, document number X40-A-G-003-xx for further information on this bit. Interrupt Control Enable Register 0 REG[4046h] Default = 00h Read/Write n/a 15 n/a 7 14 USB Host Connected 6 13 12 11 10 9 8 Reserved Reserved Reserved Reserved USBRESET Reserved 5 4 3 2 1 0 These bits enable interrupts from the corresponding bit of the Interrupt Control Status/Clear Register 0. 0 = corresponding interrupt bit disabled (masked). 1 = corresponding interrupt bit enabled. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 150 Epson Research and Development Vancouver Design Center Interrupt Control Enable Register 1 REG[4048h] Default = 00h Read/Write n/a 15 n/a 7 14 USB Host Disconnect 6 13 Reserved 5 12 Device Configured 4 11 10 9 8 Reserved Reserved Reserved INT 3 2 1 0 These bits enable interrupts from the corresponding bit of the Interrupt Control Status/Clear Register 1. 0 = corresponding interrupt bit disabled (masked). 1 = corresponding interrupt bit enabled. Interrupt Control Status/Clear Register 0 REG[404Ah] Default = 00h Read/Write n/a 15 n/a 7 14 USB Host Connected 6 13 12 11 10 9 8 Reserved Reserved Reserved Reserved USBRESET Reserved 5 4 3 2 1 0 On reads, these bits represent the interrupt status for interrupts caused by low-to-high transitions on the corresponding signals. 0 (read) = no low-to-high event detected on the corresponding signal. 1 (read) = low-to-high event detected on the corresponding signal. On writes, these bits clear the corresponding interrupt status bit. 0 (write) = corresponding interrupt status bit unchanged. 1 (write) = corresponding interrupt status bit cleared to zero. These bits must always be cleared via a write to this register before first use. This will ensure that any changes on input pins during system initialization do not generate erroneous interrupts. The interrupt bits are used as follows. bit 6 USB Host Connected Indicates the USB device is connected to a USB host. bit 5 Reserved. Must be set to 0. bit 4 Reserved. Must be set to 0. bit 3 Reserved. Must be set to 0. bit 2 Reserved. Must be set to 0. bit 1 USBRESET Indicates the USB device is reset using the RESET# pin or using the USB port reset. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center bit 0 Page 151 Reserved. Must be set to 0. Interrupt Control Status/Clear Register 1 REG[404Ch] Default = 00h Read/Write n/a 15 n/a 7 14 USB Host Disconnected 6 13 Reserved 5 12 Device Configured 11 10 9 8 Reserved Reserved Reserved INT 3 2 1 0 4 On reads, these bits represent the interrupt status for interrupts caused by high-to-low transitions on the corresponding signals. 0 (read) = no high-to-low event detected on the corresponding signal. 1 (read) = high-to-low event detected on the corresponding signal. On writes, these bits clear the corresponding interrupt status bit. 0 (write) = corresponding interrupt status bit unchanged. 1 (write) = corresponding interrupt status bit cleared to zero. These bits must always be cleared via a write to this register before first use. This will ensure that any changes on input pins during system initialization do not generate erroneous interrupts. The interrupt bits are used as follows. bit 6 USB Host Disconnected Indicates the USB device is disconnected from a USB host. bit 5 Reserved. Must be set to 0. bit 4 Device Configured. Indicates the USB device has been configured by the USB host. bit 3 Reserved. Must be set to 0. bit 2 Reserved. Must be set to 0. bit 1 Reserved. Must be set to 0. bit 0 INT Indicates an interrupt request originating from within the USB registers (REG[4000h] to REG[403Ah]). Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 152 Epson Research and Development Vancouver Design Center Interrupt Control Masked Status Register 0 REG[404Eh] Default = 00h Read Only n/a 15 n/a 7 14 USB Host Connected 6 13 12 11 10 9 8 Reserved Reserved Reserved Reserved USBRESET Reserved 5 4 3 2 1 0 These read-only bits represent the logical AND of the corresponding Interrupt Control Status/Clear Register 0 (REG[404Ah])and the Interrupt Control Enable Register 0 (REG[4046h]). Interrupt Control Masked Status Register 1 REG[4050h] Default = 00h Read Only n/a 15 n/a 7 14 USB Host Disconnected 6 13 12 Device Configured Reserved 5 4 11 10 9 8 Reserved Reserved Reserved INT 3 2 1 0 These read-only bits represent the logical AND of the corresponding Interrupt Control Status/Clear Register 1 (REG[404Ch]) and the Interrupt Control Enable Register 1 (REG[4048h]). USB Software Reset Register REG[4052h] Default = 00h Write Only n/a 15 14 13 7 6 5 bits 7-0 12 11 USB Software Reset (Code = 10100100) bits 7-0 4 3 10 9 8 2 1 0 USB Software Reset Bits [7:0] (Write Only) When the specific code of 10100100b is written to these bits the USB module of the S1D13A05 is reset. Use of the above code avoids the possibility of accidently resetting the USB. USB Wait State Register REG[4054h] Default = 00h Read/Write n/a 15 14 13 12 11 10 4 3 2 n/a 7 bits 1-0 6 5 9 8 USB Wait State bits 1-0 1 0 USB Wait State Bits [1:0] This register controls the number of wait states the S1D13A05 uses for its internal USB support. For all bus interfaces supported by the S1D13A05 these bits must be set to 01. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 153 8.5 2D Acceleration (BitBLT) Registers (Offset = 8000h) These registers control the S1D13A05 2D Acceleration engine. For detailed BitBLT programming instructions, see the S1D13A05 Programming Notes and Examples, document number X40A-G-003-xx. BitBLT Control Register REG[8000h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 Color Format Select Dest Linear Select Source Linear Select 23 22 21 20 19 18 17 16 BitBLT Enable (WO) 7 6 5 4 3 2 1 0 n/a 15 14 13 12 11 10 9 8 bit 18 BitBLT Color Format Select This bit selects the color format that the 2D operation is applied to. When this bit = 0, 8 bpp (256 color) format is selected. When this bit = 1, 16 bpp (64K color) format is selected. bit 17 BitBLT Destination Linear Select When this bit = 1, the Destination BitBLT is stored as a contiguous linear block of memory. When this bit = 0, the Destination BitBLT is stored as a rectangular region of memory. The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset from the start of one line to the next line. bit 16 BitBLT Source Linear Select When this bit = 1, the Source BitBLT is stored as a contiguous linear block of memory. When this bit = 0, the Source BitBLT is stored as a rectangular region of memory. The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset from the start of one line to the next line. bit 0 BitBLT Enable This bit is write only. Setting this bit to 1 begins the 2D BitBLT operation. This bit must not be set to 0 while a BitBLT operation is in progress. Note To determine the status of a BitBLT operation use the BitBLT Busy Status bit (REG[8004h] bit 0). Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 154 Epson Research and Development Vancouver Design Center BitBLT Status Register REG[8004h] Default = 00000000h n/a 31 30 Read Only n/a Number of Used FIFO Entries 29 28 27 26 25 24 23 n/a 15 14 13 12 11 10 9 8 22 FIFO Not Empty 7 6 Number of Free FIFO Entries (0 means full) 21 FIFO Half Full 5 20 FIFO Full Status 19 4 3 18 17 16 BitBLT Busy Status 1 0 n/a 2 bits 28-24 Number of Used FIFO Entries Bits [4:0] These bits indicate the minimum number of FIFO entries currently in use (there may be more values in internal pipeline stages). bits 20-16 Number of Free FIFO Entries Bits [4:0] These bits indicate the number of empty FIFO entries available. If these bits return a 0, the FIFO is full. bit 6 BitBLT FIFO Not-Empty Status This is a read-only status bit. When this bit = 0, the BitBLT FIFO is empty. When this bit = 1, the BitBLT FiFO has at least one data. To reduce system memory read latency, software can monitor this bit prior to a BitBLT read burst operation. The following table shows the number of words available in BitBLT FIFO under different status conditions. Table 8-34: BitBLT FIFO Words Available BitBLT FIFO Not Number of Words BitBLT FIFO Half BitBLT FIFO Full available in BitBLT Empty Status Full Status Status FIFO (REG[8004h] Bit 4) (REG[8004h] Bit 5) (REG[8004h] Bit 6) 0 0 0 0 0 0 1 1 to 6 0 1 1 7 to 14 1 1 1 15 to 16 bit 5 BitBLT FIFO Half Full Status This is a read-only status bit. When this bit = 1, the BitBLT FIFO is half full or greater than half full. When this bit = 0, the BitBLT FIFO is less than half full. bit 4 BitBLT FIFO Full Status This is a read-only status bit. When this bit = 1, the BitBLT FIFO is full. When this bit = 0, the BitBLT FIFO is not full. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center bit 0 Page 155 BitBLT Busy Status This bit is a read-only status bit. When this bit = 1, the BitBLT operation is in progress. When this bit = 0, the BitBLT operation is complete. Note During a BitBLT Read operation, the BitBLT engine does not attempt to keep the FIFO full. If the FIFO becomes full, the BitBLT operation stops temporarily as data is read out of the FIFO. The BitBLT will restart only when less than 14 values remain in the FIFO. BitBLT Command Register REG[8008h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 BitBLT ROP Code bits 3-0 25 24 23 22 21 20 19 9 8 7 6 5 4 3 n/a 15 14 13 bits 19-16 12 11 10 18 17 16 BitBLT Operation bits 3-0 2 1 0 BitBLT Raster Operation Code/Color Expansion Bits [3:0] ROP Code for Write BitBLT and Move BitBLT. Bits 2-0 also specify the start bit position for Color Expansion. Table 8-35 : BitBLT ROP Code/Color Expansion Function Selection BitBLT ROP Code Bits [3:0] Boolean Function for Write BitBLT and Move BitBLT Boolean Function for Pattern Fill Start Bit Position for Color Expansion 0000 0 (Blackness) 0 (Blackness) bit 0 0001 ~S . ~D or ~(S + D) ~P . ~D or ~(P + D) bit 1 0010 ~S . D ~P . D bit 2 0011 ~S ~P bit 3 0100 S . ~D P . ~D bit 4 0101 ~D ~D bit 5 0110 S^D P^D bit 6 0111 ~S + ~D or ~(S . D) ~P + ~D or ~(P . D) bit 7 1000 S.D P.D bit 0 1001 ~(S ^ D) ~(P ^ D) bit 1 1010 D D bit 2 1011 ~S + D ~P + D bit 3 1100 S P bit 4 1101 S + ~D P + ~D bit 5 1110 S+D P+D bit 6 1111 1 (Whiteness) 1 (Whiteness) bit 7 Note S = Source, D = Destination, P = Pattern. ~ = NOT, . = Logical AND, + = Logical OR, ^ = Logical XOR Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 156 bits 3-0 Epson Research and Development Vancouver Design Center BitBLT Operation Bits [3:0] Specifies the 2D Operation to be carried out based on the following table. Table 8-36 : BitBLT Operation Selection BitBLT Operation Bits [3:0] BitBLT Operation 0000 Write BitBLT with ROP. 0001 Read BitBLT. 0010 Move BitBLT in positive direction with ROP. 0011 Move BitBLT in negative direction with ROP. 0100 Transparent Write BitBLT. 0101 Transparent Move BitBLT in positive direction. 0110 Pattern Fill with ROP. 0111 Pattern Fill with transparency. 1000 Color Expansion. 1001 Color Expansion with transparency. 1010 Move BitBLT with Color Expansion. 1011 Move BitBLT with Color Expansion and transparency. 1100 Solid Fill. Other combinations Reserved S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 157 BitBLT Source Start Address Register REG[800Ch] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 15 14 13 12 11 10 bits 20-0 BitBLT Source Start Address bits 20-16 25 24 23 22 BitBLT Source Start Address bits 15-0 9 8 7 6 21 20 19 18 17 16 5 4 3 2 1 0 BitBLT Source Start Address Bits [20:0] A 21-bit register that specifies the source start address for the BitBLT operation. If data is sourced from the CPU, then bit 0 is used for byte alignment within a 16-bit word and the other address bits are ignored. In pattern fill operation, the BitBLT Source Start Address is defined by the following equation. Value programmed to the Source Start Address Register = Pattern Base Address + Pattern Line Offset + Pixel Offset. The following table shows how Source Start Address Register is defined for 8 and 16 bpp color depths. Table 8-37 : BitBLT Source Start Address Selection Color Format Pattern Base Address[20:0] Pattern Line Offset[2:0] Pixel Offset[3:0] 8 bpp BitBLT Source Start Address[20:6] BitBLT Source Start Address[5:3] BitBLT Source Start Address[2:0] 16 bpp BitBLT Source Start Address[20:7] BitBLT Source Start Address[6:4] BitBLT Source Start Address[3:0] Note For further information on the BitBLT Source Start Address register, see the S1D13A05 Programming Notes and Examples, document number X40A-G-003-xx. BitBLT Destination Start Address Register REG[8010h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 15 14 13 12 11 10 bits 20-0 BitBLT Destination Start Address bits 20-16 25 24 23 22 BitBLT Destination Start Address bits 15-0 9 8 7 6 21 20 19 18 17 16 5 4 3 2 1 0 BitBLT Destination Start Address Bits [20:0] A 21-bit register that specifies the destination start address for the BitBLT operation. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 158 Epson Research and Development Vancouver Design Center BitBLT Memory Address Offset Register REG[8014h] Default = 00000000h Read/Write n/a 31 30 29 n/a 28 27 26 25 24 23 22 21 20 19 BitBLT Memory Address Offset bits 10-0 18 17 16 15 14 13 12 11 10 9 8 7 2 1 0 bits 10-0 6 5 4 3 BitBLT Memory Address Offset Bits [10:0] These bits are the display’s 11-bit address offset from the starting word of line n to the starting word of line n + 1. They are used only for address calculation when the BitBLT is configured as a rectangular region of memory. They are not used for the displays. BitBLT Width Register REG[8018h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 12 11 10 9 8 7 6 n/a 15 14 13 bits 9-0 21 20 BitBLT Width bits 9-0 5 4 19 18 17 16 3 2 1 0 BitBLT Width Bits [9:0] A 10-bit register that specifies the BitBLT width in pixels - 1. BitBLT width in pixels = (REG[8018h] bits 9-0) + 1 BitBLT Height Register REG[801Ch] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 25 24 23 22 12 11 10 9 8 7 6 n/a 15 14 bits 9-0 13 21 20 BitBLT Height bits 9-0 5 4 19 18 17 16 3 2 1 0 BitBLT Height Bits [9:0] A 10-bit register that specifies the BitBLT height in lines - 1. BitBLT height in lines = (REG[801Ch] bits 9-0) + 1 S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 159 BitBLT Background Color Register REG[8020h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 15 14 13 12 11 10 bits 15-0 25 24 23 22 BitBLT Background Color bits 15-0 9 8 7 6 21 20 19 18 17 16 5 4 3 2 1 0 BitBLT Background Color Bits [15:0] This register specifies the BitBLT background color for Color Expansion or key color for Transparent BitBLT. For 16 bpp color depths (REG[8000h] bit 18 = 1), bits 15-0 are used. For 8 bpp color depths (REG[8000h] bit 18 = 0), bits 7-0 are used. BitBLT Foreground Color Register REG[8024h] Default = 00000000h Read/Write n/a 31 30 29 28 27 26 15 14 13 12 11 10 bits 15-0 25 24 23 22 BitBLT Foreground Color bits 15-0 9 8 7 6 21 20 19 18 17 16 5 4 3 2 1 0 BitBLT Foreground Color Bits [15:0] This register specifies the BitBLT foreground color for Color Expansion or Solid Fill. For 16 bpp color depths (REG[8000h] bit 18 = 1), bits 15-0 are used. For 8 bpp color depths (REG[8000h] bit 18 = 0), bits 7-0 are used. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 160 Epson Research and Development Vancouver Design Center 8.6 2D Accelerator (BitBLT) Data Register Descriptions The 2D Accelerator (BitBLT) data registers decode AB15-AB0 and require AB16 = 1. The BitBLT data registers are 32-bit wide. Byte access to the BitBLT data registers is not allowed. 2D Accelerator (BitBLT) Data Memory Mapped Region Register AB16-AB0 = 10000h-1FFFEh, even addresses Read/Write BitBLT Data bits 31-16 31 30 29 28 27 26 25 15 14 13 12 11 10 9 bits 15-0 24 23 BitBLT Data bits 15-0 8 7 22 21 20 19 18 17 16 6 5 4 3 2 1 0 BitBLT Data Bits [15:0] This register specifies the BitBLT data. This register is loosely decoded from 10000h to 1FFFEh. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 161 9 2D Accelerator (BitBLT) Engine 9.1 Overview The S1D13A05 is designed with a built-in 2D BitBLT engine which increases the performance of Bit Block Transfers (BitBLT). It supports 8 and 16 bit-per-pixel color depths. The BitBLT engine supports rectangular and linear addressing modes for source and destination in a positive direction for all BitBLT operations except the move BitBLT which also supports in a negative direction. The BitBLT operations support byte alignment of all types. The BitBLT engine has a dedicated BitBLT IO access space. This allows the BitBLT engine to support simultaneous BitBLT and host side operations. 9.2 BitBLT Operations The S1D13A05 2D BitBLT engine supports the following BitBLTs. For detailed information on using the individual BitBLT operations, refer to the S1D13A05 Programming Notes and Examples, document number X40A-G-003-xx. • Write BitBLT. • Move BitBLT. • Solid Fill BitBLT. • Pattern Fill BitBLT. • Transparent Write BitBLT. • Transparent Move BitBLT. • Read BitBLT. • Color Expansion BitBLT. • Move BitBLT with Color Expansion. Note For details on the BitBLT registers, see Section 8.5, “2D Acceleration (BitBLT) Registers (Offset = 8000h)” on page 153. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 162 Epson Research and Development Vancouver Design Center 10 Frame Rate Calculation The following formula is used to calculate the display frame rate. f PCLK FrameRate = -------------------------------( HT ) × ( VT ) Where: fPCLK = PClk frequency (Hz) HT = Horizontal Total = ((REG[20h] bits 6-0) + 1) x 8 Pixels VT = Vertical Total = ((REG[30h] bits 9-0) + 1) Lines S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 163 11 Display Data Formats The following diagrams show the display mode data formats for a little-endian system. 1 bpp: bit 7 bit 0 Byte 0 A0 A1 A2 A3 A4 A5 A6 Byte 1 A8 A9 A10 A11 A12 A13 A14 A15 Byte 2 A16 A17 A18 A19 A20 A21 A22 A23 P0 P1 P2 P3 P4 P5 P6 P7 A7 LUT Pn = RGB value from LUT Index (An) Host Address Panel Display Display Memory 2 bpp: bit 7 bit 0 Byte 0 A0 B0 A1 B1 A2 B2 A3 B3 Byte 1 A4 B4 A5 B5 A6 B6 A7 B7 Byte 2 A8 B8 A9 B9 A10 B10 A11 B11 P0 P1 P2 P3 P4 P5 P6 P7 LUT Pn = RGB value from LUT Index (An, Bn) Host Address Display Memory Panel Display 4 bpp: bit 7 bit 0 Byte 0 A0 B0 C0 D0 A1 B1 C1 D1 Byte 1 A2 B2 C2 D2 A3 B3 C3 D3 Byte 2 A4 B4 C4 D4 A5 B5 C5 D5 P0 P1 P2 P3 P4 P5 P6 P7 LUT Pn = RGB value from LUT Index (An, Bn, Cn, Dn) Host Address Display Memory Panel Display 8 bpp: bit 7 bit 0 Byte 0 A0 B0 C0 D0 E0 F0 G0 H0 Byte 1 A1 B1 C1 D1 E1 F1 G1 H1 Byte 2 A2 B2 C2 D2 E2 F2 G2 H2 P0 P1 P2 P3 P4 P5 P6 P7 LUT Pn = RGB value from LUT Index (An, Bn, Cn, Dn, En, Fn, Gn, Hn) Host Address Panel Display Display Memory 16 bpp: Byte 0 5-6-5 RGB bit 7 bit 0 1 2 0 G0 G0 G0 B04 B03 B02 B01 B00 Byte 1 R04 R03 R02 R01 R00 G05 G04 G03 2 G1 1 0 4 3 2 1 Byte 2 G1 R14 R13 R12 R11 R10 G15 G14 G13 B1 B1 B1 B1 B1 Bypasses LUT Pn = (Rn4-0, Gn 5-0, Bn4-0) 0 Byte 3 G1 P0 P1 P2 P3 P4 P5 P6 P7 Panel Display Host Address Display Buffer Figure 11-1: 4/8/16 Bit-Per-Pixel Display Data Memory Organization Note 1. The Host-to-Display mapping shown here is for a little endian system. 2. For 16 bpp format, Rn, Gn, Bn represent the red, green, and blue color components. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 164 Epson Research and Development Vancouver Design Center 12 Look-Up Table Architecture The following figures are intended to show the display data output path only. Note When Video Data Invert is enabled the video data is inverted after the Look-Up Table. 12.1 Monochrome Modes The green Look-Up Table (LUT) is used for all monochrome modes. 1 Bit-per-pixel Monochrome Mode Green Look-Up Table 256x6 00 01 6-bit Gray Data 00 01 FC FD FE FF = unused Look-Up Table entries 1 bit-per-pixel data from Display Buffer Figure 12-1: 1 Bit-per-pixel Monochrome Mode Data Output Path 2 Bit-per-pixel Monochrome Mode Green Look-Up Table 256x6 00 01 02 03 00 01 10 11 6-bit Gray Data FC FD FE FF = unused Look-Up Table entries 2 bit-per-pixel data from Display Buffer Figure 12-2: 2 Bit-per-pixel Monochrome Mode Data Output Path S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 165 4 Bit-per-pixel Monochrome Mode Green Look-Up Table 256x6 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 6-bit Gray Data FC FD FE FF 4 bit-per-pixel data from Display Buffer = unused Look-Up Table entries Figure 12-3: 4 Bit-per-pixel Monochrome Mode Data Output Path 8 Bit-per-pixel Monochrome Mode Green Look-Up Table 256x6 00 01 02 03 04 05 06 07 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 F8 F9 FA FB FC FD FE FF 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 6-bit Gray Data 8 bit-per-pixel data from Display Buffer Figure 12-4: 8 Bit-per-pixel Monochrome Mode Data Output Path Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 166 Epson Research and Development Vancouver Design Center 16 Bit-Per-Pixel Monochrome Mode The LUT is bypassed and the green data is directly mapped for this color depth– “Display Data Formats” on page 163.. 12.2 Color Modes 1 Bit-Per-Pixel Color Red Look-Up Table 256x6 00 01 0 1 6-bit Red Data FC FD FE FF Green Look-Up Table 256x6 00 01 0 1 6-bit Green Data FC FD FE FF Blue Look-Up Table 256x6 00 01 0 1 6-bit Blue Data FC FD FE FF 1 bit-per-pixel data from Image Buffer = unused Look-Up Table entries Figure 12-5: 1 Bit-Per-Pixel Color Mode Data Output Path S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 167 2 Bit-Per-Pixel Color Red Look-Up Table 256x6 00 01 02 03 00 01 10 11 6-bit Red Data 00 01 10 11 6-bit Green Data 00 01 10 11 6-bit Blue Data FC FD FE FF Green Look-Up Table 256x6 00 01 02 03 FC FD FE FF Blue Look-Up Table 256x6 00 01 02 03 FC FD FE FF 2 bit-per-pixel data from Image Buffer = unused Look-Up Table entries Figure 12-6: 2 Bit-Per-Pixel Color Mode Data Output Path Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 168 Epson Research and Development Vancouver Design Center 4 Bit-Per-Pixel Color Red Look-Up Table 256x6 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 6-bit Red Data FC FD FE FF Green Look-Up Table 256x6 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 6-bit Green Data FC FD FE FF Blue Look-Up Table 256x6 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 FC FD FE FF 6-bit Blue Data = unused Look-Up Table entries 4 bit-per-pixel data from Image Buffer Figure 12-7: 4 Bit-Per-Pixel Color Mode Data Output Path S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 169 8 Bit-per-pixel Color Mode Red Look-Up Table 256x6 00 01 02 03 04 05 06 07 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 F8 F9 FA FB FC FD FE FF 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 Green Look-Up Table 256x6 00 01 02 03 04 05 06 07 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 F8 F9 FA FB FC FD FE FF 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 Blue Look-Up Table 256x6 00 01 02 03 04 05 06 07 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 F8 F9 FA FB FC FD FE FF 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 6-bit Red Data 6-bit Green Data 6-bit Blue Data 8 bit-per-pixel data from Display Buffer Figure 12-8: 8 Bit-per-pixel Color Mode Data Output Path 16 Bit-Per-Pixel Color Mode The LUT is bypassed and the color data is directly mapped for this color depth– “Display Data Formats” on page 163. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 170 Epson Research and Development Vancouver Design Center 13 SwivelView™ 13.1 Concept Most computer displays are refreshed in landscape orientation – from left to right and top to bottom. Computer images are stored in the same manner. SwivelView™ is designed to rotate the displayed image on an LCD by 90°, 180°, or 270° in a counter-clockwise direction. The rotation is done in hardware and is transparent to the user for all display buffer reads and writes. By processing the rotation in hardware, SwivelView™ offers a performance advantage over software rotation of the displayed image. The image is not actually rotated in the display buffer since there is no address translation during CPU read/write. The image is rotated during display refresh. 13.2 90° SwivelView™ 90° SwivelView™ requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. MCLK ≥ 1.25PCLK. The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13A05 in the following sense: A–B–C–D. The display is refreshed by the S1D13A05 in the following sense: B-D-A-C. physical memory start address 320 display start address (panel origin) C SwivelView window SwivelView window B D B A 480 A D C 480 320 image seen by programmer = image in display buffer image refreshed by S1D13A05 Figure 13-1: Relationship Between The Screen Image and the Image Refreshed in 90° SwivelView. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 171 13.2.1 Register Programming Enable 90° SwivelView™ Mode Set SwivelView™ Mode Select bits (REG[10h] bits 17:16) to 01. Display Start Address The display refresh circuitry starts at pixel “B”, therefore the Main Window Display Start Address register (REG[40h]) must be programmed with the address of pixel “B”. To calculate the value of the address of pixel “B” use the following formula (assumes 8 bpp color depth). REG[40h] bits 16:0 = ((image address + (panel height x bpp ÷ 8)) ÷ 4) - 1 = ((0 + (320 pixels x 8 bpp ÷ 8)) ÷ 4) -1 = 79 (4Fh) Line Address Offset The Main Window Line Address Offset register (REG[44h]) is based on the display width and programmed using the following formula. REG[44h] bits 9:0 = display width in pixels ÷ (32 ÷ bpp) = 320 pixels ÷ 32 ÷ 8 bpp = 80 (50h) Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 172 Epson Research and Development Vancouver Design Center 13.3 180° SwivelView™ The following figure shows how the programmer sees a 480x320 landscape image and how the image is being displayed. The application image is written to the S1D13A05 in the following sense: A–B–C–D. The display is refreshed by the S1D13A05 in the following sense: D-C-B-A. display start address (panel origin) D B D 320 320 B C A SwivelView window SwivelView window A C physical memory start address 480 480 image seen by programmer = image in display buffer image refreshed by S1D13A05 Figure 13-2: Relationship Between The Screen Image and the Image Refreshed in 180° SwivelView. 13.3.1 Register Programming Enable 180° SwivelView™ Mode Set SwivelView™ Mode Select bits (REG[10h] bits 17:16) to 10. Display Start Address The display refresh circuitry starts at pixel “D”, therefore the Main Window Display Start Address register (REG[40h]) must be programmed with the address of pixel “D”. To calculate the value of the address of pixel “D” use the following formula (assumes 8 bpp color depth). REG[40h] bits 16:0 = ((image address + (offset x (panel height - 1) + panel width) x bpp ÷ 8) ÷ 4) - 1 = ((0 + (480 pixels x 319 pixels + 480 pixels) x 8 bpp ÷ 8) ÷ 4) - 1 = 38399 (95FFh) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 173 Line Address Offset The Main Window Line Address Offset register (REG[44h]) is based on the display width and programmed using the following formula. = display width in pixels ÷ (32 ÷ bpp) = 480 pixels ÷ 32 ÷ 8 bpp = 120 (78h) REG[44h] bits 9:0 13.4 270° SwivelView™ 270° SwivelView™ requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. MCLK ≥ 1.25PCLK. The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13A05 in the following sense: A–B–C–D. The display is refreshed by the S1D13A05 in the following sense: C-A-D-B. physical memory start address B 320 display start address (panel origin) A SwivelView window SwivelView window C 480 A B D D C 480 320 image seen by programmer = image in display buffer image refreshed by S1D13A05 Figure 13-3: Relationship Between The Screen Image and the Image Refreshed in 270° SwivelView. Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 174 Epson Research and Development Vancouver Design Center 13.4.1 Register Programming Enable 270° SwivelView™ Mode Set SwivelView™ Mode Select bits (REG[10h] bits 17:16) to 11. Display Start Address The display refresh circuitry starts at pixel “C”, therefore the Main Window Display Start Address register (REG[40h]) must be programmed with the address of pixel “C”. To calculate the value of the address of pixel “C” use the following formula (assumes 8 bpp color depth). REG[40h] bits 16:0 = (image address + ((panel width - 1) x offset x bpp ÷ 8) ÷ 4) = (0 + ((480 pixels - 1) x 320 pixels x 8 bpp ÷ 8) ÷ 4) = 38320 (95B0h) Line Address Offset The Main Window Line Address Offset register (REG[44h]) is based on the display width and programmed using the following formula. REG[44h] bits 9:0 = display width in pixels ÷ (32 ÷ bpp) = 320 pixels ÷ 32 ÷ 8 bpp = 80 (50h) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 175 14 Picture-in-Picture Plus (PIP + ) 14.1 Concept Picture-in-Picture Plus (PIP+) enables a secondary window (or PIP+ window) within the main display window. The PIP+ window may be positioned anywhere within the virtual display and is controlled through the PIP+ Window control registers (REG[50h] through REG[5Ch]). The PIP+ window retains the same color depth and SwivelView orientation as the main window. The following diagram shows an example of a PIP+ window within a main window and the registers used to position it. 0° SwivelViewTM PIP+ window y start position (REG[5Ch] bits 9-0) panel’s origin PIP+ window y end position (REG[5Ch] bits 25-16) main-window PIP+ window PIP+ window x start position (REG[58h] bits 9-0) PIP+ window x end position (REG[58h] bits 25-16) Figure 14-1: Picture-in-Picture Plus with SwivelView disabled Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 176 Epson Research and Development Vancouver Design Center 14.2 With SwivelView Enabled 14.2.1 SwivelView 90° 90° SwivelViewTM panel’s origin PIP+ window x start position (REG[58h] bits 9-0) PIP+ window x end position (REG[58h] bits 25-16) PIP+ window PIP+ window y start position (REG[5Ch] bits 9-0) PIP+ window y end position (REG[5Ch] bits 25-16) main-window Figure 14-2: Picture-in-Picture Plus with SwivelView 90° enabled 14.2.2 SwivelView 180° 180° SwivelViewTM PIP+ window x end position (REG[58h] bits 25-16) PIP+ window x start position (REG[58h] bits 9-0) PIP+ window main-window PIP+ window y end position (REG[5Ch] bits 25-16) PIP+ window y start position (REG[5Ch] bits 9-0) panel’s origin Figure 14-3: Picture-in-Picture Plus with SwivelView 180° enabled S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 177 14.2.3 SwivelView 270° 270° SwivelViewTM PIP+ window y end position (REG[5Ch] bits 25-16) PIP+ window y start position (REG[5Ch] bits 9-0) main-window PIP+ window PIP+ window x start position (REG[58h] bits 9-0) PIP+ window x end position (REG[58h] bits 25-16) panel’s origin Figure 14-4: Picture-in-Picture Plus with SwivelView 270° enabled Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 178 Epson Research and Development Vancouver Design Center 15 Power Save Mode A software initiated Power Save Mode is incorporated into the S1D13A05 to accommodate the need for power reduction in the hand-held devices market. This mode is enable via the Power Save Mode Enable bit (REG[14h] bit 4). Software Power Save Mode saves power by powering down the control signals and stopping display refresh accesses to the display buffer. For programming information on disabling the clocks, see the S1D13A05 Programming Notes and Examples, document number X40A-G-003-xx. Table 15-1: Power Save Mode Function Summary Software Power Save Normal IO Access Possible? Yes Yes Memory Access Possible? Yes1 Yes Look-Up Table Registers Access Possible? Yes Yes Display Active? No Yes LCD I/F Outputs Forced Low Active PWMCLK Stopped Active GPIO Pins configured for HR-TFT Forced Low Active GPIO Pins configured as GPIOs; Access Possible? Yes2 Yes 3 Yes USB Running? Yes Note 1 When power save mode is enabled, the memory controller is powered down and the status of the memory controller is indicated by the Memory Controller Power Save Status bit (REG[14h] bit 6). However, memory reads/writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer accesses. 2 GPIOs can be accessed and if configured as outputs can be changed. 3 The power-down state of the USB section is controlled by the USBClk Enable bit (REG[4000h] bit 7). After reset, the S1D13A05 is always in Power Save Mode. Software must initialize the chip (i.e. programs all registers) and then clear the Power Save Mode Enable bit. S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 179 16 USB Considerations 16.1 USB Oscillator Circuit The following circuit provides an example implementation for using an external oscillator to drive USBCLK. USBOSCI USBOSCO Rf Rd Cg Cd Figure 16-1: USB Oscillator Example Circuit The following values are recommended for a 48MHz fundamental mode oscillator. If an oscillator of a different value is used, the capacitive and resistive values must be adjusted accordingly. Table 16-1: Resistance and Capacitance Values for Example Circuit Symbol Value Rf 1MΩ Rd 470Ω Cg 12pF Cd 12pF Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 180 Epson Research and Development Vancouver Design Center 17 Mechanical Data 1.2max +0.30 +0.10 10 -0.15 +0.30 10-0.15 0.35 -0.05 SIDE VIEW +0.10 0.45 -0.05 0.05max 0.1max TOP VIEW 1.0 0.08 M 6 7 L K J H G 0.8 F E D C B 1.0 A 1 2 3 4 5 8 9 10 11 BOTTOM VIEW All dimensions in mm Figure 17-1: Mechanical Data PFBGA 121-pin Package S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 181 18 References The following documents contain additional information related to the S1D13A05. Document numbers are listed in parenthesis after the document name. All documents can be found at the Epson Research and Development Website at www.erd.epson.com. • S1D13A05 Product Brief (X40A-C-001-xx) • S1D13A05 Programming Notes And Examples (X40A-G-003-xx) • S1D13A05 Register Summary (X40A-R-001-xx) • Interfacing to the Toshiba TMPR3905/3912 Microprocessor (X40A-G-002-xx) • Interfacing to the PC Card Bus (X40A-G-005-xx) • S1D13A05 Power Consumption (X40A-G-006-xx) • Interfacing to the Freescale MCF5307 "Coldfire" Microprocessor (X40A-G-010-xx) • S1D13A05 Wind River WindML v2.0 Display Drivers (X40A-E-003-xx) • S5U13A05B00C Rev. 1.0 Evaluation Board User Manual (X40A-G-004-xx) • 13A05CFG Configuration Utility Users Manual (X40A-B-001-xx) • 13A05PLAY Diagnostic Utility Users Manual (X40A-B-002-xx) • 13A05VIEW Demonstration Utility Users Manual (X40A-B-003-xx) • S5U13A05P00C100 Evaluation Board User Manual (X40A-G-014-xx) • Errata No. X00Z-P-001 (X00Z-P-001-xx) Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 182 Epson Research and Development Vancouver Design Center 19 Sales and Technical Support AMERICA ASIA EPSON ELECTRONICS AMERICA, INC. EPSON (CHINA) CO., LTD. 214 Devcon Drive San Jose, CA 95112,USA Phone: +1-800-228-3964 7F, Jinbao Bldg., No.89 Jinbao St., Dongcheng District, Beijing 100005, CHINA Phone: +86-10-8522-1199 FAX: +86-10-8522-1125 FAX: +1-408-922-0238 SHANGHAI BRANCH EUROPE EPSON EUROPE ELECTRONICS GmbH Riesstrasse 15, 80992 Munich, GERMANY Phone: +49-89-14005-0 FAX: +49-89-14005-110 7F, Block B, High-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5577 FAX: +86-21-5423-4677 SHENZHEN BRANCH 12F, Dawning Mansion, Keji South 12th Road, Hi-Tech Park, Shenzhen 518057, CHINA Phone: +86-755-2699-3828 FAX: +86-755-2699-3838 EPSON HONG KONG LTD. Unit 715-723, 7/F Trade Square, 681 Cheung Sha Wan Road, Kowloon, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346 EPSON TAIWAN TECHNOLOGY & TRADING LTD. 14F, No. 7, Song Ren Road, Taipei 110, TAIWAN Phone: +886-2-8786-6688 FAX: +886-2-8786-6660 EPSON SINGAPORE PTE., LTD. 1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182 SEIKO EPSON CORP. KOREA OFFICE 5F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677 SEIKO EPSON CORP. MICRODEVICES OPERATIONS DIVISION Device Sales & Marketing Dept. 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117 S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7 Epson Research and Development Vancouver Design Center Page 183 Change Record X40A-A-001-07 Revision 7.7- Issued: February 27, 2012 • globally remove QFP5-128 package • section 2.9, remove QFP package to features • section 4.1.2, remove QFP package pin diagram • section 4.2, remove QFP package pin descriptions • section 18, remove QFP package mechanical drawing X40A-A-001-07 Revision 7.6 - Issued: December 18, 2008 • all changes from the previous revision are in Red • section 19, updated Sales and Technical Support addresses X40A-A-001-07 Revision 7.5 - Issued: February 13, 2008 • all changes from the previous revision are in Red • Release as revision 7.5 to align with Japan numbering • section 18 References - remove references to obsolete application notes and change “Interfacing to the Motorola MCF5307...” to “Interfacing to the Freescale MCF5307...” X40A-A-001-07 Revision 7.04 - Released: September 17, 2007 • all changes from the previous revision are in Red • section 18, updated Refereces • section 19, updated Sales and Technical Support addresses X40A-A-001-07 Revision 7.03 - Released: June 13, 2007 • all changes from the previous revision are in Red • section 4.2.1, corrected the PFBGA Pin# listing for the DB[15:0] pin description X40A-A-001-07 Revision 7.02 - Released: February 01, 2007 • all changes from the previous revision are in Red • section 6.5, changed formula for VPS from “REG[002Ch] bits 9-0” to “REG[003Ch] bits 9-0” • section 6.5.1, changed formula for VPS from “REG[002Ch] bits 9-0” to “REG[003Ch] bits 9-0” X40A-A-001-07 Revision 7.01, Released: October 3, 2006 • all changes from the previous revision are in Red • REG[04h] bit 0 - remove reference to CNF7 Hardware Functional Specification Issue Date: 2012/02/27 S1D13A05 X40A-A-001-07 Revision 7.7 Page 184 Epson Research and Development Vancouver Design Center • section 19 Sales and Technical Support - update the addresses for North America and Singapore X40A-A-001-07 Revision 7, Released: July 7, 2006 • all changes from the previous revision are in Red • add section 6.2 RESET# Timing X40A-A-001-06 Revision 6.01 • section 3.1, figure 3-1, changed System Diagram for Generic #1 so that BS# pin is connected to IOVDD instead of VSS (GND) • section 4.2.1, table 4-2, changed BS# pin description for Generic #1 so that BS# pin is connected to IOVDD instead of VSS (GND) • REG[10h] bits 4-0, updated the Bits-Per-Pixel bit description and clarified the color depth table X40A-A-001-06 Revision 6.0 • released as revision 6.0 X40A-A-001-05 Revision 5.01 • section 2.9, added QFP package to features • section 4.1.2, added QFP package pin diagram • section 4.2, added QFP package pin descriptions • section 18, added QFP package mechanical drawing X40A-A-001-05 Revision 5.0 • released as revision 5.0 X40A-A-001-04 Revision 4.01 • section 4.2.2, for DRDY pin description, removed description for HR-TFT (not used) S1D13A05 X40A-A-001-07 Hardware Functional Specification Issue Date: 2012/02/27 Revision 7.7