S1D13706 Embedded Memory LCD Controller Hardware Functional Specification Document Number: X31B-A-001-09 Copyright © 1999, 2004 Epson Research and Development, Inc. All Rights Reserved. Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws. EPSON is a registered trademark of Seiko Epson Corporation. All other Trademarks are the property of their respective owners Page 2 Epson Research and Development Vancouver Design Center THIS PAGE LEFT BLANK S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 3 Table of Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Overview Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Features . . . . . . . . . . 2.1 Integrated Frame Buffer 2.2 CPU Interface . . . . 2.3 Display Support . . . . 2.4 Display Modes . . . . 2.5 Display Features . . . 2.6 Clock Source . . . . . 2.7 Miscellaneous . . . . 3 Typical System Implementation Diagrams . . . . . . . . . . . . . . . . . . . . . . 14 4 Pins . . . . . . . . . . . . . . . . . 4.1 Pinout Diagram - TQFP15 - 100pin 4.2 Pinout Diagram - Die Form . . . 4.3 Pin Descriptions . . . . . . . 4.3.1 Host Interface . . . . . . . . 4.3.2 LCD Interface . . . . . . . . 4.3.3 Clock Input . . . . . . . . . 4.3.4 Miscellaneous . . . . . . . . 4.3.5 Power And Ground . . . . . 4.4 Summary of Configuration Options 4.5 Host Bus Interface Pin Mapping . 4.6 LCD Interface Pin Mapping . . . 5 D.C. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 A.C. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Clock Timing . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Input Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.2 Internal Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 CPU Interface Timing . . . . . . . . . . . . . . . . . . . . 6.2.1 Generic #1 Interface Timing . . . . . . . . . . . . . . . . . . . . 6.2.2 Generic #2 Interface Timing (e.g. ISA) . . . . . . . . . . . . . . . 6.2.3 Hitachi SH-4 Interface Timing . . . . . . . . . . . . . . . . . . . 6.2.4 Hitachi SH-3 Interface Timing . . . . . . . . . . . . . . . . . . . 6.2.5 Motorola MC68K #1 Interface Timing (e.g. MC68000) . . . . . . 6.2.6 Motorola MC68K #2 Interface Timing (e.g. MC68030) . . . . . . Hardware Functional Specification Issue Date: 2004/02/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 12 12 13 13 13 13 18 18 19 21 21 25 27 27 27 28 29 30 32 32 32 34 35 35 37 39 41 43 45 S1D13706 X31B-A-001-09 Page 4 Epson Research and Development Vancouver Design Center 6.2.7 Motorola REDCAP2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2.8 Motorola DragonBall Interface Timing with DTACK (e.g. MC68EZ328/MC68VZ328) 49 6.2.9 Motorola DragonBall Interface Timing w/o DTACK (e.g. MC68EZ328/MC68VZ328) 51 6.3 LCD Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . .54 6.3.1 Passive/TFT Power-On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.2 Passive/TFT Power-Off Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.4 Display Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 6.4.1 Generic STN Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.4.2 Single Monochrome 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.3 Single Monochrome 8-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.4 Single Color 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4.5 Single Color 8-Bit Panel Timing (Format 1) . . . . . . . . . . . . . . . . . . . . . 66 6.4.6 Single Color 8-Bit Panel Timing (Format 2) . . . . . . . . . . . . . . . . . . . . . 68 6.4.7 Single Color 16-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.8 Generic TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.9 9/12/18-Bit TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.4.10 160x160 Sharp ‘Direct’ HR-TFT Panel Timing (e.g. LQ031B1DDxx) . . . . . . . 76 6.4.11 320x240 Sharp ‘Direct’ HR-TFT Panel Timing (e.g. LQ039Q2DS01) . . . . . . . . 80 6.4.12 160x240 Epson D-TFD Panel Timing (e.g. LF26SCR) . . . . . . . . . . . . . . . . 82 6.4.13 320x240 Epson D-TFD Panel Timing (e.g. LF37SQR) . . . . . . . . . . . . . . . . 86 7 Clocks . . . . . . . . . . . 7.1 Clock Descriptions . . 7.1.1 BCLK . . . . . . 7.1.2 MCLK . . . . . . 7.1.3 PCLK . . . . . . 7.1.4 PWMCLK . . . . 7.2 Clock Selection . . . 7.3 Clocks versus Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 . . . . .90 . . . . . . 90 . . . . . . 90 . . . . . . 91 . . . . . . 92 . . . . .93 . . . . .94 8 Registers . . . . . . . . . . . . . . . . . . . . 8.1 Register Mapping . . . . . . . . . . . 8.2 Register Set . . . . . . . . . . . . . . 8.3 Register Descriptions . . . . . . . . . . 8.3.1 Read-Only Configuration Registers . . . 8.3.2 Clock Configuration Registers . . . . . 8.3.3 Look-Up Table Registers . . . . . . . . 8.3.4 Panel Configuration Registers . . . . . . 8.3.5 Display Mode Registers . . . . . . . . . 8.3.6 Picture-in-Picture Plus (PIP+) Registers 8.3.7 Miscellaneous Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1D13706 X31B-A-001-09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 . . .95 . . .95 . . .96 . . . 96 . . . 97 . . . 99 . . .101 . . .109 . . .115 . . .120 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center 8.3.8 8.3.9 9 Page 5 General IO Pins Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Pulse Width Modulation (PWM) Clock and Contrast Voltage (CV) Pulse Configuration Registers 126 Frame Rate Calculation 10 Display Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 11 Look-Up Table Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 11.1 Monochrome Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 11.2 Color Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 12 SwivelView™ . . . . . . . . . . . . 12.1 Concept . . . . . . . . . . . 12.2 90° SwivelView™ . . . . . . 12.2.1 Register Programming . . . 12.3 180° SwivelView™ . . . . . . 12.3.1 Register Programming . . . 12.4 270° SwivelView™ . . . . . . 12.4.1 Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 . . . . 138 . . . . 138 . . . . . 139 . . . . 140 . . . . . 140 . . . . 141 . . . . . 142 13 Picture-in-Picture Plus (PIP+) 13.1 Concept . . . . . . . . 13.2 With SwivelView Enabled 13.2.1 SwivelView 90° . . . 13.2.2 SwivelView 180° . . 13.2.3 SwivelView 270° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 . . . . . . 143 . . . . . . 144 . . . . . . . . 144 . . . . . . . . 144 . . . . . . . . 145 14 Big-Endian Bus Interface . . . . . 14.1 Byte Swapping Bus Data . . . . 14.1.1 16 Bpp Color Depth . . . . . 14.1.2 1/2/4/8 Bpp Color Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 . . . . . . 146 . . . . . . . . 147 . . . . . . . . 148 15 Power Save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 16 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 18 Sales and Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 6 Epson Research and Development Vancouver Design Center THIS PAGE LEFT BLANK S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 7 List of Tables Table 4-1: Pinout Assignments - Die Form (S1D13706D00A) . . . . . . . . . . Table 4-2: Host Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . Table 4-3: LCD Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . Table 4-4: Clock Input Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . Table 4-5: Miscellaneous Pin Descriptions . . . . . . . . . . . . . . . . . . . . Table 4-6: Power And Ground Pin Descriptions . . . . . . . . . . . . . . . . . Table 4-7: Summary of Power-On/Reset Options . . . . . . . . . . . . . . . . . Table 4-8: Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . Table 4-9: LCD Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . Table 5-1: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . Table 5-2: Recommended Operating Conditions . . . . . . . . . . . . . . . . . Table 5-3: Electrical Characteristics for VDD = 3.3V typical . . . . . . . . . . . Table 6-1: Clock Input Requirements for CLKI when CLKI to BCLK divide > 1 Table 6-2: Clock Input Requirements for CLKI when CLKI to BCLK divide = 1 Table 6-3: Clock Input Requirements for CLKI2 . . . . . . . . . . . . . . . . . Table 6-4: Internal Clock Requirements . . . . . . . . . . . . . . . . . . . . . . Table 6-5: Generic #1 Interface Timing . . . . . . . . . . . . . . . . . . . . . . Table 6-6: Generic #2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . Table 6-7: Hitachi SH-4 Interface Timing . . . . . . . . . . . . . . . . . . . . . Table 6-8: Hitachi SH-3 Interface Timing . . . . . . . . . . . . . . . . . . . . . Table 6-9: Motorola MC68K #1 Interface Timing . . . . . . . . . . . . . . . . Table 6-10: Motorola MC68K #2 Interface Timing . . . . . . . . . . . . . . . . Table 6-11: Motorola REDCAP2 Interface Timing. . . . . . . . . . . . . . . . . Table 6-12: Motorola DragonBall Interface with DTACK Timing . . . . . . . . . Table 6-13: Motorola DragonBall Interface without DTACK Timing . . . . . . . Table 6-14: Passive/TFT Power-On Sequence Timing . . . . . . . . . . . . . . . Table 6-15: Passive/TFT Power-Off Sequence Timing . . . . . . . . . . . . . . . Table 6-16: Panel Timing Parameter Definition and Register Summary . . . . . . Table 6-17: Single Monochrome 4-Bit Panel A.C. Timing . . . . . . . . . . . . . Table 6-18: Single Monochrome 8-Bit Panel A.C. Timing . . . . . . . . . . . . . Table 6-19: Single Color 4-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . Table 6-20: Single Color 8-Bit Panel A.C. Timing (Format 1) . . . . . . . . . . . Table 6-21: Single Color 8-Bit Panel A.C. Timing (Format 2) . . . . . . . . . . . Table 6-22: Single Color 16-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . Table 6-23: TFT A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6-24: 160x160 Sharp ‘Direct’ HR-TFT Horizontal Timing . . . . . . . . . Table 6-25: 160x160 Sharp ‘Direct’ HR-TFT Panel Vertical Timing . . . . . . . Hardware Functional Specification Issue Date: 2004/02/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 21 25 27 27 27 28 29 30 31 31 31 32 33 33 34 36 38 40 42 44 46 48 50 52 54 55 57 61 63 65 67 69 71 75 77 79 S1D13706 X31B-A-001-09 Page 8 Table 6-26: 320x240 Sharp ‘Direct’ HR-TFT Panel Horizontal Timing Table 6-27: 320x240 Sharp ‘Direct’ HR-TFT Panel Vertical Timing . Table 6-28: 160x240 Epson D-TFD Panel Horizontal Timing . . . . . Table 6-29: 160x240 Epson D-TFD Panel GCP Horizontal Timing . . Table 6-30: 160x240 Epson D-TFD Panel Vertical Timing . . . . . . Table 6-31: 320x240 Epson D-TFD Panel Horizontal Timing . . . . . Table 6-32: 320x240 Epson D-TFD Panel GCP Horizontal Timing . . Table 6-33: 320x240 Epson D-TFD Panel Vertical Timing . . . . . . Table 7-1: BCLK Clock Selection . . . . . . . . . . . . . . . . . . . Table 7-2: MCLK Clock Selection. . . . . . . . . . . . . . . . . . . Table 7-3: PCLK Clock Selection . . . . . . . . . . . . . . . . . . . Table 7-4: Relationship between MCLK and PCLK. . . . . . . . . . Table 7-5: PWMCLK Clock Selection. . . . . . . . . . . . . . . . . Table 7-6: S1D13706 Internal Clock Requirements . . . . . . . . . . Table 8-1: S1D13706 Register Set . . . . . . . . . . . . . . . . . . . Table 8-2: MCLK Divide Selection . . . . . . . . . . . . . . . . . . Table 8-3: PCLK Divide Selection. . . . . . . . . . . . . . . . . . . Table 8-4: PCLK Source Selection. . . . . . . . . . . . . . . . . . . Table 8-5: Panel Data Width Selection . . . . . . . . . . . . . . . . Table 8-6: Active Panel Resolution Selection . . . . . . . . . . . . . Table 8-7: LCD Panel Type Selection . . . . . . . . . . . . . . . . . Table 8-8: Inverse Video Mode Select Options . . . . . . . . . . . . Table 8-9: LCD Bit-per-pixel Selection . . . . . . . . . . . . . . . . Table 8-10: SwivelViewTM Mode Select Options . . . . . . . . . . . Table 8-11: 32-bit Address Increments for Color Depth . . . . . . . . Table 8-12: 32-bit Address Increments for Color Depth . . . . . . . . Table 8-13: 32-bit Address Increments for Color Depth . . . . . . . . Table 8-14: 32-bit Address Increments for Color Depth . . . . . . . . Table 8-15: PWM Clock Control . . . . . . . . . . . . . . . . . . . . Table 8-16: CV Pulse Control . . . . . . . . . . . . . . . . . . . . . . Table 8-17: PWM Clock Divide Select Options . . . . . . . . . . . . Table 8-18: CV Pulse Divide Select Options . . . . . . . . . . . . . . Table 8-19: PWMOUT Duty Cycle Select Options . . . . . . . . . . . Table 15-1: Power Save Mode Function Summary . . . . . . . . . . . S1D13706 X31B-A-001-09 Epson Research and Development Vancouver Design Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 . 81 . 83 . 84 . 85 . 87 . 88 . 89 . 90 . 90 . 91 . 92 . 92 . 94 . 95 . 97 . 98 . 98 .102 .102 .102 .110 .111 .112 .116 .117 .118 .119 .126 .127 .128 .128 .129 .149 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 9 List of Figures Figure 3-1: Figure 3-2: Figure 3-3: Figure 3-4: Figure 3-5: Figure 3-6: Figure 3-7: Figure 3-8: Figure 4-1: Figure 4-2: Figure 6-1: Figure 6-2: Figure 6-3: Figure 6-4: Figure 6-5: Figure 6-6: Figure 6-7: Figure 6-8: Figure 6-9: Figure 6-10: Figure 6-11: Figure 6-12: Figure 6-13: Figure 6-14: Figure 6-15: Figure 6-16: Figure 6-17: Figure 6-18: Figure 6-19: Figure 6-20: Figure 6-21: Figure 6-22: Figure 6-23: Figure 6-24: Figure 6-25: Figure 6-26: Figure 6-27: Typical System Diagram (Generic #1 Bus) . . . . . . . . . . . . . . . . . . . . . . Typical System Diagram (Generic #2 Bus) . . . . . . . . . . . . . . . . . . . . . . Typical System Diagram (Hitachi SH-4 Bus) . . . . . . . . . . . . . . . . . . . . . Typical System Diagram (Hitachi SH-3 Bus) . . . . . . . . . . . . . . . . . . . . . Typical System Diagram (MC68K # 1, Motorola 16-Bit 68000) . . . . . . . . . . . Typical System Diagram (MC68K #2, Motorola 32-Bit 68030) . . . . . . . . . . . . Typical System Diagram (Motorola REDCAP2 Bus) . . . . . . . . . . . . . . . . . Typical System Diagram (Motorola MC68EZ328/MC68VZ328 “DragonBall” Bus) . Pinout Diagram - TQFP15 - 100pin (S1D13706F00A) . . . . . . . . . . . . . . . . Pinout Diagram - Die Form (S1D13706D00A) . . . . . . . . . . . . . . . . . . . . Clock Input Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generic #1 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generic #2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hitachi SH-4 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hitachi SH-3 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motorola MC68K #1 Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . Motorola MC68K #2 Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . Motorola REDCAP2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . Motorola DragonBall Interface with DTACK Timing . . . . . . . . . . . . . . . . . Motorola DragonBall Interface without DTACK# Timing . . . . . . . . . . . . . . Passive/TFT Power-On Sequence Timing . . . . . . . . . . . . . . . . . . . . . . . Passive/TFT Power-Off Sequence Timing . . . . . . . . . . . . . . . . . . . . . . . Panel Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generic STN Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Monochrome 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . Single Monochrome 4-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . Single Monochrome 8-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . Single Monochrome 8-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . Single Color 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Color 4-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . Single Color 8-Bit Panel Timing (Format 1) . . . . . . . . . . . . . . . . . . . . . . Single Color 8-Bit Panel A.C. Timing (Format 1) . . . . . . . . . . . . . . . . . . . Single Color 8-Bit Panel Timing (Format 2) . . . . . . . . . . . . . . . . . . . . . . Single Color 8-Bit Panel A.C. Timing (Format 2) . . . . . . . . . . . . . . . . . . . Single Color 16-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Color 16-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . Generic TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware Functional Specification Issue Date: 2004/02/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 . 14 . 15 . 15 . 16 . 16 . 17 . 17 . 18 . 19 . 32 . 35 . 37 . 39 . 41 . 43 . 45 . 47 . 49 . 51 . 54 . 55 . 56 . 58 . 60 . 61 . 62 . 63 . 64 . 65 . 66 . 67 . 68 . 69 . 70 . 71 . 72 S1D13706 X31B-A-001-09 Page 10 Figure 6-28: Figure 6-29: Figure 6-30: Figure 6-31: Figure 6-32: Figure 6-33: Figure 6-34: Figure 6-35: Figure 6-36: Figure 6-37: Figure 6-38: Figure 6-39: Figure 7-1: Figure 8-1: Figure 8-2: Figure 10-1: Figure 11-1: Figure 11-2: Figure 11-3: Figure 11-4: Figure 11-5: Figure 11-6: Figure 11-7: Figure 11-8: Figure 12-1: Figure 12-2: Figure 12-3: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 14-1: Figure 14-2: Figure 16-1: S1D13706 X31B-A-001-09 Epson Research and Development Vancouver Design Center 18-Bit TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 TFT A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 160x160 Sharp ‘Direct’ HR-TFT Panel Horizontal Timing . . . . . . . . . . . . . . . .76 160x160 Sharp ‘Direct’ HR-TFT Panel Vertical Timing. . . . . . . . . . . . . . . . . .78 320x240 Sharp ‘Direct’ HR-TFT Panel Horizontal Timing . . . . . . . . . . . . . . . .80 320x240 Sharp ‘Direct’ HR-TFT Panel Vertical Timing. . . . . . . . . . . . . . . . . .81 160x240 Epson D-TFD Panel Horizontal Timing . . . . . . . . . . . . . . . . . . . . .82 160x240 Epson D-TFD Panel GCP Horizontal Timing . . . . . . . . . . . . . . . . . .84 160x240 Epson D-TFD Panel Vertical Timing . . . . . . . . . . . . . . . . . . . . . . .85 320x240 Epson D-TFD Panel Horizontal Timing . . . . . . . . . . . . . . . . . . . . .86 320x240 Epson D-TFD Panel GCP Horizontal Timing . . . . . . . . . . . . . . . . . .88 320x240 Epson D-TFD Panel Vertical Timing . . . . . . . . . . . . . . . . . . . . . . .89 Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 Display Data Byte/Word Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 PWM Clock/CV Pulse Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4/8/16 Bit-Per-Pixel Display Data Memory Organization . . . . . . . . . . . . . . . . 131 1 Bit-per-pixel Monochrome Mode Data Output Path . . . . . . . . . . . . . . . . . . 132 2 Bit-per-pixel Monochrome Mode Data Output Path . . . . . . . . . . . . . . . . . . 132 4 Bit-per-pixel Monochrome Mode Data Output Path . . . . . . . . . . . . . . . . . . 133 8 Bit-per-pixel Monochrome Mode Data Output Path . . . . . . . . . . . . . . . . . . 133 1 Bit-Per-Pixel Color Mode Data Output Path . . . . . . . . . . . . . . . . . . . . . . 134 2 Bit-Per-Pixel Color Mode Data Output Path . . . . . . . . . . . . . . . . . . . . . . 135 4 Bit-Per-Pixel Color Mode Data Output Path . . . . . . . . . . . . . . . . . . . . . . 136 8 Bit-per-pixel Color Mode Data Output Path . . . . . . . . . . . . . . . . . . . . . . 137 Relationship Between The Screen Image and the Image Refreshed in 90× SwivelView. 138 Relationship Between The Screen Image and the Image Refreshed in 180× SwivelView.140 Relationship Between The Screen Image and the Image Refreshed in 270× SwivelView.141 Picture-in-Picture Plus with SwivelView disabled . . . . . . . . . . . . . . . . . . . . 143 Picture-in-Picture Plus with SwivelView 90° enabled . . . . . . . . . . . . . . . . . . 144 Picture-in-Picture Plus with SwivelView 180° enabled . . . . . . . . . . . . . . . . . 144 Picture-in-Picture Plus with SwivelView 270° enabled . . . . . . . . . . . . . . . . . 145 Byte-swapping for 16 Bpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Byte-swapping for 1/2/4/8 Bpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Mechanical Data 100pin TQFP15 (S1D13706F00A) . . . . . . . . . . . . . . . . . . 150 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 11 1 Introduction 1.1 Scope This is the Hardware Functional Specification for the S1D13706 Embedded Memory LCD Controller. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers. For additional documentation related to the S1D13706 see Section 17, “References” on page 151. This document is updated as appropriate. Please check the Epson Research and Development Website at www.erd.epson.com for the latest revision of this document before beginning any development. We appreciate your comments on our documentation. Please contact us via email at [email protected]. 1.2 Overview Description The S1D13706 is a color/monochrome LCD graphics controller with an embedded 80K byte SRAM display buffer. While supporting all other panel types, the S1D13706 is the only LCD controller to directly interface to both the Epson D-TFD and the Sharp HR-TFT family of products thus removing the requirement of an external Timing Control IC. This high level of integration provides a low cost, low power, single chip solution to meet the demands of embedded markets such as Mobile Communications devices and Palm-size PCs, where board size and battery life are major concerns. The S1D13706 utilizes a guaranteed low-latency CPU architecture providing support for microprocessors without READY/WAIT# handshaking signals. The 32-bit internal data path provides high performance bandwidth into display memory allowing for fast screen updates. Products requiring a rotated display image can take advantage of the SwivelView TM feature which provides hardware rotation of the display memory transparent to the software application. The S1D13706 also provides support for “Picture-in-Picture Plus” (a variable size Overlay window). The S1D13706 provides impressive support for Palm OS handhelds, however its impartiality to CPU type or operating system makes it an ideal display solution for a wide variety of applications. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 12 Epson Research and Development Vancouver Design Center 2 Features 2.1 Integrated Frame Buffer • Embedded 80K byte SRAM display buffer. 2.2 CPU Interface • Direct support of the following interfaces: Generic MPU bus interface using WAIT# signal. Hitachi SH-3. Hitachi SH-4. Motorola M68K. Motorola MC68EZ328/MC68VZ328 DragonBall. Motorola “REDCAP2” - no WAIT# signal. • 8-bit processor support with “glue logic”. • “Fixed” low-latency CPU access times. • Registers are memory-mapped - M/R# input selects between memory and register address space. • The complete 80K byte display buffer is directly and contiguously available through the 17-bit address bus. • Single level CPU write buffer. 2.3 Display Support • Single-panel, single-drive passive displays. • 4/8-bit monochrome LCD interface. • 4/8/16-bit color LCD interface. • Active Matrix TFT interface. • 9/12/18-bit interface. • ‘Direct’ support for 18-bit Epson D-TFD interface. • ‘Direct’ support for 18-bit Sharp HR-TFT interface. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 13 2.4 Display Modes • 1/2/4/8/16 bit-per-pixel (bpp) color depths. • Up to 64 gray shades using Frame Rate Modulation (FRM) and dithering on monochrome passive LCD panels. • Up to 64K colors on passive STN panels. • Up to 64K colors on active matrix LCD panels. • Example resolutions: 320x240 at a color depth of 8 bpp 160x160 at a color depth of 16 bpp 160x240 at a color depth of 16 bpp 2.5 Display Features • SwivelView™: 90°, 180°, 270° counter-clockwise hardware rotation of display image. • “Picture-in-Picture Plus”: displays a variable size window overlaid over background image. • Double Buffering/Multi-pages: provides smooth animation and instantaneous screen updates. 2.6 Clock Source • Two clock inputs: CLKI and CLKI2. It is possible to use one clock input only. • Bus clock is derived from CLKI and can be internally divided by 2, 3, or 4. • Memory clock is derived from bus clock. It can be internally divided by 2, 3, or 4. • Pixel clock can be derived from CLKI, CLKI2, bus clock, or memory clock. It can be internally divided by 2, 3, 4, or 8. 2.7 Miscellaneous • Hardware/Software Video Invert. • Software Power Save mode. • General Purpose Input/Output pins are available. • 100-pin TQFP15 package. • 104-pin CFLGA package. • Die form available. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 14 Epson Research and Development Vancouver Design Center 3 Typical System Implementation Diagrams . Oscillator BS# A[27:17] FPDAT[15:0] M/R# Decoder FPFRAME CSn# CS# FPLINE A[16:1] AB[16:1] FPSHIFT D[15:0] DB[15:0] DRDY WE0# WE0# WE1# WE1# RD0# RD# RD1# RD/WR# WAIT# S1D13706 16-bit Single FPFRAME LCD Display D[15:0] FPLINE FPSHIFT MOD Bias Power HIOVDD CLKI2 Generic #1 BUS GPO WAIT# BUSCLK CLKI RESET# RESET# AB0 VSS Figure 3-1: Typical System Diagram (Generic #1 Bus) . VDD BS# RD/WR# A[27:17] CSn# Decoder FPDAT[8:0] M/R# FPFRAME CS# FPLINE A[16:0] AB[16:0] FPSHIFT D[15:0] DB[15:0] DRDY WE# WE0# BHE# WE1# RD# WAIT# S1D13706 D[8:0] FPFRAME FPLINE FPSHIFT DRDY 9-bit TFT Display Bias Power Generic #2 BUS CLKI2 Oscillator GPO RD# WAIT# BUSCLK CLKI RESET# RESET# Figure 3-2: Typical System Diagram (Generic #2 Bus) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 15 . Oscillator M/R# Decoder FPDAT15 FPDAT12 CSn# FPDAT[9:0] CS# A[16:1] FPFRAME AB[16:1] D[15:0] FPLINE DB[15:0] WE0# FPSHIFT WE0# WE1# WE1# BS# BS# RD/WR# DRDY D[9:0] FPFRAME FPLINE FPSHIFT DRDY S1D13706 GPO RD/WR# RD# 12-bit TFT Display D11 D10 Bias Power A[25:17] CLKI2 SH-4 BUS RD# RDY# WAIT# CKIO CLKI RESET# RESET# AB0 VSS Figure 3-3: Typical System Diagram (Hitachi SH-4 Bus) . Oscillator M/R# Decoder FPDAT[17:0] CSn# FPFRAME CS# A[16:1] AB[16:1] D[15:0] DB[15:0] WE0# FPLINE FPSHIFT WE0# WE1# WE1# BS# BS# RD/WR# RD/WR# RD# DRDY S1D13706 D[17:0] FPFRAME FPLINE FPSHIFT DRDY 18-bit TFT Display Bias Power A[25:17] CLKI2 SH-3 BUS GPO RD# WAIT# WAIT# CKIO CLKI RESET# RESET# AB0 VSS Figure 3-4: Typical System Diagram (Hitachi SH-3 Bus) Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 16 Epson Research and Development Vancouver Design Center . Oscillator RD# WE0# A[23:17] FC0, FC1 Decoder FPDAT[17:0] D[17:0] SPS FPFRAME FPLINE M/R# LP FPSHIFT Decoder CS# A[16:1] AB[16:1] D[15:0] DB[15:0] LDS# AB0 UDS# WE1# AS# S1D13706 18-bit HR-TFT Display CLK GPIO0 PS GPIO1 CLS GPIO2 REV GPIO3 SPL Bias Power HIOVDD CLKI2 MC68K #1 BUS GPO BS# R/W# RD/WR# DTACK# WAIT# CLK CLKI RESET# RESET# Figure 3-5: Typical System Diagram (MC68K # 1, Motorola 16-Bit 68000) . Oscillator Decoder Decoder M/R# FPDAT[17:0] D[17:0] DY LP FPFRAME FPLINE CS# FPSHIFT A[16:0] AB[16:0] D[31:16] DB[15:0] XSCL DRDY GCP GPIO0 XINH GPIO1 YSCL DS# WE1# GPIO2 FR AS# BS# GPIO3 FRS GPIO4 RES RD# GPIO5 DD_P1 SIZ0 WE0# GPIO6 YSCLD DSACK1# WAIT# R/W# SIZ1 CLK RESET# RD/WR# CLKI S1D13706 18-bit D-TFD Display XSET (Bias Power) A[31:17] FC0, FC1 CLKI2 MC68K #2 BUS GPO RESET# Figure 3-6: Typical System Diagram (MC68K #2, Motorola 32-Bit 68030) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 17 . Oscillator CLKI2 HIOVDD BS# A[21:17] M/R# Decoder CSn FPDAT[7:4] CS# A[16:1] AB[16:1] D[15:0] DB[15:0] FPSHIFT FPFRAME FPLINE DRDY R/W RD/WR# OE S1D13706 D[3:0] FPSHIFT 4-bit Single LCD Display FPFRAME FPLINE MOD Bias Power REDCAP2 BUS GPO RD# EB1 WE0# EB0 WE1# CLK CLKI RESET_OUT RESET# AB0 VSS *Note: CSn# can be any of CS0-CS4 Figure 3-7: Typical System Diagram (Motorola REDCAP2 Bus) . HIOVDD BS# FPDAT[7:0] RD/WR# A[25:17] FPSHIFT M/R# Decoder CSX FPFRAME CS# A[16:1] FPLINE AB[16:1] D[15:0] DB[15:0] LWE WE0# UWE WE1# OE DRDY S1D13706 D[7:0] FPSHIFT FPFRAME FPLINE MOD 8-bit Single LCD Display Bias Power MC68EZ328/ MC68VZ328 DragonBall BUS CLKI2 Oscillator GPO RD# WAIT# DTACK CLKO CLKI RESET RESET# AB0 VSS Figure 3-8: Typical System Diagram (Motorola MC68EZ328/MC68VZ328 “DragonBall” Bus) Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 18 Epson Research and Development Vancouver Design Center 4 Pins 4.1 Pinout Diagram - TQFP15 - 100pin 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 COREVDD FPFRAME FPLINE FPSHIFT FPDAT0 FPDAT1 FPDAT2 FPDAT3 FPDAT4 FPDAT5 FPDAT6 VSS NIOVDD FPDAT7 FPDAT8 FPDAT9 FPDAT10 FPDAT11 FPDAT12 FPDAT13 FPDAT14 FPDAT15 FPDAT16 FPDAT17 VSS NIOVDD 73 74 75 76 VSS 77 CLKI2 78 CNF7 DRDY 79 CNF6 GPO 80 CNF5 CVOUT 81 CNF4 GPIO0 82 CNF3 GPIO1 83 CNF2 GPIO2 84 CNF1 GPIO3 85 CNF0 GPIO4 86 TESTEN GPIO5 87 AB16 GPIO6 88 AB15 89 AB14 NIOVDD 90 AB13 VSS 91 AB12 DB0 92 AB11 DB1 93 AB10 DB2 94 AB9 DB3 95 AB8 DB4 NIOVDD S1D13706 PWMOUT 96 AB7 DB5 97 AB6 DB6 AB5 DB7 98 DB8 HIOVDD 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 VSS DB9 DB10 DB11 DB12 DB13 DB14 DB15 WAIT# HIOVDD CLKI VSS RESET# WE1# RD# BS# M/R# CS# AB0 AB1 AB2 AB3 RD/WR# VSS WE0# AB4 COREVDD 99 100 50 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 9 10 8 7 6 5 4 3 2 1 Figure 4-1: Pinout Diagram - TQFP15 - 100pin (S1D13706F00A) Note Package type: 100 pin surface mount TQFP15 S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 19 4.2 Pinout Diagram - Die Form 170 165 160 155 150 145 140 135 130 125 120 175 DIE No. X5534D Unusable Pad 180 115 185 110 190 105 Y 195 100 200 95 205 90 X 85 210 (0,0) 215 80 220 75 225 70 230 65 235 60 Unusable Pad 1 5 10 15 20 25 30 35 40 45 50 55 Figure 4-2: Pinout Diagram - Die Form (S1D13706D00A) Chip Size: 5.88 x 6.55 mm PAD size: 68 x 68 µm Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 20 Epson Research and Development Vancouver Design Center Table 4-1: Pinout Assignments - Die Form (S1D13706D00A) Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 S1D13706 X31B-A-001-09 Pad No. 1 3 5 8 10 12 15 17 20 22 24 27 29 31 34 36 39 41 43 46 48 50 53 55 58 60 62 65 67 70 72 74 77 79 81 84 86 89 91 93 96 98 100 103 105 108 110 112 115 117 Pin Name LVDD AB3 AB2 AB1 AB0 CS# M/R# BS# RD# WE0# WE1# RD/WR# RESET# VSS CLKI HVDD WAIT# DB15 DB14 DB13 DB12 DB11 DB10 DB9 VSS HVDD DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 VSS HVDD PWMOUT GPIO6 GPIO5 GPIO4 GPIO3 GPIO2 GPIO1 GPIO0 CVOUT GPO DRDY HVDD VSS X (µm) -2331 -2100 -1932 -1680 -1512 -1344 -1092 -924 -672 -504 -336 -84 84 252 504 672 924 1092 1260 1512 1680 1848 2100 2331 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 2813 Y (µm) -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -3149 -2478 -2310 -2142 -1890 -1722 -1470 -1302 -1134 -882 -714 -546 -294 -126 126 294 462 714 882 1050 1302 1470 1722 1890 2058 2310 2478 Pin No. 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Pad No. 119 122 124 127 129 131 134 136 139 141 143 146 148 150 153 155 158 160 162 165 167 169 172 174 177 179 181 184 186 189 191 193 196 198 200 203 205 208 210 212 215 217 219 222 224 227 229 231 234 236 Pin Name LVDD FPFRAME FPLINE FPSHIFT FPDAT0 FPDAT1 FPDAT2 FPDAT3 FPDAT4 FPDAT5 FPDAT6 VSS HVDD FPDAT7 FPDAT8 FPDAT9 FPDAT10 FPDAT11 FPDAT12 FPDAT13 FPDAT14 FPDAT15 FPDAT16 FPDAT17 VSS HVDD CLKI2 CNF7 CNF6 CNF5 CNF4 CNF3 CNF2 CNF1 CNF0 TESTEN AB16 AB15 AB14 AB13 AB12 AB11 AB10 AB9 AB8 AB7 AB6 AB5 AB4 VSS X (µm) 2813 2100 1932 1680 1512 1344 1092 924 672 504 336 84 -84 -252 -504 -672 -924 -1092 -1260 -1512 -1680 -1848 -2100 -2331 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 -2813 Y (µm) 2667 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 3149 2478 2310 2142 1890 1722 1470 1302 1134 882 714 546 294 126 -126 -294 -462 -714 -882 -1050 -1302 -1470 -1722 -1890 -2058 -2310 -2478 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 21 4.3 Pin Descriptions Key: I O IO P LIS LI LB2A LB3P LO3 LB3M T1 Hi-Z = = = = = = = = = = = = Input Output Bi-Directional (Input/Output) Power pin LVTTLa Schmitt input LVTTL input LVTTL IO buffer (6mA/[email protected]) Low noise LVTTL IO buffer (12mA/[email protected]) Low noise LVTTL Output buffer (12mA/[email protected]) Low noise LVTTL IO buffer with input mask (12mA/[email protected]) Test mode control input with pull-down resistor (typical value of 50Ω at 3.3V) High Impedance a LVTTL is Low Voltage TTL (see Section 5, “D.C. Characteristics” on page 31). 4.3.1 Host Interface Table 4-2: Host Interface Pin Descriptions Pin Name Type Pin # Cell IO RESET# Voltage State Description This input pin has multiple functions. AB0 I 5 LIS HIOVDD 0 • For Generic #1, this pin is not used and should be connected to VSS. • For Generic #2, this pin inputs system address bit 0 (A0). • For SH-3/SH-4, this pin is not used and should be connected to VSS. • For MC68K #1, this pin inputs the lower data strobe (LDS#). • For MC68K #2, this pin inputs system address bit 0 (A0). • For REDCAP2, this pin is not used and should be connected to VSS. • For DragonBall, this pin is not used and should be connected to VSS. See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. AB[16:1] I 87-99, 2-4 Hardware Functional Specification Issue Date: 2004/02/09 LI HIOVDD 0 System address bus bits 16-1. S1D13706 X31B-A-001-09 Page 22 Epson Research and Development Vancouver Design Center Table 4-2: Host Interface Pin Descriptions Pin Name Type Pin # Cell IO RESET# Voltage State Description Input data from the system data bus. DB[15:0] IO 18-24, 27-35 LB2A HIOVDD Hi-Z • • • • • For Generic #1, these pins are connected to D[15:0]. For Generic #2, these pins are connected to D[15:0]. For SH-3/SH-4, these pins are connected to D[15:0]. For MC68K #1, these pins are connected to D[15:0]. For MC68K #2, these pins are connected to D[31:16] for a 32bit device (e.g. MC68030) or D[15:0] for a 16-bit device (e.g. MC68340). • For REDCAP2, these pins are connected to D[15:0]. • For DragonBall, these pins are connected to D[15:0]. See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. This input pin has multiple functions. WE0# I 10 LIS HIOVDD 1 • For Generic #1, this pin inputs the write enable signal for the lower data byte (WE0#). • For Generic #2, this pin inputs the write enable signal (WE#) • For SH-3/SH-4, this pin inputs the write enable signal for data byte 0 (WE0#). • For MC68K #1, this pin must be tied to HIO VDD • For MC68K #2, this pin inputs the bus size bit 0 (SIZ0). • For REDCAP2, this pin inputs the byte enable signal for the D[7:0] data byte (EB1). • For DragonBall, this pin inputs the byte enable signal for the D[7:0] data byte (LWE). See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. This input pin has multiple functions. WE1# I 11 LIS HIOVDD 1 • For Generic #1, this pin inputs the write enable signal for the upper data byte (WE1#). • For Generic #2, this pin inputs the byte enable signal for the high data byte (BHE#). • For SH-3/SH-4, this pin inputs the write enable signal for data byte 1 (WE1#). • For MC68K #1, this pin inputs the upper data strobe (UDS#). • For MC68K #2, this pin inputs the data strobe (DS#). • For REDCAP2, this pin inputs the byte enable signal for the D[15:8] data byte (EB0). • For DragonBall, this pin inputs the byte enable signal for the D[15:8] data byte (UWE). See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. CS# M/R# S1D13706 X31B-A-001-09 I I 6 7 LI LIS HIOVDD HIOVDD 1 Chip select input. See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. 0 This input pin is used to select between the display buffer and register address spaces of the S1D13706. M/R# is set high to access the display buffer and low to access the registers. See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 23 Table 4-2: Host Interface Pin Descriptions Pin Name Type Pin # Cell IO RESET# Voltage State Description This input pin has multiple functions. BS# I 8 LIS HIOVDD 1 • • • • • • • For Generic #1, this pin must be tied to HIO VDD. For Generic #2, this pin must be tied to HIO VDD. For SH-3/SH-4, this pin inputs the bus start signal (BS#). For MC68K #1, this pin inputs the address strobe (AS#). For MC68K #2, this pin inputs the address strobe (AS#). For REDCAP2, this pin must be tied to HIO VDD. For DragonBall, this pin must be tied to HIO VDD. See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. This input pin has multiple functions. RD/WR# I 12 LIS HIOVDD 1 • For Generic #1, this pin inputs the read command for the upper data byte (RD1#). • For Generic #2, this pin must be tied to HIO VDD. • For SH-3/SH-4, this pin inputs the RD/WR# signal. The S1D13706 needs this signal for early decode of the bus cycle. • For MC68K #1, this pin inputs the R/W# signal. • For MC68K #2, this pin inputs the R/W# signal. • For REDCAP2, this pin inputs the R/W signal. • For DragonBall, this pin must be tied to HIO VDD. See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. This input pin has multiple functions. RD# I 9 LIS HIOVDD 1 • For Generic #1, this pin inputs the read command for the lower data byte (RD0#). • For Generic #2, this pin inputs the read command (RD#). • For SH-3/SH-4, this pin inputs the read signal (RD#). • For MC68K #1, this pin must be tied to HIO VDD. • For MC68K #2, this pin inputs the bus size bit 1 (SIZ1). • For REDCAP2, this pin inputs the output enable (OE). • For DragonBall, this pin inputs the output enable (OE). See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 24 Epson Research and Development Vancouver Design Center Table 4-2: Host Interface Pin Descriptions Pin Name Type Pin # Cell IO RESET# Voltage State Description During a data transfer, this output pin is driven active to force the system to insert wait states. It is driven inactive to indicate the completion of a data transfer. WAIT# is released to the high impedance state after the data transfer is complete. Its active polarity is configurable. See Table 4-7: “Summary of PowerOn/Reset Options,” on page 28. WAIT# O 17 LB2A HIOVDD Hi-Z • For Generic #1, this pin outputs the wait signal (WAIT#). • For Generic #2, this pin outputs the wait signal (WAIT#). • For SH-3 mode, this pin outputs the wait request signal (WAIT#). • For SH-4 mode, this pin outputs the device ready signal (RDY#). • For MC68K #1, this pin outputs the data transfer acknowledge signal (DTACK#). • For MC68K #2, this pin outputs the data transfer and size acknowledge bit 1 (DSACK1#). • For REDCAP2, this pin is unused (Hi-Z). • For DragonBall, this pin outputs the data transfer acknowledge signal (DTACK). See Table 4-8: “Host Bus Interface Pin Mapping,” on page 29 for summary. RESET# S1D13706 X31B-A-001-09 I 13 LIS HIOVDD 0 Active low input to set all internal registers to the default state and to force all signals to their inactive states. Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 25 4.3.2 LCD Interface Table 4-3: LCD Interface Pin Descriptions Pin Name Type Pin # Cell IO RESET# Voltage State FPDAT[17:0] O 74-64, 61-55 LB3P NIOVDD 0 Description Panel Data bits 17-0. This output pin has multiple functions. FPFRAME O 52 LB3P NIOVDD 0 • Frame Pulse • SPS for Sharp HR-TFT • DY for Epson D-TFD See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This output pin has multiple functions. FPLINE O 53 LB3P NIOVDD 0 • Line Pulse • LP for Sharp HR-TFT • LP for Epson D-TFD See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This output pin has multiple functions. FPSHIFT O 54 LB3P NIOVDD 0 • Shift Clock • CLK for Sharp HR-TFT • XSCL for Epson D-TFD See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This output pin has multiple functions. DRDY O 48 LO3 NIOVDD 0 • Display enable (DRDY) for TFT panels • 2nd shift clock (FPSHIFT2) for passive LCD with Format 1 interface • GCP for Epson D-TFD • LCD backplane bias signal (MOD) for all other LCD panels See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This pin has multiple functions. GPIO0 IO 45 LB3M NIOVDD 0 • • • • PS for Sharp HR-TFT XINH for Epson D-TFD General purpose IO pin 0 (GPIO0) Hardware Video Invert See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This pin has multiple functions. GPIO1 IO 44 LB3M NIOVDD 0 • CLS for Sharp HR-TFT • YSCL for Epson D-TFD • General purpose IO pin 1 (GPIO1) See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 26 Epson Research and Development Vancouver Design Center Table 4-3: LCD Interface Pin Descriptions Pin Name Type Pin # Cell IO RESET# Voltage State Description This pin has multiple functions. GPIO2 IO 43 LB3M NIOVDD 0 • REV for Sharp HR-TFT • FR for Epson D-TFD • General purpose IO pin 2 (GPIO2) See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This pin has multiple functions. GPIO3 IO 42 LB3M NIOVDD 0 • SPL for Sharp HR-TFT • FRS for Epson D-TFD • General purpose IO pin 3 (GPIO3) See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This pin has multiple functions. GPIO4 IO 41 LB3M NIOVDD 0 • RES for Epson D-TFD • General purpose IO pin 4 (GPIO4) See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This pin has multiple functions. GPIO5 IO 40 LB3M NIOVDD 0 • DD_P1 for Epson D-TFD • General purpose IO pin 5 (GPIO5) See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This pin has multiple functions. GPIO6 IO 39 LB3M NIOVDD 0 • YSCLD for Epson D-TFD • General purpose IO pin 6 (GPIO6) See Table 4-9: “LCD Interface Pin Mapping,” on page 30 for summary. This output pin has multiple functions. PWMOUT O 38 LB3P NIOVDD 0 • PWM Clock output • General purpose output This output pin has multiple functions. CVOUT S1D13706 X31B-A-001-09 O 46 LB3P NIOVDD 0 • CV Pulse Output • General purpose output Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 27 4.3.3 Clock Input Table 4-4: Clock Input Pin Descriptions IO RESET# Voltage State Description Pin Name Type Pin # Cell CLKI I 15 LI NIOVDD — Typically used as input clock source for bus clock and memory clock CLKI2 I 77 LI NIOVDD — Typically used as input clock source for pixel clock 4.3.4 Miscellaneous Table 4-5: Miscellaneous Pin Descriptions Pin Name Type Pin # Cell IO RESET# Voltage State Description These inputs are used to configure the S1D13706 - see Table 4-7: “Summary of Power-On/Reset Options,” on page 28. CNF[7:0] I 78-85 LI NIOVDD — GPO O 47 LO3 NIOVDD 0 General Purpose Output (possibly used for controlling the LCD power). It may also be used for the MOD control signal of the Sharp HR-TFT panel. TESTEN I 86 T1 NIOVDD 0 Test Enable input used for production test only (has type 1 pulldown resistor with a typical value of 50Ω at 3.3V). Note: These pins are used for configuration of the S1D13706 and must be connected directly to IO VDD or VSS. 4.3.5 Power And Ground Table 4-6: Power And Ground Pin Descriptions Pin Name Type Pin # Cell HIOVDD P 16, 26 P NIOVDD P 37, 49, 63, 76 P COREVDD P 1, 51 P 14, 25, 36, 50, 62, 75, 100 VSS Hardware Functional Specification Issue Date: 2004/02/09 IO RESET# Voltage State Description — IO VDD pins associated with the host interface pins as described in Section 4.3.1, “Host Interface” on page 21. — — IO VDD pins associated with the non-host interface pins as described in Section 4.3.2, “LCD Interface” on page 25, Section 4.3.3, “Clock Input” on page 27, and Section 4.3.4, “Miscellaneous” on page 27. P — — 2 Core VDD. pins. P — — 7 VSS pins. — S1D13706 X31B-A-001-09 Page 28 Epson Research and Development Vancouver Design Center 4.4 Summary of Configuration Options These pins are used for configuration of the S1D13706 and must be connected directly to NIOVDD or VSS. The state of CNF[6:0] is latched on the rising edge of RESET#. Changing state at any other time has no effect. Table 4-7: Summary of Power-On/Reset Options S1D13706 Configuration Input Power-On/Reset State 1 (connected to NIOVDD) 0 (Connected to VSS) Select host bus interface as follows: CNF4,CNF[2:0] CNF4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 X CNF2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 CNF1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 CNF0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 Host Bus SH-4/SH-3 interface, Big Endian SH-4/SH-3 interface, Little Endian MC68K #1, Big Endian Reserved MC68K #2, Big Endian Reserved Generic #1, Big Endian Generic #1, Little Endian Reserved Generic #2, Little Endian REDCAP2, Big Endian Reserved DragonBall (MC68EZ328/MC68VZ328), Big Endian Reserved Reserved Note: The host bus interface is 16-bit only. CNF3 Configure GPIO pins as inputs at power-on Configure GPIO pins as outputs at power-on (for use by HR-TFT/D-TFD when selected) CNF5 WAIT# is active high WAIT# is active low CLKI to BCLK divide select: CNF[7:6] S1D13706 X31B-A-001-09 CNF7 0 0 1 1 CNF6 0 1 0 1 CLKI to BCLK Divide Ratio 1:1 2:1 3:1 4:1 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 29 4.5 Host Bus Interface Pin Mapping Table 4-8: Host Bus Interface Pin Mapping Generic #2 Hitachi SH-3 /SH-4 Motorola MC68K #1 Motorola MC68K #2 Motorola REDCAP2 Motorola MC68EZ328/ MC68VZ328 DragonBall A[16:1] A[16:1] A[16:1] A[16:1] A[16:1] A[16:1] S1D13706 Pin Name Generic #1 AB[16:1] A[16:1] AB0 A01 A0 A0 DB[15:0] D[15:0] D[15:0] D[15:0] CS# External Decode 1 CSn# M/R# CLKI BS# LDS# A0 A0 A01 D[15:0] D[15:0]2 D[15:0] D[15:0] CSn CSX CLK CLKO External Decode 1 External Decode BUSCLK BUSCLK Connected to VDD CKIO CLK CLK BS# AS# AS# Connected to VDD RD/WR# R/W# R/W# R/W Connected to VDD RD/WR# RD1# Connected to VDD RD# RD0# RD# RD# Connected to VDD SIZ1 OE OE WE0# WE0# WE# WE0# Connected to VDD SIZ0 EB1 LWE WE1# WE1# BHE# WE1# UDS# DS# EB0 UWE WAIT# WAIT# WAIT# WAIT#/ RDY# DTACK# DSACK1# N/A DTACK RESET# RESET# RESET# RESET# RESET# RESET# RESET_OUT RESET Note 1 A0 for these busses is not used internally by the S1D13706 and should be connected to V . SS 2 If the target MC68K bus is 32-bit, then these signals should be connected to D[31:16]. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 30 Epson Research and Development Vancouver Design Center 4.6 LCD Interface Pin Mapping Table 4-9: LCD Interface Pin Mapping Monochrome Passive Panel Pin Name Color Passive Panel Single Single 4-bit Color TFT Panel 4-bit Others Format 2 8-bit 16-Bit 18-bit 18-bit SPS DY FPLINE FPLINE LP LP FPSHIFT FPSHIFT DCLK XSCL FPSHIFT2 MOD 12-bit 18-bit Epson D-TFD1 FPFRAME MOD 9-bit Sharp HRTFT1 FPFRAME DRDY 8-bit Format 1 8-bit DRDY no connect GCP FPDAT0 driven 0 D0 driven 0 D0 (B5)2 D0 (G3)2 D0 (R6)2 R2 R3 R5 R5 R5 FPDAT1 driven 0 D1 driven 0 D1 (R5)2 D1 (R3)2 D1 (G5)2 R1 R2 R4 R4 R4 FPDAT2 driven 0 D2 driven 0 D2 (G4)2 D2 (B2)2 D2 (B4)2 R0 R1 R3 R3 R3 FPDAT3 driven 0 D3 driven 0 D3 (B3)2 D3 (G2)2 D3 (R4)2 G2 G3 G5 G5 G5 FPDAT4 D0 D4 D0 (R2)2 D4 (R3)2 D4 (R2)2 D8 (B5)2 G1 G2 G4 G4 G4 FPDAT5 D1 D5 D1 (B1)2 D5 (G2)2 D5 (B1)2 D9 (R5)2 G0 G1 G3 G3 G3 FPDAT6 D2 D6 D2 (G1)2 D6 (B1)2 D6 (G1)2 D10 (G4)2 B2 B3 B5 B5 B5 FPDAT7 D3 D7 D3 (R1)2 D7 (R1)2 D7 (R1)2 D11 (B3)2 B1 B2 B4 B4 B4 FPDAT8 driven 0 driven 0 driven 0 driven 0 driven 0 D4 (G3)2 B0 B1 B3 B3 B3 FPDAT9 driven 0 driven 0 driven 0 driven 0 driven 0 D5 (B2)2 driven 0 R0 R2 R2 R2 FPDAT10 driven 0 driven 0 driven 0 driven 0 driven 0 D6 (R2)2 driven 0 driven 0 R1 R1 R1 FPDAT11 driven 0 driven 0 driven 0 driven 0 driven 0 D7 (G1)2 driven 0 driven 0 R0 R0 R0 FPDAT12 driven 0 driven 0 driven 0 driven 0 driven 0 D12 (R3)2 driven 0 G0 G2 G2 G2 FPDAT13 driven 0 driven 0 driven 0 driven 0 driven 0 D13 (G2)2 driven 0 driven 0 G1 G1 G1 FPDAT14 driven 0 driven 0 driven 0 driven 0 driven 0 D14 (B1)2 driven 0 driven 0 G0 G0 G0 FPDAT15 driven 0 driven 0 driven 0 driven 0 driven 0 D15 (R1)2 driven 0 B0 B2 B2 B2 FPDAT16 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 B1 B1 B1 FPDAT17 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 driven 0 B0 B0 B0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 PS XINH GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 CLS YSCL GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 GPIO2 REV FR GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 GPIO3 SPL FRS GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 (output only) RES GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 GPIO5 (output only) DD_P1 GPIO6 GPIO6 (output only) YSCLD GPIO6 GPIO6 GPIO6 GPO GPIO6 GPIO6 GPIO6 GPIO6 GPO (General Purpose Output) CVOUT CVOUT PWMOUT PWMOUT GPIO6 GPIO6 MOD 3 GPO Note 1 GPIO pins must be configured as outputs (CNF3 = 0 at RESET#) when the HR-TFT or D-TFD interface is selected. 2 These pin mappings use signal names commonly used for each panel type, however signal names may differ between panel manufacturers. The values shown in brackets represent the color components as mapped to the corresponding FPDATxx signals at the first valid edge of FPSHIFT. For further FPDATxx to LCD interface mapping, see Section 6.4, “Display Interface” on page 56. 3 When the HR-TFT interface is selected (REG[10h] bits 1-0 = 10), this GPO can be used to control the HR-TFT MOD signal. Note this is not the same signal as the S1D13706 DRDY(MOD) signal used for passive panels. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 31 5 D.C. Characteristics Table 5-1: Absolute Maximum Ratings Symbol Parameter Rating Units Core VDD Supply Voltage VSS - 0.3 to 4.0 V IO VDD Supply Voltage VSS - 0.3 to 4.0 V VIN Input Voltage VSS - 0.3 to IO VDD + 0.5 V VOUT Output Voltage VSS - 0.3 to IO VDD + 0.5 V TSTG Storage Temperature -65 to 150 °C TSOL Solder Temperature/Time 260 for 10 sec. max at lead °C Table 5-2: Recommended Operating Conditions Symbol Parameter Condition Min Typ Max Units 1.8 2.0 2.2 V 3.0 3.3 3.6 V 1.8 2.0 2.2 V 3.0 3.3 3.6 V 3.0 3.3 3.6 V IO VDD V Core VDD Supply Voltage VSS = 0 V HIO VDD Supply Voltage VSS = 0 V NIO VDD Supply Voltage VSS = 0 V VIN Input Voltage VSS TOPR Operating Temperature -40 25 °C 85 Note The S1D13706 requires that Core VDD ≤ HIO VDD and Core VDD ≤ NIO VDD. Table 5-3: Electrical Characteristics for VDD = 3.3V typical Symbol IDDS IIZ IOZ Parameter Quiescent Current Input Leakage Current Output Leakage Current VOH High Level Output Voltage VOL Low Level Output Voltage VIH VIL VT+ VTVH1 RPD CI CO CIO High Level Input Voltage Low Level Input Voltage High Level Input Voltage Low Level Input Voltage Hysteresis Voltage Pull Down Resistance Input Pin Capacitance Output Pin Capacitance Bi-Directional Pin Capacitance Hardware Functional Specification Issue Date: 2004/02/09 Condition Quiescent Conditions Min Typ -1 -1 VDD = min IOH = -6mA (Type 2) -12mA (Type 3) VDD = min IOL = 6mA (Type 2) 12mA (Type 3) LVTTL Level, VDD = max LVTTL Level, VDD = min LVTTL Schmitt LVTTL Schmitt LVTTL Schmitt VI = VDD Max 170 1 1 VDD - 0.4 V 0.4 2.0 1.1 0.6 0.1 20 Units µA µA µA 0.8 2.4 1.8 50 120 10 10 10 V V V V V V kΩ pF pF pF S1D13706 X31B-A-001-09 Page 32 Epson Research and Development Vancouver Design Center 6 A.C. Characteristics Conditions: HIO VDD = 2.0V ± 10% and HIO VDD = 3.3V ± 10% NIO VDD = 3.3V ± 10% TA = -40° C to 85° C Trise and Tfall for all inputs must be < 5 nsec (10% ~ 90%) CL = 50pF (Bus/MPU Interface) CL = 0pF (LCD Panel Interface) 6.1 Clock Timing 6.1.1 Input Clocks Clock Input Waveform t t PWH PWL 90% V IH VIL 10% t tr f TOSC Figure 6-1: Clock Input Requirements Table 6-1: Clock Input Requirements for CLKI when CLKI to BCLK divide > 1 Symbol Parameter fOSC Input Clock Frequency (CLKI) TOSC Input Clock period (CLKI) tPWH tPWL 2.0V Min 3.3V Max Min 40 Max 100 Units MHz 1/fOSC 1/fOSC ns Input Clock Pulse Width High (CLKI) 4.5 4.5 ns Input Clock Pulse Width Low (CLKI) 4.5 4.5 ns tf Input Clock Fall Time (10% - 90%) 5 5 ns tr Input Clock Rise Time (10% - 90%) 5 5 ns Note Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, “Internal Clocks” on page 34 for internal clock requirements. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 33 Table 6-2: Clock Input Requirements for CLKI when CLKI to BCLK divide = 1 Symbol Parameter fOSC Input Clock Frequency (CLKI) TOSC Input Clock period (CLKI) tPWH tPWL 2.0V Min 3.3V Max Min Max 20 66 Units MHz 1/fOSC 1/fOSC ns Input Clock Pulse Width High (CLKI) 3 3 ns Input Clock Pulse Width Low (CLKI) 3 3 ns tf Input Clock Fall Time (10% - 90%) 5 5 ns tr Input Clock Rise Time (10% - 90%) 5 5 ns Note Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, “Internal Clocks” on page 34 for internal clock requirements. Table 6-3: Clock Input Requirements for CLKI2 Symbol Parameter fOSC Input Clock Frequency (CLKI2) TOSC Input Clock period (CLKI2) tPWH tPWL 2.0V Min 3.3V Max Min 20 Max 66 Units MHz 1/fOSC 1/fOSC ns Input Clock Pulse Width High (CLKI2) 3 3 ns Input Clock Pulse Width Low (CLKI2) 3 3 ns tf Input Clock Fall Time (10% - 90%) 5 5 ns tr Input Clock Rise Time (10% - 90%) 5 5 ns Note Maximum internal requirements for clocks derived from CLKI2 must be considered when determining the frequency of CLKI2. See Section 6.1.2, “Internal Clocks” on page 34 for internal clock requirements. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 34 Epson Research and Development Vancouver Design Center 6.1.2 Internal Clocks Table 6-4: Internal Clock Requirements Symbol Parameter 2.0V Min 3.3V Max Min Max Units fBCLK Bus Clock frequency 20 66 MHz fMCLK Memory Clock frequency 20 50 MHz fPCLK Pixel Clock frequency 20 50 MHz fPWMCLK PWM Clock frequency 20 66 MHz Note For further information on internal clocks, refer to Section 7, “Clocks” on page 90. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 35 6.2 CPU Interface Timing The following section includes CPU interface AC Timing for both 2.0V and 3.3V. The 2.0V timings are based on HIO VDD = Core VDD = 2.0V. The 3.3V timings are based on HIO VDD = Core VDD = 3.3V. 6.2.1 Generic #1 Interface Timing TCLK t1 t2 CLK t4 t3 A[16:1] M/R# t6 t5 CS# t7 RD0#,RD1# WE0#,WE1# t8 t10 t9 WAIT# t12 t11 D[15:0](write) t13 t14 D[15:0](read) t15 VALID Figure 6-2: Generic #1 Interface Timing Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 36 Epson Research and Development Vancouver Design Center Table 6-5: Generic #1 Interface Timing Symbol Parameter fCLK TCLK t1 t2 Bus Clock frequency Bus Clock period Clock pulse width high Clock pulse width low A[16:1], M/R# setup to first CLK rising edge where CS# = 0 and either RD0#, RD1# = 0 or WE0#, WE1# = 0 A[16:1], M/R# hold from either RD0#, RD1# or WE0#, WE1# rising edge CS# setup to CLK rising edge CS# hold from either RD0#, RD1# or WE0#, WE1# rising edge RD0#, RD1#, WE0#, WE1# asserted for MCLK = BCLK RD0#, RD1#, WE0#, WE1# asserted for MCLK = BCLK ÷ 2 RD0#, RD1#, WE0#, WE1# asserted for MCLK = BCLK ÷ 3 RD0#, RD1#, WE0#, WE1# asserted for MCLK = BCLK ÷ 4 RD0#, RD1#, WE0#, WE1# setup to CLK rising edge Falling edge of either RD0#, RD1# or WE0#, WE1# to WAIT# driven low Rising edge of either RD0#, RD1# or WE0#, WE1# to WAIT# high impedance D[15:0] setup to third CLK rising edge where CS# = 0 and WE0#, WE1# = 0 (write cycle) (see note 1) D[15:0] hold from WAIT# rising edge (write cycle) RD0#, RD1# falling edge to D[15:0] driven (read cycle) WAIT# rising edge to D[15:0] valid (read cycle) RD0#, RD1# rising edge to D[15:0] high impedance (read cycle) t3 t4 t5 t6 t7a t7b t7c t7d t8 t9 t10 t11 t12 t13 t14 t15 2.0V Min 3.3V Max 20 Min Max 50 Unit 1/fCLK 22.5 22.5 1/fCLK 9 9 MHz ns ns ns 1 1 ns 0 0 ns 0 0 1 0 ns ns TCLK TCLK TCLK TCLK ns 8.5 11.5 13.5 17.5 2 8.5 11.5 13.5 17.5 1 5 31 3 15 ns 5 34 3 13 ns 1 1 4 3 0 27 0 29 0 3 3 ns 14 2 11 ns ns ns ns 1. t11 is the delay from when data is placed on the bus until the data is latched into the write buffer. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 37 6.2.2 Generic #2 Interface Timing (e.g. ISA) TBUSCLK t1 t2 BUSCLK t4 t3 SA[16:0] M/R#, SBHE# t6 t5 CS# t7 MEMR# MEMW# t8 t10 t9 IOCHRDY t12 t11 SD[15:0] (write) t13 SD[15:0] (read) t15 t14 VALID Figure 6-3: Generic #2 Interface Timing Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 38 Epson Research and Development Vancouver Design Center Table 6-6: Generic #2 Interface Timing Symbol fBUSCLK TBUSCLK t1 t2 t3 t4 t5 t6 t7a t7b t7c t7d t8 t9 t10 t11 t12 t13 t14 t15 Parameter 2.0V Min Bus Clock frequency Bus Clock period 1/fBUSCLK Clock pulse width high 22.5 Clock pulse width low 22.5 SA[16:0], M/R#, SBHE# setup to first BUSCLK rising edge 1 where CS# = 0 and either MEMR# = 0 or MEMW# = 0 SA[16:0], M/R#, SBHE# hold from either MEMR# or MEMW# 0 rising edge CS# setup to BUSCLK rising edge 0 CS# hold from either MEMR# or MEMW# rising edge 0 MEMR#/MEMW# asserted for MCLK = BCLK MEMR#/MEMW# asserted for MCLK = BCLK ÷ 2 MEMR#/MEMW# asserted for MCLK = BCLK ÷ 3 MEMR#/MEMW# asserted for MCLK = BCLK ÷ 4 MEMR# or MEMW# setup to BUSCLK rising edge 2 Falling edge of either MEMR# or MEMW# to IOCHRDY driven 5 low Rising edge of either MEMR# or MEMW# to IOCHRDY high 5 impedance SD[15:0] setup to third BUSCLK rising edge where CS# = 0 and 1 MEMW# = 0 (write cycle) (see note 1) SD[15:0] hold from IOCHRDY rising edge (write cycle) 1 MEMR# falling edge to SD[15:0] driven (read cycle) 4 IOCHRDY rising edge to SD[15:0] valid (read cycle) Rising edge of MEMR# to SD[15:0] high impedance (read 5 cycle) 3.3V Max 20 Min Max 50 1/fBUSCLK 9 9 MHz ns ns ns 1 ns 0 ns 1 0 ns ns 8.5 11.5 13.5 17.5 8 11 13 17 TBUSCLK TBUSCLK TBUSCLK TBUSCLK ns 3 15 ns 3 13 ns 1 0 26 0 33 Unit 0 3 3 ns 13 2 ns ns ns 12 ns 1. t11 is the delay from when data is placed on the bus until the data is latched into the write buffer. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 39 6.2.3 Hitachi SH-4 Interface Timing TCKIO t1 t2 CKIO t3 t4 A[16:1], M/R# RD/WR# t5 t6 BS# t7 t8 CSn# t9 t10 WEn# RD# t12 t11 RDY# t13 Hi-Z Hi-Z t15 D[15:0] (write) t16 Hi-Z Hi-Z t17 D[15:0] (read) t14 Hi-Z t18 VALID Hi-Z Figure 6-4: Hitachi SH-4 Interface Timing Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 40 Epson Research and Development Vancouver Design Center Table 6-7: Hitachi SH-4 Interface Timing Symbol Parameter fCKIO Clock frequency TCKIO Clock period 2.0V Min 3.3V Max Min 20 Max 66 Unit MHz 1/fCKIO 1/fCKIO ns Clock pulse width low 22.5 6.8 ns t2 Clock pulse width high 22.5 6.8 ns t3 A[16:1], M/R#, RD/WR# setup to CKIO 0 1 ns t4 t1 A[16:1], M/R#, RD/WR# hold from CSn# 0 0 ns t5 BS# setup 3 1 ns t6 BS# hold 7 2 ns t7 CSn# setup 0 1 ns t8 CSn# high setup to CKIO 0 t9a t9b 2 ns RD# or WEn# asserted for MCLK = BCLK (max. MCLK = 50MHz) 8.5 8.5 TCKIO RD# or WEn# asserted for MCLK = BCLK ÷ 2 11.5 11.5 TCKIO t9c RD# or WEn# asserted for MCLK = BCLK ÷ 3 13.5 13.5 TCKIO t9d RD# or WEn# asserted for MCLK = BCLK ÷ 4 18.5 TCKIO Falling edge RD# to D[15:0] driven (read cycle) 5 24 3 12 ns t11 Falling edge CSn# to RDY# driven high 3 19 3 12 ns t12 CKIO to RDY# low 5 42 4 18 ns t13 t10 18.5 CSn# high to RDY# high 5 35 4 14 ns t14 Falling edge CKIO to RDY# high impedance 5 38 4 14 ns t15 D[15:0] setup to 2nd CKIO after BS# (write cycle) (see note 1) 1 0 ns t16 D[15:0] hold (write cycle) 0 0 ns t17 RDY# falling edge to D[15:0] valid (read cycle) t18 Rising edge RD# to D[15:0] high impedance (read cycle) 0 5 31 3 2 ns 12 ns 1. t15 is the delay from when data is placed on the bus until the data is latched into the write buffer. Note Minimum one software WAIT state is required. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 41 6.2.4 Hitachi SH-3 Interface Timing TCKIO t1 t2 CKIO t3 t4 A[16:1], M/R# RD/WR# t5 t6 BS# t7 t8 CSn# t9 t11 t10 WEn# RD# t13 t12 WAIT# Hi-Z Hi-Z t15 t14 D[15:0] (write) Hi-Z Hi-Z t16 D[15:0] (read) Hi-Z t17 VALID Hi-Z Figure 6-5: Hitachi SH-3 Interface Timing Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 42 Epson Research and Development Vancouver Design Center Table 6-8: Hitachi SH-3 Interface Timing Symbol Parameter fCKIO Bus Clock frequency TCKIO Bus Clock period 2.0V Min 3.3V Max Min 20 Max 66 Unit MHz 1/fCKIO 1/fCKIO ns Bus Clock pulse width low 22.5 6.8 ns t2 Bus Clock pulse width high 22.5 6.8 ns t3 A[16:1], M/R#, RD/WR# setup to CKIO 0 1 ns t4 t1 CSn# high setup to CKIO 0 1 ns t5 BS# setup 3 1 ns t6 BS# hold 7 2 ns t7 CSn# setup 0 1 ns t8 A[16:1], M/R#, RD/WR# hold from CS# 0 t9a t9b 0 ns RD# or WEn# asserted for MCLK = BCLK (max. MCLK = 50MHz) 8.5 8.5 TCKIO RD# or WEn# asserted for MCLK = BCLK ÷ 2 11.5 11.5 TCKIO t9c RD# or WEn# asserted for MCLK = BCLK ÷ 3 13.5 13.5 TCKIO t9d RD# or WEn# asserted for MCLK = BCLK ÷ 4 18.5 TCKIO Falling edge RD# to D[15:0] driven (read cycle) 5 24 3 12 ns t11 Rising edge CSn# to WAIT# high impedance 4 24 2 10 ns t12 Falling edge CSn# to WAIT# driven low 3 24 2 12 ns t13 CKIO to WAIT# delay 6 45 4 18 ns t10 nd t14 D[15:0] setup to 2 t15 D[15:0] hold (write cycle) t16 WAIT# rising edge to D[15:0] valid (read cycle) t17 Rising edge RD# to D[15:0] high impedance (read cycle) CKIO after BS# (write cycle) (see note 1) 18.5 1 0 ns 0 0 ns 0 5 31 3 2 ns 12 ns 1. t14 is the delay from when data is placed on the bus until the data is latched into the write buffer. Note Minimum one software WAIT state is required. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 43 6.2.5 Motorola MC68K #1 Interface Timing (e.g. MC68000) TCLK t1 t2 CLK t3 t4 A[16:1] M/R# t6 t5 CS# t7 t9 t8 AS# t11 t12 t10 UDS# LDS# t13 t14 R/W# t15 t16 DTACK# t17 t18 D[15:0](write) t19 D[15:0](read) t20 t21 VALID Figure 6-6: Motorola MC68K #1 Interface Timing Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 44 Epson Research and Development Vancouver Design Center Table 6-9: Motorola MC68K #1 Interface Timing Symbol Parameter fCLK Bus Clock Frequency TCLK Bus Clock period 2.0V Min 3.3V Max Min 20 Max 50 Unit MHz 1/fCLK 1/fCLK ns t1 Clock pulse width high 22.5 9 ns t2 Clock pulse width low 22.5 9 ns t3 A[16:1], M/R# setup to first CLK rising edge where CS# = 0, AS# = 0, UDS# = 0, and LDS# = 0 1 1 ns t4 A[16:1], M/R# hold from AS# rising edge 0 0 ns t5 CS# setup to CLK rising edge while CS#, AS#, UDS#/LDS# = 0 0 1 ns t6 CS# hold from AS# rising edge 0 0 ns t7a AS# asserted for MCLK = BCLK 8 8 TCLK t7b AS# asserted for MCLK = BCLK ÷ 2 11 11 TCLK t7c AS# asserted for MCLK = BCLK ÷ 3 13 13 TCLK t7d AS# asserted for MCLK = BCLK ÷ 4 18 18 TCLK t8 AS# setup to CLK rising edge while CS#, AS#, UDS#/LDS# = 0 1 1 ns t9 AS# setup to CLK rising edge 1 2 ns t10 UDS#/LDS# setup to CLK rising edge while CS#, AS#, UDS#/LDS# = 0 3 1 ns t11 UDS#/LDS# high setup to CLK rising edge 3 2 ns t12 First CLK rising edge where AS# = 1 to DTACK# high impedance 5 t13 R/W# setup to CLK rising edge before all CS#, AS#, UDS# and/or LDS# = 0 0 1 ns t14 R/W# hold from AS# rising edge 0 0 ns t15 AS# = 0 and CS# = 0 to DTACK# driven high 4 23 3 13 ns t16 AS# rising edge to DTACK# rising edge 6 39 4 16 ns t17 D[15:0] valid to third CLK rising edge where CS# = 0, AS# = 0 and either UDS# = 0 or LDS# = 0 (write cycle) (see note 1) 1 0 ns t18 D[15:0] hold from DTACK# falling edge (write cycle) 0 0 ns t19 UDS# = 0 and/or LDS# = 0 to D[15:0] driven (read cycle) 4 t20 DTACK# falling edge to D[15:0] valid (read cycle) t21 UDS#, LDS# rising edge to D[15:0] high impedance (read cycle) 40 27 3 3 0 5 33 3 14 ns 13 ns 2 ns 13 ns 1. t17 is the delay from when data is placed on the bus until the data is latched into the write buffer. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 45 6.2.6 Motorola MC68K #2 Interface Timing (e.g. MC68030) TCLK t1 t2 CLK t4 t3 A[16:0] M/R#, SIZ[1:0] t6 t5 CS# t7 t9 t8 AS# t11 t12 t10 DS# t13 t14 R/W# t16 t15 DSACK1# t17 t18 D[31:16](write) t19 t21 t20 D[31:16](read) VALID Figure 6-7: Motorola MC68K #2 Interface Timing Note For information on the implementation of the Motorola 68K #2 Host Bus Interface, see Interfacing To The Motorola MC68030 Microprocessor, document number X31B-G-013-xx. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 46 Epson Research and Development Vancouver Design Center Table 6-10: Motorola MC68K #2 Interface Timing Symbol Parameter fCLK Bus Clock frequency TCLK Bus Clock period 2.0V Min 3.3V Max Min 20 Max 50 Unit MHz 1/fCLK 1/fCLK ns t1 Clock pulse width high 22.5 9 ns t2 Clock pulse width low 22.5 9 ns t3 A[16:0], SIZ[1:0], M/R# setup to first CLK rising edge where CS# = 0, AS# = 0, DS# = 0 1 1 ns t4 A[16:0], SIZ[1:0], M/R# hold from AS# rising edge 0 0 ns t5 CS# setup to CLK rising edge 0 1 ns t6 CS# hold from AS# rising edge 0 0 ns t7a AS# asserted for MCLK = BCLK 8 8 TCLK t7b AS# asserted for MCLK = BCLK ÷ 2 11 11 TCLK t7c AS# asserted for MCLK = BCLK ÷ 3 13 13 TCLK t7d AS# asserted for MCLK = BCLK ÷ 4 18 18 TCLK t8 AS# falling edge to CLK rising edge 1 1 ns t9 AS# rising edge to CLK rising edge 1 3 ns t10 DS# falling edge to CLK rising edge 1 1 ns t11 DS# setup to CLK rising edge 1 3 ns t12 First CLK where AS# = 1 to DSACK1# high impedance 5 t13 R/W# setup to CLK rising edge before all CS# = 0, AS# = 0, and DS# = 0 1 40 3 14 1 ns ns t14 R/W# hold from AS# rising edge 0 t15 AS# = 0 and CS# = 0 to DSACK1# rising edge 4 23 3 0 14 ns t16 AS# rising edge to DSACK1# rising edge 6 39 4 17 ns t17 D[31:16] valid to third CLK rising edge where CS# = 0, AS# = 0, and DS# = 0 (write cycle) (see note 1) 1 0 ns t18 D[31:16] hold from falling edge of DSACK1# (write cycle) 0 0 ns t19 DS# falling edge to D[31:16] driven (read cycle) 4 t20 DSACK1# falling edge to D[31:16] valid (read cycle) t21 DS# rising edge to D[31:16] invalid/high impedance (read cycle) 32 3 0 5 36 3 ns 14 ns 2 ns 13 ns 1. t17 is the delay from when data is placed on the bus until the data is latched into the write buffer. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 47 6.2.7 Motorola REDCAP2 Interface Timing TCKO t1 t2 CKO t5 M/R# A[16:1] R/W CSn t3 t4 t7 t6 EB0 EB1 (write) t8 D[15:0] (write) Hi-Z t9 Hi-Z VALID t11 t10 OE EB0 EB1 (read) t13 t14 t12 D[15:0] (read) Hi-Z VALID Hi-Z Note: CSn may be any of CS0 - CS4. Figure 6-8: Motorola REDCAP2 Interface Timing Note For further information on implementing the REDCAP2 microprocessor, see Interfacing to the Motorola REDCAP2 DSP with Integrated MCU, document number X31B-G-013-xx. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 48 Epson Research and Development Vancouver Design Center Table 6-11: Motorola REDCAP2 Interface Timing Symbol Parameter fCKO Bus Clock frequency TCKO Bus Clock period 2.0V Min 3.3V Max Min Max 17 17 Units MHz 1/fCKO 1/fCKO ns Bus Clock pulse width low 26 26 ns t2 Bus Clock pulse width high 26 26 ns t3 A[16:1], M/R#, R/W, CSn setup to CKO rising edge 1 1 ns t4 t1 A[16:1], M/R#, R/W, CSn hold from CKO rising edge 0 0 ns t5a CSn asserted for MCLK = BCLK 8 8 TCKO t5b CSn asserted for MCLK = BCLK ÷ 2 10 10 TCKO t5c CSn asserted for MCLK = BCLK ÷ 3 13 13 TCKO t5d CSn asserted for MCLK = BCLK ÷ 4 15 15 TCKO t6 EB0, EB1 asserted to CKO rising edge (write cycle) 1 1 ns t7 EB0, EB1 de-asserted to CKO rising edge (write cycle) 1 4 ns t8 D[15:0] input setup to 3rd CKO rising edge after EB0 or EB1 asserted low (write cycle) (see note 1) 1 0 ns t9 D[15:0] input hold from 3rd CKO rising edge after EB0 or EB1 asserted low (write cycle) 23 8 ns t10 OE, EB0, EB1 setup to CKO rising edge (read cycle) 1 0 ns t11 OE, EB0, EB1 hold to CKO rising edge (read cycle) 1 0 ns t12 D[15:0] output delay from OE, EB0, EB1 falling edge (read cycle) 4 t13a 1st CKO rising edge after EB0 or EB1 asserted low to D[15:0] valid for MCLK = BCLK (read cycle) t13b 10 ns 4.5CKO +7 4.5CKO + 20 ns 1st CKO rising edge after EB0 or EB1 asserted low to D[15:0] valid for MCLK = BCLK ÷ 2 (read cycle) 7CKO + 10 6.5CKO + 20 ns t13c 1st CKO rising edge after EB0 or EB1 asserted low to D[15:0] valid for MCLK = BCLK ÷ 3 (read cycle) 8.5CKO +8 9.5CKO + 20 ns t13d 1st CKO rising edge after EB0 or EB1 asserted low to D[15:0] valid for MCLK = BCLK ÷ 4 (read cycle) 9CKO + 11 11.5CKO + 20 ns t14 CKO rising edge to D[15:0] output in Hi-Z (read cycle) 11 ns 4 29 31 3 1 1. t8 is the delay from when data is placed on the bus until the data is latched into the write buffer. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 49 6.2.8 Motorola DragonBall Interface Timing with DTACK (e.g. MC68EZ328/MC68VZ328) TCLKO t1 t2 CLKO t3 t4 A[16:1] t5 t7 t6 CSX t8 t9 UWE/LWE (write) t11 t10 OE (read) t13 t12 D[15:0] (write) Hi-Z Hi-Z t15 t14 D[15:0] (read) Hi-Z Hi-Z VALID t19 t16 t17 t18 DTACK Figure 6-9: Motorola DragonBall Interface with DTACK Timing Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 50 Epson Research and Development Vancouver Design Center Table 6-12: Motorola DragonBall Interface with DTACK Timing MC68EZ328 Symbol Parameter 2.0V Min fCLKO Bus Clock frequency TCLKO Bus Clock period MC68VZ328 3.3V Max Min 16 2.0V Max Min 16 3.3V Max Min 20 Unit Max 33 MHz 1/fCLKO 1/fCLKO 1/fCLKO 1/fCLKO ns t1 Clock pulse width high 28.1 28.1 22.5 13.5 ns t2 Clock pulse width low 28.1 28.1 22.5 13.5 ns t3 A[16:1] setup 1st CLKO when CSX = 0 and either UWE/LWE or OE = 0 0 0 0 0 ns t4 A[16:1] hold from CSX rising edge 0 0 0 0 ns t5a CSX asserted for MCLK = BCLK 8 8 8 8 TCLKO t5b CSX asserted for MCLK = BCLK ÷ 2 11 11 11 11 TCLKO t5c CSX asserted for MCLK = BCLK ÷ 3 13 13 13 13 TCLKO t5d CSX asserted for MCLK = BCLK ÷ 4 17 TCLKO t6 CSX setup to CLKO rising edge 0 0 0 0 ns t7 CSX rising edge to CLKO rising edge 0 0 0 0 ns t8 UWE/LWE falling edge to CLKO rising edge 1 0 1 0 ns t9 UWE/LWE rising edge to CSX rising edge 0 0 0 0 ns t10 OE falling edge to CLKO rising edge 1 1 1 1 ns t11 OE hold from CSX rising edge 0 0 0 0 ns t12 D[15:0] setup to 3rd CLKO when CSX, UWE/LWE asserted (write cycle) (see note 1) 1 0 1 0 ns t13 D[15:0] in hold from CSX rising edge (write cycle) 0 t14 Falling edge of OE to D[15:0] driven (read cycle) 4 30 3 15 4 30 3 15 ns t15 CLKO rising edge to D[15:0] output Hi-Z (read cycle) 4 21 2 12 4 21 2 12 ns 3 20 3 13 3 20 3 13 ns 2 ns 17 17 0 17 0 0 ns t16 CSX falling edge to DTACK driven high t17 DTACK falling edge to D[15:0] valid (read cycle) t18 CSX high to DTACK high 5 34 3 16 5 34 3 16 ns t19 CLKO rising edge to DTACK Hi-Z 5 40 1 6 5 40 1 6 ns 0 2 0 1. t12 is the delay from when data is placed on the bus until the data is latched into the write buffer. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 51 6.2.9 Motorola DragonBall Interface Timing w/o DTACK (e.g. MC68EZ328/MC68VZ328) TCLKO t1 t2 CLKO t3 t4 A[16:1] t5 t7 t6 CSX t8 t9 UWE/LWE (write) t11 t10 OE (read) t13 t12 D[15:0] (write) Hi-Z Hi-Z t15 t16 t14 D[15:0] (read) Hi-Z VALID Hi-Z Figure 6-10: Motorola DragonBall Interface without DTACK# Timing Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 52 Epson Research and Development Vancouver Design Center Table 6-13: Motorola DragonBall Interface without DTACK Timing MC68EZ328 Symbol Parameter 2.0V Min fCLKO Bus Clock frequency TCLKO Bus Clock period MC68VZ328 3.3V Max Min 16 2.0V Max Min 16 3.3V Max Min 20 Unit Max 33 MHz 1/fCLKO 1/fCLKO 1/fCLKO 1/fCLKO ns t1 Clock pulse width high 28.1 28.1 22.5 13.6 ns t2 Clock pulse width low 28.1 28.1 22.5 13.6 ns t3 A[16:1] setup 1st CLKO when CSX = 0 and either UWE/LWE or OE = 0 0 0 0 0 ns t4 A[16:1] hold from CSX rising edge 0 0 0 0 ns t5a CSX asserted for MCLK = BCLK (CPU wait state register should be programmed to 4 wait states) 8 8 8 8 TCLKO t5b CSX asserted for MCLK = BCLK ÷ 2 (CPU wait state register should be programmed to 6 wait states) 11 11 11 11 TCLKO t5c CSX asserted for MCLK = BCLK ÷ 3 (CPU wait state register should be programmed to 10 wait states) — Note 1 — Note 1 13 13 TCLKO t5d CSX asserted for MCLK = BCLK ÷ 4 (CPU wait state register should be programmed to 12 wait states) — Note 1 — Note 1 17 17 TCLKO t6 CSX setup to CLKO rising edge 0 0 0 0 t7 CSX rising edge setup to CLKO rising edge 0 0 0 0 ns ns t8 UWE/LWE setup to CLKO rising edge 1 0 1 0 ns t9 UWE/LWE rising edge to CSX rising edge 0 0 0 0 ns t10 OE setup to CLKO rising edge 1 1 1 1 ns t11 OE hold from CSX rising edge 0 0 0 0 ns t12 D[15:0] setup to 3rd CLKO after CSX, UWE/LWE asserted (write cycle) (see note 2) 1 0 1 0 ns t13 CSX rising edge to D[15:0] output Hi-Z (write cycle) 0 0 0 0 ns t14 Falling edge of OE to D[15:0] driven (read cycle) 4 t15a 1st CLKO rising edge after OE and CSX asserted low to D[15:0] valid for MCLK = BCLK (read cycle) 5.5TCLKO +4 5.5TCLKO + 20 t15b 1st CLKO rising edge after OE and CSX asserted low to D[15:0] valid for MCLK = BCLK ÷ 2 (read cycle) 8TCLKO + 19 t15c 1st CLKO rising edge after OE and CSX asserted low to D[15:0] valid for MCLK = BCLK ÷ 3 (read cycle) t15d 1st CLKO rising edge after OE and CSX asserted low to D[15:0] valid for MCLK = BCLK ÷ 4 (read cycle) t16 CLKO rising edge to D[15:0] output Hi-Z (read cycle) S1D13706 X31B-A-001-09 4 30 15 ns 5.5TCLKO +4 5.5TCLKO + 20 ns 8.5TCLKO + 20 8TCLKO + 19 8.5TCLKO + 20 ns 9.5TCLKO + 17 10.5TCLKO + 20 9.5TCLKO + 17 10.5TCLKO + 20 ns 13TCLKO +9 14.5TCLKO + 20 13TCLKO +9 14.5TCLKO + 20 ns 12 ns 21 3 2 15 12 4 4 30 21 3 2 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 53 1. The MC68EZ328 cannot support the MCLK = BCLK ÷ 3 and MCLK = BCLK ÷ 4 settings without DTACK. 2. t12 is the delay from when data is placed on the bus until the data is latched into the write buffer. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 54 Epson Research and Development Vancouver Design Center 6.3 LCD Power Sequencing 6.3.1 Passive/TFT Power-On Sequence GPO* Power Save Mode Enable** (REG[A0h] bit 0) t1 t2 LCD Signals*** *It is recommended to use the general purpose output pin GPO to control the LCD bias power. **The LCD power-on sequence is activated by programming the Power Save Mode Enable bit (REG[A0h] bit 0) to 0. ***LCD Signals include: FPDAT[17:0], FPSHIFT, FPLINE, FPFRAME, and DRDY. Figure 6-11: Passive/TFT Power-On Sequence Timing Table 6-14: Passive/TFT Power-On Sequence Timing Symbol Parameter t1 LCD signals active to LCD bias active t2 Power Save Mode disabled to LCD signals active Min Max Note 1 Note 1 0 20 Units ns 1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel connected. Note For HR-TFT Power-On/Off sequence information, see Connecting to the Sharp HR-TFT Panels, document number X31B-G-011-xx. For D-TFD Power-On/Off sequence information, see Connecting to the Epson D-TFD Panels, document number X31B-G-012-xx. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 55 6.3.2 Passive/TFT Power-Off Sequence t1 GPO* Power Save Mode Enable** (REG[A0h] bit 0) t2 LCD Signals*** *It is recommended to use the general purpose output pin GPO to control the LCD bias power. **The LCD power-off sequence is activated by programming the Power Save Mode Enable bit (REG[A0h] bit 0) to 1. ***LCD Signals include: FPDAT[17:0], FPSHIFT, FPLINE, FPFRAME, and DRDY. Figure 6-12: Passive/TFT Power-Off Sequence Timing Table 6-15: Passive/TFT Power-Off Sequence Timing Symbol Parameter t1 LCD bias deactivated to LCD signals inactive t2 Power Save Mode enabled to LCD signals low Min Max Note 1 Note 1 0 20 Units ns 1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel connected. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 56 Epson Research and Development Vancouver Design Center 6.4 Display Interface The timing parameters required to drive a flat panel display are shown below. Timing details for each supported panel type are provided in the remainder of this section. HT HDPS HPS HPW VPS VDPS VPW HDP VT VDP Figure 6-13: Panel Timing Parameters S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 57 Table 6-16: Panel Timing Parameter Definition and Register Summary Symbol HT HDP1 HDPS HPS HPW VT VDP VDPS VPS VPW Description Horizontal Total Horizontal Display Period1 Derived From Units ((REG[12h] bits 6-0) + 1) x 8 ((REG[14h] bits 6-0) + 1) x 8 For STN panels: ((REG[17h] bits 1-0, REG[16h] bits 7-0) + 22) Ts Horizontal Display Period Start Position For TFT panels: ((REG[17h] bits 1-0, REG[16h] bits 7-0) + 5) FPLINE Pulse Start Position (REG[23h] bits 1-0, REG[22h] bits 7-0) + 1 FPLINE Pulse Width (REG[20h] bits 6-0) + 1 Vertical Total (REG[19h] bits 1-0, REG[18h] bits 7-0) + 1 Vertical Display Period (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Vertical Display Period Start Position REG[1Fh] bits 1-0, REG[1Eh] bits 7-0 Lines (HT) FPFRAME Pulse Start Position REG[27h] bits 1-0, REG[26h] bits 7-0 FPFRAME Pulse Width (REG[24h] bits 6-0) + 1 1. For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16. For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8. 2. The following formulas must be valid for all panel timings: HDPS + HDP < HT VDPS + VDP < VT Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 58 Epson Research and Development Vancouver Design Center 6.4.1 Generic STN Panel Timing VT (= 1 Frame) VPW FPFRAME VDP FPLINE MOD1(DRDY) FPDAT[17:0] HT (= 1 Line) HPS HPW FPLINE FPSHIFT 1PCLK MOD2(DRDY) HDPS HDP FPDAT[17:0] Figure 6-14: Generic STN Panel Timing S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center VT VPS VPW VDPS VDP HT HPS HPW HDPS HDP Page 59 = Vertical Total = [(REG[19h] bits 1-0, REG[18h] bits 7-0) + 1] lines = FPFRAME Pulse Start Position = 0 lines, because (REG[27h] bits 1-0, REG[26h] bits 7-0) = 0 = FPFRAME Pulse Width = [(REG[24h] bits 2-0) + 1] lines = Vertical Display Period Start Position = 0 lines, because (REG[1Fh] bits 1-0, REG[1Eh] bits 7-0) = 0 = Vertical Display Period = [(REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1] lines = Horizontal Total = [((REG[12h] bits 6-0) + 1) x 8] pixels = FPLINE Pulse Start Position = [(REG[23h] bits 1-0, REG[22h] bits 7-0) + 1] pixels = FPLINE Pulse Width = [(REG[20h] bits 6-0) + 1] pixels = Horizontal Display Period Start Position = 22 pixels, because (REG[17h] bits 1-0, REG[16h] bits 7-0) = 0 = Horizontal Display Period = [((REG[14h] bits 6-0) + 1) x 8] pixels *For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16. *HPS must comply with the following formula: HPS > HDP + 22 HPS + HPW < HT *Panel Type Bits (REG[10h] bits 1-0) = 00b (STN) *FPFRAME Pulse Polarity Bit (REG[24h] bit 7) = 1 (active high) *FPLINE Polarity Bit (REG[20h] bit 7) = 1 (active high) *MOD1 is the MOD signal when (REG[11h] bits 5-0) = 0 (MOD toggles every FPFRAME) *MOD2 is the MOD signal when (REG[11h] bits 5-0) = n (MOD toggles every n FPLINE) Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 60 Epson Research and Development Vancouver Design Center 6.4.2 Single Monochrome 4-Bit Panel Timing VDP VNDP FPFRAME FPLINE DRDY (MOD) FPDAT[7:4] Invalid LINE1 LINE2 LINE3 LINE4 LINE239 LINE240 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP HNDP FPSHIFT FPDAT7 Invalid 1-1 1-5 1-317 Invalid FPDAT6 FPDAT5 Invalid 1-2 1-6 1-318 Invalid Invalid 1-3 1-7 1-319 Invalid FPDAT4 Invalid 1-4 1-8 1-320 Invalid * Diagram drawn with 2 FPLINE vertical blank period Example timing for a 320x240 panel Figure 6-15: Single Monochrome 4-Bit Panel Timing VDP VNDP HDP HNDP = Vertical Display Period = (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines = Horizontal Display Period = ((REG[14h] bits 6-0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 61 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 FPDAT[7:4] t13 1 2 Figure 6-16: Single Monochrome 4-Bit Panel A.C. Timing Table 6-17: Single Monochrome 4-Bit Panel A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[7:4] setup to FPSHIFT falling edge FPDAT[7:4] hold to FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 2 4 2 2 1 2 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 2, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 62 Epson Research and Development Vancouver Design Center 6.4.3 Single Monochrome 8-Bit Panel Timing VDP VNDP FPFRAME FPLINE DRDY (MOD) FPDAT[7:0] LINE1 Invalid LINE2 LINE3 LINE4 LINE479 LINE480 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP HNDP FPSHIFT FPDAT7 Invalid 1-1 1-9 1-633 Invalid FPDAT6 Invalid 1-2 1-10 1-634 Invalid FPDAT5 FPDAT4 FPDAT3 Invalid 1-3 1-11 1-635 Invalid Invalid 1-4 1-12 1-636 Invalid Invalid 1-5 1-13 1-637 Invalid FPDAT2 Invalid 1-6 1-14 1-638 Invalid FPDAT1 FPDAT0 Invalid 1-7 1-15 1-639 Invalid Invalid 1-8 1-16 1-640 Invalid * Diagram drawn with 2 FPLINE vertical blank period Example timing for a 640x480 panel Figure 6-17: Single Monochrome 8-Bit Panel Timing VDP VNDP HDP HNDP = Vertical Display Period = (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines = Horizontal Display Period = ((REG[14h] bits 6-0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 63 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 FPDAT[7:0] t13 1 2 Figure 6-18: Single Monochrome 8-Bit Panel A.C. Timing Table 6-18: Single Monochrome 8-Bit Panel A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[7:0] setup to FPSHIFT falling edge FPDAT[7:0] hold to FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 4 8 4 4 4 4 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 4, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 64 Epson Research and Development Vancouver Design Center 6.4.4 Single Color 4-Bit Panel Timing VNDP VDP FPFRAME FPLINE DRDY (MOD) FPDAT[7:4] LINE1 Invalid LINE2 LINE3 LINE4 LINE239 LINE240 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP .5Ts FPSHIFT FPDAT7 FPDAT6 FPDAT5 Notes: FPDAT4 .5Ts .5Ts Invalid 1-R1 .5Ts 1-G2 .5Ts .5Ts .5Ts .5Ts .5Ts .5Ts .5Ts .5Ts HNDP 2.5Ts .5Ts .5Ts .5Ts .5Ts .5Ts .5Ts 1-B3 1-B319 Invalid Invalid 1-G1 1-B2 1-R4 1-R320 Invalid Invalid 1-B1 1-R3 1-G4 1-G320 Invalid Invalid 1-R2 1-G3 1-B4 1-B320 Invalid - FPSHIFT uses extended low states in order to process 8 pixels in 6 FPSHIFT clocks - Ts = Pixel clock period (PCLK) - Diagram drawn with 2 FPLINE vertical blank period - Example timing for a 320x240 panel Figure 6-19: Single Color 4-Bit Panel Timing VDP VNDP HDP HNDP = Vertical Display Period = (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines = Horizontal Display Period = ((REG[14h] bits 6-0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 65 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 FPDAT[7:4] t13 1 2 Figure 6-20: Single Color 4-Bit Panel A.C. Timing Table 6-19: Single Color 4-Bit Panel A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[7:4] setup to FPSHIFT falling edge FPDAT[7:4] hold to FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 0.5 1 0.5 0.5 0.5 0.5 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 1.5), if negative add t3min = HDPS - (HPS + t4min) + 1, if negative add t3min Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 66 Epson Research and Development Vancouver Design Center 6.4.5 Single Color 8-Bit Panel Timing (Format 1) VNDP VDP FPFRAME FPLINE FPDAT[7:0] LINE1 Invalid LINE2 LINE3 LINE4 LINE239 LINE240 Invalid 2Ts 2Ts LINE1 LINE2 FPLINE HDP 2Ts FPSHIFT 2Ts 2Ts 4Ts 2Ts 2Ts 2Ts 4Ts 2Ts 2Ts 4Ts 2Ts 4Ts 2Ts 2Ts 4Ts 2Ts HNDP 2Ts 2Ts 2Ts 4Ts 2Ts 2Ts 4Ts 2Ts FPSHIFT2 2Ts 2Ts 4Ts 2Ts 2Ts 2Ts 2Ts 2Ts FPDAT7 Invalid 1-R1 1-G1 1-G6 1-B6 1-B11 1-R12 1R316 Invalid FPDAT6 Invalid 1-B1 1-R2 1-R7 1-G7 1-G12 1-B12 1B316 Invalid FPDAT5 FPDAT4 FPDAT3 Invalid 1-G2 1-B2 1-B7 1-R8 1-R13 1-G13 1G317 Invalid Invalid 1-R3 1-G3 1-G8 1-B8 1-B13 1-R14 1R318 Invalid Invalid 1-B3 1-R4 1-R9 1-G9 1-G14 1-B14 1B318 Invalid FPDAT2 Invalid 1-G4 1-B4 1-B9 1-R10 1-R15 1-G15 1G319 Invalid FPDAT1 Invalid 1-R5 1-G5 1-G10 1-B10 1-B15 1-R16 1R320 Invalid FPDAT0 Invalid 1-B5 1-R6 1-R11 1-G11 1-G16 1-B16 1B320 Invalid Notes: - The duty cycle of FPSHIFT changes in order to process 16 pixels in 6 FPSHIFT/FPSHIFT2 rising edges - Ts = Pixel clock period (PCLK) - Diagram drawn with 2 FPLINE vertical blank period - Example timing for a 320x240 panel Figure 6-21: Single Color 8-Bit Panel Timing (Format 1) VDP VNDP HDP HNDP = Vertical Display Period = (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines = Horizontal Display Period = ((REG[14h] bits 6-0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 67 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE Data Timing FPLINE t6a t6b t7a t8 t9 t14 t11 t10 FPSHIFT t7b FPSHIFT2 t12 t13 t12 t13 FPDAT[7:0] 1 2 Figure 6-22: Single Color 8-Bit Panel A.C. Timing (Format 1) Table 6-20: Single Color 8-Bit Panel A.C. Timing (Format 1) Symbol t1 t2 t3 t4 t6a t6b t7a t7b t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t6amin t6bmin t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width FPSHIFT falling edge to FPLINE rising edge FPSHIFT2 falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPSHIFT2 falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT rising, FPSHIFT2 falling edge FPSHIFT2, FPSHIFT period FPSHIFT2, FPSHIFT pulse width low FPSHIFT2, FPSHIFT pulse width high FPDAT[7:0] setup to FPSHIFT2, FPSHIFT falling edge FPDAT[7:0] hold from FPSHIFT2, FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6a + t4 t6b + t4 t14 + 2 4 2 2 1 1 note 8 Typ Max 6 Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - (HDP + HDPS), if negative add t3min = HPS - (HDP + HDPS) + 2, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 68 Epson Research and Development Vancouver Design Center 6.4.6 Single Color 8-Bit Panel Timing (Format 2) VDP VNDP FPFRAME FPLINE DRDY (MOD) FPDAT[7:0] Invalid LINE1 LINE2 LINE3 LINE4 LINE239 LINE240 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP 2Ts FPSHIFT Ts Ts 2Ts 2Ts Ts Ts 2Ts HNDP 2Ts Ts Ts Ts 2Ts Ts Ts FPDAT7 FPDAT6 FPDAT5 FPDAT4 FPDAT3 Invalid 1-R1 1-B3 1-G6 Ts 1-G318 Invalid Invalid 1-G1 1-R4 1-B6 1-B318 Invalid Invalid Invalid 1-B1 1-G4 1-R7 1-R319 Invalid 1-R2 1-B4 1-G7 1-G319 Invalid Invalid 1-G2 1-R5 1-B7 1-B319 Invalid FPDAT2 Invalid 1-B2 1-G5 1-R8 1-R320 Invalid FPDAT1 Invalid 1-R3 1-B5 1-G8 1-G320 Invalid FPDAT0 Invalid 1-G3 1-R6 1-B8 1-B320 Invalid Notes: - The duty cycle of FPSHIFT changes in order to process 8 pixels in 3 FPSHIFT rising clocks - Ts = Pixel clock period (PCLK) - Diagram drawn with 2 FPLINE vertical blank period - Example timing for a 320x240 panel Figure 6-23: Single Color 8-Bit Panel Timing (Format 2) VDP VNDP HDP HNDP = Vertical Display Period = (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines = Horizontal Display Period = ((REG[14h] bits 6-0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 69 t1 Sync Timing t2 FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 FPDAT[7:0] t13 1 2 Figure 6-24: Single Color 8-Bit Panel A.C. Timing (Format 2) Table 6-21: Single Color 8-Bit Panel A.C. Timing (Format 2) Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[7:0] setup to FPSHIFT falling edge FPDAT[7:0] hold to FPSHIFT falling edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 2 2 1 1 1 1 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 1, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 70 Epson Research and Development Vancouver Design Center 6.4.7 Single Color 16-Bit Panel Timing VDP VNDP FPFRAME FPLINE DRDY (MOD) FPDAT[15:0] LINE1 Invalid LINE2 LINE3 LINE4 LINE479 LINE480 Invalid LINE1 LINE2 FPLINE DRDY (MOD) HDP 3Ts FPSHIFT 2Ts 3Ts 3Ts 2Ts 3Ts 3Ts 3Ts HNDP 3Ts 3Ts 2Ts 3Ts 3Ts 1-G635 Invalid 1-G12 1-G636 Invalid 1-B7 1-R13 1-R637 Invalid 1-R3 1-G8 1-B13 1-B637 Invalid 1-B3 1-R9 1-G14 1-G638 Invalid 1-G4 1-B9 1-R15 1-R639 Invalid Invalid 1-R5 1-G10 1-B15 1-B639 Invalid Invalid 1-B5 1-R11 1-G16 1-G640 Invalid FPDAT11 FPDAT10 FPDAT9 FPDAT8 Invalid 1-G1 1-B6 1-R12 1-R636 Invalid Invalid 1-R2 1-G7 1-B12 1-B636 Invalid Invalid 1-B2 1-R8 1-G13 1-G637 Invalid Invalid 1-G3 1-B8 1-R14 1-R638 Invalid FPDAT3 Invalid 1-R4 1-G9 1-B14 1-B638 Invalid FPDAT2 Invalid 1-B4 1-R10 1-G15 1-G639 Invalid FPDAT1 Invalid 1-G5 1-B10 1-R16 1-R640 Invalid FPDAT0 Invalid 1-R6 1-G11 1-B16 1-B640 Invalid FPDAT15 FPDAT14 FPDAT13 FPDAT12 FPDAT7 FPDAT6 Invalid 1-R1 3Ts 3Ts 2Ts 1-G6 1-B11 Invalid 1-B1 1-R7 Invalid 1-G2 Invalid Invalid Invalid FPDAT5 FPDAT4 3Ts 2Ts 2Ts 3Ts Notes: - The duty cycle of FPSHIFT changes in order to process 16 pixels in 3 FPSHIFT rising clocks - Ts = Pixel clock period (PCLK) - Diagram drawn with 2 FPLINE vertical blank period - Example timing for a 640x480 panel Figure 6-25: Single Color 16-Bit Panel Timing VDP VNDP HDP HNDP = Vertical Display Period = (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines = Vertical Non-Display Period = VT - VDP = (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines = Horizontal Display Period = ((REG[14h] bits 6-0) + 1) x 8Ts = Horizontal Non-Display Period = HT - HDP = (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 71 t2 t1 Sync Timing FPFRAME t4 t3 FPLINE t5 DRDY (MOD) Data Timing FPLINE t6 t8 t7 t9 t14 t11 t10 FPSHIFT t12 FPDAT[15:0] t13 1 2 Figure 6-26: Single Color 16-Bit Panel A.C. Timing Table 6-22: Single Color 16-Bit Panel A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. 2. 3. 4. 5. 6. 7. 8. Ts t1min t2min t3min t4min t5min t6min t14min Parameter FPFRAME setup to FPLINE falling edge FPFRAME hold from FPLINE falling edge FPLINE period FPLINE pulse width MOD transition to FPLINE rising edge FPSHIFT falling edge to FPLINE rising edge FPSHIFT falling edge to FPLINE falling edge FPLINE falling edge to FPSHIFT falling edge FPSHIFT period FPSHIFT pulse width low FPSHIFT pulse width high FPDAT[15:0] setup to FPSHIFT rising edge FPDAT[15:0] hold to FPSHIFT rising edge FPLINE falling edge to FPSHIFT rising edge Min note 2 note 3 note 4 note 5 note 6 note 7 t6 + t4 t14 + 3 5 2 2 2 2 note 8 Typ Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = HPS + t4min = t3min - (HPS + t4min) = HT = HPW = HPS - 1 = HPS - (HDP + HDPS) + 2, if negative add t3min = HDPS - (HPS + t4min), if negative add t3min Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 72 Epson Research and Development Vancouver Design Center 6.4.8 Generic TFT Panel Timing VT (= 1 Frame) VPS VPW FPFRAME VDP VDPS FPLINE DRDY FPDAT[17:0] HT (= 1 Line) HPS HPW FPLINE FPSHIFT DRDY HDPS FPDAT[17:0] HDP invalid invalid Figure 6-27: Generic TFT Panel Timing VT VPS VPW VDPS VDP HT HPS HPW HDPS HDP = Vertical Total = FPFRAME Pulse Start Position = FPFRAME Pulse Width = Vertical Display Period Start Position = Vertical Display Period = Horizontal Total = FPLINE Pulse Start Position = FPLINE Pulse Width = Horizontal Display Period Start Position = Horizontal Display Period = [(REG[19h] bits 1-0, REG[18h] bits 7-0) + 1] lines = (REG[27h] bits 1-0, REG[26h] bits 7-0) lines = [(REG[24h] bits 2-0) + 1] lines = (REG[1Fh] bits 1-0, REG[1Eh] bits 7-0) lines = [(REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1] lines = [((REG[12h] bits 6-0) + 1) x 8] pixels = [(REG[23h] bits 1-0, REG[22h] bits 7-0) + 1] pixels = [(REG[20h] bits 6-0) + 1] pixels = [(REG[17h] bits 1-0, REG[16h] bits 7-0) + 5] pixels = [((REG[14h] bits 6-0) + 1) x 8] pixels *For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8. *Panel Type Bits (REG[10h] bits 1-0) = 01 (TFT) *FPLINE Pulse Polarity Bit (REG[24h] bit 7) = 0 (active low) *FPFRAME Polarity Bit (REG[20h] bit 7) = 0 (active low) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 73 6.4.9 9/12/18-Bit TFT Panel Timing VNDP2 VDP VNDP1 FPFRAME FPLINE FPDAT[17:0] LINE240 LINE1 LINE480 DRDY FPLINE HDP HNDP1 HNDP2 FPSHIFT DRDY FPDAT[17:0] invalid 1-1 1-2 1-320 invalid Note: DRDY is used to indicate the first pixel Example Timing for 18-bit 320x240 panel Figure 6-28: 18-Bit TFT Panel Timing VDP VNDP VNDP1 VNDP2 HDP HNDP HNDP1 HNDP2 = Vertical Display Period = VDP Lines = Vertical Non-Display Period = VNDP1 + VNDP2 = VT - VDP Lines = Vertical Non-Display Period 1 = VNDP - VNDP2 Lines = Vertical Non-Display Period 2 = VDPS - VPS Lines = Horizontal Display Period = HDP Ts = Horizontal Non-Display Period = HNDP1 + HNDP2 = HT - HDP Ts = Horizontal Non-Display Period 1 = HDPS - HPS Ts = Horizontal Non-Display Period 2 = HPS - (HDP + HDPS) Ts Hardware Functional Specification Issue Date: 2004/02/09 if negative add VT if negative add HT if negative add HT S1D13706 X31B-A-001-09 Page 74 Epson Research and Development Vancouver Design Center t1 t2 FPFRAME t3 FPLINE t4 FPLINE t5 t8 t7 t6 DRDY t9 t12 t13 t10 t11 t14 FPSHIFT t15 t16 FPDAT[17:0] invalid 1 2 319 320 invalid Note: DRDY is used to indicate the first pixel Figure 6-29: TFT A.C. Timing S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 75 Table 6-23: TFT A.C. Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 1. Ts 2. t6min 3. t8min Parameter FPFRAME cycle time FPFRAME pulse width low FPFRAME falling edge to FPLINE falling edge phase difference FPLINE cycle time FPLINE pulse width low FPLINE Falling edge to DRDY active DRDY pulse width DRDY falling edge to FPLINE falling edge FPSHIFT period FPSHIFT pulse width high FPSHIFT pulse width low FPLINE setup to FPSHIFT falling edge DRDY to FPSHIFT falling edge setup time DRDY hold from FPSHIFT falling edge Data setup to FPSHIFT falling edge Data hold from FPSHIFT falling edge = pixel clock period = HDPS - HPS = HPS - (HDP + HDPS) Hardware Functional Specification Issue Date: 2004/02/09 Min VT VPW HPS HT HPW note 2 HDP note 3 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Typ Max 250 Units Lines Lines Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts if negative add HT if negative add HT S1D13706 X31B-A-001-09 Page 76 Epson Research and Development Vancouver Design Center 6.4.10 160x160 Sharp ‘Direct’ HR-TFT Panel Timing (e.g. LQ031B1DDxx) FPFRAME (SPS) t1 FPLINE (LP) t2 t3 FPLINE (LP) t4 FPSHIFT (CLK) t5 t6 D1 FPDAT[17:0] t7 t9 D2 D160 D3 t8 t10 GPIO3 (SPL) t11 GPIO1 (CLS) t12 GPIO0 (PS) t13 GPIO2 (REV) Figure 6-30: 160x160 Sharp ‘Direct’ HR-TFT Panel Horizontal Timing S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 77 Table 6-24: 160x160 Sharp ‘Direct’ HR-TFT Horizontal Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 1. 2. 3. 4. 5. 6. Ts t1typ t2typ t3typ t7typ t8typ Parameter FPLINE start position Horizontal total period FPLINE width FPSHIFT period Data setup to FPSHIFT rising edge Data hold from FPSHIFT rising edge Horizontal display start position Horizontal display period FPLINE rising edge to GPIO3 rising edge GPIO3 pulse width GPIO1(GPIO0) pulse width GPIO1 rising edge (GPIO0 falling edge) to FPLINE rise edge GPIO2 toggle edge to FPLINE rise edge Min Typ 13 180 Max 220 2 1 0.5 0.5 5 160 4 1 136 4 10 Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = (REG[22h] bits 7-0) + 1 = ((REG[12h] bits 6-0) + 1) x 8 = (REG[20h] bits 6-0) + 1 = ((REG[16h] bits 7-0) + 5) - ((REG[22h] bits 7-0) + 1) = ((REG[14h] bits 6-0) + 1) x 8 Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 78 Epson Research and Development Vancouver Design Center t1 t2 t3 FPDAT[17:0] LINE1 LINE2 LINE160 t4 FPFRAME (SPS) t5 t6 GPIO1 (CLS) t8 t7 GPIO0 (PS) t9 FPLINE (LP) FPSHIFT (CLK) t10 GPIO1 (CLS) t11 t12 t13 t14 GPIO0 (PS) Figure 6-31: 160x160 Sharp ‘Direct’ HR-TFT Panel Vertical Timing S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 79 Table 6-25: 160x160 Sharp ‘Direct’ HR-TFT Panel Vertical Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1. Ts Parameter Vertical total period Vertical display start position Vertical display period Vertical sync pulse width FPFRAME falling edge to GPIO1 alternate timing start GPIO1 alternate timing period FPFRAME falling edge to GPIO0 alternate timing start GPIO0 alternate timing period GPIO1 first pulse rising edge to FPLINE rising edge GPIO1 first pulse width GPIO1 first pulse falling edge to second pulse rising edge GPIO1 second pulse width GPIO0 falling edge to FPLINE rising edge GPIO0 low pulse width Min 203 Typ 40 160 2 5 4 40 162 4 48 40 48 4 24 Max 264 Units Lines Lines Lines Lines Lines Lines Lines Lines Ts (note 1) Ts Ts Ts Ts Ts = pixel clock period Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 80 Epson Research and Development Vancouver Design Center 6.4.11 320x240 Sharp ‘Direct’ HR-TFT Panel Timing (e.g. LQ039Q2DS01) FPFRAME (SPS) t1 FPLINE (LP) t2 t3 FPLINE (LP) t4 FPSHIFT (CLK) t5 t6 D1 FPDAT[17:0] D320 D3 t8 t7 t9 D2 t10 GPIO3 (SPL) t11 GPIO1 (CLS) t12 GPIO0 (PS) t13 GPIO2 (REV) Figure 6-32: 320x240 Sharp ‘Direct’ HR-TFT Panel Horizontal Timing S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 81 Table 6-26: 320x240 Sharp ‘Direct’ HR-TFT Panel Horizontal Timing Symbol Parameter FPLINE start position Horizontal total period FPLINE width FPSHIFT period Data setup to FPSHIFT rising edge Data hold from FPSHIFT rising edge Horizontal display start position Horizontal display period FPLINE rising edge to GPIO3 rising edge GPIO3 pulse width GPIO1(GPIO0) pulse width GPIO1 rising edge (GPIO0 falling edge) to FPLINE rise edge GPIO2 toggle edge to FPLINE rise edge t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 1. 2. 3. 4. 5. 6. Ts t1typ t2typ t3typ t7typ t8typ Min Typ 14 400 Max 440 1 1 0.5 0.5 60 320 59 1 353 5 11 Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period = (REG[22h] bits 7-0) + 1 = ((REG[12h] bits 6-0) + 1) x 8 = (REG[20h] bits 6-0) + 1 = ((REG[16h] bits 7-0) + 5) - ((REG[22h] bits 7-0) + 1) = ((REG[14h] bits 6-0) + 1) x 8 t1 t2 FPDAT[17:0] t3 LINE1 LINE2 LINE240 t4 FPFRAME (SPS) Figure 6-33: 320x240 Sharp ‘Direct’ HR-TFT Panel Vertical Timing Table 6-27: 320x240 Sharp ‘Direct’ HR-TFT Panel Vertical Timing Symbol t1 t2 t3 t4 Parameter Vertical total period Vertical display start position Vertical display period Vertical sync pulse width Hardware Functional Specification Issue Date: 2004/02/09 Min 245 Typ 4 240 2 Max 330 Units Lines Lines Lines Lines S1D13706 X31B-A-001-09 Page 82 Epson Research and Development Vancouver Design Center 6.4.12 160x240 Epson D-TFD Panel Timing (e.g. LF26SCR) t1 FPLINE (LP) t3 t2 FPSHIFT (XSCL) t4 t6 t5 FPDAT[17:0] 1 2 3 4 160 (R,G,B) t7 t8 t9 t9 t10 t10 GPIO4 (RES) t11 t12 t11 t12 GPIO1 (YSCL) t13 GPIO0 (XINH) t14 t15 GPIO6 (YSCLD) GPIO2 (FR) t16 GPIO3 (FRS) t17 t17 GPIO5 (DD_P1) Figure 6-34: 160x240 Epson D-TFD Panel Horizontal Timing S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 83 Table 6-28: 160x240 Epson D-TFD Panel Horizontal Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 1. Ts Parameter FPLINE pulse width FPLINE falling edge to FPSHIFT start position FPSHIFT active period FPSHIFT start to first data Horizontal display period Last data to FPSHIFT inactive FPLINE falling edge to GPIO4 first pulse falling edge Horizontal total period GPIO4 first pulse falling edge to second pulse falling edge GPIO4 pulse width GPIO1 pulse width GPIO1 low period GPIO0 pulse width GPIO6 low pulse width GPIO6 rising edge to GPIO0 falling edge GPIO2 toggle to GPIO3 toggle GPIO5 low pulse width Min Typ 9 8.5 167 4 160 3 1 400 200 11 100 100) 200 90 10 1 7 Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 84 Epson Research and Development Vancouver Design Center t1 GPIO4 (RES) t2 DRDY (GCP) GCP Data Register (REG[2Ch]) 1 1 0 1 0 0 1 bit0 bit7 Index 00h 1 0 1 bit7 bit7 Index 01h Index 00h Figure 6-35: 160x240 Epson D-TFD Panel GCP Horizontal Timing Table 6-29: 160x240 Epson D-TFD Panel GCP Horizontal Timing Symbol Parameter Half of the horizontal total period GCP clock period t1 t2 1. Ts Min Typ 200 1 Max Units Ts (note 1) Ts = pixel clock period S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 85 Vertical Total = 250HT t1 FPFRAME (DY) t2 GPIO1 (YSCL) GPIO0 (XINH) t3 FPDAT[17:0] (R,G,B) line1 line2 GPIO2 (FR) (odd frame) GPIO2 (FR) (even frame) Figure 6-36: 160x240 Epson D-TFD Panel Vertical Timing Table 6-30: 160x240 Epson D-TFD Panel Vertical Timing Symbol t1 t2 t3 1. Ts Parameter FPFRAME pulse width Horizontal total period Vertical display start Min Typ 200 400 400 Max Units Ts (note 1) Ts Ts = pixel clock period Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 86 Epson Research and Development Vancouver Design Center 6.4.13 320x240 Epson D-TFD Panel Timing (e.g. LF37SQR) t1 FPLINE (LP) t3 t2 FPSHIFT (XSCL) FPDAT[17:0] (R,G,B) t6 t5 t4 1 2 3 4 320 t8 t7 t9 t9 t10 t10 GPIO4 (RES) t11 t12 t11 t12 GPIO1 (YSCL) t13 GPIO0 (XINH) t14 t15 GPIO6 (YSCLD) GPIO2 (FR) t16 GPIO3 (FRS) t17 t17 GPIO5 (DD_P1) Figure 6-37: 320x240 Epson D-TFD Panel Horizontal Timing S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 87 Table 6-31: 320x240 Epson D-TFD Panel Horizontal Timing Symbol t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 1. Ts Parameter FPLINE pulse width FPLINE falling edge to FPSHIFT start position FPSHIFT active period FPSHIFT start to first data Horizontal display period Last data to FPSHIFT inactive FPLINE falling edge to GPIO4 first pulse falling edge Horizontal total period GPIO4 first pulse falling edge to second pulse falling edge GPIO4 pulse width GPIO1 pulse width GPIO1 low period GPIO0 pulse width GPIO6 low pulse width GPIO6 rising edge to GPIO0 falling edge GPIO2 toggle to GPIO3 toggle GPIO5 low pulse width Min Typ 9 8.5 331 6 320 5 1 400 200 11 100 100 200 90 10 1 7 Max Units Ts (note 1) Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts Ts = pixel clock period Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 88 Epson Research and Development Vancouver Design Center t1 GPIO4 (RES) t2 DRDY (GCP) GCP Data Register (REG[2Ch]) 1 1 0 1 0 0 1 bit0 bit7 Index 00h 1 0 1 bit7 bit7 Index 00h Index 01h Figure 6-38: 320x240 Epson D-TFD Panel GCP Horizontal Timing Table 6-32: 320x240 Epson D-TFD Panel GCP Horizontal Timing Symbol Parameter Half of the horizontal total period GCP clock period t1 t2 1. Ts Min Typ 200 1 Max Units Ts (note 1) Ts = pixel clock period S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 89 Vertical Total = 250HT t1 FPFRAME (DY) t2 GPIO1 (YSCL) GPIO0 (XINH) t3 FPDAT[17:0] (R,G,B) line1 line2 GPIO2 (FR) (odd frame) GPIO2 (FR) (even frame) Figure 6-39: 320x240 Epson D-TFD Panel Vertical Timing Table 6-33: 320x240 Epson D-TFD Panel Vertical Timing Symbol t1 t2 t3 1. Ts Parameter FPFRAME pulse width Horizontal total period Vertical display start Min Typ 200 400 400 Max Units Ts (note 1) Ts Ts = pixel clock period Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 90 Epson Research and Development Vancouver Design Center 7 Clocks 7.1 Clock Descriptions 7.1.1 BCLK BCLK is an internal clock derived from CLKI. BCLK can be a divided version (÷1, ÷2, ÷3, ÷4) of CLKI. CLKI is typically derived from the host CPU bus clock. The source clock options for BCLK may be selected as in the following table. Table 7-1: BCLK Clock Selection Source Clock Options BCLK Selection CLKI CNF[7:6] = 00 CLKI ÷2 CNF[7:6] = 01 CLKI ÷3 CNF[7:6] = 10 CLKI ÷4 CNF[7:6] = 11 Note For synchronous bus interfaces, it is recommended that BCLK be set the same as the CPU bus clock (not a divided version of CLKI) e.g. SH-3, SH-4. Note The CLKI ÷ 3 and CLKI ÷ 4 options may not work properly with bus interfaces with short back-to-back cycle timing. 7.1.2 MCLK MCLK provides the internal clock required to access the embedded SRAM. The S1D13706 is designed with efficient power saving control for clocks (clocks are turned off when not used); reducing the frequency of MCLK does not necessarily save more power. Furthermore, reducing the MCLK frequency relative to the BCLK frequency increases the CPU cycle latency and so reduces screen update performance. For a balance of power saving and performance, the MCLK should be configured to have a high enough frequency setting to provide sufficient screen refresh as well as acceptable CPU cycle latency. The source clock options for MCLK may be selected as in the following table. Table 7-2: MCLK Clock Selection S1D13706 X31B-A-001-09 Source Clock Options MCLK Selection BCLK REG[04h] bit 5,4 = 00 BCLK ÷2 REG[04h] bit 5,4 = 01 BCLK ÷3 REG[04h] bit 5,4 = 10 BCLK ÷4 REG[04h] bit 5,4 = 11 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 91 7.1.3 PCLK PCLK is the internal clock used to control the LCD panel. PCLK should be chosen to match the optimum frame rate of the LCD panel. See Section 9, “Frame Rate Calculation” on page 130 for details on the relationship between PCLK and frame rate. Some flexibility is possible in the selection of PCLK. Firstly, LCD panels typically have a range of permissible frame rates. Secondly, it may be possible to choose a higher PCLK frequency and tailor the horizontal and vertical non-display periods to lower the frame-rate to its optimal value. The source clock options for PCLK may be selected as in the following table. Table 7-3: PCLK Clock Selection Hardware Functional Specification Issue Date: 2004/02/09 Source Clock Options PCLK Selection MCLK REG[05h] = 00h MCLK ÷2 REG[05h] = 10h MCLK ÷3 REG[05h] = 20h MCLK ÷4 REG[05h] = 30h MCLK ÷8 REG[05h] = 40h BCLK REG[05h] = 01h BCLK ÷2 REG[05h] = 11h BCLK ÷3 REG[05h] = 21h BCLK ÷4 REG[05h] = 31h BCLK ÷8 REG[05h] = 41h CLKI REG[05h] = 02h CLKI ÷2 REG[05h] = 12h CLKI ÷3 REG[05h] = 22h CLKI ÷4 REG[05h] = 32h CLKI ÷8 REG[05h] = 42h CLKI2 REG[05h] = 03h CLKI2 ÷2 REG[05h] = 13h CLKI2 ÷3 REG[05h] = 23h CLKI2 ÷4 REG[05h] = 33h CLKI2 ÷8 REG[05h] = 43h S1D13706 X31B-A-001-09 Page 92 Epson Research and Development Vancouver Design Center There is a relationship between the frequency of MCLK and PCLK that must be maintained. Table 7-4: Relationship between MCLK and PCLK SwivelView Orientation Color Depth (bpp) MCLK to PCLK Relationship 16 fMCLK ≥ fPCLK 8 fMCLK ≥ fPCLK ÷ 2 4 fMCLK ≥ fPCLK ÷ 4 2 fMCLK ≥ fPCLK ÷ 8 1 fMCLK ≥ fPCLK ÷16 16/8/4/2/1 fMCLK ≥ 1.25fPCLK SwivelView 0° and 180° SwivelView 90° and 270° 7.1.4 PWMCLK PWMCLK is the internal clock used by the Pulse Width Modulator for output to the panel. The source clock options for PWMCLK may be selected as in the following table. Table 7-5: PWMCLK Clock Selection Source Clock Options PWMCLK Selection CLKI REG[B1h] bit 0 = 0 CLKI2 REG[B1h] bit 0 = 1 For further information on controlling PWMCLK, see Section 8.3.9, “Pulse Width Modulation (PWM) Clock and Contrast Voltage (CV) Pulse Configuration Registers” on page 126. Note The S1D13706 provides Pulse Width Modulation output on the pin PWMOUT. PWMOUT can be used to control LCD panels which support PWM control of the backlight inverter. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 93 7.2 Clock Selection The following diagram provides a logical representation of the S1D13706 internal clocks. CLKI 00 ÷2 01 ÷3 10 ÷4 11 BCLK CNF[7:6]1 REG[04h] bits 5,4 00 ÷2 01 ÷3 10 ÷4 11 MCLK 00 01 000 10 CLKI2 11 REG[05h] bits 1,0 0 ÷2 001 ÷3 010 ÷4 011 ÷8 1xx PCLK REG[05h] bits 6-4 PWMCLK 1 REG[B1h] bit 0 Figure 7-1: Clock Selection Note 1 Hardware Functional Specification Issue Date: 2004/02/09 CNF[7:6] must be set at RESET#. S1D13706 X31B-A-001-09 Page 94 Epson Research and Development Vancouver Design Center 7.3 Clocks versus Functions Table 7-6: “S1D13706 Internal Clock Requirements”, lists the internal clocks required for the following S1D13706 functions. Table 7-6: S1D13706 Internal Clock Requirements Function Bus Clock (BCLK) Memory Clock (MCLK) Pixel Clock (PCLK) PWM Clock (PWMCLK) Register Read/Write Required Not Required Not Required Not Required1 Memory Read/Write Required Required Not Required Not Required1 Look-Up Table Register Read/Write Required Required Not Required Not Required1 Software Power Save Required Not Required Not Required Not Required1 LCD Output Required Required Required Not Required1 Note 1 S1D13706 X31B-A-001-09 PWMCLK is an optional clock (see Section 7.1.4, “PWMCLK” on page 92). Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 95 8 Registers This section discusses how and where to access the S1D13706 registers. It also provides detailed information about the layout and usage of each register. 8.1 Register Mapping The S1D13706 registers are memory-mapped. When the system decodes the input pins as CS# = 0 and M/R# = 0, the registers may be accessed. The register space is decoded by A[16:0]. 8.2 Register Set The S1D13706 register set is as follows. Table 8-1: S1D13706 Register Set Register Pg Register Pg REG[01h] Display Buffer Size Register 97 Read-Only Configuration Registers REG[00h] Revision Code Register 96 REG[02h] Configuration Readback Register 97 Clock Configuration Registers REG[04h] Memory Clock Configuration Register 97 REG[05h] Pixel Clock Configuration Register 98 Look-Up Table Registers REG[08h] Look-Up Table Blue Write Data Register 99 REG[09h] Look-Up Table Green Write Data Register REG[0Ah] Look-Up Table Red Write Data Register 99 REG[0Bh] Look-Up Table Write Address Register 99 100 REG[0Ch] Look-Up Table Blue Read Data Register 100 REG[0Dh] Look-Up Table Green Read Data Register 100 REG[0Eh] Look-Up Table Red Read Data Register 101 REG[0Fh] Look-Up Table Read Address Register 101 Panel Configuration Registers REG[10h] Panel Type Register 101 REG[11h] MOD Rate Register 103 REG[12h] Horizontal Total Register 103 REG[14h] Horizontal Display Period Register 103 REG[16h] Horizontal Display Period Start Position Register 0 104 REG[17h] Horizontal Display Period Start Position Register 1 104 REG[18h] Vertical Total Register 0 105 REG[19h] Vertical Total Register 1 105 REG[1Ch] Vertical Display Period Register 0 105 REG[1Dh] Vertical Display Period Register 1 105 REG[1Eh] Vertical Display Period Start Position Register 0 106 REG[1Fh] Vertical Display Period Start Position Register 1 106 REG[20h] FPLINE Pulse Width Register 106 REG[22h] FPLINE Pulse Start Position Register 0 107 REG[23h] FPLINE Pulse Start Position Register 1 107 REG[24h] FPFRAME Pulse Width Register 107 REG[26h] FPFRAME Pulse Start Position Register 0 108 REG[27h] FPFRAME Pulse Start Position Register 1 108 108 REG[2Ch] D-TFD GCP Data Register 108 REG[28h] D-TFD GCP Index Register Display Mode Registers REG[70h] Display Mode Register 109 REG[71h] Special Effects Register 111 REG[74h] Main Window Display Start Address Register 0 113 REG[75h] Main Window Display Start Address Register 1 113 REG[76h] Main Window Display Start Address Register 2 113 REG[78h] Main Window Line Address Offset Register 0 114 REG[79h] Main Window Line Address Offset Register 1 114 Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 96 Epson Research and Development Vancouver Design Center Table 8-1: S1D13706 Register Set Register Pg Register Pg + Picture-in-Picture Plus (PIP ) Registers Window Display Start Address Register 0 115 REG[7Dh] PIP+ Window Display Start Address Register 1 115 REG[7Eh] PIP Window Display Start Address Register 2 115 REG[80h] PIP+ Window Line Address Offset Register 0 115 REG[7Ch] PIP+ + + + REG[81h] PIP Window Line Address Offset Register 1 115 REG[84h] PIP Window X Start Position Register 0 116 REG[85h] PIP+ Window X Start Position Register 1 116 REG[88h] PIP+ Window Y Start Position Register 0 117 + + REG[89h] PIP Window Y Start Position Register 1 117 REG[8Ch] PIP Window X End Position Register 0 118 REG[8Dh] PIP+ Window X End Position Register 1 118 REG[90h] PIP+ Window Y End Position Register 0 119 REG[91h] PIP+ Window Y End Position Register 1 119 Miscellaneous Registers REG[A0h] Power Save Configuration Register 120 REG[A1h] Reserved 120 REG[A2h] Reserved 121 REG[A3h] Reserved 121 REG[A4h] Scratch Pad Register 0 121 REG[A5h] Scratch Pad Register 1 121 General Purpose IO Pins Registers REG[A8h] General Purpose IO Pins Configuration Register 0 122 REG[ACh] General Purpose IO Pins Status/Control Register 0 123 REG[A9h] General Purpose IO Pins Configuration Register 1 122 REG[ADh] General Purpose IO Pins Status/Control Register 1 125 PWM Clock and CV Pulse Configuration Registers REG[B0h] PWM Clock / CV Pulse Control Register 126 REG[B1h] PWM Clock / CV Pulse Configuration Register 128 REG[B2h] CV Pulse Burst Length Register 129 REG[B3h] PWMOUT Duty Cycle Register 129 8.3 Register Descriptions Unless specified otherwise, all register bits are set to 0 during power-on. 8.3.1 Read-Only Configuration Registers Revision Code Register REG[00h] Read Only Product Code Bits 5-0 7 6 5 4 Revision Code Bits 1-0 3 2 1 0 Note The S1D13706 returns a value of 28h. bits 7-2 Product Code These are read-only bits that indicates the product code. The product code is 001010. bits 1-0 Revision Code These are read-only bits that indicates the revision code. The revision code is 00. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 97 Display Buffer Size Register REG[01h] Read Only Display Buffer Size Bits 7-0 7 6 bits 7-0 5 4 3 2 1 0 Display Buffer Size Bits [7:0] This is a read-only register that indicates the size of the SRAM display buffer measured in 4K byte increments. The S1D13706 display buffer is 80K bytes and therefore this register returns a value of 20 (14h). Value of this register = display buffer size ÷ 4K bytes = 80K bytes ÷ 4K bytes = 20 (14h) Configuration Readback Register REG[02h] CNF7 Status CNF6 Status CNF5 Status 7 6 bits 7-0 Read Only CNF4 Status 5 4 CNF3 Status 3 CNF2 Status CNF1 Status 2 CNF0 Status 1 0 CNF[7:0] Status These read-only status bits return the status of the configuration pins CNF[7:0]. CNF[7:0] are latched at the rising edge of RESET#. 8.3.2 Clock Configuration Registers Memory Clock Configuration Register REG[04h] n/a 7 bits 5-4 Read/Write MCLK Divide Select Bits 1-0 6 5 4 n/a 3 Reserved 2 1 0 MCLK Divide Select Bits [1:0] These bits determine the divide used to generate the Memory Clock (MCLK) from the Bus Clock (BCLK). Table 8-2: MCLK Divide Selection bit 0 MCLK Divide Select Bits BCLK to MCLK Frequency Ratio 00 1:1 01 2:1 10 3:1 11 4:1 Reserved. This bit must remain at 0. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 98 Epson Research and Development Vancouver Design Center Pixel Clock Configuration Register REG[05h] n/a 7 bits 6-4 Read/Write PCLK Divide Select Bits 2-0 6 5 n/a 4 3 PCLK Source Select Bits 1-0 2 1 0 PCLK Divide Select Bits [1:0] These bits determine the divide used to generate the Pixel Clock (PCLK) from the Pixel Clock Source. Table 8-3: PCLK Divide Selection bits 1-0 PCLK Divide Select Bits PCLK Source to PCLK Frequency Ratio 000 1:1 001 2:1 010 3:1 011 4:1 1XX 8:1 PCLK Source Select Bits [1:0] These bits determine the source of the Pixel Clock (PCLK). Table 8-4: PCLK Source Selection S1D13706 X31B-A-001-09 PCLK Source Select Bits PCLK Source 00 MCLK 01 BCLK 10 CLKI 11 CLKI2 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 99 8.3.3 Look-Up Table Registers Note The S1D13706 has three 256-position, 6-bit wide LUTs, one for each of red, green, and blue (see Section 11, “Look-Up Table Architecture” on page 132). Look-Up Table Blue Write Data Register REG[08h] Write Only LUT Blue Write Data Bits 5-0 7 6 bits 7-2 5 4 n/a 3 2 1 0 LUT Blue Write Data Bits [5:0] This register contains the data to be written to the blue component of the Look-Up Table. The data is stored in this register until a write to the LUT Write Address register (REG[0Bh]) moves the data into the Look-Up Table. Note The LUT entry is updated only when the LUT Write Address Register (REG[0Bh]) is written to. Look-Up Table Green Write Data Register REG[09h] Write Only LUT Green Write Data Bits 5-0 7 6 bits 7-2 5 4 n/a 3 2 1 0 LUT Green Write Data Bits [5:0] This register contains the data to be written to the green component of the Look-Up Table. The data is stored in this register until a write to the LUT Write Address register (REG[0Bh]) moves the data into the Look-Up Table. Note The LUT entry is updated only when the LUT Write Address Register (REG[0Bh]) is written to. Look-Up Table Red Write Data Register REG[0Ah] Write Only LUT Red Write Data Bits 5-0 7 bits 7-2 6 5 4 n/a 3 2 1 0 LUT Red Write Data Bits [5:0] This register contains the data to be written to the red component of the Look-Up Table. The data is stored in this register until a write to the LUT Write Address register (REG[0Bh]) moves the data into the Look-Up Table. Note The LUT entry is updated only when the LUT Write Address Register (REG[0Bh]) is written to. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 100 Epson Research and Development Vancouver Design Center Look-Up Table Write Address Register REG[0Bh] Write Only LUT Write Address Bits 7-0 7 6 bits 7-0 5 4 3 2 1 0 LUT Write Address Bits [7:0] This register forms a pointer into the Look-Up Table (LUT) which is used to write LUT blue, green, and red data stored in REG[08h], REG[09h], and REG[0Ah]. The data is updated to the LUT only with the completion of a write to this register. This is a writeonly register and returns 00h if read. Note When a value is written to the LUT Write Address register, the same value is automatically written to the LUT Read Address register (REG[0Fh]. Look-Up Table Blue Read Data Register REG[0Ch] Read Only LUT Blue Read Data Bits 5-0 7 6 bits 7-2 5 4 n/a 3 2 1 0 LUT Blue Read Data Bits [5:0] This register contains the data from the blue component of the Look-Up Table. The LUT position is controlled by the LUT Read Address Register (REG[0Fh]). This is a read-only register. Note This register is updated only when the LUT Read Address Register (REG[0Fh]) is written to. Look-Up Table Green Read Data Register REG[0Dh] Read Only LUT Green Read Data Bits 5-0 7 bits 7-2 6 5 4 n/a 3 2 1 0 LUT Green Read Data Bits [5:0] This register contains the data from the green component of the Look-Up Table. The LUT position is controlled by the LUT Read Address Register (REG[0Fh]). This is a read-only register. Note This register is updated only when the LUT Read Address Register (REG[0Fh]) is written to. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 101 Look-Up Table Red Read Data Register REG[0Eh] Read Only LUT Red Read Data Bits 5-0 7 6 bits 7-2 5 4 n/a 3 2 1 0 LUT Red Read Data Bits [5:0] This register contains the data from the red component of the Look-Up Table. The LUT position is controlled by the LUT Read Address Register (REG[0Fh]). This is a read-only register. Note This register is updated only when the LUT Read Address Register (REG[0Fh]) is written to. Look-Up Table Read Address Register REG[0Fh] Write Only LUT Read Address Bits 7-0 7 6 bits 7-0 5 4 3 2 1 0 LUT Read Address Bits [7:0] This register forms a pointer into the Look-Up Table (LUT) which is used to read LUT blue, green, and red data. Blue data is read from REG[0Ch], green data from REG[0Dh], and red data from REG[0Eh]. This is a write-only register and returns 00h if read. Note If a write to the LUT Write Address register (REG[0Bh]) is made, the LUT Read Address register is automatically updated with the same value. 8.3.4 Panel Configuration Registers Panel Type Register REG[10h] Read/Write Panel Data Format Select Color/Mono. Panel Select 7 6 Panel Data Width Bits 1-0 5 4 Active Panel Resolution Select n/a 3 2 Panel Type Bits 1-0 1 0 bit 7 Panel Data Format Select When this bit = 0, 8-bit single color passive LCD panel data format 1 is selected. For AC timing see Section 6.4.5, “Single Color 8-Bit Panel Timing (Format 1)” on page 66. When this bit = 1, 8-bit single color passive LCD panel data format 2 is selected. For AC timing see Section 6.4.6, “Single Color 8-Bit Panel Timing (Format 2)” on page 68. bit 6 Color/Mono Panel Select When this bit = 0, a monochrome LCD panel is selected. When this bit = 1, a color LCD panel is selected. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 102 bits 5-4 Epson Research and Development Vancouver Design Center Panel Data Width Bits [1:0] These bits select the data width size of the LCD panel. Table 8-5: Panel Data Width Selection bit 3 Panel Data Width Bits [1:0] Passive Panel Data Width Size Active Panel Data Width Size 00 4-bit 9-bit 01 8-bit 12-bit 10 16-bit 18-bit 11 Reserved Reserved Active Panel Resolution Select This bit selects one of two panel resolutions when an HR-TFT or D-TFD panel is selected. This bit has no effect for other panel types. Table 8-6: Active Panel Resolution Selection Active Panel Resolution Select Bit HR-TFT Resolution D-TFD Resolution 0 160x160 160x240 1 320x240 320x240 Note This bit sets some internal non-configurable timing values for the selected panel. However, all panel configuration registers (REG[12h] - REG[27h]) still require programming with the appropriate values for the selected panel. For panel AC timing, see Section 6.4, “Display Interface” on page 56. bits 1-0 Panel Type Bits[1:0] These bits select the panel type. Table 8-7: LCD Panel Type Selection S1D13706 X31B-A-001-09 REG[10h] Bits[1:0] Panel Type 00 STN 01 TFT 10 HR-TFT 11 D-TFD Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 103 MOD Rate Register REG[11h] Read/Write n/a 7 MOD Rate Bits 5-0 6 bits 5-0 5 4 3 2 1 MOD Rate Bits [5:0] These bits are for passive LCD panels only. When these bits are all 0, the MOD output signal (DRDY) toggles every FPFRAME. For a non-zero value n, the MOD output signal (DRDY) toggles every n FPLINE. Horizontal Total Register REG[12h] Read/Write n/a 7 0 Horizontal Total Bits 6-0 6 bits 6-0 5 4 3 2 1 0 Horizontal Total Bits [6:0] These bits specify the LCD panel Horizontal Total period, in 8 pixel resolution. The Horizontal Total is the sum of the Horizontal Display period and the Horizontal Non-Display period. Since the maximum Horizontal Total is 1024 pixels, the maximum panel resolution supported is 800x600. Horizontal Total in number of pixels = ((REG[12h] bits 6:0) + 1) × 8 Note 1 This register must be programmed such that the following formulas are valid. HDPS + HDP < HT 2 For panel AC timing and timing parameter definitions, see Section 6.4, “Display Interface” on page 56. Horizontal Display Period Register REG[14h] n/a 7 bits 6-0 Read/Write Horizontal Display Period Bits 6-0 6 5 4 3 2 1 0 Horizontal Display Period Bits [6:0] These bits specify the LCD panel Horizontal Display Period (HDP), in 8 pixel resolution. The Horizontal Display Period should be less than the Horizontal Total to allow for a sufficient Horizontal Non-Display Period. Horizontal Display Period in number of pixels = ((REG[14h] bits 6:0) + 1) × 8 Note For passive panels, HDP must be a minimum of 32 pixels and can be increased by multiples of 16. For TFT panels, HDP must be a minimum of 16 pixels and can be increased by multiples of 8. For panel AC timing and timing parameter definitions, see Section 6.4, “Display Interface” on page 56. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 104 Epson Research and Development Vancouver Design Center Horizontal Display Period Start Position Register 0 REG[16h] Read/Write Horizontal Display Period Start Position Bits 7-0 7 6 5 4 3 2 1 Horizontal Display Period Start Position Register 1 REG[17h] Read/Write Horizontal Display Period Start Position Bits 9-8 n/a 7 bits 9-0 6 5 0 4 3 2 1 0 Horizontal Display Period Start Position Bits [9:0] These bits specify a value used in the calculation of the Horizontal Display Period Start Position (in 1 pixel resolution) for TFT, HR-TFT and D-TFD panels. For passive LCD panels these bits must be set to 00h which will result in HDPS = 22. HDPS = (REG[17h] bits 1-0, REG[16h] bits 7-0) + 22 For TFT/HR-TFT/D-TFD panels, HDPS is calculated using the following formula. HDPS = (REG[17h] bits 1-0, REG[16h] bits 7-0) + 5 For further information on calculating the HDPS, see the specific panel AC Timing in Section 6.4, “Display Interface” on page 56. Note This register must be programmed such that the following formula is valid. HDPS + HDP < HT S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 105 Vertical Total Register 0 REG[18h] Read/Write Vertical Total Bits 7-0 7 6 5 4 3 2 1 Vertical Total Register 1 REG[19h] Read/Write n/a 7 6 bits 9-0 0 5 Vertical Total Bits 9-8 4 3 2 1 0 Vertical Total Bits [9:0] These bits specify the LCD panel Vertical Total period, in 1 line resolution. The Vertical Total is the sum of the Vertical Display Period and the Vertical Non-Display Period. The maximum Vertical Total is 1024 lines. Vertical Total in number of lines = (REG[18h] bits 7:0, REG[19h] bits 1:0) + 1 Note 1 This register must be programmed such that the following formula is valid. VDPS + VDP < VT 2 For panel AC timing and timing parameter definitions, see Section 6.4, “Display Interface” on page 56. Vertical Display Period Register 0 REG[1Ch] Read/Write Vertical Display Period Bits 7-0 7 6 5 4 3 2 1 Vertical Display Period Register 1 REG[1Dh] Read/Write Vertical Display Period Bits 9-8 n/a 7 bits 9-0 6 5 0 4 3 2 1 0 Vertical Display Period Bits [9:0] These bits specify the LCD panel Vertical Display period, in 1 line resolution. The Vertical Display period should be less than the Vertical Total to allow for a sufficient Vertical Non-Display period. Vertical Display Period in number of lines = (REG[1Ch] bits 7:0, REG[1Dh] bits 1:0) + 1 Note For panel AC timing and timing parameter definitions, see Section 6.4, “Display Interface” on page 56. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 106 Epson Research and Development Vancouver Design Center Vertical Display Period Start Position Register 0 REG[1Eh] Read/Write Vertical Display Period Start Position Bits 7-0 7 6 5 4 3 2 1 Vertical Display Period Start Position Register 1 REG[1Fh] Read/Write Vertical Display Period Start Position Bits 9-8 n/a 7 6 bits 9-0 5 0 4 3 2 1 0 Vertical Display Period Start Position Bits [9:0] These bits specify the Vertical Display Period Start Position for panels in 1 line resolution. For passive LCD panels these bits must be set to 00h. For TFT panels, VDPS is calculated using the following formula. VDPS = (REG[1Fh] bits 1-0, REG[1Eh] bits 7-0) Note 1 This register must be programmed such that the following formula is valid. VDPS + VDP < VT 2 For panel AC timing and timing parameter definitions, see Section 6.4, “Display Interface” on page 56. FPLINE Pulse Width Register REG[20h] Read/Write FPLINE Pulse Polarity 7 FPLINE Pulse Width Bits 6-0 6 5 4 3 2 1 0 bit 7 FPLINE Pulse Polarity This bit selects the polarity of the horizontal sync signal. For passive panels, this bit must be set to 1. For TFT panels, this bit is set according to the horizontal sync signal of the panel (typically FPLINE or LP). When this bit = 0, the horizontal sync signal is active low. When this bit = 1, the horizontal sync signal is active high. bits 6-0 FPLINE Pulse Width Bits [6:0] These bits specify the width of the panel horizontal sync signal, in 1 pixel resolution. The horizontal sync signal is typically FPLINE or LP, depending on the panel type. FPLINE Pulse Width in number of pixels = (REG[20h] bits 6:0) + 1 Note For panel AC timing and timing parameter definitions, see Section 6.4, “Display Interface” on page 56. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 107 FPLINE Pulse Start Position Register 0 REG[22h] Read/Write FPLINE Pulse Start Position Bits 7-0 7 6 5 4 3 2 1 FPLINE Pulse Start Position Register 1 REG[23h] Read/Write FPLINE Pulse Start Position Bits 9-8 n/a 7 6 bits 9-0 5 0 4 3 2 1 0 FPLINE Pulse Start Position Bits [9:0] These bits specify the start position of the horizontal sync signal, in 1 pixel resolution. FPLINE Pulse Start Position in pixels = (REG[23h] bits 1-0, REG[22h] bits 7-0) + 1 Note For passive panels, these bits must be programmed such that the following formula is valid. HPW + HPS < HT Note For panel AC timing and timing parameter definitions, see Section 6.4, “Display Interface” on page 56. FPFRAME Pulse Width Register REG[24h] Read/Write FPFRAME Pulse Polarity 7 n/a 6 5 FPFRAME Pulse Width Bits 2-0 4 3 2 1 0 bit 7 FPFRAME Pulse Polarity This bit selects the polarity of the vertical sync signal. For passive panels, this bit must be set to 1. For TFT panels, this bit is set according to the horizontal sync signal of the panel (typically FPFRAME, SPS or DY). When this bit = 0, the vertical sync signal is active low. When this bit = 1, the vertical sync signal is active high. bits 2-0 FPFRAME Pulse Width Bits [2:0] These bits specify the width of the panel vertical sync signal, in 1 line resolution. The vertical sync signal is typically FPFRAME, SPS or DY, depending on the panel type. FPFRAME Pulse Width in number of lines = (REG[24h] bits 2:0) + 1 Note For panel AC timing and timing parameter definitions, see Section 6.4, “Display Interface” on page 56. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 108 Epson Research and Development Vancouver Design Center FPFRAME Pulse Start Position Register 0 REG[26h] Read/Write FPFRAME Pulse Start Position Bits 7-0 7 6 5 4 3 2 1 FPFRAME Pulse Start Position Register 1 REG[27h] Read/Write FPFRAME Pulse Start Position Bits 9-8 n/a 7 6 bits 9-0 5 0 4 3 2 1 0 FPFRAME Pulse Start Position Bits [9:0] These bits specify the start position of the vertical sync signal, in 1 line resolution. For passive panels, these bits must be set to 00h. For TFT/HR-TFT/D-TFD panels, VDPS is calculated using the following formula: VPS = (REG[27h] bits 1-0, REG[26h] bits 7-0) Note For panel AC timing and timing parameter definitions, see Section 6.4, “Display Interface” on page 56. D-TFD GCP Index Register REG[28h] Read/Write n/a 7 D-TFD GCP Index Bits 4-0 6 bits 4-0 5 4 3 2 1 0 D-TFD GCP Index Bits [4:0] For D-TFD panels only. These bits form the index that points to 32 8-bit GCP data registers. D-TFD GCP Data Register REG[2Ch] Read/Write D-TFD GCP Data Bits 7-0 7 bits 7-0 6 5 4 3 2 1 0 D-TFD GCP Data Bits [7:0] For D-TFD panel only. This register stores the data to be written to the GCP data bits and is controlled by the D-TFD GCP Index register (REG[28h]). For further information on the use of this register, see Connecting to the Epson D-TFD Panels, document number X31B-G-012-xx. Note The Panel Type bits (REG[10h] bits 1:0) must be set to 11 (D-TFD) for the GCP Data bits to have any hardware effect. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 109 8.3.5 Display Mode Registers Display Mode Register REG[70h] Read/Write Display Blank Dithering Disable Hardware Video Invert Enable Software Video Invert n/a 7 6 5 4 3 Bit-per-pixel Select Bits 2-0 2 1 0 bit 7 Display Blank When this bit = 0, the LCD display pipeline is enabled. When this bit = 1, the LCD display pipeline is disabled and all LCD data outputs are forced to zero (i.e., the screen is blanked). bit 6 Dithering Disable Dithering allows 64 intensity levels for each color component (RGB). In monochrome modes where only the Green color component of the Look-Up-Table is used, 64 shades of gray are available for each position used in the LUT. In color modes, 64 shades of color are available for each color component resulting in 256K possible color combinations. When this bit = 0, dithering is enabled for passive LCD panels. When this bit = 1, dithering is disabled for passive LCD panels. Note This bit does not refer to the number of simultaneously displayed colors but rather the maximum available colors (refer to Table 8-9: “LCD Bit-per-pixel Selection,” on page 111 for the maximum number of simultaneously displayed colors). Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 110 bit 5 Epson Research and Development Vancouver Design Center Hardware Video Invert Enable This bit allows the Video Invert feature to be controlled using the General Purpose IO pin GPIO0. This option is not available if configured for a HR-TFT or D-TFD as GPIO0 is used as an LCD control signal by both panels. When this bit = 0, GPIO0 has no effect on the video data. When this bit = 1, video data may be inverted via GPIO0. Note The S1D13706 requires some configuration before the hardware video invert feature can be enabled. • CNF3 must be set to 1 at RESET# • GPIO Pin Input Enable (REG[A9h] bit 7) must be set to 1 • GPIO0 Pin IO Configuration (REG[A8h] bit 0) must be set to 0 If Hardware Video Invert is not available (i.e. HR-TFT panel is used), the video invert function can be controlled by software using REG[70h] bit 4. The following table summarizes the video invert options available. Table 8-8: Inverse Video Mode Select Options Hardware Video Invert Enable Software Video Invert GPIO0 Video Data 0 0 X Normal 0 1 X Inverse 1 X 0 Normal 1 X 1 Inverse Note Video data is inverted after the Look-Up Table. bit 4 Software Video Invert When this bit = 0, video data is normal. When this bit = 1, video data is inverted. See Table 8-8: “Inverse Video Mode Select Options”. Note Video data is inverted after the Look-Up Table S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center bits 2-0 Page 111 Bit-per-pixel Select Bits [2:0] These bits select the color depth (bit-per-pixel) for the displayed data for both the main window and the PIP+ window (if active). Note 1, 2, 4 and 8 bpp color depths use the 18-bit LUT, allowing a maximum number of 256K available colors on TFT panels. 16 bpp mode bypasses the LUT, allowing a maximum of only 64K available colors. Table 8-9: LCD Bit-per-pixel Selection Bit-per-pixel Color Depth (bpp) Select Bits [2:0] Maximum Number of Available Colors/Shades Passive Panel (Dithering On) TFT Panel Max. No. Of Simultaneously Displayed Colors/Shades 000 1 bpp 64K/64 256K/64 2/2 001 2 bpp 64K/64 256K/64 4/4 010 4 bpp 64K/64 256K/64 16/16 011 8 bpp 64K/64 256K/64 256/64 100 16 bpp 64K/64 64K/64 64K/64 101, 110, 111 Reserved Special Effects Register REG[71h] Read/Write + Display Data Word Swap Display Data Byte Swap n/a PIP Window Enable 7 6 5 4 bit 7 SwivelView Mode Select Bits 1-0 n/a 3 2 1 0 Display Data Word Swap The display pipe fetches 32-bits of data from the display buffer. This bit enables the lower 16-bit word and the upper 16-bit word to be swapped before sending them to the LCD display. If the Display Data Byte Swap bit is also enabled, then the byte order of the fetched 32-bit data is reversed. Note For further information on byte swapping for Big Endian mode, see Section 14, “BigEndian Bus Interface” on page 146. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 112 bit 6 Epson Research and Development Vancouver Design Center Display Data Byte Swap The display pipe fetches 32-bits of data from the display buffer. This bit enables byte 0 and byte 1 to be swapped, and byte 2 and byte 3 to be swapped, before sending them to the LCD display. If the Display Data Word Swap bit is also enabled, then the byte order of the fetched 32-bit data is reversed. byte 0 byte 1 32-bit display data from display buffer Data To LUT Serialization byte 2 byte 3 Byte Swap Word Swap Figure 8-1: Display Data Byte/Word Swap Note For further information on byte swapping for Big Endian mode, see Section 14, “BigEndian Bus Interface” on page 146. bit 4 Picture-in-Picture Plus (PIP+) Window Enable This bit enables the PIP+ window within the main window used for the Picture-in-Picture Plus feature. The location of the PIP+ window within the landscape window is determined by the PIP+ Window X Position registers (REG[84h], REG[85h], REG[8Ch], REG[8Dh]) and PIP+ Window Y Position registers (REG[88h], REG[89h], REG[90h], REG[91h]). The PIP+ window has its own Display Start Address register (REG[7Ch], REG[7Dh], REG[7Eh]) and Memory Address Offset register (REG[80h], REG[81h]). The PIP+ window shares the same color depth and SwivelViewTM orientation as the main window. bit 1-0 SwivelView Mode Select Bits [1:0] These bits select different SwivelViewTM orientations: Table 8-10: SwivelViewTM Mode Select Options S1D13706 X31B-A-001-09 SwivelView Mode Select Bits SwivelView Orientation 00 0° (Normal) 01 90° 10 180° 11 270° Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 113 Main Window Display Start Address Register 0 REG[74h] Read/Write Main window Display Start Address Bits 7-0 7 6 5 4 3 2 1 Main Window Display Start Address Register 1 REG[75h] 0 Read/Write Main window Display Start Address Bits 15-8 7 6 5 4 3 2 1 Main Window Display Start Address Register 2 REG[76h] Read/Write Main window Display Start Address Bit 16 n/a 7 bits 16-0 6 5 4 0 3 2 1 0 Main Window Display Start Address Bits [16:0] This register specifies the starting address, in DWORDS, for the LCD image in the display buffer for the main window. Note that this is a double-word (32-bit) address. An entry of 00000h into these registers represents the first double-word of display memory, an entry of 00001h represents the second double-word of the display memory, and so on. Calculate the Display Start Address as follows: Main Window Display Start Address bits 16:0 = image address ÷ 4 (valid only for SwivelView 0°) Note For information on setting this register for other SwivelView orientations, see Section 12, “SwivelView™” on page 138. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 114 Epson Research and Development Vancouver Design Center Main Window Line Address Offset Register 0 REG[78h] Read/Write Main window Line Address Offset Bits 7-0 7 6 5 4 3 2 1 Main Window Line Address Offset Register 1 REG[79h] Read/Write Main window Line Address Offset Bits 9-8 n/a 7 bits 9-0 6 5 0 4 3 2 1 0 Main Window Line Address Offset Bits [9:0] This register specifies the offset, in DWORDS, from the beginning of one display line to the beginning of the next display line in the main window. Note that this is a 32-bit address increment. Calculate the Line Address Offset as follows: Main Window Line Address Offset bits 9:0 = display width in pixels ÷ (32 ÷ bpp) Note A virtual display can be created by programming this register with a value greater than the formula requires. When a virtual display is created the image width is larger than the display width and the displayed image becomes a window into the larger virtual image. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 115 8.3.6 Picture-in-Picture Plus (PIP+) Registers PIP+ Window Display Start Address Register 0 REG[7C] Read/Write PIP+ Window Display Start Address Bits 7-0 7 6 5 4 3 2 1 PIP+ Window Display Start Address Register 1 REG[7Dh] 0 Read/Write PIP+ Window Display Start Address Bits 15-8 7 6 5 4 3 2 1 PIP+ Window Display Start Address Register 2 REG[7Eh] Read/Write PIP+ Window Display Start Address Bit 16 n/a 7 6 5 4 0 3 2 1 0 PIP+ Window Display Start Address Bits [16:0] These bits form the 17-bit address for the starting double-word of the PIP+ window. bits 16-0 Note that this is a double-word (32-bit) address. An entry of 00000h into these registers represents the first double-word of display memory, an entry of 00001h represents the second double-word of the display memory, and so on. Note These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[71h] bit 4). PIP+ Window Line Address Offset Register 0 REG[80h] Read/Write PIP+ Window Line Address Offset Bits 7-0 7 6 5 4 3 2 1 PIP+ Window Line Address Offset Register 1 REG[81h] 0 Read/Write + PIP Window Line Address Offset Bits 9-8 n/a 7 bits 9-0 6 5 4 3 2 1 0 PIP+ Window Line Address Offset Bits [9:0] These bits are the LCD display’s 10-bit address offset from the starting double-word of line “n” to the starting double-word of line “n + 1” for the PIP+ window. Note that this is a 32-bit address increment. Note These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[71h] bit 4). Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 116 Epson Research and Development Vancouver Design Center PIP+ Window X Start Position Register 0 REG[84h] Read/Write PIP+ Window X Start Position Bits 7-0 7 6 5 4 3 2 1 PIP+ Window X Start Position Register 1 REG[85h] 0 Read/Write + PIP Window X Start Position Bits 9-8 n/a 7 bits 9-0 6 5 4 3 2 1 0 + PIP Window X Start Position Bits [9:0] These bits determine the X start position of the PIP+ window in relation to the origin of the panel. Due to the S1D13706 SwivelView feature, the X start position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X Start Position register, see Section 13, “Picture-in-Picture Plus (PIP+)” on page 143. The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X start position is incremented by x pixels where x is relative to the current color depth. Table 8-11: 32-bit Address Increments for Color Depth Color Depth Pixel Increment (x) 1 bpp 32 2 bpp 16 4 bpp 8 8 bpp 4 16 bpp 2 For 90° and 270° SwivelView the X start position is incremented in 1 line increments. Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels. Note 1 These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[71h] bit 4). 2 The effect of REG[84h] through REG[91h] takes place only after REG[91h] is written and at the next vertical non-display period. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 117 PIP+ Window Y Start Position Register 0 REG[88h] Read/Write PIP+ Window Y Start Position Bits 7-0 7 6 5 4 3 2 1 PIP+ Window Y Start Position Register 1 REG[89h] 0 Read/Write + PIP Window Y Start Position Bits 9-8 n/a 7 bits 9-0 6 5 4 3 2 1 0 + PIP Window Y Start Position Bits [9:0] These bits determine the Y start position of the PIP+ window in relation to the origin of the panel. Due to the S1D13706 SwivelView feature, the Y start position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y Start Position register, see Section 13, “Picture-in-Picture Plus (PIP+)” on page 143. The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y start position is incremented in 1 line increments. For 90° and 270° SwivelView the Y start position is incremented by y pixels where y is relative to the current color depth. Table 8-12: 32-bit Address Increments for Color Depth Color Depth Pixel Increment (y) 1 bpp 32 2 bpp 16 4 bpp 8 8 bpp 4 16 bpp 2 Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels. Note 1 These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[71h] bit 4). 2 The effect of REG[84h] through REG[91h] takes place only after REG[91h] is written and at the next vertical non-display period. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 118 Epson Research and Development Vancouver Design Center PIP+ Window X End Position Register 0 REG[8Ch] Read/Write PIP+ Window X End Position Bits 7-0 7 6 5 4 3 2 1 PIP+ Window X End Position Register 1 REG[8Dh] 0 Read/Write + PIP Window X End Position Bits 9-8 n/a 7 bits 9-0 6 5 4 3 2 1 0 + PIP Window X End Position Bits [9:0] These bits determine the X end position of the PIP+ window in relation to the origin of the panel. Due to the S1D13706 SwivelView feature, the X end position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X End Position register, see Section 13, “Picture-in-Picture Plus (PIP+)” on page 143. The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X end position is incremented by x pixels where x is relative to the current color depth. Table 8-13: 32-bit Address Increments for Color Depth Color Depth Pixel Increment (x) 1 bpp 32 2 bpp 16 4 bpp 8 8 bpp 4 16 bpp 2 For 90° and 270° SwivelView the X end position is incremented in 1 line increments. Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels. Note 1 These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[71h] bit 4). 2 The effect of REG[84h] through REG[91h] takes place only after REG[91h] is written and at the next vertical non-display period. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 119 PIP+ Window Y End Position Register 0 REG[90h] Read/Write PIP+ Window Y End Position Bits 7-0 7 6 5 4 3 2 1 PIP+ Window Y End Position Register 1 REG[91h] 0 Read/Write + PIP Window Y End Position Bits 9-8 n/a 7 bits 9-0 6 5 4 3 2 1 0 + PIP Window Y End Position Bits [9:0] These bits determine the Y end position of the PIP+ window in relation to the origin of the panel. Due to the S1D13706 SwivelView feature, the Y end position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y End Position register, see Section 13, “Picture-in-Picture Plus (PIP+)” on page 143. The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y end position is incremented in 1 line increments. For 90° and 270° SwivelView the Y end position is incremented by y pixels where y is relative to the current color depth. Table 8-14: 32-bit Address Increments for Color Depth Color Depth Pixel Increment (y) 1 bpp 32 2 bpp 16 4 bpp 8 8 bpp 4 16 bpp 2 Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels. Note 1 These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[71h] bit 4). 2 The effect of REG[84h] through REG[91h] takes place only after REG[91h] is written and at the next vertical non-display period. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 120 Epson Research and Development Vancouver Design Center 8.3.7 Miscellaneous Registers Power Save Configuration Register REG[A0h] Vertical NonDisplay Period Status (RO) 7 Read/Write Memory Controller Power Save Status (RO) n/a 6 5 4 3 Power Save Mode Enable n/a 2 1 0 bit 7 Vertical Non-Display Period Status This is a read-only status bit. When this bit = 0, the LCD panel output is in a Vertical Display Period. When this bit = 1, the LCD panel output is in a Vertical Non-Display Period. bit 3 Memory Controller Power Save Status This read-only status bit indicates the power save state of the memory controller. When this bit = 0, the memory controller is powered up. When this bit = 1, the memory controller is powered down and the MCLK source can be turned off. Note Memory writes are possible during power save mode because the S1D13706 dynamically enables the memory controller for display buffer writes. bit 0 Power Save Mode Enable When this bit = 1, the software initiated power save mode is enabled. When this bit = 0, the software initiated power save mode is disabled. At reset, this bit is set to 1. For a summary of Power Save Mode, see Section 15, “Power Save Mode” on page 149. Note Memory writes are possible during power save mode because the S1D13706 dynamically enables the memory controller for display buffer writes. Reserved REG[A1h] Read/Write n/a 7 bit 0 S1D13706 X31B-A-001-09 6 5 4 Reserved 3 2 1 0 Reserved. This bit must remain at 0. Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 121 Reserved REG[A2h] Read/Write Reserved 7 n/a 6 5 4 bit 7 Reserved. This bit must remain at 0. bit 0 Reserved. This bit must remain at 0. Reserved 3 2 1 Reserved REG[A3h] Read/Write Reserved 7 0 n/a 6 bit 7 5 4 3 2 1 0 Reserved. This bit must remain at 0. Scratch Pad Register 0 REG[A4h] Read/Write Scratch Pad Bits 7-0 7 6 5 4 3 2 1 Scratch Pad Register 1 REG[A5h] 0 Read/Write Scratch Pad Bits 15-8 7 bits 15-0 6 5 4 3 2 1 0 Scratch Pad Bits [15:0] This register contains general purpose read/write bits. These bits have no effect on hardware. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 122 Epson Research and Development Vancouver Design Center 8.3.8 General IO Pins Registers General Purpose IO Pins Configuration Register 0 REG[A8h] n/a 7 Read/Write GPIO6 Pin IO GPIO5 Pin IO GPIO4 Pin IO GPIO3 Pin IO GPIO2 Pin IO GPIO1 Pin IO GPIO0 Pin IO Configuration Configuration Configuration Configuration Configuration Configuration Configuration 6 5 4 3 2 1 0 Note 1 If CNF3 = 0 at RESET#, then all GPIO pins are configured as outputs only and this register has no effect. This case allows the GPIO pins to be used by the HR-TFT/D-TFD panel interfaces. For a summary of GPIO usage for HR-TFT/D-TFD, see Table 4-9: “LCD Interface Pin Mapping,” on page 30. 2 The input functions of the GPIO pins are not enabled until REG[A9h] bit 7 is set to 1. bit 6 GPIO6 Pin IO Configuration When this bit = 0 (default), GPIO6 is configured as an input pin. When this bit = 1, GPIO6 is configured as an output pin. bit 5 GPIO5 Pin IO Configuration When this bit = 0 (default), GPIO5 is configured as an input pin. When this bit = 1, GPIO5 is configured as an output pin. bit 4 GPIO4 Pin IO Configuration When this bit = 0 (default), GPIO4 is configured as an input pin. When this bit = 1, GPIO4 is configured as an output pin. bit 3 GPIO3 Pin IO Configuration When this bit = 0 (default), GPIO3 is configured as an input pin. When this bit = 1, GPIO3 is configured as an output pin. bit 2 GPIO2 Pin IO Configuration When this bit = 0 (default), GPIO2 is configured as an input pin. When this bit = 1, GPIO2 is configured as an output pin. bit 1 GPIO1 Pin IO Configuration When this bit = 0 (default), GPIO1 is configured as an input pin. When this bit = 1, GPIO1 is configured as an output pin. bit 0 GPIO0 Pin IO Configuration When this bit = 0 (default), GPIO0 is configured as an input pin. When this bit = 1, GPIO0 is configured as an output pin. General Purpose IO Pins Configuration Register 1 REG[A9h] GPIO Pin Input Enable 7 bit 7 S1D13706 X31B-A-001-09 Read/Write n/a 6 5 4 3 2 1 0 GPIO Pin Input Enable This bit is used to enable the input function of the GPIO pins. It must be changed to a 1 after power-on reset to enable the input function of the GPIO pins (default is 0). Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 123 General Purpose IO Pins Status/Control Register 0 REG[ACh] n/a GPIO6 Pin IO Status GPIO5 Pin IO Status 7 6 5 Read/Write GPIO4 Pin IO GPIO3 Pin IO Status Status 4 3 GPIO2 Pin IO Status 2 GPIO1 Pin IO GPIO0 Pin IO Status Status 1 0 Note For information on GPIO pin mapping when HR-TFT/D-TFD panels are selected, see Table 4-9: “LCD Interface Pin Mapping,” on page 30. bit 6 GPIO6 Pin IO Status When a D-TFD panel is not selected (REG[10h] bits 1:0) and GPIO6 is configured as an output, writing a 1 to this bit drives GPIO6 high and writing a 0 to this bit drives GPIO6 low. When a D-TFD panel is not selected (REG[10h] bits 1:0) and GPIO6 is configured as an input, a read from this bit returns the status of GPIO6. When a D-TFD panel is enabled (REG[10h] bits 1:0 = 11), GPIO6 outputs the YSCLD signal automatically and writing to this bit has no effect. bit 5 GPIO5 Pin IO Status When a D-TFD panel is not selected (REG[10h] bits 1:0) and GPIO5 is configured as an output, writing a 1 to this bit drives GPIO5 high and writing a 0 to this bit drives GPIO5 low. When a D-TFD panel is not selected (REG[10h] bits 1:0) and GPIO5 is configured as an input, a read from this bit returns the status of GPIO5. When a D-TFD panel is enabled (REG[10h] bits 1:0 = 11) and a 1 is written to this bit, the D-TFD signal DD_P1 signal is enabled. When a D-TFD panel is enabled (REG[10h] bits 1:0 = 11) and a 0 is written to this bit, the D-TFD signal DD_P1 signal is forced low. bit 4 GPIO4 Pin IO Status When a D-TFD panel is not selected (REG[10h] bits 1:0) and GPIO4 is configured as an output, writing a 1 to this bit drives GPIO4 high and writing a 0 to this bit drives GPIO4 low. When a D-TFD panel is not selected (REG[10h] bits 1:0) and GPIO4 is configured as an input, a read from this bit returns the status of GPIO4. When a D-TFD panel is enabled (REG[10h] bits 1:0 = 11), GPIO4 outputs the RES signal automatically and writing to this bit has no effect. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 124 bit 3 Epson Research and Development Vancouver Design Center GPIO3 Pin IO Status When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO3 is configured as an output, writing a 1 to this bit drives GPIO3 high and writing a 0 to this bit drives GPIO3 low. When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO3 is configured as an input, a read from this bit returns the status of GPIO3. When a D-TFD panel is enabled (REG[10h] bits 1:0 = 11), GPIO3 outputs the FRS signal automatically and writing to this bit has no effect. When a HR-TFT panel is enabled (REG[10h] bits 1:0 = 10), GPIO3 outputs the SPL signal automatically and writing to this bit has no effect. bit 2 GPIO2 Pin IO Status When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO2 is configured as an output, writing a 1 to this bit drives GPIO2 high and writing a 0 to this bit drives GPIO2 low. When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO2 is configured as an input, a read from this bit returns the status of GPIO2. When a D-TFD panel is enabled (REG[10h] bits 1:0 = 11), GPIO2 outputs the FR signal automatically and writing to this bit has no effect. When a HR-TFT panel is enabled (REG[10h] bits 1:0 = 10), GPIO2 outputs the REV signal automatically and writing to this bit has no effect. bit 1 GPIO1 Pin IO Status When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO1 is configured as an output, writing a 1 to this bit drives GPIO1 high and writing a 0 to this bit drives GPIO1 low. When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO1 is configured as an input, a read from this bit returns the status of GPIO1. When a D-TFD panel is enabled (REG[10h] bits 1:0 = 11), GPIO1 outputs the YSCL signal automatically and writing to this bit has no effect. When a HR-TFT panel is enabled (REG[10h] bits 1:0 = 10), GPIO1 outputs the CLS signal automatically and writing to this bit has no effect. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center bit 0 Page 125 GPIO0 Pin IO Status When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO0 is configured as an output, writing a 1 to this bit drives GPIO0 high and writing a 0 to this bit drives GPIO0 low. When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO0 is configured as an input, a read from this bit returns the status of GPIO0. When a D-TFD panel is enabled (REG[10h] bits 1:0 = 11), GPIO0 outputs the XINH signal automatically and writing to this bit has no effect. When a HR-TFT panel is enabled (REG[10h] bits 1:0 = 10), GPIO0 outputs the PS signal automatically and writing to this bit has no effect. General Purpose IO Pins Status/Control Register 1 REG[ADh] GPO Control 7 bit 7 Read/Write n/a 6 5 4 3 2 1 0 GPO Control This bit controls the General Purpose Output pin. Writing a 0 to this bit drives GPO to low. Writing a 1 to this bit drives GPO to high. Note Many implementations use the GPO pin to control the LCD bias power (see Section 6.3, “LCD Power Sequencing” on page 54). Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 126 Epson Research and Development Vancouver Design Center 8.3.9 Pulse Width Modulation (PWM) Clock and Contrast Voltage (CV) Pulse Configuration Registers PWM Clock Enable Divided Clock PWM Clock Divider PWMCLK Clock Source / 2 PWM Duty Cycle Modulation m to PWMOUT Duty = n / 256 frequency = Clock Source / (2m X 256) n = PWM Clock Duty Cycle m = PWM Clock Divide Select value PWM Clock Force High CV Pulse Enable Divided Clock CV Pulse Divider Clock Source / 2 x CV Pulse Burst Generation to CVOUT y-pulse burst frequency = Clock Source / (2x X 2) y = Burst Length value x = CV Pulse Divide Select value CV Pulse Force High Figure 8-2: PWM Clock/CV Pulse Block Diagram Note For further information on PWMCLK, see Section 7.1.4, “PWMCLK” on page 92. PWM Clock / CV Pulse Control Register REG[B0h] PWM Clock Force High n/a 7 6 bit 7 and bit 4 5 Read/Write PWM Clock Enable CV Pulse Force High CV Pulse Burst Status (RO) CV Pulse Burst Start CV Pulse Enable 4 3 2 1 0 PWM Clock Force High (bit 7) and PWM Clock Enable (bit 4) These bits control the PWMOUT pin and PWM Clock circuitry as follows. Table 8-15: PWM Clock Control Bit 7 Bit 4 Result 0 1 PWM Clock circuitry enabled (controlled by REG[B1h] and REG[B3h]) 0 0 PWMOUT forced low 1 x PWMOUT forced high x = don’t care When PWMOUT is forced low or forced high it can be used as a general purpose output. Note The PWM Clock circuitry is disabled when Power Save Mode is enabled. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center bit 3 and bit 0 Page 127 CV Pulse Force High (bit 3) and CV Pulse Enable (bit 0) These bits control the CVOUT pin and CV Pulse circuitry as follows. Table 8-16: CV Pulse Control Bit 3 Bit 0 Result 0 1 CV Pulse circuitry enabled (controlled by REG[B1h] and REG[B2h]) 0 0 CVOUT forced low 1 x CVOUT forced high x = don’t care When CVOUT is forced low or forced high it can be used as a general purpose output. Note 1 Bit 3 must be set to 0 and bit 0 must be set to 1 before initiating a new burst using the CV Pulse Burst Start bit. 2 The CV Pulse circuitry is disabled when Power Save Mode is enabled. bit 2 CV Pulse Burst Status This is a read-only bit. A “1” indicates a CV pulse burst is occurring. A “0” indicates no CV pulse burst is occurring. Software should wait for this bit to clear before starting another burst. bit 1 CV Pulse Burst Start A 1 in this bit initiates a single CVOUT pulse burst. The number of clock pulses generated is programmable from 1 to 256. The frequency of the pulses is the divided CV Pulse source divided by 2, with 50/50 duty cycle. This bit should be cleared to 0 by software before initiating a new burst. Note This bit has effect only if the CV Pulse Enable bit is 1. bit 0 CV Pulse Enable See description for bit 3. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 128 Epson Research and Development Vancouver Design Center PWM Clock / CV Pulse Configuration Register REG[B1h] PWM Clock Divide Select Bits 3-0 7 bits 7-4 6 5 Read/Write CV Pulse Divide Select Bits 2-0 4 3 2 PWMCLK Source Select 1 0 PWM Clock Divide Select Bits [3:0] The value of these bits represents the power of 2 by which the selected PWM clock source is divided. Table 8-17: PWM Clock Divide Select Options PWM Clock Divide Select Bits [3:0] PWM Clock Divide Amount 0h 1 1h 2 2h 4 3h 8 ... ... Ch 4096 Dh-Fh Reserved Note This divided clock is further divided by 256 before it is output at PWMOUT. bits 3-1 CV Pulse Divide Select Bits [2:0] The value of these bits represents the power of 2 by which the selected CV Pulse source is divided. Table 8-18: CV Pulse Divide Select Options CV Pulse Divide Select Bits [2:0] CV Pulse Divide Amount 0h 1 1h 2 2h 4 3h 8 ... ... 7h 128 Note This divided clock is further divided by 2 before it is output at the CVOUT. bit 0 PWMCLK Source Select When this bit = 0, the clock source for PWMCLK is CLKI. When this bit = 1, the clock source for PWMCLK is CLKI2. Note For further information on the PWMCLK source select, see Section 7.2, “Clock Selection” on page 93. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 129 CV Pulse Burst Length Register REG[B2h] Read/Write CV Pulse Burst Length Bits 7-0 7 6 bits 7-0 5 4 3 2 1 0 CV Pulse Burst Length Bits [7:0] The value of this register determines the number of pulses generated in a single CV Pulse burst: Number of pulses in a burst = (ContentsOfThisRegister) + 1 PWMOUT Duty Cycle Register REG[B3h] Read/Write PWMOUT Duty Cycle Bits 7-0 7 bits 7-0 6 5 4 3 2 1 0 PWMOUT Duty Cycle Bits [7:0] This register determines the duty cycle of the PWMOUT output. Table 8-19: PWMOUT Duty Cycle Select Options PWMOUT Duty Cycle [7:0] PWMOUT Duty Cycle 00h Always Low 01h High for 1 out of 256 clock periods 02h High for 2 out of 256 clock periods ... ... FFh High for 255 out of 256 clock periods Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 130 Epson Research and Development Vancouver Design Center 9 Frame Rate Calculation The following formula is used to calculate the display frame rate. f PCLK FrameRate = -------------------------------( HT ) × ( VT ) Where: S1D13706 X31B-A-001-09 fPCLK = PClk frequency (Hz) HT = Horizontal Total = ((REG[12h] bits 6-0) + 1) x 8 Pixels VT = Vertical Total = ((REG[19h] bits 1-0, REG[18h] bits 7-0) + 1) Lines Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 131 10 Display Data Formats The following diagrams show the display mode data formats for a little-endian system. 1 bpp: bit 7 bit 0 Byte 0 A0 A1 A2 A3 A4 A5 A6 Byte 1 A8 A9 A10 A11 A12 A13 A14 A15 Byte 2 A16 A17 A18 A19 A20 A21 A22 A23 P0 P1 P2 P3 P4 P5 P6 P7 A7 LUT Pn = RGB value from LUT Index (An) Host Address Panel Display Display Memory 2 bpp: bit 7 bit 0 Byte 0 A0 B0 A1 B1 A2 B2 A3 B3 Byte 1 A4 B4 A5 B5 A6 B6 A7 B7 Byte 2 A8 B8 A9 B9 A10 B10 A11 B11 P0 P1 P2 P3 P4 P5 P6 P7 LUT Pn = RGB value from LUT Index (An, Bn) Host Address Display Memory Panel Display 4 bpp: bit 7 bit 0 Byte 0 A0 B0 C0 D0 A1 B1 C1 D1 Byte 1 A2 B2 C2 D2 A3 B3 C3 D3 Byte 2 A4 B4 C4 D4 A5 B5 C5 D5 P0 P1 P2 P3 P4 P5 P6 P7 LUT Pn = RGB value from LUT Index (An, Bn, Cn, Dn) Host Address Display Memory Panel Display 8 bpp: bit 7 bit 0 Byte 0 A0 B0 C0 D0 E0 F0 G0 H0 Byte 1 A1 B1 C1 D1 E1 F1 G1 H1 Byte 2 A2 B2 C2 D2 E2 F2 G2 H2 P0 P1 P2 P3 P4 P5 P6 P7 LUT Pn = RGB value from LUT Index (An, Bn, Cn, Dn, En, Fn, Gn, Hn) Host Address Panel Display Display Memory 16 bpp: Byte 0 5-6-5 RGB bit 7 bit 0 1 2 0 G0 G0 G0 B04 B03 B02 B01 B00 Byte 1 R04 R03 R02 R01 R00 G05 G04 G03 2 G1 G11 R14 R13 Byte 2 Byte 3 G1 0 B1 4 B1 3 R12 R11 R10 2 B1 B11 G15 G14 B1 P0 P1 P2 P3 P4 P5 P6 P7 Bypasses LUT Pn = (Rn4-0, Gn 5-0, Bn4-0) 0 G 13 Panel Display Host Address Display Buffer Figure 10-1: 4/8/16 Bit-Per-Pixel Display Data Memory Organization Note 1. The Host-to-Display mapping shown here is for a little endian system. 2. For 16 bpp format, Rn, Gn, Bn represent the red, green, and blue color components. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 132 Epson Research and Development Vancouver Design Center 11 Look-Up Table Architecture The following figures are intended to show the display data output path only. Note When Video Data Invert is enabled the video data is inverted after the Look-Up Table. 11.1 Monochrome Modes The green Look-Up Table (LUT) is used for all monochrome modes. 1 Bit-per-pixel Monochrome Mode Green Look-Up Table 256x6 00 01 00 01 6-bit Gray Data FC FD FE FF = unused Look-Up Table entries 1 bit-per-pixel data from Display Buffer Figure 11-1: 1 Bit-per-pixel Monochrome Mode Data Output Path 2 Bit-per-pixel Monochrome Mode Green Look-Up Table 256x6 00 01 02 03 00 01 10 11 6-bit Gray Data FC FD FE FF 2 bit-per-pixel data from Display Buffer = unused Look-Up Table entries Figure 11-2: 2 Bit-per-pixel Monochrome Mode Data Output Path S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 133 4 Bit-per-pixel Monochrome Mode Green Look-Up Table 256x6 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 6-bit Gray Data FC FD FE FF 4 bit-per-pixel data from Display Buffer = unused Look-Up Table entries Figure 11-3: 4 Bit-per-pixel Monochrome Mode Data Output Path 8 Bit-per-pixel Monochrome Mode Green Look-Up Table 256x6 00 01 02 03 04 05 06 07 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 F8 F9 FA FB FC FD FE FF 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 6-bit Gray Data 8 bit-per-pixel data from Display Buffer Figure 11-4: 8 Bit-per-pixel Monochrome Mode Data Output Path Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 134 Epson Research and Development Vancouver Design Center 16 Bit-Per-Pixel Monochrome Mode The LUT is bypassed and the green data is directly mapped for this color depth– See “Display Data Formats” on page 131.. 11.2 Color Modes 1 Bit-Per-Pixel Color Red Look-Up Table 256x6 00 01 0 1 6-bit Red Data FC FD FE FF Green Look-Up Table 256x6 00 01 0 1 6-bit Green Data FC FD FE FF Blue Look-Up Table 256x6 00 01 0 1 6-bit Blue Data FC FD FE FF 1 bit-per-pixel data from Image Buffer = unused Look-Up Table entries Figure 11-5: 1 Bit-Per-Pixel Color Mode Data Output Path S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 135 2 Bit-Per-Pixel Color Red Look-Up Table 256x6 00 01 02 03 00 01 10 11 6-bit Red Data 00 01 10 11 6-bit Green Data 00 01 10 11 6-bit Blue Data FC FD FE FF Green Look-Up Table 256x6 00 01 02 03 FC FD FE FF Blue Look-Up Table 256x6 00 01 02 03 FC FD FE FF 2 bit-per-pixel data from Image Buffer = unused Look-Up Table entries Figure 11-6: 2 Bit-Per-Pixel Color Mode Data Output Path Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 136 Epson Research and Development Vancouver Design Center 4 Bit-Per-Pixel Color Red Look-Up Table 256x6 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 6-bit Red Data FC FD FE FF Green Look-Up Table 256x6 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 6-bit Green Data FC FD FE FF Blue Look-Up Table 256x6 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F FC FD FE FF 4 bit-per-pixel data from Image Buffer 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 6-bit Blue Data = unused Look-Up Table entries Figure 11-7: 4 Bit-Per-Pixel Color Mode Data Output Path S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 137 8 Bit-per-pixel Color Mode Red Look-Up Table 256x6 00 01 02 03 04 05 06 07 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 F8 F9 FA FB FC FD FE FF 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 Green Look-Up Table 256x6 00 01 02 03 04 05 06 07 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 F8 F9 FA FB FC FD FE FF 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 Blue Look-Up Table 256x6 00 01 02 03 04 05 06 07 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 F8 F9 FA FB FC FD FE FF 1111 1000 1111 1001 1111 1010 1111 1011 1111 1100 1111 1101 1111 1110 1111 1111 6-bit Red Data 6-bit Green Data 6-bit Blue Data 8 bit-per-pixel data from Display Buffer Figure 11-8: 8 Bit-per-pixel Color Mode Data Output Path 16 Bit-Per-Pixel Color Mode The LUT is bypassed and the color data is directly mapped for this color depth– See “Display Data Formats” on page 131. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 138 Epson Research and Development Vancouver Design Center 12 SwivelView™ 12.1 Concept Most computer displays are refreshed in landscape orientation – from left to right and top to bottom. Computer images are stored in the same manner. SwivelView™ is designed to rotate the displayed image on an LCD by 90°, 180°, or 270° in an counter-clockwise direction. The rotation is done in hardware and is transparent to the user for all display buffer reads and writes. By processing the rotation in hardware, SwivelView™ offers a performance advantage over software rotation of the displayed image. The image is not actually rotated in the display buffer since there is no address translation during CPU read/write. The image is rotated during display refresh. 12.2 90° SwivelView™ 90° SwivelView™ requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. MCLK ≥ 1.25PCLK. The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13706 in the following sense: A–B–C–D. The display is refreshed by the S1D13706 in the following sense: B-D-A-C. physical memory start address 320 display start address (panel origin) C SwivelView window SwivelView window B D B A 480 A D C 480 320 image seen by programmer = image in display buffer image refreshed by S1D13706 Figure 12-1: Relationship Between The Screen Image and the Image Refreshed in 90° SwivelView. S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 139 12.2.1 Register Programming Enable 90° SwivelView™ Mode Set SwivelView™ Mode Select bits (REG[71h] bits 1:0) to 01. Display Start Address The display refresh circuitry starts at pixel “B”, therefore the Main Window Display Start Address registers (REG[74h], REG[75h], REG[76h]) must be programmed with the address of pixel “B”. To calculate the value of the address of pixel “B” use the following formula (assumes 8 bpp color depth). Main Window Display Start Address bits 16:0 = ((image address + (panel height x bpp ÷ 8)) ÷ 4) - 1 = ((0 + (320 pixels x 8 bpp ÷ 8)) ÷ 4) -1 = 79 (4Fh) Line Address Offset The Main Window Line Address Offset registers (REG[78h], REG[79h]) is based on the display width and programmed using the following formula. Main Window Line Address Offset bits 9:0 = display width in pixels ÷ (32 ÷ bpp) = 320 pixels ÷ 32 ÷ 8 bpp = 80 (50h) Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 140 Epson Research and Development Vancouver Design Center 12.3 180° SwivelView™ The following figure shows how the programmer sees a 480x320 landscape image and how the image is being displayed. The application image is written to the S1D13706 in the following sense: A–B–C–D. The display is refreshed by the S1D13706 in the following sense: D-C-B-A. display start address (panel origin) D D 480 image seen by programmer = image in display buffer B C 320 320 SwivelView window A B SwivelView window A C physical memory start address 480 image refreshed by S1D13706 Figure 12-2: Relationship Between The Screen Image and the Image Refreshed in 180° SwivelView. 12.3.1 Register Programming Enable 180° SwivelView™ Mode Set SwivelView™ Mode Select bits (REG[71h] bits 1:0) to 10. Display Start Address The display refresh circuitry starts at pixel “D”, therefore the Main Window Display Start Address registers (REG[74h], REG[75h], REG[76h]) must be programmed with the address of pixel “D”. To calculate the value of the address of pixel “D” use the following formula (assumes 8 bpp color depth). Main Window Display Start Address bits 16:0 = ((image address + (offset x (panel height - 1) + panel width) x bpp ÷ 8) ÷ 4) - 1 = ((0 + (480 pixels x 319 pixels + 480 pixels) x 8 bpp ÷ 8) ÷ 4) - 1 = 38399 (95FFh) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 141 Line Address Offset The Main Window Line Address Offset registers (REG[78h], REG[79h]) is based on the display width and programmed using the following formula. Main Window Line Address Offset bits 9:0 = display width in pixels ÷ (32 ÷ bpp) = 480 pixels ÷ 32 ÷ 8 bpp = 120 (78h) 12.4 270° SwivelView™ 270° SwivelView™ requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. MCLK ≥ 1.25PCLK. The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13706 in the following sense: A–B–C–D. The display is refreshed by the S1D13706 in the following sense: C-A-D-B. physical memory start address B 320 display start address (panel origin) A SwivelView window SwivelView window C 480 A B D D C 480 320 image seen by programmer = image in display buffer image refreshed by S1D13706 Figure 12-3: Relationship Between The Screen Image and the Image Refreshed in 270° SwivelView. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 142 Epson Research and Development Vancouver Design Center 12.4.1 Register Programming Enable 270° SwivelView™ Mode Set SwivelView™ Mode Select bits (REG[71h] bits 1:0) to 11. The display refresh circuitry starts at pixel “C”, therefore the Main Window Display Start Address registers (REG[74h], REG[75h], REG[76h]) must be programmed with the address of pixel “C”. To calculate the value of the address of pixel “C” use the following formula (assumes 8 bpp color depth). Main Window Display Start Address bits 16:0 = (image address + ((panel width - 1) x offset x bpp ÷ 8) ÷ 4) = (0 + ((480 pixels - 1) x 320 pixels x 8 bpp ÷ 8) ÷ 4) = 38320 (95B0h) Line Address Offset The Main Window Line Address Offset registers (REG[78h], REG[79h]) is based on the display width and programmed using the following formula. Main Window Line Address Offset bits 9:0 = display width in pixels ÷ (32 ÷ bpp) = 320 pixels ÷ 32 ÷ 8 bpp = 80 (50h) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 143 13 Picture-in-Picture Plus (PIP + ) 13.1 Concept Picture-in-Picture Plus enables a secondary window (or PIP+ window) within the main display window. The PIP+ window may be positioned anywhere within the virtual display and is controlled through the PIP+ window control registers (REG[7Ch] through REG[91h]). The PIP+ window retains the same color depth and SwivelView orientation as the main window. The following diagram shows an example of a PIP+ window within a main window and the registers used to position it. 0° SwivelViewTM PIP+ window y start position (REG[89h],REG[88h]) panel’s origin PIP+ window y end position (REG[91h],REG[90h]) main-window PIP+ window PIP+ window x start position (REG[85h],REG[84h]) PIP+ window x end position (REG[8Dh],REG[8Ch]) Figure 13-1: Picture-in-Picture Plus with SwivelView disabled Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 144 Epson Research and Development Vancouver Design Center 13.2 With SwivelView Enabled 13.2.1 SwivelView 90° 90° SwivelViewTM panel’s origin PIP+ window x start position (REG[85h],REG[84h]) PIP+ window x end position (REG[8Dh],REG[8Ch]) PIP+ window main-window PIP+ window y start position (REG[89h],REG[88h]) PIP+ window y end position (REG[91h],REG[90h]) Figure 13-2: Picture-in-Picture Plus with SwivelView 90° enabled 13.2.2 SwivelView 180° 180° SwivelViewTM PIP+ window x end position (REG[8Dh],REG[8Ch]) PIP+ window x start position (REG[85h],REG[84h]) PIP+ window main-window PIP+ window y end position (REG[91h],REG[90h]) PIP+ window y start position (REG[89h],REG[88h]) panel’s origin Figure 13-3: Picture-in-Picture Plus with SwivelView 180° enabled S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 145 13.2.3 SwivelView 270° 270° SwivelViewTM PIP+ window y end position (REG[91h],REG[90h]) PIP+ window y start position (REG[89h],REG[88h]) PIP+ window x start position (REG[85h],REG[84h]) main-window PIP+ window PIP+ window x end position (REG[8Dh],REG[8Ch]) panel’s origin Figure 13-4: Picture-in-Picture Plus with SwivelView 270° enabled Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 146 Epson Research and Development Vancouver Design Center 14 Big-Endian Bus Interface 14.1 Byte Swapping Bus Data The display buffer and register architecture of the S1D13706 is inherently little-endian. If a host bus interface is configured as big-endian (CNF4 = 1 at reset), bus accesses are automatically handled by byte swapping all read/write data to/from the internal display buffer and registers. Bus data byte swapping translates all byte accesses correctly to the S1D13706 register and display buffer locations. To maintain the correct translation for 16-bit word access, even address bytes must be mapped to the MSB of the 16-bit word, and odd address bytes to the LSB of the 16-bit word. For example: Byte write 11h to register address 1Eh Byte write 22h to register address 1Fh -> -> Word write 1122h to register address 1Eh-> S1D13706 X31B-A-001-09 REG[1Eh] <= 11h REG[1Fh] <= 22h REG[1Eh] <= 11h REG[1Fh] <= 22h Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 147 14.1.1 16 Bpp Color Depth For 16 bpp color depth, the Display Data Byte Swap bit (REG[71h] bit 6) must be set to 1. Display Buffer Address D[15:8] D[7:0] 15 0 System Memory Address 2 0 aa bb cc dd MSB 15 CPU Data Byte Swap bb aa dd cc 0 0 2 Display Data Byte Swap LSB aabb System Memory (Big-Endian) ccdd Display Buffer (Little-Endian) * MSB is assumed to be associated with even address. * LSB is assumed to be associated with odd address. Figure 14-1: Byte-swapping for 16 Bpp For 16 bpp color depth, the MSB of the 16-bit pixel data is stored at the even system memory address location and the LSB of the 16-bit pixel data is stored at the odd system memory address location. Bus data byte swapping (automatic when the S1D13706 is configured for Big-Endian) causes the 16-bit pixel data to be stored byte-swapped in the S1D13706 display buffer. During display refresh this stored data must be byte-swapped again before it is sent to the display. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 148 Epson Research and Development Vancouver Design Center 14.1.2 1/2/4/8 Bpp Color Depth For 1/2/4/8 bpp color depth, byte swapping must be performed on the bus data but not the display data. For 1/2/4/8 bpp color depth, the Display Data Byte Swap bit (REG[71h] bit 6) must be set to 0. Display Buffer Address D[15:8] D[7:0] 15 0 0 11 15 CPU Data Byte Swap 22 22 11 0 0 System Memory Address 11 22 System Memory (Big-Endian) Display Buffer (Little-Endian) * High byte lane (D[15:8]) data (e.g. 11) is associated with even address. * Low byte lane (D[7:0]) data (e.g. 22) is associated with odd address. Figure 14-2: Byte-swapping for 1/2/4/8 Bpp S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 149 15 Power Save Mode A software initiated Power Save Mode is incorporated into the S1D13706 to accommodate the need for power reduction in the hand-held devices market. This mode is enabled via the Power Save Mode Enable bit (REG[A0h] bit 0). Software Power Save Mode saves power by powering down the panel and stopping display refresh accesses to the display buffer. Table 15-1: Power Save Mode Function Summary Software Power Save Normal IO Access Possible? Yes Yes Memory Writes Possible? Yes1 Yes Memory Reads Possible? No 1 Yes Look-Up Table Registers Access Possible? Yes Yes Sequence Controller Running? No Yes Display Active? No Yes LCD I/F Outputs Forced Low Active PWMCLK Stopped Active GPIO Pins configured for HR-TFT/D-TFD2 Forced Low Active GPIO Pins configured as GPIOs Access Possible?2 Yes3 Yes Note 1 When power save mode is enabled, the memory controller is powered down and the status of the memory controller is indicated by the Memory Controller Power Save Status bit (REG[A0h] bit 3). However, memory writes are possible during power save mode because the S1D13706 dynamically enables the memory controller for display buffer writes. 2 GPIO Pins are configured using the configuration pin CNF3 which is latched on the rising edge of RESET#. For information on CNF3, see Table 4-7: “Summary of PowerOn/Reset Options,” on page 28. 3 GPIOs can be accessed and if configured as outputs can be changed. After reset, the S1D13706 is always in Power Save Mode. Software must initialize the chip (i.e. programs all registers) and then clear the Power Save Mode Enable bit. Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 150 Epson Research and Development Vancouver Design Center 16 Mechanical Data 100-pin TQFP15 surface mount package 16.0 ± 0.4 14.0 ± 0.1 75 51 76 16.0 ± 0.4 14.0 ± 0.1 50 Index 100 26 25 + 0.05 + 0.1 0.18 - 0.05 0.125 - 0.025 1.0± 0.1 0.1 1.3 max. 1 0.5 0~10° 0.5 ± 0.2 1 All dimensions in mm Figure 16-1: Mechanical Data 100pin TQFP15 (S1D13706F00A) S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09 Epson Research and Development Vancouver Design Center Page 151 17 References The following documents contain additional information related to the S1D13706. Document numbers are listed in parenthesis after the document name. All documents can be found at the Epson Research and Development Website at www.erd.epson.com. • 13706CFG Configuration Utility Users Manual (X31B-B-001-xx) • 13706SHOW Demonstration Program Users Manual (X31B-B-002-xx) • 13706PLAY Diagnostic Utility Users Manual (X31B-B-003-xx) • 13706BMP Demonstration Program Users Manual (X31B-B-004-xx) • S1D13706 Product Brief (X31B-C-001-xx) • S1D13706 Windows CE Display Drivers (X31B-E-001-xx) • Interfacing to the Toshiba TMPR3905/3912 Microprocessor (X31B-G-002-xx) • S1D13706 Programming Notes And Examples (X31B-G-003-xx) • S5U13706B00C Rev. 1.0 Evaluation Board User Manual (X31B-G-004-xx) • Interfacing to the PC Card Bus (X31B-G-005-xx) • S1D13706 Power Consumption (X31B-G-006-xx) • Interfacing to the NEC VR4102/VR4111 Microprocessors (X31B-G-007-xx) • Interfacing to the NEC VR4181 Microprocessor (X31B-G-008-xx) • Interfacing to the Motorola MPC821 Microprocessor (X31B-G-009-xx) • Interfacing to the Motorola MCF5307 "Coldfire" Microprocessors (X31B-G-010-xx) • Connecting to the Sharp HR-TFT Panels (X31B-G-011-xx) • Connecting to the Epson D-TFD Panels (X31B-G-012-xx) • Interfacing to the Motorola MC68030 Microprocessor (X31B-G-013-xx) • Interfacing to the Motorola RedCap2 DSP with Integrated MCU (X31B-G-014-xx) • Interfacing to 8-Bit Processors (X31B-G-015-xx) • Interfacing to the Motorola MC68VZ328 Dragonball Microprocessor (X31B-G-016-xx) • Integrating the CFLGA 104-pin Chip Scale Package (X31B-G-018-xx) • Interfacing to the Intel StrongARM SA-1110 Microprocessor (X31B-G-019-xx) • S1D13706 Register Summary (X31B-R-001-xx) Hardware Functional Specification Issue Date: 2004/02/09 S1D13706 X31B-A-001-09 Page 152 Epson Research and Development Vancouver Design Center 18 Sales and Technical Support Japan Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp/ North America Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/ Taiwan Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/ Hong Kong Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346 http://www.epson.com.hk/ Europe Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/ Singapore Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716 http://www.epson.com.sg/ S1D13706 X31B-A-001-09 Hardware Functional Specification Issue Date: 2004/02/09