XC835/836 8-Bit Single-Chip Microcontroller Data Sheet V1.2 2011-03 Microcontrollers Edition 2011-03 Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. XC835/836 8-Bit Single-Chip Microcontroller Data Sheet V1.2 2011-03 Microcontrollers XC835/836 XC835/836 Data Sheet Revision History: V1.2 2011-03 Previous Versions: V 1.1 Page Subjects (major changes since last revision) Page 3, Page 46, Page 49 TSSOP-28-9 package for Automotive has been updated to TSSOP-28-12. We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Data Sheet V1.2, 2011-03 XC835/836 Table of Contents Table of Contents 1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 JTAG ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 3.2.3 3.2.3.1 3.2.3.2 3.2.4 3.2.5 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.5.1 3.3.5.2 3.3.6 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Threshold Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Out of Range Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oscillator Timing and Wake-up Timing . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 22 23 24 25 25 28 29 32 32 33 35 38 38 39 40 41 43 43 44 45 4 4.1 4.2 4.3 Package and Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 46 47 50 Data Sheet 1 V1.2, 2011-03 XC835/836 Summary of Features 1 Summary of Features The XC835/836 has the following features: • High-performance XC800 Core – compatible with standard 8051 processor – two clocks per machine cycle architecture (for memory access without wait state) – two data pointers • On-chip memory – 8 Kbytes of Boot ROM, Library ROM and User routines – 256 bytes of RAM – 256 bytes of XRAM – 4/8 Kbytes of Flash (includes memory protection strategy) • I/O port supply at 2.5 V - 5.5 V and core logic supply at 2.5 V (generated by embedded voltage regulator) 8/4K Bytes Flash On-Chip Debug Support IIC Boot ROM 8K Bytes UART SSC Port 0 8-bit Digital I/O Capture/Compare Unit 16-bit Port 1 6-bit Digital I/O Compare Unit 16-bit Port 2 8-bit Digital/ Analog Input ADC 10-bit 8-channel Port 3 3-bit Digital I/O XC800 Core XRAM 256 Bytes RAM 256 Bytes MDU Figure 1 • • • LED and Touch Sense Controller CORDIC Timer 0 16-bit Timer 1 16-bit Timer 2 16-bit Real-Time Clock Watchdog Timer XC835/836 Functional Units Power-on reset generation Brownout detection for IO supply and core logic supply 48 MHz on-chip OSC for clock generation – Loss-of-Clock detection (more features on next page) Data Sheet 1 V1.2, 2011-03 XC835/836 Summary of Features Features: (continued) • • • • • • • • • • • • • • • • • Power saving modes – idle mode – power-down mode with wake-up capability via real-time clock event – clock gating control to each peripheral Programmable 16-bit Watchdog Timer (WDT) running on independent oscillator with programmable window feature for refresh operation and warning prior to overflow Three general purpose I/O ports – 4 high current I/O – 2 high sink I/O – Up to 25 pins as digital I/O – Up to 8 pins as digital/analog input Up to 8 channels, 10-bit A/D Converter – support up to 7 differential input channel – results filtering by data reduction or digital low-pass filter, for up to 13-bit results Up to 8 channels, Out of range comparator Three 16-bit timers – Timer 0 and Timer 1 (T0 and T1) – Timer 2 (T2) Real-time clock with 32.768 kHz crystal pad 16-bit Vector Computer for Field-Oriented Control (FOC) – Multiplication/Division Unit (MDU) for arithmetic calculation – CORDIC Unit for trigonometric calculation Capture and Compare unit for PWM signal generation (CCU6) A full-duplex or half-duplex serial interface (UART) Synchronous serial channel (SSC) Inter-IC (IIC) serial interface LED and Touch-sense Controller (LEDTSCU) Software libraries to support fixed-point control and EEPROM emulation On-chip debug support via single pin DAP interface (SPD) Packages: – PG-DSO-24 – PG-TSSOP-28 Temperature range TA: – SAF (-40 to 85 °C) Data Sheet 2 V1.2, 2011-03 XC835/836 Summary of Features XC835/836 Variant Devices The XC835/836 product family features devices with different configurations, program memory sizes, packages options and temperature profiles, to offer cost-effective solutions for different application requirements. The list of XC835/836 device configurations are summarized in Table 1. The type of packages available are DSO-24 for XC835 and TSSOP-28 for XC836. Table 1 Device Configuration Device Name MDU and CORDIC Module LEDTSCU Module XC835/836 No No XC835/836M Yes No XC835/836T No Yes XC835/836MT Yes Yes Table 2 shows the device sales type available, based on above device. Table 2 Device Profile Sales Type Device Program TempType Memory erature (Kbytes) Profile (°C) Package Type Quality Profile SAF-XC835MT-2FGI Flash 8 -40 to 85 PG-DSO-24-1 Industrial SAF-XC836-2FRI Flash 8 -40 to 85 PG-TSSOP-28-1 Industrial SAF-XC836T-2FRI Flash 8 -40 to 85 PG-TSSOP-28-1 Industrial SAF-XC836M-2FRI Flash 8 -40 to 85 PG-TSSOP-28-1 Industrial SAF-XC836M-1FRI Flash 4 -40 to 85 PG-TSSOP-28-1 Industrial SAF-XC836MT-2FRI Flash 8 -40 to 85 PG-TSSOP-28-1 Industrial SAF-XC836MT-2FRA Flash 8 -40 to 85 PG-TSSOP-28-12 Automotive SAF-XC836MT-1FRA Flash 4 -40 to 85 PG-TSSOP-28-12 Automotive SAK-XC836MT-2FRA Flash 8 -40 to 125 PG-TSSOP-28-12 Automotive SAK-XC836MT-1FRA Flash 4 -40 to 125 PG-TSSOP-28-12 Automotive As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC835/836 throughout this document. Data Sheet 3 V1.2, 2011-03 XC835/836 Summary of Features Ordering Information The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies: • • The derivative itself, i.e. its function set, the temperature range, and the supply voltage The package and the type of delivery For the available ordering codes for the XC835/836, please refer to your responsible sales representative or your local distributor. Data Sheet 4 V1.2, 2011-03 XC835/836 General Device Information 2 General Device Information Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC835/836. 2.1 Block Diagram The block diagram of the XC835/836 is shown in Figure 2. XC800 Core 256-byte RAM + 64-byte monitor RAM T0 & T1 UART Port 0 Internal Bus P0.0 - P0.7 Port 1 8-Kbyte Boot ROM 1) P1.0 - P1.5 Port 2 XC83x P2.0 – P2.7 Vector Computer VDDP 256-byte XRAM VSSP VSSC 4/8-Kbyte Flash CORDIC MDU RTC IIC WDT SSC Timer 2 CCU6 ADC 48 MHz On-chip OSC OCDS 75 KHz On-chip OSC EVR Port 3 XTAL Clock Generator P3.0 - P3.2 SCU LED and Touch Sense Controller 1) Includes 1-Kbyte monitor ROM Figure 2 Data Sheet XC835/836 Block Diagram 5 V1.2, 2011-03 XC835/836 General Device Information 2.2 Logic Symbol The logic symbol of the XC835/836 is shown in Figure 3. VDDP VDDC VSSP VDDP VDDC VSSP Port 0 8-Bit Port 0 8-Bit Port 1 6-Bit Port 1 6-Bit XC836 Figure 3 Data Sheet XC835 Port 2 8-Bit Port 2 4-Bit Port 3 3-Bit Port 3 3-Bit XC835/836 Logic Symbol 6 V1.2, 2011-03 XC835/836 General Device Information 2.3 Pin Configuration The pin configuration of the XC835 in Figure 4. P3.2/SPD_0/RXD_3/SDA_2/MTSR_5/ MRST_5/EXINT0_6/T2EX_7/TXD_3 P0.7/SCL_3/LINE7/TSIN7/TXD_5/COUT63_0/ COL3_1/COLA_3 1 24 P3.0/XTAL4/SCL_2/SCK_1/EXINT2_1/COL6 2 23 P3.1/XTAL3/RXD_4/RTCCLK/MTSR_4/ MRST_4/EXINT0_5/COLA_0/EXF2_1 P2.3/CCPOS0_2/CTRAP_2/T2_2/EXINT3/AN3 3 22 P0.3/CC60_1/SDA_1/CTRAP_0/LINE3/TSIN 3 P2.2/CCPOS2_1/T12HR_3/T13HR_3/SCK_3/ T1_1/EXINT2_0/AN2 4 21 P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/LINE2/TSIN2 P2.1/CCPOS1_1/RXD_5/MTSR_6/T0_1/EXINT1_1/AN1 5 20 P2.0/CCPOS0_1/T12HR_2/T13HR_2/T2EX_3/ T2_1/EXINT0_3/AN0 P0.6/SPD_1/RXD_1/SDA_0/MTSR_1/MRST_0/EXINT0_1/ T2EX_0/LINE6/TSIN6/TXD_0/COL2_1/COLA_2 P0.5/RXD_0/MTSR_0/MRST_1/EXINT0_0/LINE5/TSIN5/ COUT62_1/TXD_4/COL1_1/EXF2_3 P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/CTRAP_1/ LINE4/TSIN 4/EXF2_0/COL0_1/COL3_2/COLA_4 6 XC835 19 P0.1/T0_0/CC61_1/MTSR_3/MRST_2/T13HR_0/ CCPOS1_0/LINE1/TSIN1 P0.0/T2_0/T13HR_1/MTSR_2/MRST_3/T12HR_0/ CCPOS0_0/LINE0/TSIN0/COUT61_1 7 18 P1.5/CC62_0/COL5/COLA_1 8 17 P1.4/EXINT5/COL4/COUT62_0/COUT63_2 9 16 VDDC VDDP 10 15 VSSP P1.3/CC61_0/COL3_0/CC61_0/EXF2_2 11 14 P1.0/SPD_2/RXD_2/T2EX_2/EXINT0_2/COL0_0/ COUT60_0/TXD_1 P1.2/EXINT4/COL2_0/COUT61_0/COUT63_1 12 13 P1.1/CC60_0/COL1_0/TXD_2 Figure 4 Data Sheet XC835 Pin Configuration, PG-DSO-24 Package (top view) 7 V1.2, 2011-03 XC835/836 General Device Information The pin configuration of the XC836 in Figure 5. P0.7/SCL_3/LINE7/TSIN7/TXD_5/COUT63_0/ COL3_1/COLA_3 P3.2/SPD_0/RXD_3/SDA_2/MTSR_5/MRST_5/ EXINT0_6/T2EX_7/TXD_3 P2.7/RXD_6/T2EX_6/MTSR_7/EXINT0_4/AN7 1 28 P2.6/SCK_2/EXINT6/AN6 2 27 P2.5/T12HR_7/T13HR_7/AN5 3 26 P3.0/XTAL4/SCL_2/SCK_1/EXINT2_1/COL6 P2.4/T12HR_5/T13HR_5/T2_3/AN4 4 25 P3.1/XTAL3/RXD_4/RTCCLK/MTSR_4/ MRST_4/EXINT0_5/COLA_0/EXF2_1 P2.3/CCPOS0_2/CTRAP_2/T2_2/EXINT3/AN3 5 24 P0.3/CC60_1/SDA_1/CTRAP_0/LINE3/TSIN3 6 23 P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/LINE2/TSIN2 P2.2/CCPOS2_1/T12HR_3/T13HR_3/SCK_3/ T1_1/EXINT2_0/AN2 P2.1/CCPOS1_1/RXD_5/MTSR_6/T0_1/ EXINT1_1/AN1 P2.0/CCPOS0_1/T12HR_2/T13HR_2/T2EX_3/ T2_1/EXINT0_3/AN0 P0.6/SPD_1/RXD_1/SDA_0/MTSR_1/MRST_0/EXINT0_1/ T2EX_0/LINE6/TSIN6/TXD_0/COL2_1/COLA_2 P0.5/RXD_0/MTSR_0/MRST_1/EXINT0_0/LINE5/ TSIN5/COUT62_1/TXD_4/COL1_1/EXF2_3 P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/CTRAP_1/ LINE4/TSIN4/EXF2_0/COL0_1/COL3_2/COLA_4 8 21 P0.1/T0_0/CC61_1/MTSR_3/MRST_2/T13HR_0/ CCPOS1_0/LINE1/TSIN1 P0.0/T2_0/T13HR_1/MTSR_2/MRST_3/T12HR_0/ CCPOS0_0/LINE0/TSIN0/COUT61_1 9 20 P1.5/CC62_0/COL5/COLA_1 10 19 P1.4/EXINT5/COL4/COUT62_0/COUT63_2 11 18 VDDC VDDP 12 17 VSSP P1.3/CC61_0/COL3_0/CC61_0/EXF2_2 13 16 P1.0/SPD_2/RXD_2/T2EX_2/EXINT0_2/ COL0_0/COUT60_0/TXD_1 P1.2/EXINT4/COL2_0/COUT61_0/COUT63_1 14 15 P1.1/CC60_0/COL1_0/TXD_2 Figure 5 Data Sheet 7 XC836 22 XC836 Pin Configuration, PG-TSSOP-28 Package (top view) 8 V1.2, 2011-03 XC835/836 General Device Information 2.4 Pin Definitions and Functions The functions and default states of the XC835/836 external pins are provided in Table 3. Table 3 Pin Definitions and Functions for XC835/836 Symbol Pin Type Reset Function Number State TSSOP28/ DS024 P0 P0.0 I/O 21/19 Data Sheet Port 0 Port 0 is a bidirectional general purpose I/O port. It can be used as alternate functions for LEDTSCU, Timer 0, 1 and 2, SSC, CCU6, IIC, SPD and UART. Hi-Z T2_0 Timer 2 Input T13HR_1 CCU6 Timer 13 Hardware Run Input MTSR_2 SSC Master Transmit Output/ Slave Receive Input MRST_3 SSC Master Receive Input T12HR_0 CCU6 Timer 12 Hardware Run Input CCPOS0_0 CCU6 Hall Input 0 TSIN0 Touch-sense Input 0 LINE0 LED Line 0 COUT61_1 Output of Capture/Compare Channel 1 9 V1.2, 2011-03 XC835/836 General Device Information Table 3 Pin Definitions and Functions for XC835/836 (cont’d) Symbol Pin Type Reset Function Number State TSSOP28/ DS024 P0.1 P0.2 P0.3 22/20 23/21 24/22 Data Sheet Hi-Z Hi-Z Hi-Z T0_0 Timer 0 Input CC61_1 Input/Output of Capture/Compare channel 1 MTSR_3 SSC Slave Receive Input MRST_2 SSC Master Receive Input/ Slave Transmit Output T13HR_0 CCU6 Timer 13 Hardware Run Input CCPOS1_0 CCU6 Hall Input 1 TSIN1 Touch-sense Input 1 LINE1 LED Line 1 T1_0 Timer 1 Input CC62_1 Input/Output of Capture/Compare channel 2 SCL_1 IIC Clock Line CCPOS2_0 CCU6 Hall Input 2 TSIN2 Touch-sense Input 2 LINE2 LED Line 2 CC60_1 Input/Output of Capture/Compare channel 0 SDA_1 IIC Data Line CTRAP_0 CCU6 Trap Input TSIN3 Touch-sense Input 3 LINE3 LED Line 3 10 V1.2, 2011-03 XC835/836 General Device Information Table 3 Pin Definitions and Functions for XC835/836 (cont’d) Symbol Pin Type Reset Function Number State TSSOP28/ DS024 P0.4 P0.5 11/9 10/8 Data Sheet PD Hi-Z T2EX_1 Timer 2 External Trigger Input SCK_0 SSC Clock Input/Output SCL_0 IIC Clock Line CTRAP_1 CCU6 Trap Input EXINT1_0 External Interrupt Input 1 TSIN4 Touch-sense Input 4 LINE4 LED Line 4 EXF2_0 Timer 2 Overflow Flag COL0_1 LED Column 0 COL3_2 LED Column 3 COLA_4 LED Column A RXD_0 UART Receive Input MTSR_0 SSC Master Transmit Output/ Slave Receive Input MRST_1 SSC Master Receive Input EXINT0_0 External Interrupt Input 0 TSIN5 Touch-sense Input 5 LINE5 LED Line 5 COUT62_1 Output of Capture/Compare Channel 2 TXD_4 UART Transmit Output COL1_1 LED Column 1 EXF2_3 Timer 2 Overflow Flag 11 V1.2, 2011-03 XC835/836 General Device Information Table 3 Pin Definitions and Functions for XC835/836 (cont’d) Symbol Pin Type Reset Function Number State TSSOP28/ DS024 P0.6 P0.7 9/7 PU 28/2 P1 Data Sheet Hi-Z I/O SPD_1 SPD Input/Output RXD_1 UART Receive Input SDA_0 IIC Data Line MTSR_1 SSC Slave Receive Input MRST_0 SSC Master Receive Input/ Slave Transmit Output EXINT0_1 External Interrupt Input 0 T2EX_0 Timer 2 External Trigger Input TSIN6 Touch-sense Input 6 LINE6 LED Line 6 TXD_0 UART Transmit Output COL2_1 LED Column 2 COLA_2 LED Column A SCL_3 IIC Clock Line TSIN7 Touch-sense Input 7 LINE7 LED Line 7 TXD_5 UART Transmit Output/ 2-wire UART BSL Transmit Output COUT63_0 Output of Capture/Compare Channel 3 COL3_1 LED Column 3 COLA_3 LED Column A Port 1 Port 1 is a bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, LEDTSCU, SPD, UART and Timer 2 12 V1.2, 2011-03 XC835/836 General Device Information Table 3 Pin Definitions and Functions for XC835/836 (cont’d) Symbol Pin Type Reset Function Number State TSSOP28/ DS024 P1.0 P1.1 P1.2 P1.3 P1.4 16/14 15/13 14/12 13/11 19/17 Data Sheet Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z SPD_2 SPD Input/Output RXD_2 UART Receive Input T2EX_2 Timer 2 External Trigger Input EXINT0_2 External Interrupt Input 0 COL0_0 LED Column 0 COUT60_0 Output of Capture/Compare Channel 0 TXD_1 UART Transmit Output CC60_0 Input/Output of Capture/Compare channel 0 COL1_0 LED Column 1 TXD_2 UART Transmit Output EXINT4 External Interrupt Input 4 COL2_0 LED Column 2 COUT61_0 Output of Capture/Compare channel 1 COUT63_1 Output of Capture/Compare channel 3 CC61_0 Input/Output of Capture/Compare channel 1 COL3_0 LED Column 3 EXF2_2 Timer 2 Overflow Flag EXINT5 External Interrupt Input 5 COL4 LED Column 4 COUT62_0 Output of Capture/Compare channel 2 COUT63_2 Output of Capture/Compare channel 3 13 V1.2, 2011-03 XC835/836 General Device Information Table 3 Pin Definitions and Functions for XC835/836 (cont’d) Symbol Pin Type Reset Function Number State TSSOP28/ DS024 P1.5 20/18 P2 P2.0 P2.1 Hi-Z I 8/6 7/5 Data Sheet CC62_0 Input/Output of Capture/Compare channel 2 COL5 LED Column 5 COLA_1 LED Column A Port 2 Port 2 is a general purpose input-only port. It can be used as inputs for A/D Converter and out of range comparator, CCU6, Timer 2, SSC and UART. Hi-Z Hi-Z CCPOS0_1 CCU6 Hall Input 0 T12HR_2 CCU6 Timer 12 Hardware Run Input T13HR_2 CCU6 Timer 13 Hardware Run Input T2EX_3 Timer 2 External Trigger Input T2_1 Timer 2 Input EXINT0_3 External Interrupt Input 0 AN0 Analog Input 0 / Out of range comparator channel 0 CCPOS1_1 CCU6 Hall Input 1 RXD_5 UART Receive Input MTSR_6 SSC Slave Receive Input T0_1 Timer 0 Input EXINT1_1 External Interrupt Input 1 AN1 Analog Input 1 / Out of range comparator channel 1 14 V1.2, 2011-03 XC835/836 General Device Information Table 3 Pin Definitions and Functions for XC835/836 (cont’d) Symbol Pin Type Reset Function Number State TSSOP28/ DS024 P2.2 P2.3 P2.4 P2.5 6/4 5/3 4/- 3/- Data Sheet Hi-Z Hi-Z Hi-Z Hi-Z CCPOS2_1 CCU6 Hall Input 2 T12HR_3 CCU6 Timer 12 Hardware Run Input T13HR_3 CCU6 Timer 13 Hardware Run Input SCK_3 SSC Clock Input/Output T1_1 Timer 1 Input EXINT2_0 External Interrupt Input 2 AN2 Analog Input 2 / Out of range comparator channel 2 CCPOS0_2 CCU6 Hall Input 0 CTRAP_2 CCU6 Trap Input T2_2 Timer 2 Input EXINT3 External Interrupt Input 3 AN3 Analog Input 3 / Out of range comparator channel 3 T12HR_5 CCU6 Timer 12 Hardware Run Input T13HR_5 CCU6 Timer 13 Hardware Run Input T2_3 Timer 2 Input AN4 Analog Input 4 / Out of range comparator channel 4 T12HR_7 CCU6 Timer 12 Hardware Run Input T13HR_7 CCU6 Timer 13 Hardware Run Input AN5 Analog Input 5 / Out of range comparator channel 5 15 V1.2, 2011-03 XC835/836 General Device Information Table 3 Pin Definitions and Functions for XC835/836 (cont’d) Symbol Pin Type Reset Function Number State TSSOP28/ DS024 P2.6 P2.7 2/- 1/- P3 P3.0 Hi-Z Hi-Z I/O 26/24 Data Sheet SCK_2 SSC Clock Input/Output EXINT6 External Interrupt Input 6 AN6 Analog Input 6 / Out of range comparator channel 6 RXD_6 UART Receive Input T2EX_6 Timer 2 External Trigger Input MTSR_7 SSC Slave Receive Input EXINT0_4 External Interrupt Input 0 AN7 Analog Input 7 / Out of range comparator channel 7 Port 3 Port 3 is a bidirectional general purpose I/O port. It can be used as alternate functions for IIC, LEDTSCU, UART, Timer 2, SSC, SPD and 32.768 kHz crystal pad. PU SCL_2 IIC Clock Line SCK_1 SSC Clock Input/Output EXINT2_1 External Interrupt Input 2 COL6 LED Column 6 XTAL4 32.768 kHz External Oscillator Output 16 V1.2, 2011-03 XC835/836 General Device Information Table 3 Pin Definitions and Functions for XC835/836 (cont’d) Symbol Pin Type Reset Function Number State TSSOP28/ DS024 P3.1 P3.2 25/23 PU 27/1 PU RXD_4 UART Receive Input RTCCLK RTC External Clock Input MTSR_4 SSC Master Transmit Output/ Slave Receive Input MRST_4 SSC Master Receive Input EXINT0_5 External Interrupt Input 0 COLA_0 LED Column A XTAL3 32.768 kHz External oscillator Input EXF2_1 Timer 2 Overflow Flag SPD_0 SPD Input/Output RXD_3 UART Receive Input/ UART BSL Receive Input SDA_2 IIC Data Line MTSR_5 SSC Slave Receive Input MRST_5 SSC Master Receive Input/ Slave Transmit Output EXINT0_6 External Interrupt Input 0 T2EX_7 Timer 2 External Trigger Input TXD_3 UART Transmit Output/ 1-wire UART BSL Transmit Output VDDP 12/10 – – I/O Port Supply (2.5 V - 5.5 V) VDDC 18/16 – – Core Supply Monitor (2.5 V) VSSP/ VSSC 17/15 – – I/O Port Ground/ Core Supply Ground Data Sheet 17 V1.2, 2011-03 XC835/836 General Device Information 2.5 Memory Organization The XC835/836 CPU operates in the following five address spaces: • • • • • 8 Kbytes of Boot ROM, Library ROM and User routines 256 bytes of internal RAM 256 bytes of XRAM (XRAM can be read/written as program memory or external data memory) A 128-byte Special Function Register area 4/8 Kbytes of Flash Figure 6 illustrates the memory address spaces of the 4 Kbyte Flash devices. Figure 7 illustrates the memory address spaces of the 8 Kbyte Flash devices. FFFF H XRAM 256 Bytes F100H F000H FFFF H XRAM 256 Bytes F100H F000H E000H Boot ROM 8 KBytes C000H B000H Flash Bank 0 4 KBytes 1) A000H Indirect Address Direct Address Internal RAM Special Function Registers FFH 80H 1000H 7FH Flash Bank 0 4 KBytes 40H 0000H Code Space 1) 0000H External Data Space Data Sheet In Debug Mode, this 64-byte address area is replaced by a 64-byte Monitor RAM. 00H Internal Data Space Physically one 4-Kbyte Flash bank, mapped to both address range . Figure 6 Internal RAM Memory Map User Mode Memory Map of XC835/836 with 4 Kbytes of Flash memory 18 V1.2, 2011-03 XC835/836 General Device Information FFFF H User BSL Flash Sector 64 Bytes2) XRAM 256 Bytes FFFF H FF80H FF40H F100H F000H XRAM 256 Bytes F100H F000H E000H Boot ROM 8 KBytes C000H B000H Flash Bank 1 4 KBytes 1) A000H Indirect Address Direct Address Internal RAM Special Function Registers FFH 2000H Flash Bank 1 4 KBytes 1) 80H 1000H 7FH Flash Bank 0 4 KBytes 40 H 0000H Code Space 0000H External Data Space Internal RAM In Debug Mode, this 64-byte address area is replaced by a 64-byte Monitor RAM. 00 H Internal Data Space 1) Physically one 4-Kbyte Flash bank, mapped to both address range . Flash Bank 1 is only available in 8-Kbyte Flash Variant. 2) User BSL Flash sector is only available in 8-Kbyte Flash Variant . Figure 7 Data Sheet Memory Map User Mode Memory Map of XC835/836 with 8 Kbytes of Flash memory 19 V1.2, 2011-03 XC835/836 General Device Information 2.6 JTAG ID JTAG ID register is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04H), and the same is also true immediately after reset. The JTAG ID register contents for the XC835/836 Flash devices are given in Table 4. Table 4 JTAG ID Summary Device Type Device Name JTAG ID Flash XC835*-2FG 101B A083H XC836*-2FR XC836*-1FR 101B B083H Note: The asterisk (*) above denotes all possible device configurations. Data Sheet 20 V1.2, 2011-03 XC835/836 General Device Information 2.7 Chip Identification Number The XC835/836 identity (ID) register is located at Page 1 of address B3H. The value of ID register is 59H. However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product and variant type information. Two methods are provided to read a device’s Chip Identification number: • • In-application subroutine, GET_CHIP_INFO Boot-loader (BSL) mode A Table 5 lists the Chip Identification numbers of XC835/836 device variants. Table 5 Chip Identification Number Product Variant Chip Identification Number XC835MT-2FG 59080001H XC836-2FR 59080060H XC836T-2FR 59080040H XC836M-2FR 59080020H XC836M-1FR 59080120H XC836MT-2FR 59080000H XC836MT-1FR 59080100H Data Sheet 21 V1.2, 2011-03 XC835/836 Electrical Parameters 3 Electrical Parameters Chapter 3 provides the characteristics of the electrical parameters which are implementation-specific for the XC835/836. 3.1 General Parameters The general parameters are described here to aid the users in interpreting the parameters mainly in Section 3.2 and Section 3.3. 3.1.1 Parameter Interpretation The parameters listed in this section represent partly the characteristics of the XC835/836 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the “Symbol” column: • • CC – These parameters indicate Controller Characteristics, which are distinctive features of the XC835/836 and must be regarded for a system design. SR – These parameters indicate System Requirements, which must be provided by the microcontroller system in which the XC835/836 is designed in. Data Sheet 22 V1.2, 2011-03 XC835/836 Electrical Parameters 3.1.2 Absolute Maximum Rating Maximum ratings are the extreme limits to which the XC835/836 can be subjected to without permanent damage. Table 6 Absolute Maximum Rating Parameters Parameter Symbol TA Storage temperature TST Junction temperature TJ Voltage on power supply pin with VDDP respect to VSS Maximum current per pin for IM Ambient temperature Limit Values Unit Notes Min. Max. -40 125 °C under bias -65 150 °C – -40 150 °C under bias -0.5 6 V -115 115 mA -10 10 mA – 50 mA P1[3:0] Input current on any pin during overload condition IIN Absolute sum of all input currents Σ|IIN| during overload condition Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the voltage on VDDP pin with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Data Sheet 23 V1.2, 2011-03 XC835/836 Electrical Parameters 3.1.3 Operating Condition The following operating conditions must not be exceeded in order to ensure correct operation of the XC835/836. All parameters mentioned in the following tables refer to these operating conditions, unless otherwise noted. Table 7 Operating Condition Parameters Parameter Symbol Digital power supply voltage VDDP Digital core supply voltage2) VDDC CPU Clock Frequency Ambient temperature fCCLK TA Limit Values Min. Max. Unit Notes/ Conditions 3.0 5.5 V 2.5 3.0 V 2.3 2.7 V 22.5 25.6 MHz typ. 24 MHz 7.5 8.5 MHz typ. 8 MHz -40 85 °C 1) SAF-XC835/836... 1) In this voltage range, limited operations are available in active mode. Operations in power save modes are fully supported. 2) VDDC is supplied by the on-chip EVR. The limits are verified by design and production testing. Data Sheet 24 V1.2, 2011-03 XC835/836 Electrical Parameters 3.2 DC Parameters The electrical characteristics of the DC Parameters are detailed in this section. 3.2.1 Input/Output Characteristics Table 8 provides the characteristics of the input/output pins of the XC835/836. Table 8 Input/Output Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. Unit Test Conditions Max. Output low voltage on VOLP port pins (all except P1) CC – 1.0 V – 0.4 V Output low voltage on VOLP1 P1[3:0] CC – 1.0 V – 0.32 V – 0.4 V CC – 1.0 V – 0.4 V – V VDDP - – V VOHP1 CC VDDP - – V IOL = 25 mA (5 V) IOL = 13 mA (3.3 V) IOL = 10 mA (5 V) IOL = 5 mA (3.3 V) IOL = 50 mA (5 V) IOL = 25 mA (3.3 V) IOL = 20 mA (5 V) IOL = 10 mA (3.3 V ) IOL = 50 mA (5 V) IOL = 25 mA (3.3 V) IOL = 20 mA (5 V) IOL = 10 mA (3.3 V) IOH = -15 mA (5 V) IOH = -8 mA (3.3 V ) IOH = -5 mA (5 V) IOH = -2.5 mA (3.3 V) IOH = -20 mA (5 V) VDDP - – V IOH = -25 mA (3.3 V) VDDP - – V IOH = -10 mA (3.3 V) VOHP2 CC VDDP - – V VDDP - – V IOH = -30 mA (5 V) IOH = -16 mA (3.3 V) IOH = -10 mA (5 V) IOH =- 5 mA (3.3 V) Output low voltage on VOLP2 P1[5:4] Output high voltage on port pins (all except P1) VOHP CC VDDP 1.0 0.4 Output high voltage on P1[3:0] 0.32 1.0 0.4 Output high voltage on P1[5:4] 1.0 0.4 Data Sheet 25 V1.2, 2011-03 XC835/836 Electrical Parameters Table 8 Input/Output Characteristics (Operating Conditions apply) (cont’d) Parameter Symbol VILP SR Input high voltage on VIHP port pins SR Input low voltage on port pins 1) Input Hysteresis HYS Limit Values Min. Max. – 0.3 × Unit Test Conditions V CMOS Mode (5 & 3.3 V) – V CMOS Mode (5 V & 3.3 V) CC 0.08 × – V CMOS Mode (5 V) V CMOS Mode (3.3 V) V CMOS Mode (2.5 V) VIH,min (5 V) VIL,max (5 V) VIH,min (3.3 V) VIL,max (3.3 V) VIL,max (5 V) VIH,min (5 V) VIL,max (3.3 V) VIH,min (3.3 V) 0 < VIN < VDDP, TA ≤ 125 °C VDDP 0.7 × VDDP VDDP 0.03 × – VDDP 0.01 × – VDDP Pull-up current Pull-down current IPUP IPDP SR SR – -20 µA -150 – µA – -5 µA -100 – µA – 20 µA 150 – µA – 5 µA 100 – µA Input leakage current IOZP on port pins2) (all except P1) CC -1 1 µA Input leakage current IOZP1 on P1[3:0]2) CC -3 3 µA 0 < VIN < VDDP, TA ≤ 125 °C Input leakage current IOZP2 on P1[5:4]2) CC -2 2 µA 0 < VIN < VDDP, TA ≤ 125 °C Overcurrent threshold per pin for P1[3:0]3) |IOCP1| SR 60 115 mA VDDP = 5 V Overload current on any pin IOVP SR -5 5 mA 4) Absolute sum of overload currents Σ|IOV| SR – 25 mA 4) Data Sheet 26 V1.2, 2011-03 XC835/836 Electrical Parameters Table 8 Input/Output Characteristics (Operating Conditions apply) (cont’d) Parameter Symbol Limit Values Min. Max. Unit Test Conditions Voltage on any pin VPO during VDDP power off SR – 0.3 V 5) Maximum current per IMP pin (excluding P1, VDDP and VSS) SR -15 25 mA – Maximum current per IMP1A pin for P1[3:0] SR -50 50 mA – Maximum current per IMP1B pin for P1[5:4] SR -30 50 mA – 130 mA 4) 130 mA 4) Maximum current into VDDP IMVDDP SR – Maximum current out IMVSS of VSS SR – 1) Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise. 2) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. 3) Over current detection is available for 5V application only. 4) Not subjected to production test, verified by design/characterization. 5) Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when VDDP is powered off. Data Sheet 27 V1.2, 2011-03 XC835/836 Electrical Parameters 3.2.2 Supply Threshold Characteristics Table 9 provides the characteristics of the supply threshold in the XC835/836. 5.0V VDDP VDDPPW/VDDPBOPD VDDPBOA VDDPSRR 2.5V VDDC VDDCPW VDDCBOA VDDCBOPD VDDCSRR VDDCRDR Figure 8 Supply Threshold Parameters Table 9 Supply Threshold Parameters (Operating Conditions apply) Parameters Symbol Limit Values Unit Min. Typ. Max. VDDP prewarning voltage1)2) VDDP brownout voltage in active mode2)3) VDDP brownout voltage in all power down VDDPPW CC 3.0 3.6 4.5 V VDDPBOA CC 2.65 2.75 2.87 V VDDPBOPD 3.0 3.6 4.5 V VDDP system reset release voltage2)4) VDDC prewarning voltage2)5) VDDC brownout voltage in active mode2) VDDC brownout voltage in power down mode2) VDDC system reset release voltage2)4) VDDPSRR VDDCPW VDDCBOA VDDCBOPD VDDCSRR VDDCRDR mode2)3) RAM data retention voltage CC 2.7 2.8 2.92 V CC 2.3 2.4 2.48 V CC 2.25 2.3 2.42 V CC 1.35 1.5 1.95 V CC 2.28 2.3 2.47 V CC 1.1 – – V 1) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode. Detection should be disabled for VDDP less than maximum of VDDPPW. 2) This parameter has a hysteresis of 50 mV. 3) Detection is enabled via SDCON register. Detection must be disabled for application with VDDP less than the specified values. 4) VDDPSRR and VDDCSRR must be met before the system reset is released. 5) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode. Data Sheet 28 V1.2, 2011-03 XC835/836 Electrical Parameters 3.2.3 ADC Characteristics The values in Table 10 are given for an analog power supply of 5.0 V. The ADC can be used with an analog power supply down to 3 V. But in this case, analog parameters may show a reduced performance. In the reduced voltage mode (2.5 V < VDDP < 3 V), the ADC is not recommended to be used. Table 10 ADC Characteristics (Operating Conditions apply; VDDP = 5 V; fADCI <= 12 MHz) Parameter Symbol Limit Values Min. Typ. Max. Unit Test Conditions / Remarks Analog reference voltage VAREF – VDDP – V Connect internally to VDDP Analog reference ground VAGND – VSSP – V Connect internally to VSSP Alternate analog reference ground VAGNDALT SR VSSP - – 2.51) V Connect to AN0 in differential mode, See Figure 9. Internal voltage reference VINTREF 1.23 1.28 V 4) VAREF V – 16 MHz internal analog clock µs – CC See Section 3.2.3.1 µs – SR – µs 2) 0.1 Analog input voltage VAIN range ADC clock fADCI Sample time tS tC Set-up time between tSETUP Conversion time SR 1.19 SR VAGND – 8 – CC (2 + INPCR0.STC) × tADCI 35 – conversions using internal voltage reference Data Sheet 29 V1.2, 2011-03 XC835/836 Electrical Parameters Table 10 ADC Characteristics (Operating Conditions apply; VDDP = 5 V; fADCI <= 12 MHz) (cont’d) Parameter Symbol Limit Values Min. Total unadjusted error TUE3) Unit Test Conditions / Remarks 8-bit conversion with internal reference4) Typ. Max. CC – – ±1 LSB8 – – +4/-2 LSB10 10-bit conversion with internal reference4)5) – – +14/-2 LSB12 12-bit conversion using the Low Pass Filter 4) EADNL CC – – +1.5/ -1 LSB 10-bit conversion4) Integral Nonlinearity EAINL CC – – ±1.5 LSB 10-bit conversion4) Differential Nonlinearity Offset EAOFF CC – +4 – LSB 10-bit conversion4) Gain EAGAIN CC – -4 – LSB 10-bit conversion4) Switched capacitance at an analog input CAINSW CC – 2 3 pF 4)6) CC – – 12 pF 4)6) CC – 1.5 2 kΩ 4) Total capacitance at CAINT an analog input Input resistance of an analog input RAIN 1) 1.2 V at VDDP = 3.0 V. 2) Not subject to production test, verified at CPU clock (fSCLK, CCLK ) = 8 MHz, TA = + 25 °C and VDDP = 5 V. 3) TUE is tested at VAREF = VDDP = 5.0 V and CPU clock (fSCLK, CCLK ) = 8 MHz. 4) Not subject to production test, verified by design/characterization. 5) If a reduced positive reference voltage is used, TUE will increase. If the positive reference is reduced by a factor of K, the TUE will increased by 1/K. Example:K = 0.8, 1/K = 1.25; 1.25 X TUE = 2.5 LSB10. 6) The sampling capacity of the conversion C-Network is pre-charged to VAREF/2 before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than VAREF/2. Data Sheet 30 V1.2, 2011-03 XC835/836 Electrical Parameters V1.2VREF ADC kernel va_altref va_altgnd V1.2VGND AD converter request control conversion control AIN CH0 AIN CH1 ... result handling AIN CH7 Interrupt generation Figure 9 Differential like measurement with internal 1.2V voltage reference, and CH0 gnd. Analog Input Circuitry R EXT VAIN R AIN, On ANx C AINSW C EXT C AINT - C AINSW VSSP Figure 10 Data Sheet ADC Input Circuits 31 V1.2, 2011-03 XC835/836 Electrical Parameters 3.2.3.1 ADC Conversion Timing Conversion time, tC = tADC × (1 + r × (3 + n + STC)), where • • • • • r = CTC + 3, CTC = Conversion Time Control (GLOBCTR.CTC), STC = Sample Time Control (INPCR0.STC), n = 8 or 10 (for 8-bit and 10-bit conversion respectively), tADC = 1 / fADC 3.2.3.2 Out of Range Comparator Characteristics Table 11 below shows the Out of Range Comparator characteristics. Table 11 Out of Range Comparator Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Unit Remarks Min. Typ. Max. DC Switching Level VSenseDC SR 60 125 270 mV Above VDDP DC Hysteresis VSenseHys tSensePW tSenseSD tSensePSL CC 30 – – mV 1) SR 300 – – ns ANx > VDDP1) CC – – 400 ns ANx >= VDDP + 350 mV1) SR – 250 – mV @ 300 nsec1) SR – 60 – mV @ 800 usec1) Pulse Width Switching Delay Pulse Switching Level 1) Not subject to production test, verified by design/characterization. Data Sheet 32 V1.2, 2011-03 XC835/836 Electrical Parameters 3.2.4 Flash Memory Parameters The XC835/836 is delivered with all Flash sectors erased (read all zeros). The data retention time of the XC835/836’s Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed. Note: Flash memory parameters are not subject to production test but verified by design and/or characterization. Table 12 Flash Timing Parameters (Operating Conditions apply) Parameter Symbol Limit Values Unit Remarks Min. Typ. Max. Read access time (per byte) tACC CC – 125 – ns Programming time (per wordline) tPR CC – 2.2 – ms Erase time tER (one or more sectors) CC – 120 – ms Flash wait states Table 13 NWSFLASH CC 0 CPU clock = 8 MHz 1 CPU clock = 24 MHz Flash Data Retention and Endurance (Operating Conditions apply) Retention Endurance1) Size 20 years 1,000 cycles up to 8 Kbytes 5 years 10,000 cycles 1 Kbyte 2 years 70,000 cycles 512 bytes 2 years 100,000 cycles 128 bytes Remarks 1) One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in Table 13 is valid only if the following conditions are fulfilled: - the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles. - the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles. - the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles. Data Sheet 33 V1.2, 2011-03 XC835/836 Electrical Parameters Table 14 Emulated Flash Data Retention and Endurance based on EEPROM Emulation ROM Library (Operating Conditions apply) Retention Endurance1) Emulation Size 2 years 1,600,000 cycles 31 bytes 2 years 1,400,000 cycles 62 bytes 2 years 1,200,000 cycles 93 bytes 2 years 1,000,000 cycles 124 bytes Remarks 1) These values show the maximum endurance. Maximum endurance is the maximum possible unique data write if each data update is only 31 bytes. Minimum endurance cycle is the maximum possible unique data write if each data update is the same as the emulation size. The minimum endurance cycle can be calculated using the formulae [(max. endurance)*(31)/(emulation size)]. Data Sheet 34 V1.2, 2011-03 XC835/836 Electrical Parameters 3.2.5 Power Supply Current Table 15 provides the characteristics of the power supply current in the XC835/836. Table 15 Power Consumption Parameters1) 2)(Operating Conditions apply) Parameter Symbol Limit Values Typ. Active Mode Idle Mode Power Down Mode 1 Power Down Mode 2 Power Down Mode 3 Power Down Mode 4 IDDPA IDDPI IPDP1 IPDP2 IPDP3 IPDP4 Unit Test Condition Max. 23 28 mA 5 V / 3.3 V 3) 16 20 mA 5 V / 3.3 V 4) – 5 mA 2.5 V5) 18 25 mA 5 V / 3.3 V 6) – 5 mA 2.5 V 5) 3 5 µA TA = 25° C7) – 28 µA TA = 85° C7)8)9) 6 8 µA TA = 25° C7)8) – 31 µA TA = 85° C7)8)9) 5 7 µA TA = 25° C7)8) – 30 µA TA = 85° C7)8)9) 5 7 µA TA = 25° C7) – 30 µA TA = 85° C7)8)9) 1) The typical IDDP values are measured at TA = + 25 °C and VDDP = 5 V and 3.3 V. 2) The maximum IDDC values are measured under worst case conditions (TA = + 125 °C and VDDC = 5 V). 3) IDDP (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz (CLKMODE=0). 4) IDDP (active mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz (CLKMODE=1). 5) This value is based on the maximum load capacity of EVR during VDDP = 2.5 V. Not subject to production test, verified by design/characterisation. 6) IDDPI (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz (CLKMODE=0). 7) IPDP1, IPDP2, IPDP3 and IPDP4 is measured at 5 V and 3.3 V with: wake-up port is programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs. 8) Not subject to production test, verified by design/characterisation. 9) IPDP1, IPDP2, IPDP3 and IPDP4 has a maximum values of 120 uA at TA = + 125 °C. Data Sheet 35 V1.2, 2011-03 XC835/836 Electrical Parameters Table 16 shows the maximum active current within the device in the reduced voltage condition of 2.5 V < VDDP < 3.0 V. The active current consumption needs to be below the specified values as according to the VDDP voltage. If the conditions are not met, a brownout reset may be triggered. Table 16 Active Current Consumption in Reduced Voltage Condition 2.5 V VDDP Maximum active current 7 mA 2.6 V 2.7 V 2.8 V 13 mA 20 mA 25 mA Table 17 provides the active current consumption of some modules operating at 8 MHz active mode, 3 V power supply at 25° C. The typical values shown are used as a reference guide for device operating in reduced voltage conditions. Table 17 Typical Active Current Consumption1) 2) Active Current Consumption Symbol Baseload current3) ICPUDDC 6900 µA Modules including Core, memories, UART, T0, T1 and EVR. Disable ADC analog (GLOBCTR.ANON = 0). ADC4) IADCDDC 3760 µA Set PMCON1.ADC_DIS to 0 and GLOBECTR. ANON to 1 SSC5) ISSCDDC ICCU6DDC IT2DDC IMDUDDC ICORDICDDC ILEDDDC IIICDDC 460 µA Set PMCON1.SSC_DIS to 0 3320 µA Set PMCON1.CCU_DIS to 0 200 µA Set PMCON1.T2_DIS to 0 1260 µA Set PMCON1.MDU_DIS to 0 1880 µA Set PMCON1.CDC_DIS to 0 850 µA Set PMCON1.LTS_DIS to 0 580 µA Set PMCON1.IIC_DIS to 0 CCU66) Timer 27) MDU8) CORDIC9) LEDTSCU10) 11) IIC Limit Values Unit Test Condition Typ. 1) Modules that are controllable by programming the register PMCON1. 2) Not subject to production test, verified by design/characterisation. 3) Baseload current is measured when the device is running in user mode with an endless loop in the flash memory. All modules in register PMCON1 are disabled. 4) ADC active current is measured with: module enable, ADC analog clock at 8MHz, running in parallel conversion request in autoscan mode for 4 channels 5) SSC active curremt is measured with: module enabled, running in loop back mode at a baud rate of 1 MBaud 6) CCU6 active current is measured with: module enabled, all timers running in 8 MHz, 6 PWM outputs are generated. Data Sheet 36 V1.2, 2011-03 XC835/836 Electrical Parameters 7) Timer 2 active current is measured with: module enabled, timer running in 8 MHz 8) MDU active current is measured with: module enabled, division operation was performed. 9) CORDIC active mode is measured with: module enabled, circular mode was selected for the calculation. 10) LEDTSCU active curent is measured with: module enabled, counter running in 8 MHz. 11) IIC active current is measured with: module enabled, performing a master transmit with the master clock running at 400 KHz. Data Sheet 37 V1.2, 2011-03 XC835/836 Electrical Parameters 3.3 AC Parameters The electrical characteristics of the AC Parameters are detailed in this section. 3.3.1 Testing Waveforms The testing waveforms for rise/fall time, output delay and output high impedance are shown in Figure 11, Figure 12 and Figure 13. VDDP 90% 10% 10% VSS Figure 11 90% tF tR Rise/Fall Time Parameters VDDP VDDE / 2 Test Points VDDE / 2 VSS Figure 12 Testing Waveform, Output Delay VLoad + 0.1 V VLoad - 0.1 V Figure 13 Data Sheet Timing Reference Points VOH - 0.1 V VOL - 0.1 V Testing Waveform, Output High Impedance 38 V1.2, 2011-03 XC835/836 Electrical Parameters 3.3.2 Output Rise/Fall Times Table 18 provides the characteristics of the output rise/fall times in the XC835/836. Table 18 Output Rise/Fall Times Parameters (Operating Conditions apply) Parameter Symbol Rise/fall times on High Current Pad Type A1)2) tHCPR, tHCPF Limit Values Unit Test Conditions Min. Max. – 15 ns 20 pF @ Fast edge (5 V) 3). – 150 ns 20 pF @ Slow Edge (5 V)3). – 25 ns 20 pF @ Fast edge (3.3 V)4). – 300 ns 20 pF @ Slow edge (3.3 V)4). Rise/fall times on High Current Pad Type B1)2) tR, tF – 10 ns 20 pF3)4) (5 V & 3.3 V). Rise/fall times on Standard Pad1)2) tR, tF – 10 ns 20 pF3)4) (5 V & 3.3 V). 1) Rise/Fall time parameters are taken with 10% - 90% of supply. 2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation. 3) Additional rise/fall time valid for CL = 20 pF - CL = 100 pF @ 0.125 ns/pF at 5 V supply voltage. 4) Additional rise/fall time valid for CL = 20 pF - CL = 100 pF.@ 0.225 ns/pF at 3.3 V supply voltage. VDDC 90% VSS 90% 10% 10% tF tR Figure 14 Data Sheet Rise/Fall Times Parameters 39 V1.2, 2011-03 XC835/836 Electrical Parameters 3.3.3 Oscillator Timing and Wake-up Timing Table 19 provides the characteristics of the power-on reset, PLL and wake-up timings in the XC835/836. Table 19 Power-On Reset Wake-up Timing1) (Operating Conditions apply) Parameter Symbol Limit Values Unit Test Conditions Min. Typ. Max. t48MOSCST CC – – 13 µs 75 KHz Oscillator start- t75KOSCST CC – up time – 800 µs t32KOSCST CC – – 1 s 160 – µs 48 MHz Oscillator start-up time 32 KHz external oscillator start-up time2) Flash initialization time tFINT CC – 1) Not subject to production test, verified by design/characterisation. 2) The external circuitry has to be optimized by the user and checked for negative resistance as recommended and specified by the crystal supplier. Data Sheet 40 V1.2, 2011-03 XC835/836 Electrical Parameters 3.3.4 On-Chip Oscillator Characteristics Table 20 provides the characteristics of the 48 MHz oscillator in the XC835/836. Table 20 48 MHz Oscillator Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. Nominal frequency Typ. Max. fNOM CC -0.5 % 48 Long term ∆fLT frequency deviation CC Short term ∆fST CC frequency deviation (over VDDC) Unit Test Conditions +0.5% MHz under nominal conditions1) after trimming -2.0 – 3.0 % with respect to fNOM, over lifetime and temperature (0 °C to 85 °C) -4.5 – 4.5 % with respect to fNOM, over lifetime and temperature (-40 °C to 125 °C) -1 – 1 % with respect to fNOM, within one LIN message (< 10 ms … 100 ms) 1) Nominal condition: VDDC = 2.5 V, TA = + 25°C. Data Sheet 41 V1.2, 2011-03 XC835/836 Electrical Parameters Table 21 provides the characteristics of the 75 kHz oscillator in the XC835/836. Table 21 75 kHz Oscillator Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Unit Test Conditions Min. Typ. Max. Nominal frequency fNOM CC -1% 75 +1% KHz under nominal conditions1) after trimming CC -4.5 – 4.5 % with respect to fNOM, over lifetime and temperature (-40 °C to 125 °C) Short term frequency ∆fST CC deviation -1.5 – 1.5 % with respect to fNOM, over Long term frequency ∆fLT deviation VDDC 1) Nominal condition: VDDC = 2.5 V, TA = + 25°C. Data Sheet 42 V1.2, 2011-03 XC835/836 Electrical Parameters 3.3.5 SSC Timing 3.3.5.1 SSC Master Mode Timing Table 22 provides the SSC master mode timing in the XC835/836. Table 22 SSC Master Mode Timing1) (Operating Conditions apply; CL = 50 pF) Parameter Symbol Limit Values Min. Max. Unit CC 2 * TSSC2) – ns MTSR delay from SCLK t0 t1 CC 0 3 ns MRST set-up to SCLK t2 SR 32 – ns MRST hold from SCLK t3 SR 0 – ns SCLK clock period 1) Not subject to production test, verified by design/characterisation. 2) TSSCmin = TCPU = 1/fCPU. When fCPU = 24 MHz, t0 = 83.3 ns. TCPU is the CPU clock period. t0 SCLK1) t1 t1 MTSR1) t2 t3 Data valid MRST1) t1 1) This timing is based on the following setup: CON.PH = CON.PO = 0. SSC_Tmg1 Figure 15 Data Sheet SSC Master Mode Timing 43 V1.2, 2011-03 XC835/836 Electrical Parameters 3.3.5.2 SSC Slave Mode Timing Table 23 provides the SSC slave mode timing in the XC835/836. Table 23 SSC Slave Mode Timing1) (Operating Conditions apply; CL = 50 pF) Parameter Symbol Limit Values Min. SR 4 * TSSC MRST delay from SCLK t0 t1 CC MTSR set-up to SCLK t2 MTSR hold from SCLK t3 SCLK clock period Unit Max. 2) – ns 0 29 ns SR 32 – ns SR 0 – ns 1) Not subject to production test, verified by design/characterisation. 2) TSSCmin = TCPU = 1/fCPU. When fCPU = 24 MHz, t0 = 166.7 ns. TCPU is the CPU clock period. t0 SCLK1) t2 MTSR1) t3 Data Valid t1 MRST1) 1) Figure 16 Data Sheet This timing is based on the following setup : CON.PH = CON.PO = 0. SSC Slave Mode Timing 44 V1.2, 2011-03 XC835/836 Electrical Parameters 3.3.6 SPD Timing The SPD interface will work with standard SPD tools having a sample/output clock frequency deviation of +/- 5% or less. For further details please refer to application note AP24004 in section SPD Timing Requirements. Note: These parameters are no subject to product test but verified by design and/or characterization. Note: Operating Conditions apply. Data Sheet 45 V1.2, 2011-03 XC835/836 Package and Quality Declaration 4 Package and Quality Declaration Chapter 4 provides the information of the XC835/836 package and reliability section. 4.1 Package Parameters Table 24 provides the thermal characteristics of the packages used in XC835 and XC836 respectively. Table 24 Parameter Thermal Characteristics of the Packages Symbol Limit Values Min. Thermal resistance junction RTJC case1) Thermal resistance junction RTJL lead1) Unit Package Types Max. CC - 30.8 K/W PG-DSO-24-1 - 27.0 K/W PG-TSSOP-28-1 - 20.2 K/W PG-TSSOP-28-12 CC - 30.5 K/W PG-DSO-24-1 - 195.3 K/W PG-TSSOP-28-1 - 41 K/W PG-TSSOP-28-12 1) The thermal resistances between the case and the ambient (RTCA) , the lead and the ambient (RTLA) are to be combined with the thermal resistances between the junction and the case (RTJC), the junction and the lead (RTJL) given above, in order to calculate the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCA), the lead and the ambient (RTLA) depend on the external system (PCB, case) characteristics, and are under user responsibility. The junction temperature can be calculated using the following equation: TJ=TA+RTJA × PD, where the RTJA is the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from the upper four partial thermal resistances, by a) simply adding only the two thermal resistances (junction lead and lead ambient), or b) by taking all four resistances into account, depending on the precision needed. Data Sheet 46 V1.2, 2011-03 XC835/836 Package and Quality Declaration 4.2 Package Outline Figure 17 and Figure 18 shows the package outlines of the XC835 (DSO-24-1) and XC836 (TSSOP-28-1 and TSSOP-28-12) devices respectively. Figure 17 Data Sheet PG-DSO-24-1 Package Outline 47 V1.2, 2011-03 XC835/836 Package and Quality Declaration Figure 18 Data Sheet PG-TSSOP-28-1 Package Outline 48 V1.2, 2011-03 XC835/836 Package and Quality Declaration Figure 19 Data Sheet PG-TSSOP-28-12 Package Outline 49 V1.2, 2011-03 XC835/836 Package and Quality Declaration 4.3 Quality Declaration Table 25 shows the characteristics of the quality parameters in the XC835/836. Table 25 Quality Parameters Parameter Symbol Limit Values Unit Notes Min. Max. - 1500 hours TJ = 150°C - 15000 hours TJ = 110°C - 1500 hours TJ = -40°C - 131400 hours TJ = 27°C ESD susceptibility VHBM according to Human Body Model (HBM) - 2000 V Conforming to EIA/JESD22A114-B2) VCDM - 500 V Conforming to JESD22-C101-C2) Operation Lifetime when the device is used at the three stated TJ1) tOP1 Operation Lifetime when the device is used at the stated TJ1) tOP2 ESD susceptibility according to Charged Device Model (CDM) pins 1) This lifetime refers only to the time when device is powered-on. 2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation. Data Sheet 50 V1.2, 2011-03 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG