TI SN74CBT3251DBQR

SCDS019L − MAY 1995 − REVISED JANUARY 2004
D 5-Ω Switch Connection Between Two Ports
D TTL-Compatible Input Levels
D, DB, DBQ, OR PW PACKAGE
(TOP VIEW)
3
14
4
13
5
12
6
11
7
10
8
9
VCC
B5
B6
B7
B8
S0
S1
S2
B3
B2
B1
A
NC
OE
NC − No internal connection
VCC
15
1
16
15 B5
14 B6
2
3
13 B7
12 B8
4
5
11 S0
10 S1
6
7
8
9
S2
16
2
B4
1
GND
B4
B3
B2
B1
A
NC
OE
GND
RGY PACKAGE
(TOP VIEW)
NC − No internal connection
description/ordering information
The SN74CBT3251 is a 1-of-8 high-speed TTL-compatible FET multiplexer/demultiplexer. The low on-state
resistance of the switch allows connections to be made with minimal propagation delay.
When output enable (OE) is low, the SN74CBT3251 is enabled. S0, S1, and S2 select one of the B outputs for
the A-input data.
ORDERING INFORMATION
QFN − RGY
TOP-SIDE
MARKING
Tape and reel
SN74CBT3251RGYR
Tube
SN74CBT3251D
Tape and reel
SN74CBT3251DR
SSOP − DB
Tape and reel
SN74CBT3251DBR
CU251
SSOP (QSOP) − DBQ
Tape and reel
SN74CBT3251DBQR
CU251
Tube
SN74CBT3251PW
Tape and reel
SN74CBT3251PWR
SOIC − D
−40°C
85°C
−40
C to 85
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
TSSOP − PW
CU251
CBT3251
CU251
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2004, Texas Instruments Incorporated
!"# $ %&'# "$ (&)*%"# +"#',
+&%#$ %! # $('%%"#$ (' #-' #'!$ '."$ $#&!'#$
$#"+"+ /""#0, +&%# (%'$$1 +'$ # '%'$$"*0 %*&+'
#'$#1 "** (""!'#'$,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCDS019L − MAY 1995 − REVISED JANUARY 2004
FUNCTION TABLE
(each multiplexer/demultiplexer)
INPUTS
FUNCTION
OE
S2
S1
S0
L
L
L
L
A port = B1 port
L
L
L
H
A port = B2 port
L
L
H
L
A port = B3 port
L
L
H
H
A port = B4 port
L
H
L
L
A port = B5 port
L
H
L
H
A port = B6 port
L
H
H
L
A port = B7 port
L
H
H
H
A port = B8 port
H
X
X
X
Disconnect
logic diagram (positive logic)
5
4
A
B1
3
B2
2
B3
1
B4
15
B5
14
B6
13
B7
12
OE
7
11
S0
10
S1
S2
2
9
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
B8
SCDS019L − MAY 1995 − REVISED JANUARY 2004
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Input clamp current, IK (VI/O < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Package thermal impedance, θJA (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
(see Note 2): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82°C/W
(see Note 2): DBQ package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90°C/W
(see Note 2): PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W
(see Note 3): RGY package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
3. The package thermal impedance is calculated in accordance with JESD 51-5.
recommended operating conditions (see Note 4)
MIN
MAX
VCC
VIH
Supply voltage
4
5.5
High-level control input voltage
2
VIL
TA
Low-level control input voltage
Operating free-air temperature
−40
UNIT
V
V
0.8
V
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VIK
II
VCC = 4.5 V,
VCC = 5.5 V,
II = −18 mA
VI = 5.5 V or GND
ICC
∆ICC§
Control inputs
VCC = 5.5 V,
VCC = 5.5 V,
IO = 0,
One input at 3.4 V,
Ci
Control inputs
VI = 3 V or 0
B port
TYP‡
VI = VCC or GND
Other inputs at VCC or GND
MAX
UNIT
−1.2
V
±1
µA
3
µA
2.5
mA
3.5
A port
Cio(OFF)
MIN
pF
17.5
pF
VO = 3 V or 0,
OE = VCC
VCC = 4 V,
TYP at VCC = 4 V
VI = 2.4 V,
II = 15 mA
14
20
II = 64 mA
II = 30 mA
5
7
VI = 0
5
7
ron¶
VCC = 4.5 V
4
Ω
VI = 2.4 V,
II = 15 mA
10
15
‡ All typical values are at VCC = 5 V (unless otherwise noted), TA = 25°C.
§ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.
¶ Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined
by the lower of the voltages of the two (A or B) terminals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCDS019L − MAY 1995 − REVISED JANUARY 2004
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
VCC = 4 V
VCC = 5 V
± 0.5 V
MIN
MIN
FROM
(INPUT)
TO
(OUTPUT)
tpd†
A or B
B or A
tpd
S
A
6
PARAMETER
ten
tdis
MAX
UNIT
MAX
0.35
0.25
ns
2
5.5
ns
S
B
6.4
1.5
5.6
OE
A or B
6.4
1.6
5.8
S
B
6.8
1.9
6.4
OE
A or B
6
2.3
6.2
ns
ns
† The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when
driven by an ideal voltage source (zero output impedance).
PARAMETER MEASUREMENT INFORMATION
7V
500 Ω
From Output
Under Test
S1
Open
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
7V
Open
3V
Output
Control
LOAD CIRCUIT
1.5 V
1.5 V
0V
tPZL
3V
Input
1.5 V
1.5 V
0V
tPLH
1.5 V
3.5 V
1.5 V
tPZH
tPHL
VOH
Output
Output
Waveform 1
S1 at 7 V
(see Note B)
tPLZ
1.5 V
VOL
Output
Waveform 2
S1 at Open
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH
VOH − 0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
30-Aug-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74CBT3251D
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
TBD
Lead/Ball Finish
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251DBLE
OBSOLETE
SSOP
DB
16
SN74CBT3251DBQR
ACTIVE
SSOP/
QSOP
DBQ
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1YEAR
SN74CBT3251DBQRE4
ACTIVE
SSOP/
QSOP
DBQ
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1YEAR
SN74CBT3251DBR
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251DBRE4
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251DE4
ACTIVE
SOIC
D
16
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251DR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251DRE4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251PW
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251PWE4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251PWLE
OBSOLETE
TSSOP
PW
16
TBD
Call TI
SN74CBT3251PWR
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251PWRE4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBT3251RGYR
ACTIVE
QFN
RGY
16
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1YEAR
40
Call TI
MSL Peak Temp (3)
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
30-Aug-2005
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated