TI SN74CBTLV3257DGVR

SCDS040I − DECEMBER 1997 − REVISED OCTOBER 2003
D 5-Ω Switch Connection Between Two Ports
D Rail-to-Rail Switching on Data I/O Ports
D Ioff Supports Partial-Power-Down Mode
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
Operation
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
OE
4B1
4B2
4A
3B1
3B2
3A
1B1
1B2
1A
2B1
2B2
2A
VCC
1
1
16
15 OE
14 4B1
2
3
13 4B2
12 4A
4
5
11 3B1
10 3B2
6
7
8
9
3A
S
1B1
1B2
1A
2B1
2B2
2A
GND
S
RGY PACKAGE
(TOP VIEW)
D, DBQ, DGV, OR PW PACKAGE
(TOP VIEW)
GND
D
D ESD Protection Exceeds JESD 22
description/ordering information
The SN74CBTLV3257 is a 4-bit 1-of-2 high-speed FET multiplexer/demultiplexer. The low on-state resistance
of the switch allows connections to be made with minimal propagation delay.
The select (S) input controls the data flow. The FET multiplexers/demultiplexers are disabled when the
output-enable (OE) input is high.
This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that
damaging current will not backflow through the device when it is powered down. The device has isolation during
power off.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
ORDERING INFORMATION
QFN − RGY
TOP-SIDE
MARKING
Tape and reel
SN74CBTLV3257RGYR
Tube
SN74CBTLV3257D
Tape and reel
SN74CBTLV3257DR
SSOP (QSOP) − DBQ
Tape and reel
SN74CBTLV3257DBQR
CL257
TSSOP − PW
Tape and reel
SN74CBTLV3257PWR
CL257
SOIC − D
−40°C to 85°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
CL257
CBTLV3257
TVSOP − DGV
Tape and reel
SN74CBTLV3257DGVR
CL257
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines
are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
!"#$%! & '("")% $& ! *(+,'$%! -$%).
"!-('%& '!!"# %! &*)''$%!& *)" %/) %)"#& ! )0$& &%"(#)%&
&%$-$"- 1$""$%2. "!-('%! *"!')&&3 -!)& !% )')&&$",2 ',(-)
%)&%3 ! $,, *$"$#)%)"&.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCDS040I − DECEMBER 1997 − REVISED OCTOBER 2003
FUNCTION TABLE
INPUTS
OE
FUNCTION
S
L
L
A port = B1 port
L
H
A port = B2 port
H
X
Disconnect
logic diagram (positive logic)
2
4
1A
1B1
SW
3
1B2
SW
5
7
2A
2B1
SW
6
2B2
SW
3A
11
9
SW
3B1
10
3B2
SW
14
12
4A
4B1
SW
13
SW
1
S
15
OE
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
4B2
SCDS040I − DECEMBER 1997 − REVISED OCTOBER 2003
simplified schematic, each FET switch
A
B
(OE)
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Input clamp current, IIK (VI/O < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Package thermal impedance, θJA (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
(see Note 2): DBQ package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90°C/W
(see Note 2): DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W
(see Note 2): PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W
(see Note 3): RGY package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
3. The package thermal impedance is calculated in accordance with JESD 51-5.
recommended operating conditions (see Note 4)
VCC
Supply voltage
VIH
High-level control input voltage
VIL
Low-level control input voltage
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
MIN
MAX
2.3
3.6
UNIT
V
1.7
V
2
0.7
0.8
V
TA
Operating free-air temperature
−40
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCDS040I − DECEMBER 1997 − REVISED OCTOBER 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
VIK
II
VCC = 3 V,
VCC = 3.6 V,
II = −18 mA
VI = VCC or GND
Ioff
ICC
VCC = 0,
VCC = 3.6 V,
VI or VO = 0 to 3.6 V
IO = 0,
VI = VCC or GND
One input at 3 V,
Other inputs at VCC or GND
∆ICC‡
Control inputs
Ci
Control inputs
VCC = 3.6 V,
VI = 3 V or 0
B port
MAX
UNIT
−1.2
V
±1
µA
15
µA
10
µA
300
µA
3
A port
Cio(OFF)
TYP†
pF
10.5
VO = 3 V or 0,
OE = VCC
VCC = 2.3 V,
TYP at VCC = 2.5 V
VI = 0
ron§
VI = 1.7 V,
VI = 0
VCC = 3 V
pF
5.5
II = 64 mA
II = 24 mA
5
8
5
8
II = 15 mA
II = 64 mA
27
40
5
7
Ω
II = 24 mA
5
7
VI = 2.4 V,
II = 15 mA
10
15
† All typical values are at VCC = 3.3 V (unless otherwise noted), TA = 25°C.
‡ This is the increase in supply current for each input that is at the specified voltage level, rather than VCC or GND.
§ Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined
by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Figure 1)
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
FROM
(INPUT)
TO
(OUTPUT)
A or B¶
B or A
S
A or B
1.8
6.1
1.8
5.3
ten
S
A or B
1.7
6.1
1.7
5.3
ns
tdis
S
A or B
1
4.8
1
4.5
ns
ten
OE
A or B
1.9
5.6
2
5
ns
tdis
OE
A or B
1
5.5
1.6
5.5
ns
PARAMETER
tpd
MIN
MAX
MIN
0.15
UNIT
MAX
0.25
ns
¶ The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when
driven by an ideal voltage source (zero output impedance).
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCDS040I − DECEMBER 1997 − REVISED OCTOBER 2003
PARAMETER MEASUREMENT INFORMATION
2 × VCC
RL
From Output
Under Test
S1
Open
GND
CL
(see Note A)
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
RL
VCC
2.5 V ± 0.2 V
3.3 V ± 0.3 V
LOAD CIRCUIT
CL
RL
30 pF
50 pF
500 Ω
500 Ω
V∆
0.15 V
0.3 V
VCC
Timing Input
VCC/2
0V
tw
tsu
th
VCC
VCC/2
Input
VCC/2
VCC
VCC/2
Data Input
VCC/2
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC
VCC/2
Input
VCC/2
0V
tPHL
tPLH
VOH
VCC/2
Output
VCC/2
VOL
VOH
Output
VCC/2
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VCC/2
Output
Waveform 2
S1 at GND
(see Note B)
VCC/2
0V
t
Output PZL
Waveform 1
S1 at 2 × VCC
(see Note B)
tPLH
tPHL
VCC
Output
Control
tPLZ
VCC
VCC/2
VOL + V∆
VOL
tPHZ
tPZH
VCC/2
VOH − V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSOI002B – JANUARY 1995 – REVISED SEPTEMBER 2001
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
8 PINS SHOWN
0.020 (0,51)
0.014 (0,35)
0.050 (1,27)
8
0.010 (0,25)
5
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
1
4
0.010 (0,25)
0°– 8°
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
0.004 (0,10)
0.069 (1,75) MAX
PINS **
0.004 (0,10)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047/E 09/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSOI004E JANUARY 1995 – REVISED MAY 2002
DBQ (R–PDSO–G**)
PLASTIC SMALL–OUTLINE PACKAGE
0.012 (0,30)
0.008 (0,20)
0.025 (0,64)
0.005 (0,13)
13
24
0.244 (6,20)
0.228 (5,80)
0.157 (3,99)
0.150 (3,81)
0.008 (0,20) NOM
Gauge Plane
1
12
0.010 (0,25)
A
0°–8°
0.035 (0,89)
0.016 (0,40)
0.069 (1,75) MAX
Seating Plane
0.010 (0,25)
0.004 (0,10)
0.004 (0,10)
PINS **
16
20
24
28
A MAX
0.197
(5,00)
0.344
(8,74)
0.344
(8,74)
0.394
(10,01)
A MIN
0.189
(4,80)
0.337
(8,56)
0.337
(8,56)
0.386
(9,80)
M0–137
VARIATION
AB
AD
AE
AF
DIM
D
4073301/F 02/02
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
D. Falls within JEDEC MO–137.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Amplifiers
Applications
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2003, Texas Instruments Incorporated