TI SN74LVC10APWR

SN74LVC10A
TRIPLE 3-INPUT POSITIVE-NAND GATE
www.ti.com
SCAS284N – JANUARY 1993 – REVISED FEBRUARY 2005
FEATURES
•
14
2
13
3
12
4
11
5
10
6
9
7
8
VCC
1C
1Y
3C
3B
3A
3Y
RGY PACKAGE
(TOP VIEW)
1B
2A
2B
2C
2Y
VCC
•
1
1
14
13 1C
12 1Y
2
3
4
11 3C
5
6
10 3B
9 3A
7
8
3Y
•
1A
1B
2A
2B
2C
2Y
GND
1A
•
•
•
D, DB, NS, OR PW PACKAGE
(TOP VIEW)
Operates From 1.65 V to 3.6 V
Specified From –40°C to 85°C and
– 40°C to 125°C
Inputs Accept Voltages to 5.5 V
Max tpd of 4.9 ns at 3.3 V
Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C
Typical VOHV (Output VOH Undershoot)
>2 V at VCC = 3.3 V, TA = 25°C
Latch-Up Performance Exceeds 250 mA Per
JESD 17
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
GND
•
•
DESCRIPTION/ORDERING INFORMATION
This triple 3-input positive-NAND gate is designed for 1.65-V to 3.6-V VCC operation.
The SN74LVC10A performs the Boolean function Y = A ⋅ B ⋅ C or Y = A + B + C in positive logic.
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators
in a mixed 3.3-V/5-V system environment.
ORDERING INFORMATION
PACKAGE (1)
TA
–40°C to 85°C
QFN - RGY
SN74LVC10ARGYR
Tube of 50
SN74LVC10AD
Reel of 2500
SN74LVC10ADR
Reel of 250
SN74LVC10ADT
SOP - NS
Reel of 2000
SN74LVC10ANSR
LVC10A
SSOP - DB
Reel of 2000
SN74LVC10ADBR
LC10A
Tube of 90
SN74LVC10APW
Reel of 2000
SN74LVC10APWR
Reel of 250
SN74LVC10APWT
TSSOP - PW
(1)
TOP-SIDE
MARKING
Reel of 1000
SOIC - D
–40°C to 125°C
ORDERABLE
PART NUMBER
LC10A
LVC10A
LC10A
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1993–2005, Texas Instruments Incorporated
SN74LVC10A
TRIPLE 3-INPUT POSITIVE-NAND GATE
www.ti.com
SCAS284N – JANUARY 1993 – REVISED FEBRUARY 2005
FUNCTION TABLE
(EACH GATE)
INPUTS
A
B
C
OUTPUT
Y
H
H
H
L
L
X
X
H
X
L
X
H
X
X
L
H
LOGIC DIAGRAM, EACH GATE (POSITIVE LOGIC)
A
Y
B
C
Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
UNIT
VCC
Supply voltage range
–0.5
6.5
V
VI
Input voltage range (2)
–0.5
6.5
V
VO
Output voltage range (2) (3)
–0.5
VCC + 0.5
V
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through VCC or GND
D package
θJA
Package thermal impedance
(4)
86
DB package (4)
96
NS package (4)
76
package (4)
113
PW
RGY package (5)
Tstg
Ptot
(1)
(2)
(3)
(4)
(5)
(6)
(7)
2
Storage temperature range
Power dissipation
47
–65
TA = –40°C to
125°C (6) (7)
°C/W
150
°C
500
mW
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
The value of VCC is provided in the recommended operating conditions table.
The package thermal impedance is calculated in accordance with JESD 51-7.
The package thermal impedance is calculated in accordance with JESD 51-5.
For the D package: above 70°C, the value of Ptot derates linearly with 8 mW/K.
For the DB, NS, and PW packages: above 60°C, the value of Ptot derates linearly with 5.5 mW/K.
SN74LVC10A
TRIPLE 3-INPUT POSITIVE-NAND GATE
www.ti.com
SCAS284N – JANUARY 1993 – REVISED FEBRUARY 2005
Recommended Operating Conditions
(1)
TA = 25°C
VCC
Supply voltage
VIH
High-level input
voltage
Low-level input
voltage
VIL
VI
Input voltage
VO
Output voltage
High-level
output current
IOH
Operating
Data retention only
MAX
MIN
MAX
MIN
MAX
1.65
3.6
1.65
3.6
1.65
3.6
1.5
1.5
1.5
0.65 × VCC
0.65 × VCC
0.65 × VCC
VCC = 2.3 V to 2.7 V
1.7
1.7
1.7
VCC = 2.7 V to 3.6 V
2
2
2
VCC = 1.65 V to 1.95 V
UNIT
V
V
0.35 × VCC
0.35 × VCC
0.35 × VCC
VCC = 2.3 V to 2.7 V
0.7
0.7
0.7
VCC = 2.7 V to 3.6 V
0.8
0.8
0.8
VCC = 1.65 V to 1.95 V
V
0
5.5
0
5.5
0
5.5
V
0
VCC
0
VCC
0
VCC
V
VCC = 1.65 V
–4
–4
–4
VCC = 2.3 V
–8
–8
–8
VCC = 2.7 V
–12
–12
–12
VCC = 3 V
–24
–24
–24
4
4
4
Low-level output VCC = 2.3 V
current
VCC = 2.7 V
VCC = 3 V
(1)
–40 TO 125°C
MIN
VCC = 1.65 V
IOL
–40 TO 85°C
8
8
8
12
12
12
24
24
24
mA
mA
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = –100 µA
VOH
1.65 V to 3.6 V
MIN
–40 TO 125°C
MAX
MIN
MAX
VCC – 0.2
VCC – 0.2
VCC – 0.3
1.29
1.2
1.05
IOH = –8 mA
2.3 V
1.9
1.7
1.55
2.7 V
2.2
2.2
2.05
3V
2.4
2.4
2.25
IOH = –24 mA
3V
2.3
IOL = 100 µA
1.65 V to 3.6 V
0.1
0.2
0.3
IOL = 4 mA
1.65 V
0.24
0.45
0.6
IOL = 8 mA
2.3 V
0.3
0.7
0.75
IOL = 12 mA
2.7 V
0.4
0.4
0.6
3V
IOL = 24 mA
VI = 5.5 V or GND
ICC
VI = VCC or GND,
Ci
–40 TO 85°C
TYP MAX
1.65 V
II
∆ICC
TA = 25°C
MIN
IOH = –4 mA
IOH = –12 mA
VOL
VCC
IO = 0
One input at VCC – 0.6 V,
Other inputs at VCC or
GND
VI = VCC or GND
2.2
UNIT
V
2
V
0.55
0.55
0.8
3.6 V
±1
±5
±20
µA
3.6 V
1
10
40
µA
500
500
5000
µA
2.7 V to 3.6 V
3.3 V
5
pF
3
SN74LVC10A
TRIPLE 3-INPUT POSITIVE-NAND GATE
www.ti.com
SCAS284N – JANUARY 1993 – REVISED FEBRUARY 2005
SWITCHING CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
PARAMETER
tpd
FROM
(INPUT)
A, B, or C
TO
(OUTPUT)
Y
VCC
TA = 25°C
–40 TO 85°C
TYP
MAX
MIN
MAX
MIN
MAX
1.8 V ± 0.15 V
1
4.2
10.1
1
10.6
1
12.1
2.5 V ± 0.2 V
1
2.9
7.3
1
7.8
1
9.9
2.7 V
1
3.1
5.6
1
5.8
1
7.4
3.3 V ± 0.3 V
1
2.7
4.7
1
4.9
1
6
3.3 V ± 0.3 V
tsk(o)
–40 TO 125°C
MIN
1
1.5
UNIT
ns
ns
Operating Characteristics
TA = 25°C
PARAMETER
Cpd
4
Power dissipation capacitance per gate
TEST
CONDITIONS
f = 10 MHz
VCC
TYP
1.8 V
9
2.5 V
10
3.3 V
11
UNIT
pF
SN74LVC10A
TRIPLE 3-INPUT POSITIVE-NAND GATE
www.ti.com
SCAS284N – JANUARY 1993 – REVISED FEBRUARY 2005
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
CL
(see Note A)
Open
GND
RL
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUTS
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
2.7 V
3.3 V ± 0.3 V
VI
tr/tf
VCC
VCC
2.7 V
2.7 V
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
1.5 V
2 × VCC
2 × VCC
6V
6V
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
Input
VM
VM
th
VI
Data Input
VM
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
VM
0V
tPLH
VOH
Output
VM
VOL
tPHL
VM
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
tPLZ
VLOAD/2
VM
tPZH
VOH
Output
VM
tPZL
tPHL
VM
VI
Output
Control
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
VM
VOH - V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
5
PACKAGE OPTION ADDENDUM
www.ti.com
8-Mar-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LVC10AD
ACTIVE
SOIC
D
14
SN74LVC10ADBLE
OBSOLETE
SSOP
DB
14
SN74LVC10ADBR
ACTIVE
SSOP
DB
SN74LVC10ADR
ACTIVE
SOIC
SN74LVC10ADT
ACTIVE
SN74LVC10ANSR
Lead/Ball Finish
MSL Peak Temp (3)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
50
Pb-Free
(RoHS)
None
Call TI
14
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
D
14
2500
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
SOIC
D
14
250
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
ACTIVE
SO
NS
14
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
SN74LVC10APW
ACTIVE
TSSOP
PW
14
90
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
SN74LVC10APWLE
OBSOLETE
TSSOP
PW
14
None
Call TI
SN74LVC10APWR
ACTIVE
TSSOP
PW
14
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
SN74LVC10APWT
ACTIVE
TSSOP
PW
14
250
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
SN74LVC10ARGYR
ACTIVE
QFN
RGY
14
1000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional
product content details.
None: Not yet available Lead (Pb-Free).
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated