TI SN74LVC2G74QDCURQ1

SN74LVC2G74-Q1
SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
WITH CLEAR AND PRESET
www.ti.com
SCES563B – MARCH 2004 – REVISED AUGUST 2006
FEATURES
•
•
•
•
•
•
•
•
•
•
•
(1)
Qualification in Accordance With
AEC-Q100 (1)
Qualified for Automotive Applications
Customer-Specific Configuration Control Can
Be Supported Along With Major-Change
Approval
Supports 5-V VCC Operation
Inputs Accept Voltages to 5.5 V
Max tpd of 6.9 ns at 3.3 V
Low Power Consumption, 10-µA Max ICC
±24-mA Output Drive at 3.3 V
Typical VOLP (Output Ground Bounce) <0.8 V
at VCC = 3.3 V, TA = 25°C
Typical VOHV (Output VOH Undershoot) >2 V at
VCC = 3.3 V, TA = 25°C
Ioff Supports Partial-Power-Down Mode
Operation
•
•
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
DCU PACKAGE
(TOP VIEW)
CLK
D
Q
GND
1
8
VCC
2
7
3
6
4
5
PRE
CLR
Q
Contact factory for details. Q100 qualification data available
on request.
DESCRIPTION/ORDERING INFORMATION
This single positive-edge-triggered D-type flip-flop is designed for 1.65-V to 5.5-V VCC operation.
A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the
other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time
requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs
at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval,
data at the D input can be changed without affecting the levels at the outputs.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
ORDERING INFORMATION
TA
–40°C to 125°C
(1)
(2)
PACKAGE (1)
VSSOP – DCU
Reel of 3000
ORDERABLE PART NUMBER
SN74LVC2G74QDCURQ1
TOP-SIDE MARKING (2)
C74_
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
DCU: The actual top-side marking has one additional character that designates the assembly/test site.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2004–2006, Texas Instruments Incorporated
SN74LVC2G74-Q1
SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
WITH CLEAR AND PRESET
www.ti.com
SCES563B – MARCH 2004 – REVISED AUGUST 2006
FUNCTION TABLE
INPUTS
(1)
OUTPUTS
PRE
CLR
CLK
D
Q
Q
L
H
X
X
H
L
H
L
X
X
L
H
L
L
X
X
H (1)
H (1)
H
H
↑
H
H
L
H
H
↑
L
L
H
H
H
L
X
Q0
Q0
This configuration is nonstable; that is, it does not persist when
PRE or CLR returns to its inactive (high) level.
LOGIC DIAGRAM (POSITIVE LOGIC)
PRE
CLK
7
1
C
C
C
5
Q
TG
C
C
C
C
D
2
TG
TG
TG
3
C
CLR
2
C
C
6
Submit Documentation Feedback
Q
SN74LVC2G74-Q1
SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
WITH CLEAR AND PRESET
www.ti.com
SCES563B – MARCH 2004 – REVISED AUGUST 2006
Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
VCC
Supply voltage range
VI
Input voltage range (2)
state (2)
MIN
MAX
–0.5
6.5
–0.5
6.5
–0.5
6.5
–0.5
VCC + 0.5
VO
Voltage range applied to any output in the high-impedance or power-off
VO
Voltage range applied to any output in the high or low state (2) (3)
IIK
Input clamp current
VI < 0
–50
IOK
Output clamp current
VO < 0
–50
IO
Continuous output current
±50
Package thermal
Tstg
Storage temperature range
(1)
(2)
(3)
(4)
V
mA
±100
Continuous current through VCC or GND
θJA
UNIT
impedance (4)
–65
227
°C/W
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
The value of VCC is provided in the recommended operating conditions table.
The package thermal impedance is calculated in accordance with JESD 51-7.
Submit Documentation Feedback
3
SN74LVC2G74-Q1
SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
WITH CLEAR AND PRESET
www.ti.com
SCES563B – MARCH 2004 – REVISED AUGUST 2006
Recommended Operating Conditions (1)
VCC
Supply voltage
Operating
Data retention only
VCC = 1.65 V to 1.95 V
VIH
High-level input voltage
VCC = 2.3 V to 2.7 V
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
MIN
MAX
1.65
5.5
1.5
Low-level input voltage
1.7
V
2
0.7 × VCC
0.35 × VCC
VCC = 2.3 V to 2.7 V
0.7
VCC = 3 V to 3.6 V
0.8
V
0.3 × VCC
VCC = 4.5 V to 5.5 V
VI
Input voltage
0
5.5
V
VO
Output voltage
0
VCC
V
VCC = 1.65 V
–4
VCC = 2.3 V
IOH
High-level output current
–8
–16
VCC = 3 V
–24
VCC = 1.65 V
4
VCC = 2.3 V
IOL
Low-level output current
∆t/∆v
Input transition rise or fall rate
8
16
VCC = 3 V
24
VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V
20
VCC = 3.3 V ± 0.3 V
10
(1)
Operating free-air temperature
ns/V
5
40
125
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Submit Documentation Feedback
mA
24
VCC = 4.5 V
VCC = 5 V ± 0.5 V
TA
mA
–24
VCC = 4.5 V
4
V
0.65 × VCC
VCC = 1.65 V to 1.95 V
VIL
UNIT
°C
SN74LVC2G74-Q1
SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
WITH CLEAR AND PRESET
www.ti.com
SCES563B – MARCH 2004 – REVISED AUGUST 2006
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
IOH = –100 µA
VOH
1.65 V to 5.5 V
1.65 V
1.2
IOH = –8 mA
2.3 V
1.85
IOH = –16 mA
3V
2.4
3V
2.3
4.5 V
3.8
IOL = 100 µA
Data or
control inputs
0.1
IOL = 4 mA
1.65 V
0.45
IOL = 8 mA
2.3 V
0.3
IOL = 16 mA
3V
0.4
3V
0.55
4.5 V
0.55
VI or VO = 5.5 V
ICC
VI = 5.5 V or GND,
IO = 0
∆ICC
One input at VCC – 0.6 V,
Other inputs at VCC or GND
Ci
VI = VCC or GND
(1)
V
0 to 5.5 V
±5
µA
0
±10
µA
1.65 V to 5.5 V
10
µA
3 V to 5.5 V
500
µA
VI = 5.5 V or GND
Ioff
UNIT
V
1.65 V to 5.5 V
IOL = 24 mA
II
TYP (1) MAX
VCC – 0.1
IOH = –4 mA
IOH = –24 mA
VOL
MIN
3.3 V
5
pF
All typical values are at VCC = 3.3 V, TA = 25°C.
Timing Requirements
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
MIN MAX
fclock
MIN
MAX
80
tw
Pulse duration
tsu
Setup time before CLK↑
th
Hold time, data after CLK↑
VCC = 3.3 V
± 0.3 V
MIN
MAX
120
VCC = 5 V
± 0.5 V
UNIT
MIN MAX
120
140
CLK
6.2
3.5
3.5
3.3
PRE or CLR low
6.2
3.5
3.5
3.3
Data
3.5
2.3
1.9
1.7
PRE or CLR inactive
2.5
2
1.8
1.6
0
0.3
0.5
0.8
MHz
ns
ns
ns
Switching Characteristics
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
fmax
tpd
VCC = 1.8 V
± 0.15 V
MIN
MAX
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN
MIN
MIN MAX
80
CLK
PRE or CLR
MAX
120
MAX
120
140
MHz
Q
4.8
14.4
2.2
8.1
2.2
6.9
1.4
5.1
Q
6
16
3
9.7
2.6
7.2
1.6
5.4
4.4
14.9
2.3
9.5
1.7
7.9
1.6
6.1
Q or Q
Submit Documentation Feedback
UNIT
ns
5
SN74LVC2G74-Q1
SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
WITH CLEAR AND PRESET
www.ti.com
SCES563B – MARCH 2004 – REVISED AUGUST 2006
Operating Characteristics
TA = 25°C
PARAMETER
Cpd
6
Power dissipation capacitance
TEST CONDITIONS
f = 10 MHz
VCC = 1.8 V
VCC = 2.5 V
VCC = 3.3 V
VCC = 5 V
TYP
TYP
TYP
TYP
35
35
37
40
Submit Documentation Feedback
UNIT
pF
SN74LVC2G74-Q1
SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
WITH CLEAR AND PRESET
www.ti.com
SCES563B – MARCH 2004 – REVISED AUGUST 2006
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
Open
TEST
GND
CL
(see Note A)
S1
Open
VLOAD
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
RL
GND
LOAD CIRCUIT
INPUTS
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VI
tr/tf
VCC
VCC
3V
VCC
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tW
tsu
VI
Input
VM
VM
th
VI
Data Input
VM
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
VM
0V
tPLH
VOH
Output
VM
VOL
tPHL
VM
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
tPLZ
VLOAD/2
VM
tPZH
VOH
Output
VM
tPZL
tPHL
VM
VI
Output
Control
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
VM
VOH – V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators have the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
Submit Documentation Feedback
7
PACKAGE OPTION ADDENDUM
www.ti.com
6-Apr-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
SN74LVC2G74QDCURQ1
ACTIVE
US8
DCU
Pins Package Eco Plan (2)
Qty
8
3000
Pb-Free
(RoHS)
Lead/Ball Finish
NIPDAU
MSL Peak Temp (3)
Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless www.ti.com/lpw
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated