TI SN74LVTH652DBR

SCBS706F − AUGUST 1997 − REVISED OCTOBER 2003
D Support Mixed-Mode Signal Operation
D
D
D
D Bus Hold on Data Inputs Eliminates the
(5-V Input and Output Voltages With
3.3-V VCC )
Support Unregulated Battery Operation
Down to 2.7 V
Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C
Ioff and Power-Up 3-State Support Hot
Insertion
D
D
Need for External Pullup/Pulldown
Resistors
Latch-Up Performance Exceeds 500 mA Per
JESD 17
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
SN54LVTH652 . . . JT OR W PACKAGE
SN74LVTH652 . . . DB, DGV, DW, NS, OR PW PACKAGE
(TOP VIEW)
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
OEAB
SAB
CLKAB
NC
VCC
CLKBA
SBA
1
VCC
CLKBA
SBA
OEBA
B1
B2
B3
B4
B5
B6
B7
B8
A1
A2
A3
NC
A4
A5
A6
4
5
3 2 1 28 27 26
25
6
24
7
23
8
22
9
21
10
20
19
11
12 13 14 15 16 17 18
OEBA
B1
B2
NC
B3
B4
B5
A7
A8
GND
NC
B8
B7
B6
CLKAB
SAB
OEAB
A1
A2
A3
A4
A5
A6
A7
A8
GND
SN54LVTH652 . . . FK PACKAGE
(TOP VIEW)
NC − No internal connection
description/ordering information
These bus transceivers and registers are designed specifically for low-voltage (3.3-V) VCC operation, but with
the capability to provide a TTL interface to a 5-V system environment.
ORDERING INFORMATION
SN74LVTH652DW
Tape and reel
SN74LVTH652DWR
SOP − NS
Tape and reel
SN74LVTH652NSR
LVTH652
SSOP − DB
Tape and reel
SN74LVTH652DBR
LXH652
Tube
SN74LVTH652PW
Tape and reel
SN74LVTH652PWR
TVSOP − DGV
Tape and reel
SN74LVTH652DGVR
LXH652
CDIP − JT
Tube
SNJ54LVTH652JT
SNJ54LVTH652JT
CFP − W
Tube
SNJ54LVTH652W
SNJ54LVTH652W
LCCC − FK
Tube
SNJ54LVTH652FK
TSSOP − PW
−55°C
−55
C to 125
125°C
C
TOP-SIDE MARKING
Tube
SOIC − DW
−40°C
−40
C to 85
85°C
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
LVTH652
LXH652
SNJ54LVTH652FK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
!"#$%&' #"'(' ')"*%("' #$**&' ( ") +$,-#("' !(& *"!$# #"')"*% "
+&#)#("' +&* & &*% ") &.( '*$%&' ('!(*! /(**('0
*"!$#"' +*"#&'1 !"& '" '&#&(*-0 '#-$!& &'1 ") (-+(*(%&&*
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCBS706F − AUGUST 1997 − REVISED OCTOBER 2003
description/ordering information (continued)
The ’LVTH652 devices consist of bus-transceiver circuits, D-type flip-flops, and control circuitry arranged for
multiplexed transmission of data directly from the data bus or from the internal storage registers.
Output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. Select-control (SAB
and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for
select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between
real-time and stored data. A low input selects real-time data and a high input selects stored data. Figure 1
illustrates the four fundamental bus-management functions that can be performed with the ’LVTH652 devices.
Data on the A or B data bus, or both, can be stored in the internal D-type flip-flops by low-to-high transitions at
the appropriate clock (CLKAB or CLKBA) inputs, regardless of the select- or enable-control pins. When SAB
and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops
by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input; therefore,
when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains
at its last state.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup
or pulldown resistors with the bus-hold circuitry is not recommended.
When VCC is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor
and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by
the current-sinking/current-sourcing capability of the driver.
This device is fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry
disables the outputs, preventing damaging current backflow through the device when it is powered down. The
power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down,
which prevents driver conflict.
FUNCTION TABLE
DATA I/O†
INPUTS
OPERATION OR FUNCTION
OEAB
OEBA
CLKAB
CLKBA
SAB
SBA
A1−A8
B1−B8
L
H
H or L
H or L
X
X
Input
Input
Isolation
L
H
↑
↑
X
X
Input
H
↑
H or L
X
Input
H
H
↑
↑
X
X‡
Input
Unspecified‡
Store A and B data
X
X
Input
Output
Store A in both registers
L
X
H or L
↑
X
Unspecified‡
Input
Hold A, store B
L
L
↑
↑
X
X
X‡
Output
Input
Store B in both registers
L
L
X
X
X
L
Output
Input
Real-time B data to A bus
L
L
X
H or L
X
H
Output
Input
Stored B data to A bus
H
H
X
X
L
X
Input
Output
Real-time A data to B bus
H
H
H or L
X
H
X
Input
Output
Stored A data to B bus
Output
Stored A data to B bus and
stored B data to A bus
H
L
H or L
H or L
H
H
Output
Store A, hold B
† The data-output functions can be enabled or disabled by a variety of level combinations at OEAB or OEBA. Data-input functions always are
enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.
‡ Select control = L; clocks can occur simultaneously.
Select control = H; clocks must be staggered to load both registers.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
21
OEAB OEBA
L
L
1
23
2
CLKAB CLKBA SAB
X
X
X
BUS B
BUS A
BUS A
BUS B
SCBS706F − AUGUST 1997 − REVISED OCTOBER 2003
22
SBA
L
3
21
OEAB OEBA
H
H
21
OEBA
H
X
H
23
2
1
CLKAB CLKBA SAB
↑
X
↑
X
↑
↑
X
X
X
2
SAB
L
22
SBA
X
BUS B
BUS A
BUS A
3
OEAB
X
L
L
23
CLKBA
X
REAL-TIME TRANSFER
BUS A TO BUS B
BUS B
REAL-TIME TRANSFER
BUS B TO BUS A
1
CLKAB
X
22
3
21
1
23
2
22
SBA
OEAB
H
OEBA
L
CLKAB
CLKBA
SAB
SBA
H or L
H or L
H
H
X
X
X
TRANSFER STORED DATA
TO A AND/OR B
STORAGE FROM
A, B, OR A AND B
Pin numbers shown are for the DB, DGV, DW, JT, NS, PW, and W packages.
Figure 1. Bus-Management Functions
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCBS706F − AUGUST 1997 − REVISED OCTOBER 2003
logic diagram (positive logic)
OEBA
OEAB
CLKBA
SBA
CLKAB
SAB
21
3
23
22
1
2
One of Eight Channels
1D
C1
A1
4
20
1D
C1
To Seven Other Channels
Pin numbers shown are for the DB, DGV, DW, JT, NS, PW, and W packages.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
B1
SCBS706F − AUGUST 1997 − REVISED OCTOBER 2003
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Voltage range applied to any output in the high-impedance
or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Voltage range applied to any output in the high state, VO (see Note 1) . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Current into any output in the low state, IO: SN54LVTH652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA
SN74LVTH652) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Current into any output in the high state, IO (see Note 2): SN54LVTH652 . . . . . . . . . . . . . . . . . . . . . . . . 8 mA
SN74LVTH652 . . . . . . . . . . . . . . . . . . . . . . . 64 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Package thermal impedance, θJA (see Note 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current flows only when the output is in the high state and VO > VCC.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 4)
SN54LVTH652
SN74LVTH652
MIN
MAX
MIN
MAX
2.7
3.6
2.7
3.6
UNIT
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
Input voltage
5.5
5.5
V
IOH
IOL
High-level output current
−24
−32
mA
Low-level output current
48
64
mA
∆t /∆v
Input transition rise or fall rate
∆t/∆VCC
TA
Power-up ramp rate
200
Operating free-air temperature
−55
High-level input voltage
2
2
0.8
Outputs enabled
V
0.8
10
10
−40
V
ns/V
µs/V
200
125
V
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
')"*%("' #"'#&*' +*"!$# ' & )"*%(2& "*
!&1' +(& ") !&2&-"+%&' (*(#&*# !(( ('! "&*
+&#)#("' (*& !&1' 1"(- &.( '*$%&' *&&*2& & *1 "
#('1& "* !#"''$& && +*"!$# /"$ '"#&
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCBS706F − AUGUST 1997 − REVISED OCTOBER 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOH
VCC = 2.7 V,
VCC = 2.7 V to 3.6 V,
II = −18 mA
IOH = −100 µA
VCC = 2.7 V,
IOH = −8 mA
IOH = −24 mA
VCC = 3 V
VOL
VCC = 3 V
Ioff
II(hold)
A or B ports
SN74LVTH652
TYP†
MAX
MIN
−1.2
VCC−0.2
2.4
−1.2
2
0.2
0.2
IOL = 24 mA
IOL = 16 mA
0.5
0.5
0.4
0.4
IOL = 32 mA
IOL = 48 mA
0.5
0.5
0.55
±1
±1
10
20
20
VCC = 3.6 V
VI = VCC
VI = 0
1
1
VCC = 0,
VI or VO = 0 to 4.5 V
VI = 0.8 V
−5
VI = 2 V
VI = 0 to 3.6 V
VCC = 3.6 V§
V
0.55
10
VCC = 3 V
V
V
2
VI = 5.5 V
VI = 5.5 V
VCC = 3.6 V,
VCC = 0 or 3.6 V,
UNIT
VCC−0.2
2.4
IOL = 64 mA
VI = VCC or GND
II
A or B ports‡
MIN
IOH = −32 mA
IOL = 100 µA
VCC = 2.7 V
Control inputs
SN54LVTH652
TYP†
MAX
TEST CONDITIONS
µA
−5
±100
75
75
−75
−75
µA
µA
±500
IOZPU
VCC = 0 to 1.5 V, VO = 0.5 to 3 V,
OE/OE = don’t care
±100∗
±100
µA
IOZPD
VCC = 1.5 V to 0, VO = 0.5 to 3 V,
OE/OE = don’t care
±100∗
±100
µA
0.19
0.19
ICC
VCC = 3.6 V, IO = 0,
VI = VCC or GND
5
5
0.19
0.19
0.2
0.2
Outputs high
Outputs low
Outputs disabled
∆ICC¶
VCC = 3 V to 3.6 V, One input at VCC − 0.6 V,
Other inputs at VCC or GND
Ci
VI = 3 V or 0
VO = 3 V or 0
4
4
mA
mA
pF
Cio
9
9
pF
∗ On products compliant to MIL-PRF-38535, this parameter is not production tested.
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ Unused terminals at VCC or GND
§ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
¶ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.
')"*%("' #"'#&*' +*"!$# ' & )"*%(2& "*
!&1' +(& ") !&2&-"+%&' (*(#&*# !(( ('! "&*
+&#)#("' (*& !&1' 1"(- &.( '*$%&' *&&*2& & *1 "
#('1& "* !#"''$& && +*"!$# /"$ '"#&
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCBS706F − AUGUST 1997 − REVISED OCTOBER 2003
timing requirements over recommended operating free-air temperature range (unless otherwise
noted) (see Figure 2)
SN54LVTH652
VCC = 3.3 V
± 0.3 V
MIN
fclock
tw
Clock frequency
MAX
SN74LVTH652
VCC = 2.7 V
MIN
MAX
150
Pulse duration, CLK high or low
VCC = 3.3 V
± 0.3 V
MIN
150
MAX
VCC = 2.7 V
MIN
150
3.3
3.3
3.3
Data high
1.3
1.6
1.2
1.5
Data low
1.9
2.6
1.6
2.2
1.2
1.2
0.8
0.8
tsu
Setup time,
A or B before CLKAB↑ or CLKBA↑
th
Hold time, A or B after CLKAB↑ or CLKBA↑
MAX
150
3.3
UNIT
MHz
ns
ns
ns
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 2)
SN54LVTH652
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCC = 3.3 V
± 0.3 V
MIN
fmax
tPLH
tPHL
tPLH
tPHL
tPLH
tPHL
tPZH
tPZL
tPHZ
tPLZ
tPZH
tPZL
tPHZ
MAX
150
CLKBA or
CLKAB
A or B
A or B
B or A
SBA or SAB‡
A or B
OEBA
A
OEBA
A
OEAB
B
OEAB
B
SN74LVTH652
VCC = 2.7 V
MIN
MAX
150
VCC = 3.3 V
± 0.3 V
MIN
VCC = 2.7 V
TYP†
MAX
150
MIN
MAX
150
MHz
1.7
5
5.9
1.8
3.1
4.7
5.6
1.7
5
5.9
1.8
3.1
4.7
5.6
1.2
3.7
4.3
1.3
2.3
3.5
4.1
1.2
3.7
4.3
1.3
2.4
3.5
4.1
1.4
5.2
6.3
1.5
3.1
4.9
6
1.4
5.2
6.3
1.5
3.4
4.9
6
1
5.4
6.7
1.1
2.9
5.2
6.5
1
5.4
6.7
1.1
3.1
5.2
6.5
2.2
5.9
6.5
2.3
3.5
5.5
6.1
2.2
5.9
6.3
2.3
3.7
5.5
5.9
1.2
4.9
5.9
1.3
3
4.7
5.7
1.2
4.9
5.9
1.3
3.3
4.7
5.7
1.4
5.8
7
1.5
3.6
5.6
6.7
tPLZ
1.4
5.9
6.6
1.5
3.7
5.6
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ These parameters are measured with the internal output state of the storage register opposite that of the bus input.
UNIT
6.3
ns
ns
ns
ns
ns
ns
ns
')"*%("' #"'#&*' +*"!$# ' & )"*%(2& "*
!&1' +(& ") !&2&-"+%&' (*(#&*# !(( ('! "&*
+&#)#("' (*& !&1' 1"(- &.( '*$%&' *&&*2& & *1 "
#('1& "* !#"''$& && +*"!$# /"$ '"#&
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SCBS706F − AUGUST 1997 − REVISED OCTOBER 2003
PARAMETER MEASUREMENT INFORMATION
6V
S1
500 Ω
From Output
Under Test
Open
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
2.7 V
LOAD CIRCUIT
1.5 V
Timing Input
0V
tw
tsu
2.7 V
Input
1.5 V
1.5 V
th
2.7 V
1.5 V
Data Input
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
2.7 V
1.5 V
Input
1.5 V
0V
tPHL
tPLH
VOH
1.5 V
Output
1.5 V
VOL
tPLH
tPHL
VOH
Output
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
2.7 V
Output
Control
Output
Waveform 1
S1 at 6 V
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
1.5 V
1.5 V
0V
tPLZ
tPZL
3V
1.5 V
VOL + 0.3 V
VOL
tPHZ
tPZH
1.5 V
VOH − 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.
Figure 2. Load Circuit and Voltage Waveforms
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
4-Jun-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LVTH652DBLE
OBSOLETE
SSOP
DB
24
SN74LVTH652DBR
ACTIVE
SSOP
DB
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DBRE4
ACTIVE
SSOP
DB
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DBRG4
ACTIVE
SSOP
DB
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DGVR
ACTIVE
TVSOP
DGV
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DGVRE4
ACTIVE
TVSOP
DGV
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DGVRG4
ACTIVE
TVSOP
DGV
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DW
ACTIVE
SOIC
DW
24
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DWE4
ACTIVE
SOIC
DW
24
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DWG4
ACTIVE
SOIC
DW
24
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DWR
ACTIVE
SOIC
DW
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DWRE4
ACTIVE
SOIC
DW
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652DWRG4
ACTIVE
SOIC
DW
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652NSR
ACTIVE
SO
NS
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652NSRE4
ACTIVE
SO
NS
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652NSRG4
ACTIVE
SO
NS
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652PW
ACTIVE
TSSOP
PW
24
60
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652PWE4
ACTIVE
TSSOP
PW
24
60
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652PWG4
ACTIVE
TSSOP
PW
24
60
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652PWLE
OBSOLETE
TSSOP
PW
24
SN74LVTH652PWR
ACTIVE
TSSOP
PW
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652PWRE4
ACTIVE
TSSOP
PW
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH652PWRG4
ACTIVE
TSSOP
PW
24
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TBD
TBD
(1)
Lead/Ball Finish
Call TI
Call TI
MSL Peak Temp (3)
Call TI
Call TI
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
4-Jun-2007
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Feb-2008
TAPE AND REEL BOX INFORMATION
Device
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74LVTH652DBR
DB
24
SITE 41
330
16
8.2
8.8
2.5
12
16
Q1
SN74LVTH652DGVR
DGV
24
SITE 41
330
12
7.0
5.6
1.6
8
12
Q1
SN74LVTH652DWR
DW
24
SITE 60
330
24
10.75
15.7
2.7
12
24
Q1
SN74LVTH652NSR
NS
24
SITE 41
330
24
8.2
15.4
2.5
12
24
Q1
SN74LVTH652PWR
PW
24
SITE 41
330
16
6.95
8.3
1.6
8
16
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
Device
12-Feb-2008
Package
Pins
Site
Length (mm)
Width (mm)
Height (mm)
SN74LVTH652DBR
DB
24
SITE 41
346.0
346.0
33.0
SN74LVTH652DGVR
DGV
24
SITE 41
346.0
346.0
29.0
SN74LVTH652DWR
DW
24
SITE 60
346.0
346.0
41.0
SN74LVTH652NSR
NS
24
SITE 41
346.0
346.0
41.0
SN74LVTH652PWR
PW
24
SITE 41
346.0
346.0
33.0
Pack Materials-Page 2
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated