Micrel, Inc. ECL Pro™ SY10EP89V 5V/3.3V 3GHz COAXIAL CABLE DRIVER FEATURES ECL Pro™ SY10EP89V DESCRIPTION ■ ■ ■ ■ ■ 3.3V and 5V power supply options 3.0GHz typical toggle frequency 310ps typical propagation delay 1.6V (5V) and 1.4V (3.3V) swing Internal input resistors: pulldown on D, pulldown and pullup on /D ■ New differential input common mode range ■ Available in 8-pin MSOP and SOIC packages The SY10EP89V is a differential fanout gate specifically designed to drive coaxial cables. The device is especially useful in digitial video broadcasting applications; for this application, since the system is polarity free, each output can be used as an independent driver. The driver produces swings 70% larger than a standard ECL output. When driving a coaxial cable, proper termination is required at both ends of the line, while maintaining a 800mV (5V) or 700mV (3.3V) swing at the receiving end of the cable. Because of the larger output swings, the device cannot be terminated into the standard VCC –2.0V. All of the DC parameters are tested with a 50Ω to VCC –3.0V load. The driver accepts a standard differential ECL input and can run off of the digital video broadcast standard –5.0V supply. PIN NAMES Pin Function D, /D ECL Data Inputs Q0, Q1, /Q0, /Q1 ECL Data Outputs VCC Positive Supply VEE Negative Supply ECL Pro is a trademark of Micrel, Inc. M9999-120505 [email protected] or (408) 955-1690 Rev.: D 1 Amendment: /0 Issue Date: October 2005 ECL Pro™ SY10EP89V Micrel, Inc. PACKAGE/ORDERING INFORMATION Ordering Information(1) Package Type Operating Range Package Marking Lead Finish SY10EP89VZC Z8-1 Commercial HEP89V Sn-Pb SY10EP89VZCTR(2) Z8-1 Commercial HEP89V Sn-Pb SY10EP89VKC K8-1 Commercial HP89 Sn-Pb SY10EP89VKCTR(2) K8-1 Commercial HP89 Sn-Pb SY10EP89VZI Z8-1 Industrial HEP89V Sn-Pb SY10EP89VZITR(2) Z8-1 Industrial HEP89V Sn-Pb SY10EP89VKI K8-1 Industrial HP89 Sn-Pb SY10EP89VKITR(2) K8-1 Industrial HP89 Sn-Pb SY10EP89VZG(3) Z8-1 Industrial HEP89V with NiPdAu Pb-Free bar line indicator Pb-Free SY10EP89VZGTR(2, 3) Z8-1 Industrial HEP89V with NiPdAu Pb-Free bar line indicator Pb-Free SY10EP89VKG(3) K8-1 Industrial HP89 with NiPdAu Pb-Free bar line indicator Pb-Free SY10EP89VKGTR(2, 3) K8-1 Industrial HP89 with NiPdAu Pb-Free bar line indicator Pb-Free Q0 1 8 VCC Part Number /Q0 2 7 D Q1 3 6 /D /Q1 4 5 VEE 8-Pin SOIC (Z8-1) 8-Pin MSOP (K8-1) Notes: 1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC Electricals only. 2. Tape and Reel. 3. Pb-Free package is recommended for new designs. M9999-120505 [email protected] or (408) 955-1690 2 ECL Pro™ SY10EP89V Micrel, Inc. ABSOLUTE MAXIMUM RATINGS(1) Symbol Rating Value Unit 6V V –6.0 to 0 +6.0 to 0 V V 50 100 mA –40 to +85 °C +260 °C –65 to +150 °C –Still-Air (SOIC) –500lfpm (SOIC) 160 109 °C/W –Still-Air (MSOP) –500lfpm (MSOP) 206 155 °C/W (SOIC) (MSOP) 39 39 °C/W VCC — VEE Power Supply Voltage VIN Input Voltage (VCC = 0V, VIN not more negative than VEE) Input Voltage (VEE = 0V, VIN not more positive than VCC) IOUT Output Current TA Operating Temperature Range TLEAD Lead Temperature (Soldering, 20 sec.) Tstore Storage Temperature Range θJA Package Thermal Resistance (Junction-to-Ambient) θJC Note 1. –Continuous –Surge Package Thermal Resistance (Junction-to-Case) Permanent Device Damage May Occur If Absolute Maximum Ratings Are Exceeded. This Is A Stress Rating Only And Functional Operation Is Not Implied At Conditions Other Than Those Detailed In The Operational Sections Of This Data Sheet. Exposure To Absolute Maximum Ratlng Conditions For Extended Periods May Affect Device Reliability. DC Blocking Capacitors 75Ω 75Ω Coax 75Ω 75Ω Coax 150Ω 150Ω 75Ω VEE SY10EP89 Figure 1. EP89V Termination Configuration M9999-120505 [email protected] or (408) 955-1690 3 75Ω ECL Pro™ SY10EP89V Micrel, Inc. 5.0V PECL DC ELECTRICAL CHARACTERISTICS(1) VCC = 5.0V; VEE = 0V(2). TA = –40°C Symbol IEE Parameter Power Supply Current VOH Output HIGH Voltage(3) Voltage(3) TA = +25°C TA = +85°C Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit 27 34 45 30 37 45 32 39 50 mA 3780 3880 3980 3850 3950 4050 3925 4025 4125 mV 2075 2225 2375 2060 2210 2360 2090 2240 2390 mV VOL Outuput LOW VIH Input HIGH Voltage (Single-Ended) 3770 — 4110 3870 — 4190 3940 — 4280 mV VIL Input LOW Voltage (Single-Ended) 3050 — 3500 3050 — 3520 3050 — 3555 mV VIHCMR Input HIGH Voltage Common Mode Range(4) VEE +2.0 VCC VEE +2.0 VCC VEE +2.0 VCC V IIH Input HIGH Current — — 150 — — 150 — — 150 µA IIL Input LOW Current 0.5 –150 — — — — 0.5 –150 — — — — 0.5 –150 — — — — µA D /D Note 1. 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Note 2. Input and output parameters vary 1:1 with VCC. Note 3. All loading with 50Ω to VCC – 3.0V. Note 4. The VIHCMR range is referenced to the most positive side of the differential input signal. 3.3V LVPECL DC ELECTRICAL CHARACTERISTICS(1) VCC = 3.3V, VEE = 0V(2). TA = –40°C Symbol IEE Parameter Power Supply Current Voltage(3) TA = +25°C TA = +85°C Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit 22 28 34 24 32 38 28 34 40 mA VOH Output HIGH 2080 2180 2280 2150 2250 2350 2225 2325 2425 mV VOL Outuput LOW Voltage(3) 620 720 820 630 730 830 670 770 870 mV VIH Input HIGH Voltage (Single-Ended) 2070 — 2410 2170 — 2490 2240 — 2580 mV VIL Input LOW Voltage (Single-Ended) 1350 — 1800 1350 — 1820 1350 — 1855 mV VIHCMR Input HIGH Voltage Common Mode Range (Diff.)(4) VCC V IIH Input HIGH Current IIL Input LOW Current D /D VEE +2.0 VCC VEE +2.0 VCC VEE +2.0 — — 150 — — 150 — — 150 µA 0.5 –150 — — — — 0.5 –150 — — — — 0.5 –150 — — — — µA Note 1. 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Note 2. Input and output parameters vary 1:1 with VCC. Note 3. All loading with 50Ω to VCC –3.0V. Note 4. The VIHCMR range is referenced to the most positive side of the differential input signal. M9999-120505 [email protected] or (408) 955-1690 4 ECL Pro™ SY10EP89V Micrel, Inc. LVECL DC ELECTRICAL CHARACTERISTICS(1) VCC = 0V, VEE = –3.3V. TA = –40°C Symbol IEE Parameter Power Supply Current VOH Output HIGH Voltage(2) Voltage(2) TA = +25°C TA = +85°C Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit 22 28 34 24 32 38 28 34 40 mA –1220 –1120 –1020 –1150 –1050 –950 –1075 –975 –875 mV –2680 –2580 –2480 –2670 –2570 –2470 –2630 –2530 –2430 mV VOL Outuput LOW VIH Input HIGH Voltage (Single-Ended) –1230 — –890 –1130 — –810 –1060 — –720 mV VIL Input LOW Voltage (Single-Ended) –1950 — –1500 –1950 — –1480 –1950 — –1445 mV VIHCMR Input HIGH Voltage Common Mode Range (Diff.)(3) 0.0 V IIH Input HIGH Current IIL Input LOW Current D /D VEE +2.0 0.0 VEE +2.0 0.0 VEE +2.0 — — 150 — — 150 — — 150 µA 0.5 –150 — — — — 0.5 –150 — — — — 0.5 –150 — — — — µA Note 1. 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Note 2. All loading with 50Ω to VCC –3.0V. Note 3. The VIHCMR range is referenced to the most positive side of the differential input signal. ECL DC ELECTRICAL CHARACTERISTICS(1) VCC = 0V; VEE = –5.2V. TA = –40°C Symbol IEE VOH Parameter Power Supply Current Output HIGH Voltage(2) Voltage(2) TA = +25°C TA = +85°C Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit 27 32 41 30 37 44 32 39 50 mA –1220 –1120 –1020 –1150 –1050 –950 –1075 –975 –875 mV –2950 –2800 –2650 –2950 –2850 –2650 –2950 –2800 –2650 mV VOL Outuput LOW VIH Input HIGH Voltage (Single-Ended) –1230 — –890 –1130 — –810 –1060 — –720 mV VIL Input LOW Voltage (Single-Ended) –1950 — –1500 –1950 — –1480 –1950 — –1445 mV VIHCMR Input HIGH Voltage Common Mode Range(3) 0 V IIH Input HIGH Current IIL Input LOW Current VEE +2.0 D /D 0 VEE +2.0 0 VEE +2.0 — — 150 — — 150 — — 150 µA 0.5 –150 — — — — 0.5 –150 — — — — 0.5 –150 — — — — µA Note 1. 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Note 2. All loading with 50Ω to VCC –3.0V. Note 3. The VIHCMR range is referenced to the most positive side of the differential input signal. M9999-120505 [email protected] or (408) 955-1690 5 ECL Pro™ SY10EP89V Micrel, Inc. AC ELECTRICAL CHARACTERISTICS VCC = 0V, VEE = –3.0V to –5.5V; VCC = 3.0V to 5.5V, VEE = 0V(1). TA = –40°C Symbol TA = +25°C TA = +85°C Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit fMAX Maximum Toggle Frequency(2) 3 — — 3 — — 3 — — GHz tPLH tPHL Propagation Delay to Output Differential 200 — 380 220 310 400 250 — 420 ps tSKEW Within Device Skew(3) Device-to-Device Skew — — 5.0 — 20 120 — — 5 — 20 120 — — — — 20 120 ps tJITTER Cycle-to-Cycle Jitter VPP Input Voltage Swing(4) (Differential) tr tf Output Rise/Fall Times (20% to 80%) Note 1. Q, /Q Q, /Q — 0.5 < 1.0 — 0.5 < 1.0 — 0.5 < 1.0 ps 150 800 1200 150 800 1200 150 — 1200 mV 120 — 350 130 250 350 150 — 350 ps Measured using a 750mV source, 50% duty cycle clock source. All loading with 50Ω to VCC –3.0V. Note 2. fMAX guaranteed for functionality only. VOL and VOH levels are guaranteed at DC only. Note 3. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. Note 4. VIL must not go below VCC –3.0V. M9999-120505 [email protected] or (408) 955-1690 6 ECL Pro™ SY10EP89V Micrel, Inc. 8-PIN MSOP (K8-1) Rev. 01 M9999-120505 [email protected] or (408) 955-1690 7 ECL Pro™ SY10EP89V Micrel, Inc. 8-PIN PLASTIC SOIC (Z8-1) Rev. 03 MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB USA http://www.micrel.com The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2005 Micrel, Incorporated. M9999-120505 [email protected] or (408) 955-1690 8