MICROCHIP TC552502EZBTR

Obsolete Device
TC55
1 µA Low Dropout Positive Voltage Regulator
Features
General Description
• Low Dropout Voltage: 120 mV (typ) at 100 mA,
380 mV (typ) at 200 mA
• High Output Current: 250 mA (VOUT = 5.0V)
• High Accuracy Output Voltage: ±2% (max)
(±1% Semi-Custom Version)
• Low Power Consumption: 1.1 µA (typ)
• Low Temperature Drift: ±100 ppm/°C (typ)
• Excellent Line Regulation: 0.2%/V (typ)
• Package Options: 3-Pin SOT-23A, 3-Pin SOT-89
and 3-Pin TO-92
• Short-Circuit Protection
• Standard Output Voltage Options: 1.2V, 1.8V,
2.5V, 3.0V, 3.3V, 5.0V
The TC55 Series is a collection of CMOS low dropout,
positive voltage regulators that can source up to
250 mA of current, with an extremely low input-output
voltage differential of 380 mV (typ) at 200 mA.
Applications
The circuit also incorporates short-circuit protection to
ensure maximum reliability.
Functional Block Diagram
VIN
Battery-Powered Devices
Cameras and Portable Video Equipment
Pagers and Cellular Phones
Solar Powered Instruments
Consumer Products
VOUT
Short-Circuit
Protection
–
+
•
•
•
•
•
The TC55’s low dropout voltage, combined with the low
current consumption of only 1.1 µA (typ), makes it ideal
for battery operation. The low voltage differential (dropout voltage) extends the battery operating lifetime. It
also permits high currents in small packages when
operated with minimum VIN – VOUT differentials.
Voltage
Reference
Package Types
3-Pin SOT-23A
VIN
3-Pin SOT-89
VIN
3
GND
TC55
1
GND
TC55
1
2
3
GND VIN VOUT
2
VOUT
3-Pin TO-92
123
Bottom
View
GND VIN VOUT
Note: 3-Pin SOT-23A is equivalent to the
EIAJ SC-59.
© 2005 Microchip Technology Inc.
DS21435F-page 1
TC55
1.0
ELECTRICAL
CHARACTERISTICS
† Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. These
are stress ratings only and functional operation of the device
at these or any other conditions above those indicated in the
operation sections of the specifications is not implied.
Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability.
Absolute Maximum Ratings†
Input Voltage ........................................................+12V
Output Current (Continuous) ......... PD/(VIN – VOUT)mA
Output Current (peak) ..................................... 500 mA
Output Voltage.................. (VSS – 0.3V) to (VIN + 0.3V)
Continuous Power Dissipation:
3-Pin SOT-23A ..........................................240 mW
3-Pin SOT-89 ............................................500 mW
3-Pin TO-92...............................................440 mW
PIN FUNCTION TABLE
Symbol
Description
GND
Ground Terminal
VOUT
Regulated Voltage Output
VIN
Unregulated Supply Input
TC55RP50: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 5.0V, TA = +25°C (see Note 1).
Parameters
Sym
Min
Typ
Max
Units
Output Voltage
VOUT(A)
—
4.90
—
5.0
—
5.10
V
Maximum Output Current
IOUTMAX
250
—
—
mA
Load Regulation
ΔVOUT
—
40
80
mV
VIN = 6.0V, 1 mA ≤ IOUT ≤ 100 mA
VDIF
—
—
120
380
300
600
mV
IOUT = 100 mA
IOUT = 200 mA
ISS
—
1.1
3.0
µA
VIN = 6.0V
VOUT(A)•100
—
0.2
0.3
%/V
I/O Voltage Difference
Current Consumption
Voltage Regulation
Conditions
IOUT = 40 mA
VIN = 6.0V
VIN = 6.0V, VOUT(A) ≥ 4.5V
IOUT = 40 mA, 6.0V ≤ VIN ≤ 10.0V
ΔVIN•VOUT(S)
Input Voltage
Temperature Coefficient of Output
Voltage
VIN
—
—
10
ΔVOUT(A)•106
—
±100
—
—
0.5
—
VOUT(S)•ΔTA
Long-Term Stability
Note 1:
V
ppm/°C IOUT = 40 mA, -40°C ≤ TA ≤ +85°C
%
TA = +125°C, 1000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage
difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage
when the output voltage is 98% VOUT(A).
TC55RP40: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 4.0V, TA = +25°C (see Note 1).
Parameters
Sym
Min
Typ
Max
Units
Output Voltage
VOUT(A)
—
3.92
—
4.0
—
4.08
V
Maximum Output Current
IOUTMAX
200
—
—
mA
Load Regulation
ΔVOUT
—
45
90
mV
VIN = 5.0V, 1 mA ≤ IOUT ≤ 100 mA
VDIF
—
—
170
400
330
630
mV
IOUT = 100 mA
IOUT = 200 mA
ISS
—
1.0
2.9
µA
VIN = 5.0V
VOUT(A)•100
—
0.2
0.3
%/V
I/O Voltage Difference
Current Consumption
Voltage Regulation
Conditions
IOUT = 40 mA
VIN = 5.0V
VIN = 5.0V, VOUT(A) ≥ 3.6V
IOUT = 40 mA, 5.0V ≤ VIN ≤ 10.0V
ΔVIN•VOUT(S)
Input Voltage
Temperature Coefficient of Output
Voltage
Long-Term Stability
Note 1:
VIN
—
—
10
ΔVOUT(A)•106
—
±100
—
—
0.5
—
V
ppm/°C IOUT = 40 mA, -40°C ≤ TA ≤ +85°C
VOUT(S)•ΔTA
%
TA = +125°C, 1000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage
difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage
when the output voltage is 98% VOUT(A).
DS21435F-page 2
© 2005 Microchip Technology Inc.
TC55
TC55RP33: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 3.3V, TA = +25°C (see Note 1).
Parameters
Sym
Min
Typ
Max
Units
Output Voltage
VOUT(A)
—
3.23
—
3.30
—
3.37
V
Maximum Output Current
IOUTMAX
150
—
—
mA
VIN = 4.3V, VOUT(A) ≥ 3.0V
Load Regulation
ΔVOUT
—
45
90
mV
VIN = 4.3V,
1 mA ≤ IOUT ≤ 80 mA
VDIF
—
—
180
400
360
700
mV
IOUT = 80 mA
IOUT = 160 mA
ISS
—
1.0
2.9
µA
VIN = 4.3V
VOUT(A)•100
—
0.2
0.3
%/V
I/O Voltage Difference
Current Consumption
Voltage Regulation
ΔVIN•VOUT(S)
Input Voltage
Temperature Coefficient of Output
Voltage
VIN
—
—
10
ΔVOUT(A)•106
—
±100
—
—
0.5
—
IOUT = 40 mA
VIN = 4.3V
IOUT = 40 mA,
4.3V ≤ IOUT ≤ 10.0V
V
ppm/°C IOUT = 40 mA, -40°C ≤ TA ≤ +85°C
VOUT(S)•ΔTA
Long-Term Stability
Note 1:
Conditions
%
TA = +125°C, 1,000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage
difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage
when the output voltage is 98% VOUT(A).
TC55RP30: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 3.0V, TA = +25°C (see Note 1).
Parameters
Sym
Min
Typ
Max
Units
Output Voltage
VOUT(A)
—
2.94
—
3.0
—
3.06
V
Maximum Output Current
IOUTMAX
150
—
—
mA
Load Regulation
ΔVOUT
—
45
90
mV
VIN = 4.0V, 1 mA ≤ IOUT ≤ 80 mA
VDIF
—
—
180
400
360
700
mV
IOUT = 80 mA
IOUT = 160 mA
ISS
—
0.9
2.8
µA
VIN = 4.0V
VOUT(A)•100
—
0.2
0.3
%/V
I/O Voltage Difference
Current Consumption
Voltage Regulation
Conditions
IOUT = 40 mA
VIN = 4.0V
VIN = 4.0V, VOUT(A) ≥ 2.7V
IOUT = 40 mA, 4.0V ≤ VIN ≤ 10.0V
ΔVIN•VOUT(S)
Input Voltage
Temperature Coefficient of Output
Voltage
Long-Term Stability
Note 1:
VIN
—
—
10
ΔVOUT(A)•106
—
±100
—
—
0.5
—
V
ppm/°C IOUT = 40 mA, -40°C ≤ TA ≤ +85°C
VOUT(S)•ΔTA
%
TA = +125°C, 1000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage
difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage
when the output voltage is 98% VOUT(A).
© 2005 Microchip Technology Inc.
DS21435F-page 3
TC55
TC55RP25: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 2.5V, TA = +25°C (see Note 1).
Parameters
Sym
Min
Typ
Max
Units
Output Voltage
VOUT(A)
—
2.45
—
2.5
—
2.55
V
Maximum Output Current
IOUTMAX
125
—
—
mA
VIN = 3.5V, VOUT(A) ≥ 2.25V
Load Regulation
ΔVOUT
—
45
90
mV
VIN = 3.5V,
1 mA ≤ IOUT ≤ 60 mA
VDIF
—
180
400
360
700
mV
IOUT = 60 mA
IOUT = 120 mA
ISS
—
1.0
2.8
µA
VIN = 3.5V
VOUT(A)•100
—
0.2
0.3
%/V
I/O Voltage Difference
Current Consumption
Voltage Regulation
ΔVIN•VOUT(S)
Input Voltage
Temperature Coefficient of Output
Voltage
VIN
—
—
10
ΔVOUT(A)•106
—
±100
—
—
0.5
—
IOUT = 40 mA
VIN = 3.5V
IOUT = 40 mA,
3.5V ≤ IOUT ≤ 10.0V
V
ppm/°C IOUT = 40 mA, -30°C ≤ TA ≤ +80°C
VOUT(S)•ΔTA
Long-Term Stability
Note 1:
Conditions
%
TA = +125°C, 1,000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage
difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage
when the output voltage is 98% VOUT(A).
TC55RP18: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 1.8V, TA = +25°C (see Note 1).
Parameters
Sym
Min
Typ
Max
Units
Output Voltage
VOUT(A)
—
1.764
—
1.8
—
1.836
V
Maximum Output Current
IOUTMAX
110
—
—
mA
VIN = 2.8V, VOUT(A) ≥ 1.62V
Load Regulation
ΔVOUT
—
—
30
mV
VIN = 2.8V,
1 mA ≤ IOUT ≤ 30 mA
I/O Voltage Difference
VDIF
—
—
300
mV
IOUT = 0.5 mA
Current Consumption
ISS
—
—
3.0
µA
VIN = 2.8V
VOUT(A)•100
—
—
0.25
%/V
Voltage Regulation
ΔVIN•VOUT(S)
Input Voltage
Temperature Coefficient of Output
Voltage
Long-Term Stability
Note 1:
VIN
—
—
6.0
ΔVOUT(A)•106
—
±100
—
—
0.5
—
Conditions
IOUT = 0.5 mA
VIN = 2.8V
IOUT = 0.5 mA,
2.8V ≤ IOUT ≤ 10.0V
V
ppm/°C IOUT = 0.5 mA, -30°C ≤ TA ≤ +80°C
VOUT(S)•ΔTA
%
TA = +125°C, 1,000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage
difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage
when the output voltage is 98% VOUT(A).
DS21435F-page 4
© 2005 Microchip Technology Inc.
TC55
TC55RP12: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 1.2V, TA = +25°C (see Note 1).
Parameters
Sym
Min
Typ
Max
Units
Output Voltage
VOUT(A)
—
1.176
—
1.200
—
1.224
V
Maximum Output Current
IOUTMAX
50
—
—
mA
VIN = 2.2V, VOUT(A) ≥ 1.08V
Load Regulation
ΔVOUT
—
—
30
mV
VIN = 2.2V,
1 mA ≤ IOUT ≤ 30 mA
VDIF
—
—
300
mV
IOUT = 0.5 mA
ISS
—
—
3.0
µA
VIN = 2.2V
VOUT(A)•100
—
—
0.25
%/V
—
—
6.0
V
—
±100
—
—
0.5
—
I/O Voltage Difference
Current Consumption
Voltage Regulation
ΔVIN•VOUT(S)
Input Voltage
VIN
Temperature Coefficient of Output
Voltage
6
ΔVOUT(A)•10
IOUT = 0.5 mA
VIN = 2.2V
IOUT = 0.5 ,
2.2V ≤ IOUT ≤ 10.0V
ppm/°C IOUT = 0.5 mA, -30°C ≤ TA ≤ +80°C
VOUT(S)•ΔTA
Long-Term Stability
Note 1:
Conditions
%
TA = +125°C, 1,000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage
difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage
when the output voltage is 98% VOUT(A).
TEMPERATURE CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 5.0V, TA = +25°C.
Parameters
Sym
Min
Typ
Max
Units
Specified Temperature Range (E)
TA
-40
Storage Temperature Range
TA
-65
—
+85
ºC
—
+150
ºC
Thermal Resistance, 3L-SOT-23A
θJA
—
359
—
ºC/W
Thermal Resistance, 3L-SOT-89
θJA
—
110
—
ºC/W
Thermal Resistance, 3L-TO-92
θJA
—
131.9
—
ºC/W
Conditions
Temperature Ranges
Package Thermal Resistances
© 2005 Microchip Technology Inc.
When mounted on 1 square
inch of copper
DS21435F-page 5
TC55
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Notes: Unless otherwise specified, VOUT(S) = 3.0V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.
OUTPUT VOLTAGE VOUT (V)
3.0
DROPOUT VOLTAGE VDIF (V)
VIN = 4.0V
3.1
-30°C
80°C
2.9
25°C
2.8
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
25°C
0.4
0.2
80°C
-0.2
2.7
0
20
40
60
0
80 100 120 140 160
FIGURE 2-1:
Output Voltage vs. Output
Current (TC55RP3002).
60
80 100 120 140 160
FIGURE 2-4:
Dropout Voltage vs. Output
Current (TC55RP3002).
TOPR = 25°C
3.2
VIN = 4.0V
3.10
OUTPUT VOLTAGE VOUT (V)
OUTPUT VOLTAGE VOUT (V)
20 40
OUTPUT CURRENT IOUT (mA)
OUTPUT CURRENT IOUT (mA)
3.0
IOUT = 1 mA
40 mA
2.8
2.6
10 mA
2.4
2.2
2.5
3.0
3.08
3.06
3.04
3.02
IOUT = 10 mA
3.00
2.98
40 mA
2.96
2.94
2.92
2.90
-40
3.5
INPUT VOLTAGE VIN (V)
20
40
60
80
100
TOPR = 25°C
1.5
3.04
SUPPLY CURRENT ISS (μA)
1.4
3.03
3.02
IOUT = 1 mA
3.01
3.00
2.99
2.98
2.97
2.96
2.95
0
FIGURE 2-5:
Output Voltage vs.
Operating Temperature (TC55RP3002).
TOPR = 25°C
3.05
-20
OPERATING TEMPERATURE (°C)
FIGURE 2-2:
Output Voltage vs. Input
Voltage (TC55RP3002).
OUTPUT VOLTAGE VOUT (V)
-30°C
0.0
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
3
4
5
6
7
8
9
10
INPUT VOLTAGE VIN (V)
FIGURE 2-3:
Output Voltage vs. Input
Voltage (TC55RP3002).
DS21435F-page 6
3
4
5
6
7
8
9
INPUT VOLTAGE VIN (V)
10
FIGURE 2-6:
Supply Current vs. Input
Voltage (TC55RP3002).
© 2005 Microchip Technology Inc.
TC55
Note: Unless otherwise indicated, VOUT(S) = 3.0V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.
VIN = 4.0V
1.5
OUTPUT VOLTAGE VOUT (V)
1.4
SUPPLY CURRENT ISS (μA)
TOPR = 25°C
5.2
1.8
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
5.0
4.6
10 mA
4.4
4.2
-40 -20
0
20
40
60
4.5
80 100
200
4
160
120
80
2
0
Output Current
40
40 mA
1 mA
TOPR = 25°C
5.05
OUTPUT VOLTAGE VOUT (V)
5
Output Voltage
5.5
FIGURE 2-10:
Output Voltage vs. Input
Voltage (TC55RP5002).
OUTPUT CURRENT IOUT (mA)
OUTPUT VOLTAGE VOUT (V)
FIGURE 2-7:
Supply Current vs.
Operating Temperature (TC55RP3002).
3
5.0
INPUT VOLTAGE VIN (V)
OPERATING TEMPERATURE (°C)
1
40 mA
IOUT = 1 mA
4.8
5.04
5.03
5.02
IOUT = 1 mA
5.01
5.00
4.99
4.98
4.97
4.98
4.95
0
5
TIME (2 msec/div)
6
7
8
9
10
INPUT VOLTAGE VIN (V)
FIGURE 2-8:
(TC55RP3002).
Load Transient Response
DROPOUT VOLTAGE VDIF (V)
VIN = 6.0V
5.1
OUTPUT VOLTAGE VOUT (V)
FIGURE 2-11:
Output Voltage vs. Input
Voltage (TC55RP5002).
-30°C
5.0
80°C
4.9
25°C
4.8
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
25°C
80°C
0.4
0.2
0.0
-30°C
-0.2
4.7
0
40
80
120
160
200
OUTPUT CURRENT IOUT (mA)
FIGURE 2-9:
Output Voltage vs. Output
Current (TC55RP5002).
© 2005 Microchip Technology Inc.
0
40
80
120
160
200
OUTPUT CURRENT IOUT (mA)
FIGURE 2-12:
Dropout Voltage vs. Output
Current (TC55RP5002).
DS21435F-page 7
TC55
Note: Unless otherwise indicated, VOUT(S) = 3.0V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.
INPUT VOLTAGE VOUT (V)
5.06
5.04
IOUT = 10 mA
5.00
4.98
40 mA
4.96
4.94
4.92
7.5
7.0
6.5
6.0
5.5
0
20
40
60
80
4.0
100
-1
FIGURE 2-13:
Output Voltage vs.
Operating Temperature (TC55RP5002).
0
1
TIME (msec)
IOUT = 10 mA
Input
Voltage
8.0
INPUT VOLTAGE VOUT (V)
1.9
1.8
1.7
1.6
1.4
1.3
1.2
1.1
3
FIGURE 2-16:
Input Transient Response,
1 mA (TC55RP5002).
TOPR = 25°C
2.0
2
1.0
7.5
OUTPUT VOLTAGE VOUT (V)
-20
OPERATING TEMPERATURE (°C)
SUPPLY CURRENT ISS (μA)
5.0
4.5
4.90
-40
7.0
6.5
6.0
5.5
Output
Voltage
5.0
4.5
0.5
5
7
8
9
6
INPUT VOLTAGE VIN (V)
-1
OUTPUT VOLTAGE VOUT (V)
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0
20
40
60
1
TIME (msec)
2
3
7
200
6
160
Output Voltage
5
3
120
80
4
2
-20
0
FIGURE 2-17:
Input Transient Response,
10 mA (TC55RP5002).
VIN = 6.0V
2.0
-40
4.0
10
FIGURE 2-14:
Supply Current vs. Input
Voltage (TC55RP5002).
SUPPLY CURRENT ISS (μA)
Output
Voltage
5.0
Output Current
40 mA
1 mA
80 100
40
OUTPUT CURRENT IOUT (mA)
OUTPUT VOLTAGE VOUT (V)
5.08
5.02
IOUT = 1 mA
Input
Voltage
8.0
OUTPUT VOLTAGE VIN (V)
VIN = 6.0V
5.10
0
TIME (2 msec/div)
OPERATING TEMPERATURE (°C)
FIGURE 2-15:
Supply Current vs.
Operating Temperature (TC55RP5002).
DS21435F-page 8
FIGURE 2-18:
(TC55RP5002).
Load Transient Response
© 2005 Microchip Technology Inc.
TC55
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
Pin No.
PIN FUNCTION TABLE
Symbol
Description
4.0
DETAILED DESCRIPTION
The TC55 is a low quiescent current, precision, fixedoutput voltage LDO. Unlike bipolar regulators, the
TC55 supply current does not increase proportionally
with load current.
1
GND
Ground Terminal
4.1
2
VOUT
Regulated Voltage Output
3
VIN
Unregulated Supply Input
A minimum of 1 µF output capacitor is required. The
output capacitor should have an effective series resistance (esr) greater than 0.1Ω and less than 5Ω, plus a
resonant frequency above 1 MHz. Larger output
capacitors can be used to improve supply noise rejection and transient response. Care should be taken
when increasing COUT to ensure that the input impedance is not high enough to cause high input impedance
oscillation.
3.1
Ground Terminal (GND)
Regulator ground. Tie GND to the negative side of the
output and the negative side of the input capacitor.
Only the LDO bias current (1 µA typical) flows out of
this pin, there is no high current. The LDO output regulation is referenced to this pin. Minimize voltage drops
between this pin and the minus side of the load.
3.2
Regulated Voltage Output (VOUT)
Connect VOUT to the positive side of the load and the
positive terminal of the output capacitor. The positive
side of the output capacitor should be physically
located as close to the LDO VOUT pin as is practical.
The current flowing out of this pin is equal to the DC
load current.
3.3
4.2
Output Capacitor
Input Capacitor
A 1 µF input capacitor is recommended for most
applications when the input impedance is on the order
of 10Ω. Larger input capacitance may be required for
stability when operating off of a battery input, or if there
is a large distance from the input source to the LDO.
When large values of output capacitance are used, the
input capacitance should be increased to prevent high
source impedance oscillations.
Unregulated Supply Input (VIN)
Connect the input supply voltage and the positive side
of the input capacitor to VIN. The input capacitor should
be physically located as close as is practical to VIN. The
current flow into this pin is equal to the DC load current,
plus the LDO bias current (1 µA typical.)
© 2005 Microchip Technology Inc.
DS21435F-page 9
TC55
5.0
THERMAL CONSIDERATIONS
5.1
Power Dissipation
The amount of power dissipated internal to the low
dropout linear regulator is the sum of the power dissipation within the linear pass device (P-Channel MOSFET) and the quiescent current required to bias the
internal reference and error amplifier. The internal linear pass device power dissipation is calculated by multiplying the voltage across the linear device by the
current through the device.
EQUATION
PD = (VINMAX – VOUTMIN) x IOUTMAX
Given:
VIN
= 3.3V to 4.1V
VOUT = 3.0 V ± 2%
IOUT
= 1 mA to 100 mA
TAMAX = 55°C
PMAX = (4.1V – (3.0V x 0.98)) x 100 mA
PMAX = 116.0 milliwatts
EQUATION
PD (Pass Device) = (VIN – VOUT) x IOUT
The internal power dissipation, as a result of the bias
current for the LDO internal reference and error
amplifier, is calculated by multiplying the ground or
quiescent current by the input voltage.
EQUATION
PD (Bias) = VIN x IGND
The total internal power dissipation is the sum of PD
(Pass Device) and PD (Bias).
EQUATION
PTOTAL = PD (Pass Device) + PD (Bias)
For the TC55, the internal quiescent bias current is so
low (1 µA typical) that the PD (Bias) term of the power
dissipation equation can be ignored. The maximum
power dissipation can be estimated by using the
maximum input voltage and the minimum output
voltage to obtain a maximum voltage differential
between input and output. The next step would be to
multiply the maximum voltage differential by the
maximum output current.
DS21435F-page 10
To determine the junction temperature of the device, the
thermal resistance from junction-to-ambient must be
known. The 3-pin SOT-23 thermal resistance from junction-to-air (RθJA) is estimated to be approximately
359°C/W. The SOT-89 RθJA is estimated to be approximately 110°C/W when mounted on 1 square inch of
copper. The TO-92 RθJA is estimated to be 131.9°C/W.
The RθJA will vary with physical layout, airflow and other
application-specific conditions.
The device junction temperature is determined by
calculating the junction temperature rise above
ambient, then adding the rise to the ambient
temperature.
EQUATION
Junction Temperature
SOT-23 Example:
TJ = PDMAX x RθJA + TA
TJ = 116.0 milliwatts x 359°C/W + 55°C
TJ = 96.6°C
SOT-89 Example:
TJ = 116.0 milliwatts x 110°C/W + 55°C
TJ = 67.8°C
TO-92 Example:
TJ = 116.0 milliwatts x 131.9°C/W + 55°C
TJ = 70.3°C
© 2005 Microchip Technology Inc.
TC55
6.0
PACKAGING INFORMATION
6.1
Package Marking Information
3-Pin SOT-23A
1
1
2
2
3
3-Pin TO-92
3-Pin SOT-89
2
4
1
3
1 2 3 4
5 6 7 8
4
9 10 11 12
represents first voltage digit
2V, 3V, 4V, 5V, 6V
1 , 2 , 3 & 4
Ex: 3.xV =
5
represents first voltage digit (2-6)
6
represents first voltage decimal (0-9)
7
represents extra feature code: fixed: 0
8
represents regulation accuracy
1 = ±1.0% (custom), 2 = ±2.0% (standard)
3
represents first decimal place voltage (x.0 - x.9)
Ex: 3.4V =
3
= 55RP (fixed)
E
Symbol
Voltage
Symbol
Voltage
A
B
C
D
E
x.0
x.1
x.2
x.3
x.4
F
H
K
L
M
x.5
x.6
x.7
x.8
x.9
3
represents polarity
0 = Positive (fixed)
4
represents assembly lot number
© 2005 Microchip Technology Inc.
9 , 10, 11 & 12
represents assembly lot number
DS21435F-page 11
TC55
3-Lead Plastic Small Outline Transistor (CB) (SOT23)
E
E1
2
B
p1
n
D
p
1
α
c
A
φ
β
A1
L
Units
Dimension Limits
n
Number of Pins
p
Pitch
p1
Outside lead pitch (basic)
Overall Height
Molded Package Thickness
Standoff §
Overall Width
Molded Package Width
Overall Length
Foot Length
Foot Angle
Lead Thickness
Lead Width
Mold Draft Angle Top
Mold Draft Angle Bottom
* Controlling Parameter
§ Significant Characteristic
A2
A
A2
A1
E
E1
D
L
φ
c
B
α
β
MIN
.035
.035
.000
.083
.047
.110
.014
0
.004
.015
0
0
INCHES*
NOM
3
.038
.076
.040
.037
.002
.093
.051
.115
.018
5
.006
.017
5
5
MAX
.044
.040
.004
.104
.055
.120
.022
10
.007
.020
10
10
MILLIMETERS
NOM
3
0.96
1.92
0.89
1.01
0.88
0.95
0.01
0.06
2.10
2.37
1.20
1.30
2.80
2.92
0.35
0.45
0
5
0.09
0.14
0.37
0.44
0
5
0
5
MIN
MAX
1.12
1.02
0.10
2.64
1.40
3.04
0.55
10
0.18
0.51
10
10
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010” (0.254mm) per side.
JEDEC Equivalent: TO-236
Drawing No. C04-104
DS21435F-page 12
© 2005 Microchip Technology Inc.
TC55
3-Lead Plastic Small Outline Transistor (MB) (SOT89)
H
E
B1
3
B
D
D1
p1
2
p
1
B1
L
E1
A
C
Units
Dimension Limits
p
Pitch
Outside lead pitch (basic)
Overall Height
Overall Width
Molded Package Width at Base
Molded Package Width at Top
Overall Length
Tab Length
Foot Length
Lead Thickness
Lead 2 Width
Leads 1 & 3 Width
p1
A
H
E
E1
D
D1
L
c
B
B1
INCHES
MIN
MAX
.059 BSC
.118 BSC
.055
.063
.155
.167
.090
.102
.084
.090
.173
.181
.064
.072
.035
.047
.014
.017
.017
.022
.014
.019
MILLIMETERS*
MIN
MAX
1.50 BSC
3.00 BSC
1.40
1.60
3.94
4.25
2.29
2.60
2.13
2.29
4.40
4.60
1.62
1.83
0.89
1.20
0.35
0.44
0.44
0.56
0.36
0.48
*Controlling Parameter
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not
exceed .005" (0.127mm) per side.
JEDEC Equivalent: TO-243
Drawing No. C04-29
© 2005 Microchip Technology Inc.
DS21435F-page 13
TC55
3-Lead Plastic Transistor Outline (ZB) (TO-92)
E1
D
n
1
L
1
2
3
α
B
p
c
A
R
Units
Dimension Limits
n
p
β
MIN
INCHES*
NOM
MAX
MILLIMETERS
NOM
3
1.27
3.30
3.62
4.45
4.71
4.32
4.64
2.16
2.29
12.70
14.10
0.36
0.43
0.41
0.48
4
5
2
3
MIN
Number of Pins
3
Pitch
.050
Bottom to Package Flat
A
.130
.143
.155
Overall Width
E1
.175
.186
.195
Overall Length
D
.170
.183
.195
Molded Package Radius
R
.085
.090
.095
Tip to Seating Plane
L
.500
.555
.610
c
Lead Thickness
.014
.017
.020
Lead Width
B
.016
.019
.022
α
4
5
6
Mold Draft Angle Top
β
Mold Draft Angle Bottom
2
3
4
*Controlling Parameter
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010” (0.254mm) per side.
JEDEC Equivalent: TO-92
Drawing No. C04-101
DS21435F-page 14
MAX
3.94
4.95
4.95
2.41
15.49
0.51
0.56
6
4
© 2005 Microchip Technology Inc.
TC55
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
Device
XX
X
X
X
XX
XX
Output Feature Tolerance Temp. Package Taping
Voltage Code
Direction
Examples:
a)
TC55RP1802ECB713: 1.8V LDO Positive
Voltage Regulator, 2% Tolerance
SOT23-A-3 package.
b)
TC55RP2502EMB713: 1.8V LDO Positive
Voltage Regulator, 2% Tolerance.
SOT89-3 package.
c)
TC55RP2502ECB713: 2.5V LDO Positive
Voltage Regulator, 2% Tolerance.
SOT23-A-3 package.
d)
TC55RP3002ECB713: 3.0V LDO Positive
Voltage Regulator, 2% Tolerance.
SOT23-A-3 package.
e)
TC55RP3002EMB713: 3.0V LDO Positive
Voltage Regulator, 2% Tolerance.
SOT89-3 package.
Device:
TC55:
1 µA Low Dropout Positive Voltage Regulator
Output Voltage:
12
18
25
30
33
50
=
=
=
=
=
=
1.2V "Standard"
1.8V "Standard"
2.5V "Standard"
3.0V "Standard"
3.3V "Standard"
5.0V "Standard"
Extra Feature Code:
0
= Fixed
Tolerance:
1
2
= 1.0% (Custom)
= 2.0% (Standard)
f)
TC55RP3302ECB713: 3.3V LDO Positive
Voltage Regulator, 2% Tolerance.
SOT23-A-3 package.
Temperature:
E
= -40°C to +85°C
g)
TC55RP3302EMB713: 3.3V LDO Positive
Voltage Regulator, 2% Tolerance.
SOT89-3 package.
Package Type:
CB = 3-Pin SOT-23A (equivalent to EIAJ SC-59)
MB = 3-Pin SOT-89
ZB = 3-Pin TO-92
h)
TC55RP5002ECB713: 5.0V LDO Positive
Voltage Regulator, 2% Tolerance.
SOT23-A-3 package.
Taping Direction:
TR = Standard
713 = Standard
i)
TC55RP5002EMB713: 5.0V LDO Positive
Voltage Regulator, 2% Tolerance.
SOT89-3 package.
Sales and Support
Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1.
2.
3.
Your local Microchip sales office
The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
© 2005 Microchip Technology Inc.
DS21435F-page 15
TC55
NOTES:
DS21435F-page 16
© 2005 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
© 2005 Microchip Technology Inc.
DS21435F-page 17
WORLDWIDE SALES AND SERVICE
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632
Austria - Wels
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256
Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
10/31/05
DS21435F-page 18
© 2005 Microchip Technology Inc.