TDA7496SA 5W+5W AMPLIFIER WITH DC VOLUME CONTROL PRODUCT PREVIEW ■ 5+5W OUTPUT POWER RL = 8Ω @THD = 10% VCC = 22V MULTIPOWER BI50II TECHNOLOGY ■ ST-BY AND MUTE FUNCTIONS ■ LOW TURN-ON TURN-OFF POP NOISE ■ LINEAR VOLUME CONTROL DC COUPLED WITH POWER OP. AMP. ■ NO BOUCHEROT CELL ■ NO ST_BY RC INPUT NETWORK ■ SINGLE SUPPLY RANGING UP TO 35V ■ SHORT CIRCUIT PROTECTION ■ THERMAL OVERLOAD PROTECTION ■ INTERNALLY FIXED GAIN ■ SOFT CLIPPING ■ VARIABLE OUTPUT AFTER VOLUME CONTROL CIRCUIT ■ CLIPWATT 15 PACKAGE Clipwatt 15 ORDERING NUMBER: TDA7496SA amplifier assembled i the @Clipwatt 15 package, specially designed for high quality sound TV applications. Features of the TDA7496SA include linear volume control Stand-by and Mute functions. The TDA7496SA is pin to pin compatible with TDA7496, TDA7496S, TDA7496SA, TDA7495, TDA7495SA, TDA7494S, TDA7494SA. DESCRIPTION The TDA7496SA is a stereo 5+5W class AB power BLOCK DIAGRAM VAROUT_R PW_GND 11 470nF 13 15 VOLUME 1 INR VS 2 1000µF 14 + 30K PW_GND - OUTR OP AMP S1 ST-BY S_GND 8 +5V 9 STBY 10 MUTE MUTE/STBY PROTECTIONS 60K VOLUME 470nF 12 + 30K - 1µF +5V OUTL 1000µF OP AMP SVR S_GND S2 MUTE 5 INL 10K 7 470µF 3 VOLUME 100nF 4 VAROUT_L 300K +5V D96AU440D September 2003 This is preliminary information on a new product now in development. Details are subject to change without notice. 1/13 TDA7496SA ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit 35 V 8 Vpp 16 W VS DC Supply Voltage VIN Maximum Input Voltage Ptot Total Power Dissipation (Tamb = 70°C) Tamb Ambient Operating Temperature (1) 0 to 70 °C Tstg,TJ Storage and Junction Temperature -40 to 150 °C 7 V Value Unit Typ. = 4.5; Max. = 5 °C/W 48 °C/W V3 Volume Control DC Voltage PIN CONNECTION (top view) 15 PW_GND 14 OUTR 13 VS 12 OUTL 11 PW_GND 10 MUTE 9 STBY 8 S_GND 7 SVR 6 N.C. 5 INL 4 VAROUT_L 3 VOLUME 2 VAROUT_R 1 INR D03AU1505 THERMAL DATA Symbol Parameter Rth j-case Thermal Resistance junction-case Rth j-amb Thermal Resistance junction-ambient Max. ELECTRICAL CHARACTERISTCS (Refer to the test circuit RL = 8Ω, f = 1KHz, Rg = 50Ω, VS = 22V, Tamb = 25°C) Symbol Parameter Test Condition Typ. 10 Max. Unit 32 V 50 mA Vs Supply Voltage Range Iq Total Quiescent Current 25 Output DC Offset Referred to SVR No Input Signal Potential 200 mV VO Quiescent Output Voltage 11 V PO Output Power 5.5 4 W 2.1 1.0 W DCVos THD = 10%; RL = 8Ω; THD = 1%; RL = 8Ω; THD = 10%; RL = 4Ω; VS = 12V THD = 1%; RL = 4Ω; VS = 12V THD 2/13 Min. Total Harmonic Distortion Gv = 30dB; PO = 1W; f = 1KHz 5 0.4 % TDA7496SA ELECTRICAL CHARACTERISTCS (continued) (Refer to the test circuit RL = 8Ω, f = 1KHz, Rg = 50Ω, VS = 22V, Tamb = 25°C) Symbol Ipeak Parameter Output Peak Current Test Condition (internally limited) Min. Typ. 1.0 1.3 VIN Input Signal GV Closed Loop Gain VOl Ctrl >4.5V 28.5 GVLine Monitor Out Gain VOl Ctrl >4.5V; Zload >30KΩ -1.5 AMin VOL Attenuation at Minimum Volume VOl Ctrl <0.5V SR Slew Rate Ri Input Resistance RVar Out Vrms 30 31.5 dB 0 1.5 dB dB 500 800 µV f = 20Hz to 22KHz PLAY, max attenuation 100 250 µV f = 20Hz to 22KHz MUTE 60 150 µV 5 8 V/µs 22.5 30 KΩ Variable Output Resistance Supply Voltage Rejection MHz f = 20Hz to 22KHz PLAY, max volume 30 RL Var Out Variable Output Load SVR 2.8 0.6 Total Output Noise Unit A 80 BW eN Max. 100 2 Ω KΩ f = 1KHz; max volume CSVR = 470µF; VRIP = 1Vrms 35 39 dB f = 1KHz; max attenuation CSVR = 470µF; VRIP = 1Vrms 55 65 dB TM Thermal Muting 150 °C TS Thermal Shut-down 160 °C MUTE & INPUT SELECTION FUNCTIONS VST-ON Stand-by ON Threshold VST-OFF Stand-by OFF Threshold 3.5 V 1.5 VMUTEON Mute ON threshold 3.5 V VMUTEOFF Mute OFF threshold AMUTE Mute Attenuation IqST-BY Quiescent Current @ Stand-by IstbyBIAS Stand-by bias current 1.5 50 Play or Mute ImuteBIAS Mute Bias Current 65 0.6 Stand by ON: VST-BY = 5V; Vmute = 5V -20 V V dB 1 mA 80 µA -5 µA Mute 1 5 µA Play 0.2 2 µA 3/13 TDA7496SA APPLICATION SUGGESTIONS The recommended values of the external components are those shown on the application circuit of figure 1. Different values can be used, the following table can help the designer. COMPONENT SUGGESTION VALUE R1 300K Volume Control Circuit Larger volume regulation time Smaller volume regulation time R2 10K Mute time constant Larger mute on/off time Smaller mute on/off time P1 50K Volume Control Circuit C1 1000µF Supply voltage bypass C2 470nF Input DC decoupling Lower low frequency cutoff Higher low frequency cutoff C3 470nF Input DC decoupling Lower low frequency cutoff Higher low frequency cutoff C4 470µF Ripple rejection Better SVR Worse SVR C5 100nF Volume control time constant Larger volume regulation time Smaller volume regulation time C6 1000µF Output DC decoupling Lower low frequency cutoff Higher low frequency cutoff C7 1µF Mute time constant Larger mute on/off time C8 1000µF Output DC decoupling Lower low frequency cutoff Higher low frequency cutoff C9 100nF Supply voltage bypass LARGER THAN SUGGESTION PURPOSE SMALLER THAN SUGGESTION Danger of oscillation Smaller mute on/off time Danger of oscillation Figure 1. Application Circui +VS C1 1000µF C9 0.1µF VS VAROUT_R PW_GND 2 11 15 VOLUME 1 INR C2 470nF 13 14 + 30K PW_GND C8 1000µF PW_GND OUTR OP AMP S1 STBY S_GND 9 8 MUTE/STBY PROTECTIONS C7 1µF VOLUME 5 INL C3 470nF 12 + 30K - PW_GND 7 C4 470µF 3 VOLUME C5 100nF 4/13 S2 MUTE OUTL C6 1000µF OP AMP SVR S_GND R2 10K 10 4 VAROUT_L R1 300K TP1 VOL P1 50K LOG +5V +5V D96AU493D +5V TDA7496SA MUTE STAND-BY TRUTH TABLE MUTE St-BY OPERATING CONDITION H H STAND-BY L H STAND-BY H L MUTE L L PLAY Turn ON/OFF Sequences (for optimizing the POP performances) Figure 1. USING ONLY THE MUTE FUNCTION VS (V) ST-BY pin#9 (V) 5 VSVR pin#7(V) 2.5V MUTE pin#10 (V) 5 INPUT (mV) VOUT (V) OFF STBY MUTE PLAY MUTE STBY OFF IQ (mA) D97AU684 USING ONLY THE MUTE FUNCTION To semplify the application, the stand-by pin can be connected directly to Ground. During the ON/OFF transitions is recommended to respect the following conditions: – At the turn-on the transition mute to mute - play must be made when the SVR pin is higher than 2.5V – At the turn-off the TDA7496A must be brought to mute from the play condition when the SVR pin is higher than 2.5V. 5/13 TDA7496SA Figure 2. P.C.B. and Component layoutPCB and Component Layout Figure 3. 6/13 TDA7496SA Figure 4. Quiescent Current vs. Supply Voltage Iq (mA) D03AU1494 30 Vi=0 Figure 7. Output DC Offset vs. Supply Voltage Vodc-Vsvr (mV) 280 D03AU1496/mod Vi=0 260 28 240 26 220 24 200 180 22 160 20 140 18 120 100 16 10 12 14 16 18 20 22 24 26 Supply Voltage (V) 28 30 Figure 5. Output Dc Offset vs. Supply Voltage Vodc (V) 16 15 14 13 12 11 10 9 8 7 6 5 4 10 32 D03AU1495 14 16 18 20 22 24 Supply Voltage (V) 26 28 30 32 Figure 8. Output Power vs Supply Voltage Output Power (W) 3.2 D03AU1498 Rl=4Ω F=1KHz 2.8 Vi=0 12 2.4 THD=10% 2.0 1.6 1.2 THD=1% 0.8 0.4 0 10 12 14 16 18 20 22 24 Supply Voltage (V) 26 28 30 Figure 6. Output Power vs. Supply Voltage Output Power (W) 10 32 13 13.5 14 D03AU1499 Vs=22V Rl=8Ω 1 THD=10% 6 11.5 12 12.5 Supply Voltage (V) Distortion (%) Rl=8Ω F=1KHz 7 11 Figure 9. Distortion vs Output Power D03AU1497 8 10.5 5 F=15KHz 4 0.1 3 THD=1% 2 F=1KHz 1 0 10 12 14 16 18 20 Supply Voltage (V) 22 24 26 0.01 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Output Power (W) 7/13 TDA7496SA Figure 10. Distortion vs Output Power Figure 13. Mute Attenuation vs Vpin 10 Distortion (%) D03AU1500 Mute Attenuation (dB) D03AU1503 0 -20 F=15KHz 1 Rl=8Ω 0dB @ Pout=1W -40 Vs=12V Rl=4Ω 0.1 -60 -80 F=1KHz 0.01 -100 -120 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Output Power (W) Figure 11. Closed Loop Gain vs. Frequency Closed loop Gain (dB) 30 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 Vpin # 10 (V) PINS DESCRIPTION D03AU1501 Figure 14. PIN SVR VS 28 Rl=8Ω Pout=0.5W Cin=470nF Cout=1000µF Csvr=470µF 26 24 VS VS OUT L + - 20K 6K 1K 20K 6K 1K 30K SVR 22 30K 20 0.02 0.2 2 Frequency (KHz) 20 + 100µA Figure 12. St-By Attenuation vs Vpin 9 D97AU585A Figure 15. PINS: INL,INR St-by Attenuation (dB) D03AU1502 VS 0 -20 -40 Rl=8Ω 0dB @ Pout=1W -60 6K INn -80 30K -100 -120 -140 8/13 D97AU589 SVR 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Vpin # 9 (V) 4.0 4.5 5.0 500µA OUT R TDA7496SA Figure 17. PIN ST-BY Figure 20. PINS: VAROUT-L VAROUT-R VS VS 10µA STBY 200 VAROUT-L 65K D97AU594 D97AU590 Figure 18. PIN: MUTE Figure 21. PIN: VOLUME VS MUTE 200 VS 10K 10µA 50µA D97AU592 VOL Figure 19. PINS: OUT R, OUT L D97AU591 VS Figure 22. PINS: PW-GND, S-GND OUT VS GND D97AU593 D97AU588 9/13 TDA7496SA HEAT SINK DIMENSIONING: In order to avoid the thermal protection intervention, that is placed approximatively at Tj = 150°C, it is important the dimensioning of the Heat Sinker RTh (°C/W). The parameters that influence the dimensioning are: – Maximum dissipated power for the device (Pdmax) – Max thermal resistance Junction to case (RTh j-c) – Max. ambient temperature Tamb max – Quiescent current Iq (mA) Example: VCC = 22V, Rload = 8ohm, RTh j-c = 5 °C/W , Tamb max = 50°C 2 V cc - + I q ⋅ V cc Pdmax = (N° channels) · ----------------------------2 2 Π ⋅ R lo ad Pdmax = 2 · ( 3.0 ) + 0.5 = 6.5 W 150 – T am b max 150 – 50 - – R T h j-c = ---------------------- – 5.0 = 10°C /W (Heat Sinker) R Th c-a = ---------------------------------------6.5 P d max In figure 23 is shown the Power derating curve for the device. Figure 23. Power derating curve 20 15 Pd (W) (a) 10 (b) a) Infinite Heatsink b) 7 °C/ W c) 10 °C/ W (c) 5 0 0 40 80 Tamb (°C) 10/13 120 160 TDA7496SA Clipwatt Assembling Suggestions The suggested mounting method of Clipwatt on external heat sink, requires the use of a clip placed as much as possible in the plastic body center, as indicated in the example of figure 24. A thermal grease can be used in order to reduce the additional thermal resistance of the contact between package and heatsink. A pressing force of 7 - 10 Kg gives a good contact and the clip must be designed in order to avoid a maximum contact pressure of 15 Kg/mm2 between it and the plastic body case. As example , if a 15Kg force is applied by the clip on the package , the clip must have a contact area of 1mm2 at least. Figure 24. Example of right placement of the clip 11/13 TDA7496SA mm inch DIM. MIN. TYP. MAX. MIN. TYP. MAX. A 3.2 0.126 B 1.05 0.041 C 0.15 0.006 D 1.55 0.061 Weight: 1.92gr E 0.49 0.55 0.019 0.022 F 0.67 0.73 0.026 0.029 G 1.14 1.27 1.4 0.045 0.050 0.055 G1 17.57 17.78 17.91 0.692 0.700 0.705 H1 12 0.480 H2 18.6 0.732 H3 19.85 0.781 L 17.95 0.707 L1 14.45 0.569 L2 10.7 OUTLINE AND MECHANICAL DATA 11 11.2 0.421 0.433 L3 5.5 0.217 M 2.54 0.100 M1 2.54 0.100 0.441 Clipwatt15 0044538 12/13 TDA7496SA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2003 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 13/13