STMICROELECTRONICS TDA7495

TDA7496SA
5W+5W AMPLIFIER WITH DC VOLUME CONTROL
PRODUCT PREVIEW
■
5+5W OUTPUT POWER
RL = 8Ω @THD = 10% VCC = 22V
MULTIPOWER BI50II TECHNOLOGY
■
ST-BY AND MUTE FUNCTIONS
■
LOW TURN-ON TURN-OFF POP NOISE
■
LINEAR VOLUME CONTROL DC COUPLED
WITH POWER OP. AMP.
■
NO BOUCHEROT CELL
■
NO ST_BY RC INPUT NETWORK
■
SINGLE SUPPLY RANGING UP TO 35V
■
SHORT CIRCUIT PROTECTION
■
THERMAL OVERLOAD PROTECTION
■
INTERNALLY FIXED GAIN
■
SOFT CLIPPING
■
VARIABLE OUTPUT AFTER VOLUME
CONTROL CIRCUIT
■
CLIPWATT 15 PACKAGE
Clipwatt 15
ORDERING NUMBER: TDA7496SA
amplifier assembled i the @Clipwatt 15 package,
specially designed for high quality sound TV applications.
Features of the TDA7496SA include linear volume
control Stand-by and Mute functions.
The TDA7496SA is pin to pin compatible with
TDA7496, TDA7496S, TDA7496SA, TDA7495,
TDA7495SA, TDA7494S, TDA7494SA.
DESCRIPTION
The TDA7496SA is a stereo 5+5W class AB power
BLOCK DIAGRAM
VAROUT_R
PW_GND
11
470nF
13
15
VOLUME
1
INR
VS
2
1000µF
14
+
30K
PW_GND
-
OUTR
OP AMP
S1 ST-BY
S_GND
8
+5V
9
STBY
10
MUTE
MUTE/STBY
PROTECTIONS
60K
VOLUME
470nF
12
+
30K
-
1µF
+5V
OUTL
1000µF
OP AMP
SVR
S_GND
S2 MUTE
5
INL
10K
7
470µF
3
VOLUME
100nF
4
VAROUT_L
300K
+5V
D96AU440D
September 2003
This is preliminary information on a new product now in development. Details are subject to change without notice.
1/13
TDA7496SA
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
35
V
8
Vpp
16
W
VS
DC Supply Voltage
VIN
Maximum Input Voltage
Ptot
Total Power Dissipation (Tamb = 70°C)
Tamb
Ambient Operating Temperature (1)
0 to 70
°C
Tstg,TJ
Storage and Junction Temperature
-40 to 150
°C
7
V
Value
Unit
Typ. = 4.5; Max. = 5
°C/W
48
°C/W
V3
Volume Control DC Voltage
PIN CONNECTION (top view)
15
PW_GND
14
OUTR
13
VS
12
OUTL
11
PW_GND
10
MUTE
9
STBY
8
S_GND
7
SVR
6
N.C.
5
INL
4
VAROUT_L
3
VOLUME
2
VAROUT_R
1
INR
D03AU1505
THERMAL DATA
Symbol
Parameter
Rth j-case
Thermal Resistance junction-case
Rth j-amb
Thermal Resistance junction-ambient Max.
ELECTRICAL CHARACTERISTCS
(Refer to the test circuit RL = 8Ω, f = 1KHz, Rg = 50Ω, VS = 22V, Tamb = 25°C)
Symbol
Parameter
Test Condition
Typ.
10
Max.
Unit
32
V
50
mA
Vs
Supply Voltage Range
Iq
Total Quiescent Current
25
Output DC Offset Referred to SVR No Input Signal
Potential
200
mV
VO
Quiescent Output Voltage
11
V
PO
Output Power
5.5
4
W
2.1
1.0
W
DCVos
THD = 10%; RL = 8Ω;
THD = 1%; RL = 8Ω;
THD = 10%; RL = 4Ω; VS = 12V
THD = 1%; RL = 4Ω; VS = 12V
THD
2/13
Min.
Total Harmonic Distortion
Gv = 30dB; PO = 1W; f = 1KHz
5
0.4
%
TDA7496SA
ELECTRICAL CHARACTERISTCS (continued)
(Refer to the test circuit RL = 8Ω, f = 1KHz, Rg = 50Ω, VS = 22V, Tamb = 25°C)
Symbol
Ipeak
Parameter
Output Peak Current
Test Condition
(internally limited)
Min.
Typ.
1.0
1.3
VIN
Input Signal
GV
Closed Loop Gain
VOl Ctrl >4.5V
28.5
GVLine
Monitor Out Gain
VOl Ctrl >4.5V; Zload >30KΩ
-1.5
AMin VOL Attenuation at Minimum Volume
VOl Ctrl <0.5V
SR
Slew Rate
Ri
Input Resistance
RVar Out
Vrms
30
31.5
dB
0
1.5
dB
dB
500
800
µV
f = 20Hz to 22KHz
PLAY, max attenuation
100
250
µV
f = 20Hz to 22KHz MUTE
60
150
µV
5
8
V/µs
22.5
30
KΩ
Variable Output Resistance
Supply Voltage Rejection
MHz
f = 20Hz to 22KHz
PLAY, max volume
30
RL Var Out Variable Output Load
SVR
2.8
0.6
Total Output Noise
Unit
A
80
BW
eN
Max.
100
2
Ω
KΩ
f = 1KHz; max volume
CSVR = 470µF; VRIP = 1Vrms
35
39
dB
f = 1KHz; max attenuation
CSVR = 470µF; VRIP = 1Vrms
55
65
dB
TM
Thermal Muting
150
°C
TS
Thermal Shut-down
160
°C
MUTE & INPUT SELECTION FUNCTIONS
VST-ON
Stand-by ON Threshold
VST-OFF
Stand-by OFF Threshold
3.5
V
1.5
VMUTEON Mute ON threshold
3.5
V
VMUTEOFF Mute OFF threshold
AMUTE
Mute Attenuation
IqST-BY
Quiescent Current @ Stand-by
IstbyBIAS
Stand-by bias current
1.5
50
Play or Mute
ImuteBIAS
Mute Bias Current
65
0.6
Stand by ON: VST-BY = 5V;
Vmute = 5V
-20
V
V
dB
1
mA
80
µA
-5
µA
Mute
1
5
µA
Play
0.2
2
µA
3/13
TDA7496SA
APPLICATION SUGGESTIONS
The recommended values of the external components are those shown on the application circuit of figure 1.
Different values can be used, the following table can help the designer.
COMPONENT
SUGGESTION
VALUE
R1
300K
Volume Control Circuit
Larger volume regulation
time
Smaller volume regulation
time
R2
10K
Mute time constant
Larger mute on/off time
Smaller mute on/off time
P1
50K
Volume Control Circuit
C1
1000µF
Supply voltage bypass
C2
470nF
Input DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C3
470nF
Input DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C4
470µF
Ripple rejection
Better SVR
Worse SVR
C5
100nF
Volume control time
constant
Larger volume regulation
time
Smaller volume regulation
time
C6
1000µF
Output DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C7
1µF
Mute time constant
Larger mute on/off time
C8
1000µF
Output DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C9
100nF
Supply voltage bypass
LARGER THAN
SUGGESTION
PURPOSE
SMALLER THAN
SUGGESTION
Danger of oscillation
Smaller mute on/off time
Danger of oscillation
Figure 1. Application Circui
+VS
C1
1000µF
C9
0.1µF
VS
VAROUT_R
PW_GND
2
11
15
VOLUME
1
INR
C2 470nF
13
14
+
30K
PW_GND
C8 1000µF
PW_GND
OUTR
OP AMP
S1 STBY
S_GND
9
8
MUTE/STBY
PROTECTIONS
C7
1µF
VOLUME
5
INL
C3 470nF
12
+
30K
-
PW_GND
7
C4 470µF
3
VOLUME
C5
100nF
4/13
S2 MUTE
OUTL
C6 1000µF
OP AMP
SVR
S_GND
R2 10K
10
4
VAROUT_L
R1 300K
TP1
VOL
P1
50K
LOG
+5V
+5V
D96AU493D
+5V
TDA7496SA
MUTE STAND-BY TRUTH TABLE
MUTE
St-BY
OPERATING CONDITION
H
H
STAND-BY
L
H
STAND-BY
H
L
MUTE
L
L
PLAY
Turn ON/OFF Sequences (for optimizing the POP performances)
Figure 1. USING ONLY THE MUTE FUNCTION
VS (V)
ST-BY
pin#9 (V)
5
VSVR
pin#7(V)
2.5V
MUTE
pin#10 (V)
5
INPUT
(mV)
VOUT
(V)
OFF
STBY MUTE
PLAY
MUTE STBY
OFF
IQ
(mA)
D97AU684
USING ONLY THE MUTE FUNCTION
To semplify the application, the stand-by pin can be connected directly to Ground. During the ON/OFF transitions is recommended to respect the following conditions:
– At the turn-on the transition mute to mute - play must be made when the SVR pin is higher than 2.5V
– At the turn-off the TDA7496A must be brought to mute from the play condition when the SVR pin is
higher than 2.5V.
5/13
TDA7496SA
Figure 2. P.C.B. and Component layoutPCB and Component Layout
Figure 3.
6/13
TDA7496SA
Figure 4. Quiescent Current vs. Supply Voltage
Iq
(mA)
D03AU1494
30
Vi=0
Figure 7. Output DC Offset vs. Supply Voltage
Vodc-Vsvr
(mV)
280
D03AU1496/mod
Vi=0
260
28
240
26
220
24
200
180
22
160
20
140
18
120
100
16
10
12
14
16
18 20 22 24 26
Supply Voltage (V)
28
30
Figure 5. Output Dc Offset vs. Supply Voltage
Vodc
(V)
16
15
14
13
12
11
10
9
8
7
6
5
4
10
32
D03AU1495
14
16
18 20 22 24
Supply Voltage (V)
26
28
30
32
Figure 8. Output Power vs Supply Voltage
Output Power
(W)
3.2
D03AU1498
Rl=4Ω
F=1KHz
2.8
Vi=0
12
2.4
THD=10%
2.0
1.6
1.2
THD=1%
0.8
0.4
0
10
12
14
16
18 20 22 24
Supply Voltage (V)
26
28
30
Figure 6. Output Power vs. Supply Voltage
Output Power
(W)
10
32
13
13.5
14
D03AU1499
Vs=22V
Rl=8Ω
1
THD=10%
6
11.5
12 12.5
Supply Voltage (V)
Distortion
(%)
Rl=8Ω
F=1KHz
7
11
Figure 9. Distortion vs Output Power
D03AU1497
8
10.5
5
F=15KHz
4
0.1
3
THD=1%
2
F=1KHz
1
0
10
12
14
16
18
20
Supply Voltage (V)
22
24
26
0.01
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Output Power (W)
7/13
TDA7496SA
Figure 10. Distortion vs Output Power
Figure 13. Mute Attenuation vs Vpin 10
Distortion
(%)
D03AU1500
Mute Attenuation
(dB)
D03AU1503
0
-20
F=15KHz
1
Rl=8Ω
0dB @ Pout=1W
-40
Vs=12V
Rl=4Ω
0.1
-60
-80
F=1KHz
0.01
-100
-120
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Output Power (W)
Figure 11. Closed Loop Gain vs. Frequency
Closed loop
Gain
(dB)
30
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2
Vpin # 10 (V)
PINS DESCRIPTION
D03AU1501
Figure 14. PIN SVR
VS
28
Rl=8Ω
Pout=0.5W
Cin=470nF
Cout=1000µF
Csvr=470µF
26
24
VS
VS
OUT L
+
-
20K
6K
1K
20K
6K
1K
30K
SVR
22
30K
20
0.02
0.2
2
Frequency (KHz)
20
+
100µA
Figure 12. St-By Attenuation vs Vpin 9
D97AU585A
Figure 15. PINS: INL,INR
St-by Attenuation
(dB)
D03AU1502
VS
0
-20
-40
Rl=8Ω
0dB @ Pout=1W
-60
6K
INn
-80
30K
-100
-120
-140
8/13
D97AU589
SVR
0
0.5
1.0 1.5
2.0 2.5 3.0 3.5
Vpin # 9 (V)
4.0 4.5
5.0
500µA
OUT R
TDA7496SA
Figure 17. PIN ST-BY
Figure 20. PINS: VAROUT-L VAROUT-R
VS
VS
10µA
STBY
200
VAROUT-L
65K
D97AU594
D97AU590
Figure 18. PIN: MUTE
Figure 21. PIN: VOLUME
VS
MUTE
200
VS
10K
10µA
50µA
D97AU592
VOL
Figure 19. PINS: OUT R, OUT L
D97AU591
VS
Figure 22. PINS: PW-GND, S-GND
OUT
VS
GND
D97AU593
D97AU588
9/13
TDA7496SA
HEAT SINK DIMENSIONING:
In order to avoid the thermal protection intervention, that is placed approximatively at Tj = 150°C, it is important
the dimensioning of the Heat Sinker RTh (°C/W).
The parameters that influence the dimensioning are:
– Maximum dissipated power for the device (Pdmax)
– Max thermal resistance Junction to case (RTh j-c)
– Max. ambient temperature Tamb max
– Quiescent current Iq (mA)
Example:
VCC = 22V, Rload = 8ohm, RTh j-c = 5 °C/W , Tamb max = 50°C
2
V cc
- + I q ⋅ V cc
Pdmax = (N° channels) · ----------------------------2
2 Π ⋅ R lo ad
Pdmax = 2 · ( 3.0 ) + 0.5 = 6.5 W
150 – T am b max
150 – 50
- – R T h j-c = ---------------------- – 5.0 = 10°C /W
(Heat Sinker) R Th c-a = ---------------------------------------6.5
P d max
In figure 23 is shown the Power derating curve for the device.
Figure 23. Power derating curve
20
15
Pd (W)
(a)
10
(b)
a)
Infinite Heatsink
b)
7 °C/ W
c)
10 °C/ W
(c)
5
0
0
40
80
Tamb (°C)
10/13
120
160
TDA7496SA
Clipwatt Assembling Suggestions
The suggested mounting method of Clipwatt on external heat sink, requires the use of a clip placed as much
as possible in the plastic body center, as indicated in the example of figure 24.
A thermal grease can be used in order to reduce the additional thermal resistance of the contact between package and heatsink.
A pressing force of 7 - 10 Kg gives a good contact and the clip must be designed in order to avoid a maximum
contact pressure of 15 Kg/mm2 between it and the plastic body case.
As example , if a 15Kg force is applied by the clip on the package , the clip must have a contact area of 1mm2
at least.
Figure 24. Example of right placement of the clip
11/13
TDA7496SA
mm
inch
DIM.
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
A
3.2
0.126
B
1.05
0.041
C
0.15
0.006
D
1.55
0.061
Weight: 1.92gr
E
0.49
0.55
0.019
0.022
F
0.67
0.73
0.026
0.029
G
1.14
1.27
1.4
0.045
0.050
0.055
G1
17.57
17.78
17.91
0.692
0.700
0.705
H1
12
0.480
H2
18.6
0.732
H3
19.85
0.781
L
17.95
0.707
L1
14.45
0.569
L2
10.7
OUTLINE AND
MECHANICAL DATA
11
11.2
0.421
0.433
L3
5.5
0.217
M
2.54
0.100
M1
2.54
0.100
0.441
Clipwatt15
0044538
12/13
TDA7496SA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2003 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
13/13